MAGNUS ™

12 x 1.6 / 2.5 / 2.7 Gbps Parallel Optical Transmitter/Receiver

Key benefits

- Delivers bandwidth to key system bottlenecks
- Reduces inventory costs
- · Enables field replacement
- · Improves manufacturing yield
- Minimizes impact on system power budget
- Eases system design
- Enables multiple data channel fanout
- Multisource availability strengthens supply chain

Applications

- Optical backplane extension
- System interconnect
 - · Cross connect switching
 - · Network edge devices
 - Access network equipment
 - Mass storage systems
- Massively parallel OC-48 or Gigabit Ethernet extension
- · High end CPU interconnect
- Rack-to-rack/Board-to-board interconnect

PL-TCP-00-SD3 / S53 / SE3 Transmitter PL-RCP-00-SD3 / S53 / SE3 Receiver

The MAGNUS parallel optical interconnect is a transmitter/ receiver pair operating with 12 channels at 1.6, 2.5, and 2.7 Gbps for an aggregate bandwidth of 19, 30, and 32 Gbps respectively. The parallel modules are another in Picolight's MAGNUS family of products for optical backplane applications, where high-speed, high-density components are needed to handle increased bandwidth demand. The parallel optical interconnect complies with the SNAP12 multisource agreement, and features Picolight's highly reliable 850 nm, oxide vertical-cavity surface-emitting laser (VCSEL) array with a standard Ball Grid Array (BGA) connector interface. The module's pluggable, connectorized design enables manufacturers to provision bandwidth on demand, upgrading cards in the field with the snap-on optics. The parallel optical interconnect complies with the IEEE802.3 1000BASE-SX standard.

Highlights

- Expands bandwidth across equipment backplanes, meeting ultra-high capacity demand for faster central office switching
- BGA connector attachment enables "snap-on" optics that improve customers' manufacturing yields, reduce inventory costs, and provide capability for system field upgrade to add bandwidth
- Thumb-sized modules consume only 2 watts of power per pair, lowering system power costs and increasing density
- System backplanes become "distanceindependent," seamlessly connecting equipment from 0 to 600 meters over high-bandwidth fiber, 0 to 300 meters over low-bandwidth fiber
- Data rates per channel range from 1.6 Gbps to 2.7 Gbps, allowing customers to select the optimum model for their applications
- SNAP12 multisource agreement compliance ensures reliable supply chain

PICOLIGHT

PL-xCP-00-SD3 / S53 / SE3 features

- Utilizes a Picolight high reliability, high speed, 850 nm, oxide VCSEL array
- Data rate to 1.6 / 2.5 / 2.7 Gbps per channel for a total link data rate of 19 / 30 / 32 Gbps
- Mass production compatible Ball Grid Array (BGA) connector interface
- Low power consumption (approx. 2 watts per module pair)
- 12 asynchronous independent electrical/optical data channels
- Meets IEEE 802.3z 1000Base-SX std.
- Bit Error Rate < 1×10^{-12} without FEC
- Supports 50/125 μm and 62.5/ 125 μm multimode fiber
- Industry standard MTP optical interface
- BGA connector compatible with industry standard wave solder and aqueous wash processes
- IEC 60825-1 Amendment 2 (2001-01) Class 1M laser eye safe
- 0°C to 80°C operating range
- Single +3.3 V power supply
- · Supplied with process plug

The 12-channel PL-xCP-00-SD3 / S53 / SE3 parallel optical interconnect is the first of its kind to combine the convenience of low-cost, snap-on connector pluggability with the speed of parallel optics. It sets a new standard for ease of design, manufacture, test and field support of ultrahigh-speed optics required across equipment backplane in core switches, routers and multiplexors.

Ordering information

Part Number:	Description:	Contact Information:
PL-TCP-00-SD3-0A	MAGNUS 12 x 1.6 Gbps Transmitter	Picolight Incorporated 4665 Nautilus Court South
PL-RCP-00-SD3-0B	MAGNUS 12 x 1.6 Gbps Receiver	Boulder, CO 80301
PL-TCP-00-SD3-3A	MAGNUS 12 x 1.6 Gbps Transmitter, without EMI collar	Tel: 303.530.3189
PL-RCP-00-SD3-3B	MAGNUS 12 x 1.6 Gbps Receiver, without EMI collar	E-mail: sales@picolight.com Web site: www.picolight.com
PL-TCP-00-S53-OB	MAGNUS 12 x 2.5 Gbps Transmitter	For information on SNAP12
PL-RCP-00-S53-0C	MAGNUS 12 x 2.5 Gbps Receiver	Web site: www.snapoptics.org
PL-TCP-00-S53-3A	MAGNUS 12 x 2.5 Gbps Transmitter, without EMI collar	
PL-RCP-00-S53-3B	MAGNUS 12 x 2.5 Gbps Receiver, without EMI collar	
PL-TCP-00-SE3-0A	MAGNUS 12 x 2.7 Gbps Transmitter	
PL-RCP-00-SE3-0B	MAGNUS 12 x 2.7 Gbps Receiver	
PL-TCP-00-SE3-3A	MAGNUS 12 x 2.7 Gbps Transmitter, without EMI collar	
PL-RCP-00-SE3-3B	MAGNUS 12 x 2.7 Gbps Receiver, without EMI collar	

PICOLIGHT

Section 1 Functional description

The PL-xCP-00-SD3 / S53 / SE3 850 nm VCSEL Gigabit Transmitter/Receiver is designed to transmit and receive DC balanced data, such as 2.488G OC-48, or 8B/10B encoded data, over 50/125 μ m or 62.5/125 μ m optical fiber.

Note: All references to SNAP12 MSA specifications refer to version 1.0 of that document.

Figure 1 Recommended application for the PL-xCP-00-SD3 / S53 / SE3 transmitter/receiver

Transmitter Module Application Block Diagram

Transmitter

The transmitter converts 12 channels of encoded DC balanced CML electrical data into serial optical data. Transmit data lines (DIN 01: DIN 12) are terminated with 100 Ω , differential. See Figure 7 on page 6, and Figures 8 and 9 on page 7 for application schematic information. Unused channels should have inputs tied together.

The transmitter has an internal PIN monitor diode that is used to ensure constant optical power output across supply voltage and temperature variations.

TXEN/TXDIS

LVCMOS logic level Transmit Enable (TXEN) and Transmit Disable (TXDIS) are provided. A logic "1" or no connection on the TXEN pin **and** a logic "0" or no connection on the TXDIS pin allow normal operation. Both signals **must** be connected as described for normal operation. A logic "0" on the TXEN pin **or** a logic "1" on the TXDIS pin will disable all transmit channels.

PICOLIGHT

-Reset/-Fault

An LVCMOS logic level fault output (-Fault) is provided. A logic "1" on this pin indicates proper operation. A logic "0" on this pin indicates a fault has occurred in the laser circuitry and all laser outputs are disabled.

An LVCMOS logic level reset input (-Reset) is provided. A logic "1" on this pin allows normal operation. A logic "0" on this pin will reset the laser circuitry and disable all laser outputs. (-Fault will indicate logic "0" when -Reset is logic "0".) During power-up, -Reset must remain logic "0" until the power supply (Vcc) has reached a minimum of 3V.

Figure 2 Transmit module block diagram

Receiver

The receiver converts encoded serial optical data into DC balanced parallel CML electrical data. Receive data lines (DOUT1:DOUT12) should be terminated into single-ended 50 Ω loads or equivalent.

SD/SD1/-SD12

LVCMOS Signal Detect Status Outputs (SD, SD1 and -SD12) are provided. SD, SD1 and -SD12 are independent signal detect status indicators for all channels, channel 1, and channel 12 respectively. A logic "1" on SD indicates that sufficient optical signal has been detected on all channels (see Section 3.5 Electrical characteristics; "Signal Detect Assert/Negate Level on page 17). A logic "0" on SD indicates that insufficient optical signal for proper operation has been detected on at least one of the 12 channels. A logic "1" on SD1 and a logic "0" on -SD12 indicate that sufficient optical signal has been detected on channels 1 and 12. A logic "0" on SD1 and/or a logic "1" on -SD12 indicates that insufficient optical signal has been detected at channel 1 and/or 12 for proper operation.

RXEN

An LVCMOS Receive Output Enable Input (RXEN) is provided. A logic "1" on RXEN will enable proper operation of the high speed data outputs. A logic "0" on RXEN sets all of the differential channel data outputs to a fixed logic "0" state. RXEN does not affect the Signal Detect functionality.

PICOLIGHT

Figure 3 Receive module block diagram

Power supply and grounding

Power supply filtering is recommended for both the transmitter and receiver. Filtering should be placed on the host assembly as close to the Vcc pins as possible for optimal performance. Recommended filtering shown in Figure 4.

Figure 4 Recommended filtering

L1 - 1 μ H or Murata BLM21P221SG

Module signal and power grounds are common. The module case is not connected internally to power ground. The module case can be electrically contacted through the front or rear screws.

PICOLIGHT

Section 2 Application schematics

Recommended connections to the PL-xCP-00-SD3 / S53 / SE3 transmitter/receiver are shown in Figure 5, 6, 7, 8, and 9.

Note: VPU connection leave open or connect to external CML pull-up voltage (SNAP12 MSA VPU connect to 3.3 V).

Figure 8 Tx module; high speed input; LVDS or similar interface

PICOLIGHT

Figure 9 Tx module; high speed input; PECL or similar interface

Notes

Power supply filtering components should be placed on the opposite side of the PCB directly under the PL-xCP-00-SD3 / S53 / SE3 transmitter/receiver, as close to the Vcc pins as possible for optimal performance.

PECL, LVDS, or other outputs may require biasing networks, not shown. Consult Application Information for those devices.

Transmission lines should be 100 ohm differential traces. It is recommended that the termination resistor be placed beyond the Rx IC pins.

For unused channels, receiver output pairs should be left unconnected. Unused transmitter inputs should be tied together.

If using dc coupling, users must ensure data remains dc balanced. Otherwise, rated optical output power may be exceeded.

Series resistors can be used to improve electrical crosstalk on a system board and to improve impedance match at the source.

PICOLIGHT ^{12 x 1.6 / 2.5 / 2.7 Gbps Parallel Optical Transmitter/Receiver}

Section 3 **Technical data**

Technical data related to the 12x1.6 / 2.5 / 2.7 Gbps Parallel Optical Transmitter/Receiver includes:

- Section 3.1 Receiver pin descriptions below •
- Section 3.2 Transmitter pin descriptions on page 11 •
- Section 3.3 Signaling timing diagrams on page 14 •
- Section 3.4 Absolute maximum ratings on page 16 •
- Section 3.5 Electrical characteristics on page 16 •
- Section 3.6 Optical characteristics on page 18
- Section 3.7 Link length on page 18 •
- Section 3.8 Regulatory compliance on page 19 •
- Section 3.9 PCB layout on page 20 •
- Section 3.10 Front panel opening on page 20 •
- Section 3.11 Module outline on page 21 •
- Section 3.12 Mechanical comparison to SNAP12 MSA on page 22 •
- Section 3.13 Host connector information on page 22 •

3.1 Receiver pin descriptions

Pin Number	Symbol	Туре	Description
A2	GND		Ground
A3	GND		Groung
A5	GND		Ground
A6	GND		Ground
B1	GND		Ground
B2	Dout9n	CML Out	Data Output, inverted
B3	Dout9p	CML Out	Data Output, non-inverted
B4	GND		Ground
B5	Dout10p	CML Out	Data Output, non-inverted
B6	Dout10n	CML Out	Data Output, inverted
B7	GND		Ground
B8	GND		Ground
В9	GND		Ground
C1	GND		Ground
C2	GND		Ground
C3	Dout8n	CML Out	Data Output, inverted
C4	Dout8p	CML Out	Data Output, non-inverted
C5	GND		Ground

 PICOLIGHT
 12 x 1.6 / 2.5 / 2.7 Gbps Parallel Optical Transmitter/Receiver

3.1 Receiver pin descriptions (continued)

Pin Number	Symbol	Туре	Description
C6	Dout11p	CML Out	Data Output, non-inverted
C7	Dout11n	CML Out	Data Output, inverted
C8	GND		Ground
C9	GND		Ground
D1	GND		Ground
D2	GND		Ground
D3	GND		Ground
D4	Dout7n	CML Out	Data Output, inverted
D5	Dout7p	CML Out	Data Output, non-inverted
D6	GND		Ground
D7	Dout12p	CML Out	Data Output, non-inverted
D8	Dout12n	CML Out	Data Output, inverted
D9	GND		Ground
E1	GND		Ground
E2	Dout6n	CML Out	Data Output, inverted
E3	Dout6p	CML Out	Data Output, non-inverted
E4	GND		Ground
E5	Dout3n	CML Out	Data Output, inverted
E6	Dout3p	CML Out	Data Output, non-inverted
E7	GND		Ground
E8	GND		Ground
E9	GND		Ground
F1	GND		Ground
F2	GND		Ground
F3	Dout5n	CML Out	Data Output, inverted
F4	Dout5p	CML Out	Data Output, non-inverted
F5	GND		Ground
F6	Dout2n	CML Out	Data Output, inverted
F7	Dout2p	CML Out	Data Output, non-inverted
F8	GND		Ground
F9	GND		Ground
G1	GND		Ground
G2	GND		Ground
G3	GND		Ground
G4	Dout4n	CML Out	Data Output, inverted

 Picolight
 12 x 1.6 / 2.5 / 2.7 Gbps Parallel Optical Transmitter/Receiver

Pin Number	Symbol	Туре	Description
G5	Dout4p	CML Out	Data Output, non-inverted
G6	GND		Ground
G7	Dout1n	CML Out	Data Output, inverted
G8	Dout1p	CML Out	Data Output, non-inverted
G9	GND		Ground
H3	VCC		Power supply voltage
H4	VCC		Power supply voltage
H5	VCC		Power supply voltage
H6	VCC		Power supply voltage
H7	SD	LVCMOS Out	Signal Detect on all fibers High=signal of sufficient AC power is present on all fibers Low=signal on at least one fiber is insufficient
H8	SD1	LVCMOS Out	Signal Detect on fiber #1 High=signal of sufficient AC power is present on fiber #1 Low=signal on fiber #1 is insufficient
13	VCC		Power supply voltage
14	VCC		Power supply voltage
15	VCC		Power supply voltage
16	VCC		Power supply voltage
18	SD12	LVCMOS Out	Signal Detect on fiber #12 Low=signal of sufficient AC power is present on fiber #12 High=signal on fiber #12 is insufficient
19	RXEN	LVCMOS In	High=normal output operation Low=all data outputs set low Internal pull-up
J1	VPU (SNAP12 MSA = VCC)		Power supply voltage to internal pull-up resistors. No connection required for existing boards with external CML pull-up resistors.
J2	VPU (SNAP12 MSA = VCC)		Power supply voltage to internal pull-up resistors. No connection required for existing boards with external CML pull-up resistors.
J10	SQEN	LVCMOS In	Squelch enable. High=all data outputs driven to logic "0" when SD is active (low) Low=squelch disabled Internal pull-up

3.1 Receiver pin descriptions (continued)

	Top view of user's board (this edge towards fiber ribbon)											
	Larger connector orientation feature/key											
	J I H G F E D C B A											
1	VPU (SNAP12:VCC)	NIC	NIC	GND	GND	GND	GND	GND	GND	NIC		
2	VPU (SNAP12:VCC)	NIC	NIC	GND	GND	DOUT6n	GND	GND	DOUT9n	GND		
3	NIC	VCC	VCC	GND	DOUT5n	DOUT6p	GND	DOUT8n	DOUT9p	GND		
4	NIC	VCC	VCC	DOUT4n	DOUT5p	GND	DOUT7n	DOUT8p	GND	NIC		
5	NIC	VCC	VCC	DOUT4p	GND	DOUT3n	DOUT7p	GND	DOUT10p	GND		
6	NIC	VCC	VCC	GND	DOUT2n	DOUT3p	GND	DOUT11p	DOUT10n	GND		
7	NIC	NIC	SD	DOUT1n	DOUT2p	GND	DOUT12p	DOUT11n	GND	NIC		
8	NIC	-SD12	SD1	DOUT1p	GND	GND	DOUT12n	GND	GND	NIC		
9	NIC	RXEN	DNC	GND	GND	GND	GND	GND	GND	NIC		
10	NIC	NIC	NIC	NIC	NIC	NIC	NIC	NIC	NIC	NIC		
	·			Smaller con	nector orier	tation featu	re/key		· · · · ·			
Not	e: NIC is no int	ernal connect	ction, reserves	ed for future	use.							

3.1.1 RX module signals on user's board

3.1.2 Rx MTP connector (front view of module)

	FRONT VIEW – MTP KEY IS UP								
CH12 CH11 CH10 CH9 CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1								CH1	
	User PCB below								

3.2 Transmitter pin descriptions

Pin Number	Symbol	Туре	Description
A2	GND		Ground
A3	GND		Ground
A5	GND		Ground
A6	GND		Ground
B1	GND		Ground
B2	Din9p	Signal In	Data Input, non-inverted
B3	Din9n	Signal In	Data Input, inverted
B4	GND		Ground
B5	Din10	Signal In	Data Input, inverted

 PICOLIGHT
 12 x 1.6 / 2.5 / 2.7 Gbps Parallel Optical Transmitter/Receiver

Pin Number	Symbol	Туре	Description
B6	Din10	Signal In	Data Input, non-inverted
B7	GND		Ground
B8	GND		Ground
B9	GND		Ground
C1	GND		Ground
C2	GND		Ground
C3	Din8p	Signal In	Data Input, non-inverted
C4	Din8n	Signal In	Data Input, inverted
C5	GND		Ground
C6	Din11n	Signal In	Data Input, inverted
C7	Din11p	Signal In	Data Input, non-inverted
C8	GND		Ground
C9	GND		Ground
D1	GND		Ground
D2	GND		Ground
D3	GND		Ground
D4	Din7p	Signal In	Data Input, non-inverted
D5	Din7n	Signal In	Data Input, inverted
D6	GND		Ground
D7	Din12n	Signal In	Data Input, inverted
D8	Din12p	Signal In	Data Input, non-inverted
D9	GND		Ground
E1	GND		Ground
E2	Din6p	Signal In	Data Input, non-inverted
E3	Din6n	Signal In	Data Input, inverted
E4	GND		Ground
E5	Din3p	Signal In	Data Input, non-inverted
E6	Din3n	Signal In	Data Input, inverted
E7	GND		Ground
E8	GND		Ground
E9	GND		Ground
F1	GND		Ground
F2	GND		Ground
F3	Din5p	Signal In	Data Input, non-inverted
F4	Din5n	Signal In	Data Input, inverted

3.2 Transmitter pin descriptions (continued)

 PICOLIGHT
 12 x 1.6 / 2.5 / 2.7 Gbps Parallel Optical Transmitter/Receiver

Pin Number	Symbol	Туре	Description
F5	GND		Ground
F6	Din2p	Signal In	Data Input, non-inverted
F7	Din2n	Signal In	Data Input, inverted
F8	GND		Ground
F9	GND		Ground
G1	GND		Ground
G2	GND		Ground
G3	GND		Ground
G4	Din4p	Signal In	Data Input, non-inverted
G5	Din4n	Signal In	Data Input, inverted
G6	GND		Ground
G7	Din1p	Signal In	Data Input, non-inverted
G8	Din1n	Signal In	Data Input, inverted
G9	GND		Ground
H3	VCC		Power supply voltage of laser driver
H4	VCC		Power supply voltage of laser driver
H5	VCC		Power supply voltage of laser driver
H6	VCC		Power supply voltage of laser driver
H8	-FAULT	LVCMOS Out	Transmit laser fault. Low level indicates a fault.
H9	TXDIS		Transmit laser disable. Active high. Internal pull-down.
13	VCC		Power supply voltage of laser driver
14	VCC		Power supply voltage of laser driver
15	VCC		Power supply voltage of laser driver
16	VCC		Power supply voltage of laser driver
17	NC		No connect
18	-RESET	LVCMOS In	Reset fault condition. Active Low. Internal pull-down.
19	TXEN	LVCMOS In	Transmit laser enable. Active high. Internal pull-up.

3.2 Transmitter pin descriptions (continued)

	Top view of user's board (this edge towards fiber ribbon)										
	Larger connector orientation feature/key										
	J I H G F E D C B										
1	NIC	NIC	NIC	GND	GND	GND	GND	GND	GND	NIC	
2	NIC	NIC	NIC	GND	GND	DIN6p	GND	GND	DIN9p	GND	
3	NIC	VCC	VCC	GND	DIN5p	DIN6n	GND	DIN8p	DIN9n	GND	
4	NIC	VCC	VCC	DIN4p	DINn	GND	DIN7p	DIN8n	GND	NIC	
5	NIC	VCC	VCC	DIN4n	GND	DIN3p	DIN7n	GND	DIN10n	GND	
6	NIC	VCC	VCC	GND	DIN2p	DIN3n	GND	DIN11n	DIN10p	GND	
7	NIC	NIC	NIC	DIN1p	DIN2n	GND	DIN12n	DIN11p	GND	NIC	
8	NIC	-RESET	-FAULT	DIN1n	GND	GND	DIN12p	GND	GND	NIC	
9	NIC	TXEN	TXDIS	GND	GND	GND	GND	GND	GND	NIC	
10	NIC	NIC	NIC	NIC	NIC	NIC	NIC	NIC	NIC	NIC	
			Sma	aller connec	ctor orienta	tion feature	/key				
Note: NIC	is no intern	al connectior	n, reserved for	or future use	9.						

3.2.1 TX module signals on user's board

3.2.2 Tx MTP connector (front view of module)

FRONT VIEW – MTP KEY IS UP									
CH12	CH12 CH10 CH9 CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1								
	User PCB below								

3.3 Signaling timing diagrams

Figure 10 Transmit fault

 12 x 1.6 / 2.5 / 2.7 Gbps Parallel Optical Transmitter/Receiver

Figure 12 Transmit enable/disable

Figure 13 Receive data signal detect

PICOLIGHT ^{12 x 1.6 / 2.5 / 2.7 Gbps Parallel Optical Transmitter/Receiver} (-

Figure 14 Receive startup timing

3.4 Absolute maximum ratings

Parameter	Symbol	Ratings	Unit
Storage Temperature	T _{st}	-20 to +100	°C
Transmitter Operating Case Temperature	T _{CTX}	0 to +80	°C ⁵
Receiver Operating Case Temperature	T _{CRX}	0 to +90	°C ⁵
Power Supply Voltage	V _{cc}	-0.3 to +4.5	V
Transmitter Differential Input Voltage	V _D	2.0 (SNAP12 MSA = 1.4)	V
Input Voltage Range	V _{IR}	-0.5 to Vcc + 0.5	V
Electrostatic Discharge	ESD	1000	V
Relative Humidity	RH	5% to 95% non-condensing	

3.5 Electrical characteristics

(T _{CTX} = 0°C to 80°C, T _{CRX} = 0°C to 90°C, Vcc = 3.15V to 3.45V)						
Parameter	Symbol	Min	Typical	Max	Unit	Notes ¹
Supply Voltage	Vcc	3.15	3.3	3.45	V	
Data Rate	D _{TR}	0.5		1.6/2.5/ 2.72	Gbps	BER < 1x10 ⁻¹² SONET
Power Supply Noise ₁	N _{P1}			10	mV _{p-p}	@ 1KHz to 1MHz
Power Supply Noise ₂	N _{P2}			100	mV _{p-p}	@ 1MHz to 2GHz
Transmitter						
Supply Current	I _{CCT}		350	450	mA	SNAP12 MSA = 500 mA max
Power Consumption	Pl		1.2	1.6	W	SNAP12 MSA = 1.75 W max
Data Input Voltage Swing	V _{TDp-p}	200		2000	mV _{p-p}	Differential, peak to peak SNAP12 MSA = 800 mV max
Data Input Range	V _{INR}	825		Vcc	mV	
Data Input Rise/Fall Time	t _{INR} /t _{INF}	100		200	ps	20% - 80%, Differential

 PICOLIGHT
 12 x 1.6 / 2.5 / 2.7 Gbps Parallel Optical Transmitter/Receiver

3.5 Electrical characteristics (continued)

Parameter	Symbol	Min	Typical	Max	Unit	Notes ¹
Data Input Skew	t _{INS}	0		30	ps	Single Channel, Data/Data
ansmit Control Signal Voltage	V _{IH}	2		Vcc	V	
Level (LVCMOS)	V _{IL}	0		0.8	V	-
Transmit Disable/Enable Assert	T _{TD}			10	μs	See Figure 12, "Transmit enable/
Time	T _{TEN}			1	ms	uisable, oli page 15
Transmit Disable Duration	T _{TDD}	10			μs	See Figure 11, "Transmit startup and reset," on page 15
Transmit Reset Time	T _{RST}	10			μs	See Figure 11, "Transmit startup
	T _{ON}			100	ms	and reset, on page 15
	T _{OFF}			10	μs	
Transmit Fault Time	T _{FA}			10	μs	See Figure 10, "Transmit fault,"
	T _{FD}			10	μs	SNAP12 MSA = 100 μ s max for T _{FA} and T _{FD}
			Receiver			
Supply Current	I _{CCR}		300	350	mA	SNAP12 MSA = 450 mA max
Power Consumption	P _R		1.0	1.2	W	SNAP12 MAS = 1.5 W max
Data Output Voltage Range	V _{DOR}	Vcc -2.1		Vcc +0.5	V	
Data Output Voltage Swing	V _{DOS}	450		800	mV _{p-p}	R_{LOAD} = 100 Ω, Differential
Data Output Rise/Fall Time			100	150	ps	20% - 80%, Differential
Data Output Skew				30	ps	R_{LOAD} = 100 Ω , Intra Channel, Differential
Data Output Impedance	R _{OL}		200		Ohm	Differential, does not include pull up resistors
Data Output Deterministic Jitter				0.14	UI	±K28.5 pattern, ^{1,6}
Data Output Total Jitter				0.33	UI	2 ²³ -1 pattern, BER < 1x10 ⁻¹² , ^{1,6} SNAP12 MSA = 0.39 UI max
Control Signal Output Current High (LVCMOS)	I _{СОН}			0.5	mA	
Control Signal Output Current Low (LVCMOS)	I _{COL}			4.0	mA	
Signal Detect Voltage Level	V _{OH}	Vcc -1.0		Vcc	V	2
	V _{OL}	0		0.8	V	
Signal Detect/Loss of Signal	T _{SD}			10	μs	See Figure 13, "Receive data
	T _{LOS}			10	μs	SNAP12 MSA = 50 μ s typ. for T _{SD} and T _{LOS}
Receive Reset Time	T _{RXO}			500	ms	See Figure 14, "Receive startup timing," on page 16

 PICOLIGHT
 12 x 1.6 / 2.5 / 2.7 Gbps Parallel Optical Transmitter/Receiver

3.6 Optical characteristics

Parameter	Symbol	Min.	Typical	Мах	Unit	Notes ¹
	· ·		Transmitter			·
Wavelength	λ _p	840	850	860	nm	
RMS Spectral Width	Δλ		0.5	0.65	nm	SNAP12 MSA = 0.85 nm max
Average Optical Power	P _{AVG}	-8.0		-1.5	dBm	
Average Optical Power, disabled				-30	dBm	
Optical Output Rise/Fall Time	t _{rise/fall}			160	ps	20% - 80%, unfiltered
Optical Modulation Amplitude	OMA	190			μW	Equivalent to 6dB ER at P _{AVG} = -8dBm
Deterministic Jitter	DJ			0.14	UI	±K28.5 pattern, ^{1,6}
Total Jitter	TJ			0.33	UI	2 ²³ -1 pattern, BER<1x10 ⁻¹² , ^{1,6}
Channel to Channel Skew	T _{C-C}			200	ps	
Relative Intensity Noise	RIN		-130	-117	dB/Hz	1GHz, 12 dB reflection
			Receiver			
Wavelength	λ	830	850	860	nm	
Optical Input Power	Po			-1.5	dBm	SNAP12 MSA = 2.5 dBm max
Sensitivity	S			-16	dBm	3
Stressed Sensitivity	S _S		-14	-12	dBm	4
Signal Detect Assert/Negate Level	SD _A		-21	-17	dBm	Chatter Free Operation
	SD _N	-27	-23		dBm	min
Signal Detect Hysteresis	SD _A - SD _N	1	1.7	4	dB	
Low Frequency Cutoff	F _C	25		160	kHz	-3 dB, P<-16 dBm
Optical Modulation Bandwidth	BW			2500	MHz	-3 dB, P<-16 dBm
Optical Return Loss		12			dB	

3.7 Link length

(T _{CTX} = 0°C to 80°C, T _{CRX} = 0°C to 90°C, Vcc = 3.15V to 3.45V)					
Data Rate / Standard	Fiber Type	Modal Bandwidth @ 850 nm (MHz*km)	Distance Range (m)	Notes	
2.5Gbps 2.488Gbps / OC-48	62.5/125 μm MMF	200	0 to 150		
	50/125 μm MMF	500	0 to 325		
	50/125 μm MMF	900	0 to 500		
	50/125 μm MMF	1500	0 to 650		

PICOLIGHT

Specification notes

- 1. UI (Unit Interval): one UI is equal to one bit time. For example, 2.488 Gbits/s corresponds to a UI of 408 ps.
- 2. For SD_A and SD_N definitions, see Signal Detect Assert/Negate Level in Section 3.6 Optical characteristics on page 18.
- 3. Sensitivity and saturation parameters using a Pseudo Random Bit Sequence (PRBS) 2²³ 1, an extinction ration (ER) greater than 6 dB and a maximum bit error rate (BER) of 10⁻¹². For sensitivity measurements, the maximum BER shall be maintained in the presence of the maximum crosstalk penalty. The maximum crosstalk possibility is defined as the 'victim' receiver channel operating at its sensitivity limit and remaining eleven the 'aggressor' receiver channels being actively driven at 6 dB higher incident power and 2.72 Gbps data rate. The minimum average optical power and minimum extinction ratio is equivalent to 30 μW Optical Modulation Amplitude (OMA).
- 4. Measured with stressed eye pattern as per IEEE 802.3z (Gigabit Ethernet), sec. 38.6.11.
- 5. Typical ambient temperature with no air flow is 65°C to result in 80°C case temperature.
- 6. Jitter specified assumes no input signal jitter. Ethernet model has the following budget:

	DJ (UI)	TJ (UI)
Tx Input budget	.1	.21
Tx Output budget	.21	.43
Rx Input budget	.2	.47
Rx Output budget	.38	.65

7. Performance specified with all 12 channels carrying asynchronous PRBS data.

3.8 Regulatory compliance

The PL-xCP-00-SD3 / S53 / SE3 complies with common ESD, EMI, Immunity, and Component recognition requirements and specification (see details in Table 1 on page 19).

ESD, EMI, and Immunity are dependent on the overall system design. Information included herein is intended as a figure of merit for designers to use as a basis for design decisions.

Table 1 Regulatory compliance

Feature	Test Method	Comments
Laser Eye Safety	IEC 60825-1 1988 + IEC 60825-1 Amendment 2 (2001-01) CDRH 21CFR 1040.10 and 1040.11	Class 1M TUV Certificate #
Electrostatic Discharge (ESD) to electrical pins	MIL-STD 883C; Method 3015.4	Class 1 (> 1 kV)
Electrostatic Discharge (ESD) to optical connector	IEC 61000-4-2: 1999	Withstand discharges of 15 kV using a "Human Body Model" probe

PICOLIGHT 12 x 1.6 / 2.5 / 2.7 Gbps Parallel Optical Transmitter/Receiver

Table 1	Regulatory	compliance	(continued)
---------	------------	------------	-------------

Feature	Test Method	Comments
Electromagnetic Interference (EMI)	FCC Part 15 Subpart J Class B CISPR 22: 1997 EN 55022: 1998 Class B VCCI Class I	Noise frequency range: 30 MHz to 10 GHz. Good sys- tem EMI design practice required to achieve Class B margins.
Radiated Immunity	IEC 61000-4-3: 1998	Field strength of 3 V/m RMS, from 80 MHz to 1 GHz. No effect on transmitter/receiver performance is detectable between these limits.
Component	UL 1950 CSA C22.2 #950 IEC 60950: 1999	UL File # CSA File # TUV Certificate #

3.9 PCB layout

Figure 15 Top view

3.10 Front panel opening

PICOLIGHT

3.11 Module outline

Figure 17

У рісоLіднт

3.12 Mechanical comparison to SNAP12 MSA

Figure 18

Note: The diagram above shows the mechanical outline of PL-xCP-00-Sx3 modules to the SNAP12 MSA maximum mechanical outline. The Picolight module is indicated in gray.

3.13 Host connector information

Optical	MTP Industry Standard - female
Electrical	MEG-Array #84512 manufactured by FCI/Berg

PICOLIGHT

Section 4 Related information

Other information related to the 12x1.6 / 2.5 / 2.7 Gbps Parallel Optical Transmitter/Receiver includes:

- Section 4.1 Package and handling instructions below
- Section 4.2 ESD discharge (ESD) below
- Section 4.3 Eye safety on page 24

4.1 Package and handling instructions

Process plug

The PL-xCP-00-SD3 / S53 / SE3 is supplied with a process plug. This plug protects the transmitter/ receiver's optics during standard manufacturing processes by preventing contamination from dust or other airborne particles.

Note: It is recommended that the process plug remain in the transmitter/receiver whenever an optical fiber connector is not inserted.

Recommended solder and wash process for host BGA connector

PL-xCP-00-SD3 / S53 / SE3's mating BGA connector is compatible with standard industry wave solder, hand solder and wash processes. Air knife drying is recommended.

The BGA connector pickup cap must be installed during these process steps.

Recommended cleaning and de-greasing chemicals

Picolight recommends the use of methyl, isopropyl and isobutyl alcohols for cleaning.

Do not use halogenated hydrocarbons (e.g. trichloroethane, ketones such as acetone, chloroform, ethyl acetate, MEK, methylene chloride, methylene dichloride, phenol, N-methylpyrolldone).

Flammability

The PL-xCP-00-SD3 / S53 / SE3 housing is a zinc casting.

4.2 ESD discharge (ESD)

Handling

Normal ESD precautions are required during the handling of this module. This transmitter or receiver is shipped in ESD protective packaging. It should removed from the packaging and otherwise handled in an ESD protected environment utilizing standard grounded benches, floor mats, and wrist straps.

PICOLIGHT

Test and operation

In most applications, the optical connector will protrude through the system chassis and be subjected to the same ESD environment as the system. Once properly installed in the system, this transmitter/ receiver should meet and exceed common ESD testing practices and fulfill system ESD requirements.

Typical of optical transmitter/receivers, this module's receiver contains a highly sensitive optical detector and amplifier which may become temporarily saturated during an ESD strike. This could result in a short burst of bit errors. Such an event might require that the application re-acquire synchronization at the higher layers (e.g. Serializer/Deserializer chip).

4.3 Eye safety

The PL-TCP-00-SD3 / S53 / SE3 is a Class 1M Laser Product per IEC/EN 60825-1:2001 and complies with CDRH 21CRF 1040.10 and 1040.11 except for deviations pursuant to Laser Notice no. 50, dated 5/27/2001. The PL-TCP-00-SD3 / S53 / SE3 is an eye safe device when operated within the limits of this specification.

Operating this product in a manner inconsistent with intended usage and specification may result in hazardous radiation exposure.

CAUTION!

Tampering with this laser-based product or operating this product outside the limits of this specification may be considered an act of "manufacturing," and will require, under law, recertification of the modified product with the U.S. Food and Drug Administration.

INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH OPTICAL INSTRUMENTS

CLASS 1M LASER PRODUCT PER IEC 60825-1 Ed.1.2-201 150 mW AT 850 nm

Published by ©Picolight Incorporated. All rights reserved.

Information in this document is provided in connection with Picolight Incorporated ("Picolight") products. These materials are provided by Picolight as a service to its customers and may be used for informational purposes only. Picolight assumes no responsibility for errors or omissions in these materials. Picolight may make changes to pricing, specifications, and product descriptions at any time, without notice. Picolight makes no commitment to update this information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specification and product descriptions. No license, expressed or implied, to any intellectual property rights is granted by this document. Except as provided in Picolight's Terms and Conditions of Sale for such products, Picolight assumes no liability whatsoever.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, RELATING TO SALE AND/OR USE OF PICOLIGHT PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. PICOLIGHT FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. PICOLIGHT SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT INCIDENTAL, OR CONSEQUENTAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.