

Cherenkov Telescope Array

Ueli Straumann, 24. November 2017, Winterthur

Content

- Cosmic Rays and very high energy gamma rays
- ► IACT and CTA measuring concept
- CTA technical project details
- Government
- Physics perspectives
- Summary

Cosmic Rays and Gamma Rays

What is a cosmic ray?

- High energy particles from Universe produce extensive air showers.
- Charged particles, mainly protons, also higher mass nuclei.
- Deflected by interstellar / intergalactiv magnetic fields -> no assignment to specific source possible
- In addition gamma rays and neutrinos arriving from outer space -> pointing to source!

Detection: two options:

- Direct detection from satellites
- Air acts as a calorimeter for earthbound detectors.

Cosmic Rays

 Hess (1912) discovered, that ionizing radiation increases with height, Clay (1927) found deviations by geomagnetic fields. Rossi and Auger (1937) proposed the shower mechanism resulting in the extensive air showers

Todays view:

- Cosmic rays are composed of all atomic nuclei
- Flux decreasing exponentially over 10 decades in Energy (about E^{-2.8}) with little structure
- Extend to very high energies:Acceleration mechanism??
- GZK (Greisen, Zatsepin, Kusmin, 1966) predicted cut-off at 6x10¹⁹ eV for protons, exp. confirmed

$$\gamma_{
m CMB} + p
ightarrow \Delta^+
ightarrow n + \pi^+. \ \gamma_{
m CMB} + p
ightarrow \Delta^+
ightarrow p + \pi^0,$$

Cosmic Rays

 Hess (1912) discovered, that ionizing radiation increases with height, Clay (1927) found deviations by geomagnetic fields. Rossi and Auger (1937) proposed the shower mechanism resulting in the extensive air showers

Todays view:

- Cosmic rays are composed of all atomic nuclei
- Flux decreasing exponentially over 10 decades in Energy (about E^{-2.8}) with little structure
- Extend to very high energies:Acceleration mechanism??
- GZK (Greisen, Zatsepin, Kusmin, 1966) predicted cut-off at 6x10¹⁹ eV for protons, exp. confirmed

$$\gamma_{
m CMB} + p
ightarrow \Delta^+
ightarrow n + \pi^+. \ \gamma_{
m CMB} + p
ightarrow \Delta^+
ightarrow p + \pi^0,$$

Cosmic Rays

Some structure in spectrum

- Flux decreasing exponentially about E^{-2.8}
- "Knee" at 10¹⁵ eV = limit of p confinement in galactic magnetic field: Larmor rad > Galaxy)
- second knee at 10¹⁷ eV (heavy elements?)
- "Ankle" at 5x10¹⁸ eV (extragalactic, protons?)

Nature, 531 (2016)

Cosmic Rays: below knee

- confined in galaxy by magnetic field
- comparable energy density in interstellar medium as thermal gas and magnetic fields
- heavy elements contribute (some composition data from satellites at low E)
- second knee at 10¹⁷ eV is not fully understood ("iron knee")

aceleration model in shockwaves of Supernova remnants

S. Thoudam et al., arXiv:1605.03111v2

Cosmic Rays: data above knee

Auger data: Water Cherenkov tanks, 3000 km² in Argentinia Telescope array: 500 scintillator detectors, 1000 km² in Utah

extensive studies about energy calibration 10¹⁷eV

GZK cut-off confirmed

Most likely extragalactic

Acceleration mechanism?

Gaisser et al... arXiv:1303.3565v1

Cosmic Rays: above knee

Gamma Ray Bursts?

- Speculations about originating from gamma ray bursts (GRB) brightest electromagnetic events in the Universe
- Heavy nuclei may explain some data beyond proton GZK cut-off

Artist view of GRB:

- Last 10 msec to hours

N. Globus et al., arXiv:1409.1271v1

Detect very high energy Gamma Rays!

To improve knowledge on origin of cosmic rays, accelerator mechanisms, and other high energy sources

- Cosmic rays are charged, thus deviated by magnetic fields -> no way to know origin -> Use neutrinos or photons
- Other fundamental physics: Dark matter annihilation, Possible energy dependance of travel time (Quantum gravity).

Very high energy photons from GRB and other possibly unknown sources: all have very low rate => Requirements for Detectors:

- Very big detection surface because of low statistics -> earth bound
- modest pointing accuracy
- Some energy accuracy
- Wide FoV to be able to make scans
- Fast reaction on GRB alert

IACT and **CTA** concept

Cherenkov Telescope

Atmosphere used as a calorimeter.

Presently active telescopes: MAGIC(LaPalma, 2), HESS(Namibia, 5), VERITAS(US, 4)

Cherenkov Telescope

arXiv:1511.00463v1

Cherenkov Telescope Array

Requirements:

- Pointing accuracy, Energy resolution -> use relatively simple telescopes
- Big detection surface -> use array of telescopes
- Sensitive from 20 GeV to 300 TeV:
 - Low energy -> low light -> large telescope; high rate -> few telescopes
 - High energy -> lots of light -> cheap telescope; low rate -> many telescope.
- Wide FoV to be able to make scans -> big cameras
- Fast reaction on GRB alert -> fast repositioning

CTA uses three types of telescopes in South (North) Array: 4 (4) Large (LST), 25 (15) Medium (MST), 70 Small (SST)

CTA project details

South Site

South Layout

4 LST 25 MST 70 SST

Sites & Site Infrastructure

North Site

La Palma, Canary Islands, IAC site

LST1 prototype: 20. July 2017

LST1 prototype: 30. Oct. 2017

Telescopes to be installed in CTA North (Cta

LST

Diameter=23m/f=28m Weight moving parts 103 tons Repositioning time 20sec.

Optimized for 20 ... 200 GeV 4 in North, (4 in South)

MST

Diameter=12m, f=19.2m

Optimized for 100 GeV .. 10 TeV 15 in North, (25 in South)

Mirror actuators (Uni ZH)

Mirror segments need to be dynamically adjusted individually 2 Actuators, one fixed point per segment.

To be used for LST, also for MST, SST-1M Started from ETH Magic actuators,

→ complete redesign,
 optimized for reliability and price.
 longterm tests since >6 years.

Actuators mounted on MST prototype

MST Camera: 2 options. only FlashCam shown here.

- Fully digital readout, 250 MS/s ADC
- digital trigger on same data
- Protoype 24/7 operation for several months
- >30 kEvents/sec readout without no dead time,
- slow control, trigger, timing interfaces work
- parts of electronics / mechanics designed at UZH

SST Telescopes

- 70 SSTs planned for South, 3 TeV ... 300 TeV, 6 m²
- large showers, lots of light => simple telescope
- but low statics -> large area needed
- Main challenge: Reliability!
- Cameras have SiPM readout.

Three options: very nice -- how to choose?

SST-2M GCT

SST-2M ASTRI

SST-1M

Flux sensitivity x E²

More infrastructure

- Buildings
- Roads
- Foundations
- Power
- Datanetwork
- Software
- Computers

Interfaces - Interfaces - Interfaces

Roads

Universal SST Foundation

CTA Software Architecture

North Computing & Network

- Final specifications agreed for the full northern computing & network system
 - 1500 processor cores
 - 2 PB disk space
 - Switches: 4 x 10 Gb Ethernet to each LST, 2 x 10 Gb to each MST
 - Located in 40 ft contained with air cond., UPS
- Procurement documentation in preparation

Government

CTA Consortium, growing since 2006

CTAO GmbH

- The countries which intend to significantly contribute financially for construction and operation founded a limited liability company, called CTAO GmbH in 2014.
- Present shareholders with formal voting rights (11 countries)
 - Australia (AAL)
 - Austria (University of Innsbruck)
 - France (CRNS, CEA),
 - Germany (DESY. MPG),
 - Italy (INAF, INFN),
 - Japan (Uni Tokio),
 - Czech Republic,
 - Slovenia (U Nova Gorice)
 - Spain
 - Switzerland (University of Zurich),
 - UK (STFC).
- Associate members: The Netherlands, South Africa,

Council of CTAO GmbH

- The council is the main governing body of CTAO gGmbH.
- It consists of shareholder representatives, each country may have up to two shareholders.
- Counil has set up 3 committees with external experts who support CTAO:
 - Scientific and technical advisory committee (STAC)
 - In-kind contribution review committee (IKRC)
 - Administrative and financial advisory committee (AFC)
- Council decided on sites:
 - Headquarters in Bologna (being setup now), thus Italy = host country
 - Science Data Management Centre in Berlin-Zeuthen
 - North site in La Palma (IAC, Canary Islands)
 - South site in Atacama desert (ESO site, Chile)

Resources, final legal entity

- Total investment for construction: about 300 MEuro + 100 MEuro person power
- This includes infrastructure at observation sites and at European centres
 - Streets, power, data net, service buildings, computer centres, calbration and service facilities
- "Threshold scenario": Construction may only start, once 250 MEuro are promised.
 - We are very close (90% available).
- Many parts are supposed to be delivered "in-kind" by the shareholders
 - Good idea, but produces a lot of legal overhead, not finished yet. Use ESS (European Spallation Source) as a template.
- Final legal entity will be CTAO ERIC. Main seat in Italy = hosting country.
 - draft statutes available, plan to submit proposal to EU by end of 2018.

Physics perspectives

Sensitivity: comparison

- Overall system sensitivity (5 sigma discovery limit reached in 50 h)
- Comparing to existing detectors
 - LAT on Fermi satellite
 - Magic on La Palma (2 IACT)
 - H.E.S.S. in Namibia (5 IACT)
 - VERITAS in US (4 IACT)
 - HAWC (High Altitude Water Cherenkov)

Science with CTA

Contents includes

- Dark Matter
- Galactic Centre
- Galactic Plane Survey
- LMC survey
- Extragalactic Survey
- Transients
- Cosmic Ray PeVatrons
- Star Forming Systems
- Active Galactic Nuclei
- Clusters of Galaxies

200 pages arXiv 1709.07997

- CTA will be operated as an open, proposal-driven observatory
- 40% reserved for key science program in the early years

42

Source example

Most brilliant SNR measured so far Visible source diameter 2 * moon!

HESS collaboration, arXiv:1609.08671v2

More Sources in Galactic Disk

GW 170817: [arXiv 1710.05833]

BNS merger followed by a sGRB

Summary

- CTA will be 10 times more sensitive -> possibly 1000 sources to discover
- Energy resolution 10% -> spectral features
- Rapid slewing rate allows to watch GRB
- CTA will extend the observable electromagnetic spectrum up to 300 TeV
- 8 degree FoV allows fast surveys and measure extended regions of gamma ray emission
- Good angular resolution to resolve cosmics sources,
- study cosmic ray acc. mechanism, dark matter annihilation

Expect 1 to 2 more years for politics / government

Expect 2 years to prepare infrastructure

First construction phase telescopes on site about 2020

4 more years to finish construction.