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Introduction

One might define “High-energy astrophysics” as the astrophysics which deals with
high-energy processes and their applications in the astrophysical context. The goal
of these lectures is to describe the main high-energy processes and their applica-
tion in astrophysics. This is certainly one of the most exciting areas of modern
astrophysical research and involves some of the most difficult problems of contem-
porary physics. A few examples include the study of massive black holes in active
galactic nuclei and the acceleration of high energy particles.

Until 1945 astronomers could only study the Universe in the optical waveband.
Since that time there has been an enormous expansion of the wavebands available
for astronomical study. The new disciplines of radio, millimeter, infrared, ultra-
violet, X andγ-ray astronomy combined with optical astronomy have led to the
growth of many new areas of astrophysics. This has been possible thanks to the
rapid development of new technologies and the launch of satellites.

For these lectures we will mostly follow the books by Longair[1].
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Chapter 1

Historical remarks

1.1 The discovery of cosmic rays

The cosmic rays story begins about 1900 when it was found thatelectroscopes
discharged even if they were kept in the dark well away from sources of natural
radioactivity. It was then shown by Rutherford that most of the ionisation was due,
however, to natural radioactivity.

In 1910 Wulf performed an experiment on the Eiffel Tower at anheight of
330 m using electro-meters. He found that the ionisation fell from6×106 ions m−3

to 3.5 × 106 ions m−3 as he ascended the Eiffel Tower. If the ionisation had been
due toγ-rays originating at the surface of the Earth, the intensityof the ions should
have decreased to half its value within only80 meters and would have been negli-
gible at the top of the Tower.

A big step forward was made in 1912 and 1913 when first Hess and then
Kolhörster made manned balloon ascents in which they measured theionisation of
the atmosphere with increasing altitude ranging from5 to 9 Km. They found that
the average ionisation increased with respect to the ionisation at sea-level above
about1.5 Km. This is clearly evidence that the source of the ionisation must be
extraterrestrial.

From the 1930s to the early 1950s, the cosmic radiations provided a natural
source of very high energy particles which were energetic enough to penetrate into
the nucleus. This way turned out to be the main technique by which new particles
were discovered until the early 1950s:

the positrone+ in 1932 (Anderson);
the muonµ− in 1936 (Anderson and Neddermeyer);
the pionsπ± in 1947 (Powell et al.).
Further particles were found in cosmic rays. However, by 1953 the acceler-

ator technology had developed to the point where energies comparable to those
available in the cosmic rays could be produced in the laboratory. Accordingly, the
interest in cosmic rays shifted to the problems of their origin and their propagation
in astrophysical environments from their sources to the Earth [2].
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In the region of the energy spectrum which is unaffected by the propagation of
the particles to the Earth through the Solar Wind (E ≥ 109eV ), the energy spectra
of the cosmic ray particles can be described by

N(E) = kE−x (1.1)

in the energy range109 − 1014eV , with x ≈ 2.5 − 2.7 andk a constant.
This relation is valid for protons, electrons and nuclei, clearly with other values

of the constantk. For photons one finds other values forx.
The chemical composition of the cosmic rays is similar to theabundances of

the elements in the Sun, with some exceptions, particularlyfor the light elements
which appear to be higher in cosmic rays.

At very high energies cosmic rays are detected by large air shower arrays on
the surface of the Earth. Their arrival rate is very low, nevertheless particles with
energies up to1020eV and even beyond have been detected.

How high the maximum energy of cosmic rays reaches is one of the most
important problems in cosmic rays research. Possible detection of cosmic rays
with energies above1020eV has given rise to many discussions regarding their
energy.

Indeed, if high energy cosmic rays (protons) come from outside of our galaxy,
they interact with cosmic microwave background photons andcannot travel cos-
mological distances. This interaction causes a cutoff in the energy spectrum near
5 × 1019eV (Greisen-Zatsepin-Kuzmin GKZ cut-off) [3,4].

The mean free path length is about20Mpc, corresponding to roughly the dis-
tance to the nearest cluster of galaxies (Virgo cluster).

If cosmic rays with energies above the GZK cut-off are confirmed then there is
the problem to explain their origin. A problem thus which is still open: either the
particles get accelerated within our galaxy, but what is themechanism responsible
for it, or there are new particles which decay and give rise tohigh energy cosmic
rays.

1.2 X-ray instruments

X-ray astronomy can only be carried out at very high altitudes because of photo-
electric absorption of X-rays by the atoms and molecules of the Earth’s atmosphere.

Thus the exploration of the X-ray sky was possible only afterrockets flight
were possible.

• The full scope of X-ray astronomy became clear in the early 1970s with the
launch of the first dedicated X-ray satellite, theUHURU satellite Observa-
tory.

• In 1978, theEinstein X-ray Observatory was launched. It provided the first
high resolution images of many X-ray sources and made very deep surveys
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Figure 1.1: (a) The relation between the temperature of a black-body and the fre-
quency (or wavelength) at which most of the energy is emitted. The frequency (or
wavelength) plotted is that corresponding to the maximum ofa black-body at tem-
peratureT . Convenient expressions for this relation are:
νmax = 1011(T/K) Hz; λmaxT = 3 × 106 nm K
The ranges of wavelength corresponding to the different wavebands - radio, mil-
limetre, infrared, optical, ultraviolet, X andγ-rays are shown. (b) The transparency
of the atmosphere for radiation of different wavelengths. The solid line shows the
height above sea-level at which the atmosphere becomes transparent for radiation
of different wavelengths. From Ref. [5]
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Figure 1.2: The spectrum of an extragalactic background radiation as it was known
in 1969 (Longair and Sunyaev 1971). The solid lines indicateregions of the elec-
tromagnetic spectrum in which extragalactic background radiation had been mea-
sured. The dashed lines were theoretical estimates of the background radiation due
to discrete sources and should not be taken very seriously. From Ref. [6]
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of small areas of the sky and a first good in sight into the bulk properties of
the intracluster plasma in galaxy cluster was provided [7].

• TheROSAT, the ROetgen SATellite (turned off, after a long life, on Febru-
ary 12, 1999) provided observations in great detail of the intracluster medium,
revealing different forms of interaction of the relativistic and thermal plasma.
Other main research goals were studies of the solar system, stars and stellar
clusters, compact galactic objects, nearby normal galaxies and active galac-
tic nuclei.

• ASCA (the Advanced Satellite for Cosmology and Astrophysics) isJapan’s
fourth cosmic X-ray astronomy mission. The satellite was successfully laun-
ched on February 20, 1993. ASCA is the first X-ray astronomy mission to
combine imaging capability with a broad pass band, good spectral resolution
and large effective area. The mission also is the first satellite to use CCDs
for X-ray astronomy. With these properties, the primary scientific purpose
of ASCA was the X-ray spectroscopy of astrophysical plasma-especially the
analysis of discrete features such as emission lines and absorption edges.
The sensitivity of ASCA’s instruments allowed the first detailed, broad-band
spectra of distant quasars to be derived. In addition, ASCA’s suite of instru-
ments provides the best opportunity so far for identifying the sources whose
combined emission makes up the cosmic X-ray background.

• The X-ray satelliteSAX or BeppoSAX(in honour of Giuseppe (Beppo) Oc-
chialini), a program of the Italian Space Agency with participation of the
Netherlands Agency for Aerospace Programs, was launched onApril 30,
1996 from Cape Canaveral. The payload is characterised by a very wide
spectral coverage from 0.1 to 300 keV, with well balanced performances
both from its low and high energy instrumentation. Its sensitivity allowed
the exploitation of the full band for weak sources, opening new perspectives
in the study of spectral shape and variability of several classes of objects.
Furthermore, the presence of wide field cameras allowed monitoring of the
long term variability of sources and the discovery of X-ray transient phe-
nomena.

BeppoSAX provided an important contribution in several areas of X-ray as-
tronomy such as:

- Compact galactic sources: shape and variability of the various contin-
uum components and of the narrow spectral features (e.g. iron line,
cyclotron lines); phase resolved spectroscopy. Discoveryand study of
X-ray transients.

- Active Galactic Nuclei: spectral shape and variability ofthe continuum
and of the narrow and broad features from 0.1 to 200 keV in bright
objects (soft excess, warm and cold absorption and related Oand Fe
edges, iron line and high energy bump, high energy cut-off);
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- Cluster of galaxies: spatially resolved spectra of nearbyobjects and the
study of temperature gradients; chemical composition and temperature
of more distant clusters;

- Supernova remnants: spatially resolved spectra of extended remnants;
spectra of Magellanic Cloud remnants;

- Gamma-ray bursts: temporal profile with 1 msec resolution from 60 to
600 keV. X-ray counterparts of a subset with positional accuracy of 5’.

• NASA’s CHANDRA X-ray Observatory, which was launched and deployed
by Space Shuttle Columbia in July of 1999, was designed to have three times
the area of the Einstein mirror at low energies and to have considerable col-
lecting area between 6 and 7 keV, corresponding to the energyrange of iron
lines emitted by many astrophysical sources.

The combination of high resolution, large collecting areasand sensitivity to
higher energy X-rays makes it possible for CHANDRA to study extremely
faint sources, sometimes strongly absorbed, in crowded fields.

X-rays from distant clusters of galaxies (which are faint and small) can be
imaged and spectra measured as a function of position withinthe cluster.
Furthermore, since clusters emit the characteristic iron line, the redshift can
be measured directly. The spectral and spatial data combined delineate the
gravitational potential. The distribution of all matter, including dark matter,
within distant clusters can be determined.

• A project of the European Space AgencyXMM (renamedXMM-Newton ),
the X-ray Multi-Mirror Mission, is the second cornerstone of the Horizon
2000 program of the European Space Agency (ESA). XMM was launched
on December 10, 1999. XMM provides images over a 30 arc minutefield
of view with moderate spectral resolution using the European Photon Imag-
ing Camera (EPIC). High-resolution spectral information is provided by the
Reflection Grating Spectrometer (RGS) that deflects half of the beam on
two of the X-ray telescopes. The observatory also has a coaligned 30 cm
optical/UV telescope called the Optical Monitor (OM). XMM observations
include apart from clusters of galaxies the study of the cosmic X-ray back-
ground radiation, of normal and starburst galaxies, activegalactic nuclei and
quasars, stellar black holes, neutron stars, pulsars, binary stars, supernova
remnants, the hot phase of the galactic ISM, cool gas, stellar coronae and
comets.

The XMM observations can be used to study several key properties of the hot
intracluster medium. Spatially resolved spectroscopy will allow the determi-
nation of the radial variations of the gas density, temperature and metallicity.
The knowledge of metallicities is important in the context of the chemical
evolution of galaxies and gas in cluster.
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X-ray observations can also be used to map the distribution of hot gas and
thereby the distribution of matter in elliptical galaxies and clusters. Up to
30% of the total mass of galaxy clusters has been identified as X-ray emitting
intracluster gas. This is a significant fraction of the formerly “missing” mass
and XMM offers a possibility to trace even fainter emission than previous
satellites (and thus more gas and thereby mass).

In some cases, e.g. the Perseus cluster, X-ray observationscan also be used
to study the interaction of a jet emanating from a radio core in a massive
elliptical galaxy with the ambient hot gas.

Compared to the current generation of X-ray satellites, XMMoffers im-
proved capabilities in all three general observing techniques (imaging, spec-
troscopy and photometry), with the additional advantages of a wide energy
passband and simultaneous optical/UV observations.

1.3 Important astrophysical production mechanisms

The main production mechanisms are shown on the Figure 1.4, particularly relevant
are thebremsstrahlung, theinverse Compton effectand thesynchrotron radiation.

Matter-antimatter annihilation (particularlye+ e− annihilation), radioactivity
as well as energetic particles collisions are important processes forγ-rays produc-
tion, which are for instance studied by the Integral satellite (and previously by the
Compton Observatory).

In the following we will concentrate on the three main mechanisms we men-
tioned above, giving for each of them examples of astrophysical applications.
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Figure 1.3: Three basic spectral forms expected from astrophysical processes. At
the left is the blackbody spectrum expected from a dense object at a temperature of
2× 106 K. At the center is a power-law spectrum expected fromsynchrotron radi-
ation produced in a region containing a magnetic field and high energy electrons.
At the right is thermal bremsstrahlungfrom a thin, very hot gas. The different
shapes are signatures of the physical production processes. From Ref. [8]
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Figure 1.4: Summary of production mechanisms.A∗ represents an excited nucleus.
The other symbols have their usual meanings. From Ref. [9]
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Chapter 2

Bremsstrahlung

Whenever a charged particle is accelerated or decelerated it emits electromagnetic
radiation: bremsstrahlungis the radiation emitted in the encounter between an
electron and a nucleus [10]. This process corresponds to that known asfree-free
emissionin atomic physics, in the sense that the radiation corresponds to transitions
between unbound states in the field of a nucleus. Whenever there is hot ionised gas
in the Universe it emitsbremsstrahlung.

From electrodynamics we know that the total radiation rate for an accelerated
particle is given by Larmor’s formula:

−
(

dE

dt

)

rad

=
|~̈p0 |2

6π ǫ0 c3
=

q2 |~̈r0 |2
6π ǫ0 c3

, (2.1)

where~p0 is the dipole momentum (~p0 = q ~r0), q being the charge of the particle.
In this formula the acceleration is the proper accelerationof the charged particle
and the radiation loss is measured in the instantaneous restframe of the particle.

We consider now the radiation loss of an accelerated chargedparticle moving
at relativistic velocities. The radiation loss

(

dE
dt

)

is a Lorentz invariant and is thus
invariant under a Lorentz transformation. Consider the observer’s reference frame
S in which~a = ~̈r and~v = ~̇r. In the instantaneous rest frame of the particle,S ′,
the acceleration four-vector is(~a0, 0), where~a0 = ~̈r0 is the proper acceleration of
the particle. The acceleration four-vector of a particle can be written as:

aµ = γ

(

dγ~v

dt
,
dγ

dt

)

=

(

γ2~a +

(

~v · ~a
c2

)

γ4~v, γ4

(

~v · ~a
c2

))

, (2.2)

whereγ =
(

1 −
(

v
c

)2
)− 1

2
is the Lorentz factor. Accordingly, by equating the

norms of the four-vectors in the reference framesS andS ′, one finds:

~a2
0 = γ4

[

~a2 + γ2

(

~v · ~a
c

)2
]

. (2.3)
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Since the radiation loss rate
(

dE
dt

)

is a Lorentz invariant we have:

(

dE

dt

)

S
=

(

dE

dt

)

S ′

=
q2 | ~a0 |2
6π ǫ0 c3

=
q2 | ~̈r |2
6π ǫ0 c3

,

or using equation (2.3):

(

dE

dt

)

S
=

q2 γ4

6π ǫ0 c3

[

~a2 + γ2

(

~v · ~a
c

)2
]

, (2.4)

which is the relativistic generalisation1; notice that~a, γ and~v are measured in the
frameS.

Usually~a is written as the sum of a component parallel to the velocity~v, ~a‖,

and a component perpendicular,~a⊥: ~a = a‖ ·~i‖ + a⊥ ·~i⊥ (where~i‖ and~i⊥ are
unitary vectors respectively parallel and orthogonal to the velocity vector~v) and
|~a|2 = a2

‖ + a2
⊥. Using this notation one finds:

(

dE

dt

)

S
=

q2 γ4

6π ǫ0 c3

[

a2
⊥ + γ2a2

‖

]

. (2.5)

Consider now the spectral distribution of the radiation of an accelerated elec-
tron (q = e), in particular the Fourier transform of the acceleration:

~̇v (t) = 1√
2π

+∞
∫

−∞
~̇v (ω) e−iωtdω

~̇v (ω) = 1√
2π

+∞
∫

−∞
~̇v (t) e+iωtdt .

(2.6)

Parseval’s theorem states then:

+∞
∫

−∞

|~̇v (ω) |2dω =

+∞
∫

−∞

|~̇v (t) |2dt . (2.7)

Accordingly (̈~r = ~̇v) we get for the integrated radiation loss:

+∞
∫

−∞

dE

dt
dt =

+∞
∫

−∞

e2

6π ǫ0 c3
|~̇v(t)|2dt =

+∞
∫

−∞

e2

6π ǫ0 c3
|~̇v(ω)|2dω = 2

∞
∫

0

e2

6π ǫ0 c3
|~̇v(ω)|2dω . (2.8)

1For v
c
≪ 1, γ → 1 and equation (2.4) reduces to equation (2.1).
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As the total emitted radiation is defined as
∞
∫

0

I(ω)dω, we find:

I(ω) =
e2

3π ǫ0 c3
|~̇v(ω)|2 =

e2

3π ǫ0 c3

[

a(ω)2‖ + a(ω)2⊥
]

. (2.9)

The acceleration of an electron, due to an electrostatic field of a (high energy)
proton or nucleus, can be split into its components paralleland perpendicular to
the particle’s trajectory; supposing that thex-axis and thez-axis are respectively
parallel and perpendicular to the trajectory, one finds the following expressions:

a‖ = v̇x = − eEx

me
= γZe2vt

4π ǫ0 me(b2+(γvt)2)
3
2

a⊥ = v̇z = − eEz

me
= γZe2b

4π ǫ0 me(b2+(γvt)2)
3
2

,

(2.10)

whereZe is the charge of the nucleus andb is the distance of closest approach of
the electron to the nucleus (att = 0). It is assumed that the electron is initially
at rest and that the electron is not accelerated to relativistic energies. Thus the
magnetic field can be neglected.

Now we have to compute the Fourier transform of the acceleration as given in
equation (2.10):

a‖(ω) =
1√
2π

+∞
∫

−∞

γZe2vt

4π ǫ0 me (b2 + (γvt)2)
3
2

e+iωtdt

=
1√
2π

Ze2

4π ǫ0 me

1

γbv

+∞
∫

−∞

x

(1 + x2)
3
2

e

“

i ωb
γv

”

dx

=
1√
2π

Ze2

4π ǫ0 me

1

γbv
I1(y) (2.11)

with x = γvt
b , y = ωb

γv andI1(y) = 2iyK0(y), whereK0(y) is a modified Bessel
function of order0.

Analogously

a⊥(ω) =
1√
2π

Ze2

4π ǫ0 me

1

bv
I2(y) , (2.12)

whereI2(y) = 2yK1(y), with K1(y) being a modified Bessel function of order1.
Accordingly we find for the radiation spectrum of an electronin the encounter

with the charged nucleus (equation (2.9)):

I(ω) =
Z2e6

24π4ǫ0
3 c3 me

2

ω2

γ2v2

[

1

γ2
K2

0

(

ωb

γv

)

+ K2
1

(

ωb

γv

)]

. (2.13)

For y ≪ 1, K0(y) = −ln(y) andK1(y) = 1
y ; instead fory ≫ 1, K0(y) =

K1(y) =
√

π
2y e−y.
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Thus at high frequencies we find an exponential cut-off in theradiation spec-
trum.

In the low frequency limit the spectrum has the form

I(ω) =
Z2e6

24π4ǫ0
3 c3 me

2

1

b2v2

[

1 − 1

γ2

(

ωb

γv

)2

ln2

(

ωb

γv

)

]

. (2.14)

In this limit the second term in the square brackets can be neglected and hence
I(ω) is constant2.

In the high frequency limit the spectrum reduces to the following:

I(ω) =
Z2e6

48π3ǫ0
3c3me

2

1

γv3

[

1

γ2
+ 1

]

e
− 2ωb

γv . (2.15)

The duration of the relativistic collision isτ ≃ 2b
γv , which corresponds to a fre-

quencyν ∼ 1
τ or ω ≃ πvγ

b . The exponential cut-off means that little power is
emitted at frequencies greater thanω ≃ γv

b .
Let’s consider in the following the low frequency limit, where, moreover, the

second term in the square brackets can be neglected, so thatI(ω) = const . As
next we have to integrate over all relevant collision parameters which contribute to
the radiation at frequencyω. If the electron is moving relativistically, the number
density of nuclei it observes is enhanced by a factorγ, due to the relativistic length
contraction. Therefore, in the moving frame of the electron, N ′ = γN , whereN
is the space density of nuclei in the laboratory frame. The number of encounters
per second is, accordingly,N ′v.

Thus we get for the radiation spectrum in the frame of the electron:

I(ω) =
Z2e6

24π4 ǫ0
3 c3 me

2

bmax
∫

bmin

1

b2v2
2πbγNvdb

=
Z2e6Nγ

12π3 ǫ0
3 c3 me

2

1

v
ln

(

bmax

bmin

)

. (2.16)

2.1 Non-relativistic and thermal bremsstrahlung

We consider two cases:

i. we evaluate the total energy loss rate bybremsstrahlungfor high energetic
but still non-relativistic electrons;

ii. we compute the continuum spectrum and radiation loss rate of an hot ionised
gas in which the velocity distribution of the electrons at temperatureT is
Maxwellian.

2ω → 0 means a very short period, thus the momentum impulse is just aδ function, whose
Fourier transform is a constant.
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In both cases we neglect the relativistic correction factors (γ → 1).
We have then to insert into equation (2.16) the correct expression forbmax and

bmin. We should only integrate on those values ofb for which ωb
v ≈ 1, since for

larger values ofb the radiation at frequencyω lies on the exponential tail of the
spectrum and thus gives negligible contribution. Thus,bmax = v

ω . For bmin we
consider two possibilities. For small velocities,v <

(

Z
137

)

c, one can use the clas-

sical limit given by3 bmin = Ze2

8π ǫ0 me v2 . This is appropriate when considering the

bremsstrahlungof a region of ionised hydrogen atT ≃ 104K. At higher temper-
atures and thus higher velocities (v ≥

(

Z
137

)

c) one has to consider the quantum
mechanical constraints, thenbmin ≃ ~

2mev , which is obtained by simply consider-
ing the Heisenberg uncertainty principle.

This way we get for the radiation spectrum

I(ω) =
Z2e6N

12π3ǫ0
3c3me

2

1

v
lnΛ , (2.17)

whereΛ = 8πǫ0mev3

Ze2ω
for low velocities, andΛ = 2mev2

~ω for high velocities. To get
the total energy loss rate of an high energy particle one has to integrate equation
(2.17) over all frequencies. This means integrating from0 to ωmax, whereωmax

corresponds to the cut-offbmin ≃ ~

2mev for high velocities. The maximum amount

of energy which can be emitted in a single encounter is~ω ≃ 1
2mev

2, as it corre-

sponds to the kinetic energy of the electron. Accordinglyωmax ≈
mev2

2~
and we

get:

−
(

dE

dt

)

brems

≃
ωmax
∫

0

Z2e6N

12π3 ǫ0
3 c3 me

2

1

v
lnΛ dω

≃ Z2e6Nv

24π3 ǫ0
3 c3 me ~

lnΛ ≃ const Z2 Nv , (2.18)

where theω dependence inlnΛ has been neglected. Sincev is proportional to the
square root of the kinetic energyE, we have that−dE

dt is proportional toE
1
2 .

As next we compute thebremsstrahlungof a gas at temperatureT , with the
electron velocity distributed according to a Maxwellian asfollows:

ne(v) = 4π Ne

( me

2π kT

)
3
2

v2 e−
me v2

2kT , (2.19)

whereNe is the electron density, which can be a function of the spatial position.
The spectral emissivity of the plasma, defined as the emittedenergy per unit

time, frequency and volume, is given as

kν =

∞
∫

0

ne(v) I(ω, v) dv (ω = 2πν) , (2.20)

3The closest distance of approach corresponds to that collision parameter at which the electro-
static potential energy of interaction of the high energy particle and the electron is equal to the
maximum possible energy transfer.
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whereI(ω, v) is given by equation (2.17). One gets as follows:

kν =
1

3π2

(π

6

)
1
2 Z2 e6

ǫ3
0 c3 m2

e

(me

kT

)
1
2

g(ν, T ) N Ne e−
hν
kT

= 6.8 × 10−51 Z2 T
1
2 N Ne g(ν, T ) e−

hν
kT [ W m−3 Hz−1 ] , (2.21)

whereN is the density of the nuclei (for instance protons) andNe the electron
density,g(ν, T ) is the so calledGaunt factor, which is the proper form of the term
in Λ integrated over the velocity. In terms of quantum mechanicstheGaunt factor
gives the number of states.

According to the frequency interval considered theGaunt factorcan be ap-
proximated, such that suitable forms for the radio and the X-ray wavelengths are
respectively:

g(ν, T ) =

√
3

2π

[

ln

(

128 ǫ2
0 kT 3

me e4 ν2 Z2

)

− γ̃
1
2

]

in the radio range4, and

g(ν, T ) =

√
3

π
ln

(

kT

hν

)

in the X-ray range.
By integrating the spectral emissivitykν over the frequencyν one finds the

total energy loss rate of the plasma:

−
(

dE

dt

)

brems

= 1.435 × 10−40 Z2 T
1
2 ḡ N Ne [ W m−3 ] , (2.22)

whereḡ is the averagedGaunt factorover frequency, which turns out to be in the
range1.1 − 1.5, so that we will in the following assumēg = 1.2.

2.2 Bremsstrahlung loss of a galaxy cluster

Galaxies are not strewn randomly throughout the universe. Instead, nearly all
galaxies are found in associations, either in groups or in clusters. Groups gen-
erally have less than 50 members and are about1.4h−1

50 Mpc across5. On the other
hand, the clusters may contain from approximately 50 to thousands of galaxies,
within a region of space about6h−1

50 Mpc. Groups of galaxies, clusters of galaxies
and clusters of clusters (called superclusters) make up thelarge scale structure of
the universe [13].

The Virgo cluster of galaxies was first recognised in the eighteenth century,
located where the constellations of Virgo and Coma Berenices meet. The center
is located about 16 Mpc from Earth. This rich, irregular cluster is a collection

4γ̃ = 0.577... is the Euler constant.
5The Hubble constant is parametrized asH0 = 50h50 km/(sec Mpc).
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Figure 2.1: HEAO-1 A-2 low resolution X-ray spectra of clusters, showing the
Fe K line at about7keV . The plot gives the number flux of X-ray photons per
cm2 sec keV versus photon energy inkeV , for the Coma cluster. From Ref. [11]
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Figure 2.2: The X-ray spectrum of the Perseus cluster of galaxies observed by
the HEAO-A2 instrument. The continuum emission can be accounted for by the
thermal bremsstrahlung of hot intracluster gas at a temperature corresponding to
kT = 6.5 keV , i.e. T = 7.5 × 107 K. The thermal nature of the radiation is
confirmed by the observation of the Lyα and Lyβ emission lines of highly ionised
iron, Fe+25, at energies of6.7 and7.9 keV respectively. The ionisation potential
of Fe+24 is 8.825 keV and hence the gas must be very hot. From Ref. [12]
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of approximately 250 large galaxies and more than 2000 smaller ones, contained
within a region about 3 Mpc across. Like most irregular clusters, the Virgo cluster
is made up of all types of galaxies and the center is dominatedby three of the
cluster’s four giant elliptical galaxies (M84, M86 and M87).

The nearest rich, regular cluster of galaxies is the Coma cluster. It is believed
that the Coma cluster consists of perhaps 10000 galaxies, most of them dwarf el-
liptical that are too faint to be seen. It contains 1000 bright galaxies, but only 15
per cent of them are spirals and irregulars. At the cluster’scenter there are two
large, luminous cD elliptical.

In 1966, X-ray emission was detected from the region around the galaxy M87
in the center of the Virgo cluster. In fact, M87 was the first object outside of our
galaxy to be identified as a source of astronomical X-ray emission. Five years later,
X-ray sources were also detected in the directions of the Coma and Perseus clus-
ters. Since these are three of the nearest rich clusters, it was suggested that clusters
of galaxies might generally be X-ray sources. The launch of the UHURU X-ray
astronomy satellite permitted a survey of the entire sky forX-ray emission [14]
and established that this was indeed the case. These early UHURU observations
indicated that many clusters were bright X-ray sources withluminosities typically
in the range of1043−45 ergs/sec. The X-ray sources associated with clusters were
found to be spatially extended; their sizes were comparableto the size of the galaxy
distribution in the cluster. Unlike other bright X-ray sources but consistent with
their spatial extends, cluster X-ray sources did not vary temporally in their bright-
ness.

When cluster of galaxies were found to be an important class of X-ray sources,
there were a number of suggestions as to the primary X-ray emission mecha-
nism. The three most prominent ideas were that the emission resulted from thermal
bremsstrahlung from a hot diffuse intracluster gas [15] or that the emission resulted
from inverse Compton scattering of cosmic background photons up to X-ray en-
ergies by relativistic electrons within the cluster [16, 17], or that the emission was
due to a population of individual stellar X-ray sources, like those found in our
galaxy [18].
Models in which the emission comes from diffuse thermal gas predict:

• The spectrum will be roughly exponential, the intensity (inergs per cm2

persecond perHertz) varies asIν ∼ exp(−hν/κBTg), whereTg is the gas
temperature.

• The thermal velocity of protons in the gas∼ (κBTg/mp)
1/2 will be compa-

rable to the velocity of the galaxies in the cluster, as both are bound by the
same gravitational potential.

• There will be no strong low-energy photoabsorption.

• Emission lines will be present if the gas contains significant contamination
of heavy elements like iron.
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Observations have provided a great deal of support for the thermal bremsstrahlung
model, and have generally not supported the other two suggestions.

Thus the observed X-ray emission from the cluster must be thermal bremsstrah-
lung from a hot plasma. The interpretation requires that thespace between galaxies
in clusters be filled with very hot (∽ 108K), low density (∽ 10−3atoms/cm−3)
plasma.

The following heating mechanisms have been proposed in order to explain such
a large gas temperature [13]:

• If the gas is initially cold and located at large distance from the cluster and
subsequently falls into the cluster, its kinetic energy will be converted to
thermal energy due to friction and multiple scattering. Theinfalling gas can
be heated up to temperatures:

Tg ≈ 5 × 108
( σr

103km/s

)2
K,

whereσr is the line-of-sight velocity dispersion of the cluster. This temper-
ature is a factor 5-10 times larger than the observed X-ray temperature. This
discrepancy can be explained as following: the gas was initially bound in
the cluster (thus the temperature is overestimated) or the gas fell in at the
same time the cluster collapsed (the heating is then caused by rapid variation
of the gravitational potential during violent relaxation). These models can-
not explain the observed iron abundances, thus another mechanism may be
responsible.

• Ejection from galaxies which move through the intraclustergas or supernova
explosions could heat up the gas and they may be important forthe enrich-
ment of the intracluster gas.

• The heating may be due to friction between the gas and the galaxies that are
constantly moving throughout the cluster.

• The relativistic electrons responsible for radio emissionin clusters can inter-
act with the gas and may heat it. But models with relativisticelectrons suffer
from these general problems: the total energy requirementsare extreme for
a single radio source, the radio sources generally occupy only a small frac-
tion of the cluster. Furthermore it is difficult to explain how several discrete
sources would heat the whole gas.

The X-ray emission from clusters is due to diffuse intraclusters gas at a temper-
ature ofTgas ≃ 108 K and an atomic density ofn ≃ 10−3 cm−3. At such tempera-
tures and densities, the primary emission process for a gas composed mainly of hy-
drogen is thethermal bremsstrahlungemission. If the intraclusters gas is mainly at
a single temperature, then equation (2.21) indicates that the X-ray spectrum should
be close to an exponential function of the frequency. Indeed, the observed X-ray
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spectra of clusters of galaxies are generally fairly well fitted by equation (2.21),
with gas temperatures from2 × 107 to 108 K.

The clearest evidence in favour of thethermal bremsstrahlung modelis the
detection of strong X-ray line emission from clusters, in particular the strong∼
7 keV Fe line.

Consider a cluster of galaxies with typical densityn ≃ 10−3 cm−3 (corre-
sponding toN ∼ 103 m−3), mainly protons, and a similar density of electrons
(charge neutrality). Assuming spherical symmetry for the cluster and a typical ra-
dius of≃ 0.5 Mpc with Z = 1, T ≃ 107 K, ḡ = 1.2, one finds the following
expression for the total X-ray luminosity:

L =

∫

−
(

dE

dt

)

dV ∼= 8 × 1043 erg s−1 (8 × 1036 W ) , (2.23)

where−
(

dE
dt

)

is given by equation (2.22).
Typically one finds X-ray luminosities for clusters in the range1043 − 1045

erg s−1. Usually one observes a flux of photons coming from the cluster at a given
frequency; withLν =

∫

kν dV , the observed flux is given byLν

4πD2 , whereD is the

distance from the cluster, and thus its frequency dependence scales asg(ν, T )e−
hν
kT ,

with g(ν, T ) ∼ ln
(

kT
hν

)

in the X-ray range.
The X-ray continuum emission from an hot diffuse plasma is due primarily to

three processes:thermal bremsstrahlung(free-free emission), recombination (free-
bound emission) and two-photon decay of metastable levels. At the high temper-
atures which predominate in clusters of galaxiesthermal bremsstrahlungis the
main X-ray emission process. For solar abundances, the emission is mainly due to
hydrogen and helium.

Since the intracluster gas contains alsoheavyelements (typically correspond-
ing to values from0.3 to 0.5 times solar metallicity) there is also line emission (for
instance from Iron and Oxygen).

Processes contributing to X-ray line emission from a diffuse plasma include
collisional excitation of valence or inner shell electrons, radiative and dielectronic
recombination, inner shell collisional ionization and radiative cascades following
any of these processes.

The emissivity due to a collisionally excited line is usually written as:

∫

kline
ν dν = N(xi) Ne

h3 ν Ω (Tg) B
4 ωgs(xi)

[

2

π3 m3
e kTg

]

e
− ∆E

kTg , (2.24)

wherexi is the ion of the speciesi, ωgs is the statistical weight of the ground state,
hν is the energy of the transition,∆E is the excitation energy above the ground
state of the excited level,B is the branching ratio for the line6 andΩ is thecollision
strength, which depends on the gas temperatureTg.

6The probability that the upper state decays through this transition.
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Nowadays there are very efficient compilations of the emissivities for X-ray
lines and continua, which are used to analyse the data of satellites like XMM-
Newton andCHANDRA .

As next we give a crude estimate for the cooling time of the intergalactic gas.
The internal energy of the electron gas isE ≃ 3

2 NekT , and on the other
hand the radiation energy loss rate is given by equation (2.22) (settingZ = 1 and
N ≃ Ne). This way the cooling timetcool is proportional toE/Ė, namely

tcool ∝
E

Ė
=

3
2 Ne kT

1.43 × 10−40 T
1
2 N2

e

= 4.6 × 1010

(

Ne

103 m−3

)−1 ( T

108 K

)
1
2

years. (2.25)

We thus see that the cooling time for the intracluster plasmais comparable, if not
even higher, to the age of the Universe, which is about15 × 109 years.

2.3 Determination of the total mass of a cluster of galaxies

We assume that the gas is in hydrostatical equilibrium such that the following equa-
tion holds:

∇P = −ρgas ∇Φ(r) , (2.26)

whereP is the pressure, which is given7 by:

P = ρgas
kTg

µ mp
, (2.27)

whereµ is the average atomic weight (≃ 0.63), mp the proton mass andΦ(r) is
the gravitational potential8 of the cluster.

Then one obtains from equation (2.26):

1

ρgas

dP

dr
= −dΦ(r)

dr
= −G M(r)

r2
ρgas = (me + mp)Ne , (2.28)

and thus for the total gravitating massM(r) inside the radiusr:

M(r) = −kTg(r) r

µ mp G

(

d ln(ρg(r))

d ln(r)
+

d ln(Tg(r))

d ln(r)

)

, (2.29)

whereρg(r) andTg(r) are respectively the gas density profile and the temperature
profile.

In principle ρg(r) andTg(r) can be measured with X-ray satellites (provided
the spatial and spectral resolution are high enough). However, one observes the

7Assuming an ideal gas.
8Assumed spherically symmetric.
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bi-dimensional projected surface brightness, from which one has to reconstruct the
three-dimensional profiles. This can be done when assuming spherical symmetry.

Often one assumes an isothermal gas, so that the temperatureis constant,Tg =
const, and is given by thebremsstrahlungcontinuum. For the gas density one
makes the following Ansatz (β-model) [19]:

ρg(r) = ρ0

(

1 +

(

r

rc

)2
)− 3

2
β

, (2.30)

whererc is the core radius,ρ0 is the central density andβ is a free parameter.
Using equation (2.30), equation (2.29), for an isothermal gas, turns into:

M(r) =
3β

G

kTg r

µ mp

(

r
rc

)2

1 +
(

r
rc

)2

= 1.13 × 1015 β
Tg

10 keV

r

Mpc

(

r
rc

)2

1 +
(

r
rc

)2 M⊙ , (2.31)

where we assumedµ = 0.59.
For an isothermal gas which follows aβ-model, one finds for the X-ray surface

brightness (bi-dimensional projection):

Sx(θ) = S0

(

1 +

(

θ

θc

)2
)−3β+ 1

2

, (2.32)

whereθ is the angle under which an observer sees the bi-dimensionalprojected
distancer (accordinglyθc for rc).

Typical values forβ are in the range0.65−0.9. For the Coma cluster one finds
that the gas contributes about30% to the total mass.
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Figure 2.3: The Coma Cluster, an aggregate thousands of galaxies, as observed by
XMM-Newton. The picture is a mosaic of 12 partially overlapping pointings ob-
tained with the EPIC-pn camera. The cluster was chosen during XMM-Newton’s
performance verification phase to prove the observatory’s ability to map and anal-
yse data from large extended X-ray sources.
Bottom, a close-up view of the temperature structure in the inner region of the
Coma Cluster of galaxies, highlighting the X-ray hardness and corresponding tem-
peratures around the giant elliptical galaxies NGC 4889 andNGC 4874 and the
gas in the central part of the cluster. Courtesy U. Briel, Max-Planck Institut f̈ur
extraterrestrische Physik, Garching, Germany.
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Chapter 3

Photoelectric absorption

For low photon energies,~ω ≪ me c2, the dominant process by which photons
lose energy is photoelectric absorption.

If the energy of the incident photon is~ω, it can eject electrons which have
binding energyEI ≤ ~ω from atoms, ions or molecules. The remaining energy
(~ω − EI) goes into the kinetic energy of the ejected electron1.

The energy levels of the atoms for which~ω = EI are calledabsorption edges,
because ejection of electrons from these energy levels is not possible if the pho-
tons are at lower energy. For photons with higher energy, thecross-section for
photoelectric absorption from this level decreases roughly asν−3.

The absorption cross-section for photons with energy~ω ≫ EI , but ~ω ≪
me c2, due to the ejection of electrons from the K-shell2 of atoms, can be computed
in quantum mechanics and is as follows:

σK = 4
√

2 σT α4 Z5

(

me c2

~ω

)

7
2

, (3.1)

whereα = e2

4π ǫ0 ~c is the fine structure constant, andσT = e4

6π ǫ02 m2
e c4

is the

Thomson cross-section. SinceσK ∼ Z5 there is a strong dependence on the
atomic number, and thus heavy elements, although less abundant than hydrogen,
contribute substantially to the absorption cross-section.

An important application of the photoelectric absorption is the hard ultraviolet
and X-ray absorption due to interstellar matter.

A useful formula for the X-ray absorption is given by the optical depthτx =
∫

σxNH dl, whereσx is the absorption cross-section andNH is the number density
of hydrogen atoms, thus

∫

NH dl corresponds to the column density. One finds:

τx = 2 × 10−26

(

~ω

1keV

)− 8
3
∫

NH dl . (3.2)

1Photoelectric effect by Einstein 1905
2i.e. from the 1s level.
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Figure 3.1: The absorption cross-section for interstellargas with typical cos-
mic abundances of the chemical elements. The discontinuities in the absorption
cross-section as a function of energy are associated with the K-shell absorption
edges of the elements indicated. The optical depth of the medium is given by
τ =

∫

σx (E) NH dl whereNH is the number density of hydrogen atoms. From
Ref. [20]
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Figure 3.2: The absorption coefficients for hydrogen, carbon, oxygen and argon
atoms as a function of photon energy (or wavelength). From Ref. [21]
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For ~ω & 1keV the photoelectric absorption is generally no longer relevant. In-
deed, typical column densities are of the order1025−26 H atoms per square me-
ter (for instance towards the Magellanic clouds), then for~ω ∼ 1keV τx ∼
(

1keV
~ω

)
8
3 ∼ 1, and for~ω ≫ 1keV τx → 0.

When observing X-ray sources in the soft X-ray region(. 1keV ) one has to
take into account the absorption due to the interstellar gasand correct thus accord-
ingly.
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Chapter 4

Compton scattering

Figure 4.1: The spectrum of the Cosmic Microwave BackgroundRadiation as mea-
sured by the COBE satellite in the direction of the North Galactic Pole. Within the
quoted errors, the spectrum is that of a perfect black body. From Ref. [22]

In Compton scattering an incoming high energy photon scatters on an elec-
tron (assume it to be at rest) and thus a fraction of its momentum and energy is
transferred to the electron. Therefore, the photons after the collision have less en-
ergy and momentum. Let’s consider first Thomson scattering,which one gets as
limiting case of Compton scattering for low energy photons,~ω ≪ me c2.

We will derive the formula for the scattering of an unpolarized beam of radi-
ation (propagating intoz direction as illustrated in Figure 4.2) upon a stationary
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Figure 4.2: Geometry of Thomson scattering of a beam of radiation by a free
electron .

electron.
The electric fields experienced by the electron (at the origin of the reference

frame) in thex andy directions are:

Ex = Ex0 eiωt and Ey = Ey0 eiωt , (4.1)

respectively. Accordingly the electron experiences an acceleration in these direc-
tions:

r̈x =
e Ex

me
and r̈y =

e Ey

me
. (4.2)

The intensity of the radiation scattered through an angleθ into the solid angle
dΩ is

−
(

dE

dt

)

x

dΩ =
e2 |r̈x| sin2θ

16π2 ǫ0 c3
dΩ =

e4 |Ex|2 cos2α

16π2 m2
e ǫ0 c3

dΩ , (4.3)

whereα = π
2 − θ. Notice that by integrating equation (4.3) over the solid angle

dΩ = 2π sinθ dθ one gets−
(

dE
dt

)

rad
= q2 | ~̈0r |2

6π ǫ0 c3
, i.e. equation (2.1). We take

the time average ofE2
x, which is Ē2

x = 1
2E2

x0
, and sum over all infalling waves

which contribute to thex component of the radiation,Ex. This way we consider
the infalling energy per unit surface on the electron. This quantity is given by the
Pointing vector:

~Sx = (~E ∧ ~H) = c ǫ0 E2
x
~iz ,

~iz being a unit vector in thez direction. Its time averaged value is given by:

Sx =
∑

i

c ǫ0
E2

x0

2
,
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where the sum is over the infalling photons.
Thus

−
(

dE

dt

)

x

dΩ =
e4 cos2α

16 π2 m2
e ǫ2

0 c4
Sx dΩ . (4.4)

From the Figure 4.2 one sees that the radiation in thexz plane from the accelera-
tion of the electron in they direction corresponds to the scattering atθ = π

2 and
therefore the scattered intensity in theα direction is just given by equation (4.4)
but withx replaced byy andcos2α replaced by1:

−
(

dE

dt

)

y

dΩ =
e4

16 π2 m2
e ǫ2

0 c4
Sy dΩ .

The total infalling energy per unit surface isS = Sx + Sy, and for unpolarized
radiationSx = Sy = S

2 . Thus the total scattered radiation intodΩ is just the sum
of the intensities of the radiation scattered in thex andy directions:

−
(

dE

dt

)

dΩ =
e4

16 π2 m2
e ǫ2

0 c4

(

1 + cos2α
) S

2
dΩ . (4.5)

The differential scattering cross-sectiondσT is then given by:

dσT =
re

(

1 + cos2α
)

2
dΩ , (4.6)

wherere = e2

4π ǫ0 me c2
is the classical electron radius1.

The total cross-section is thus given by integrating over the solid angledΩ =
2π sinα dα, which leads to:

σT =
8π

3
r2
e = 6.65 × 10−29 m2 , (4.7)

which is the Thomson cross-section.
Assuming that the incident photon beam is along thex axis, the photons num-

ber density decrease is given by:

−dN

dx
= σT N Ne , (4.8)

with N being the number density of photons andNe the number of electrons per
unit volume. Thus the photon number density decreases exponentially:

N = N0 e−
R

σT Ne dx . (4.9)

Theoptical depthτ is defined as

τ =

∫

σT Ne dx . (4.10)

1 dσT

dΩ
corresponds to the energy radiated per unit time per unit solid angle divided by the incident

energy per unit time per unit area (i.e.S).
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Accordingly themean free pathof the photon through the electron gas is defined
as:

λe = (σT Ne)
−1 . (4.11)

In the Thomson scattering there is no change in the frequencyof the radiation,
which is a good approximation as long as~ω ≪ me c2.

However, when the photon scatters with an electron it loses energy and thus its
wavelength increases. A detailed relativistic calculation gives the following result
for the ratio of the frequencies before and after the scattering, ω andω′ respectively:

ω′

ω
=

1 − β cosθ

1 − β cosθ′ + ~ω
γmec2

(1 − cosα)
, (4.12)

whereβ = v
c , γ =

(

1 − β 2
)− 1

2 is the Lorentz factor, with~v the velocity of the
electron, andα is the angle between the incoming and the outgoing wave-vectors
of the photon,~k and ~k′ respectively,θ is the angle between~k and~v (the velocity
of the electron before the scattering), andθ′ is the angle between~k′ and ~v′ (the
velocity of the electron after the scattering).

For a stationary electron, i.e.~v = 0, γ = 1 and equation (4.12) reduces to:

ω′

ω
=

1

1 + ~ω
γmec2

(1 − cosα)
,

or
∆λ

λ
=

λ′ − λ

λ
=

~ω

γmec2
(1 − cosα) . (4.13)

For energies of the photons comparable or bigger than the electron rest energy,
i.e. ~ω & me c2, one has to compute the cross-section using relativistic quantum
mechanics. The relevant total cross-section is given by theKlein-Nishina formula:

σKN = π r2
e

1

ǫ

[(

1 − 2 (ǫ + 1)

ǫ2

)

ln(2ǫ + 1) +
1

2
+

4

ǫ
− 1

2 (2ǫ + 1)2

]

, (4.14)

whereǫ = ~ω
me c2

. For low energy photons, i.e.ǫ ≪ 1, equation (4.14) becomes

σKN =
8π

3
r2
e (1 − 2ǫ) = σT (1 − 2ǫ) ≃ σT ; (4.15)

whereas in the ultrarelativistic regime,ǫ ≫ 1, it becomes

σKN = π r2
e

1

ǫ

(

ln2ǫ +
1

2

)

. (4.16)

If the photons have low energy, whereas the electrons are ultrarelativistic, one gets
the situation in which the photons acquire energy, instead of losing it. This process
is calledinverse Compton scatteringbecause the electrons lose energy rather than
the photons.
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Figure 4.3: Illustrating the Compton scattering of a Planckdistribution by hot elec-
trons in the case in which the Compton optical depthy =

∫

(kTe/mec
2)σT Ne dl =

0.15. The intensity decreases in the Rayleigh-Jeans region of the spectrum and in-
creases in the Wien region. From Ref. [23]
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If the energy of the photons in the centre of momentum frame ismuch smaller
thanme c2 (i.e. γ~ω ≪ me c2), and thus the centre of momentum frame is very
closely that of the relativistic electron, one can show thatthe energy loss rate of the
electrons is given by:

(

dE

dt

)

=
4

3
σT c urad

(

v2

c2

)

γ2 (4.17)

whereurad is the energy density of the radiation (urad = N ~ω).
The maximum energy which a photon can acquire in the inverse Compton scat-

tering (corresponding to an head-on collision in which the photon is sent back along
its original path) is

(~ω)max = ~ω0 γ2
(

1 +
v

c

)2
≃ 4γ2

~ω0 , (4.18)

ω0 being the photon frequency before the collision2. Typically the resulting fre-
quency of a photon scattered by an ultrarelativistic electron is of orderω ∼ γ2 ω0.
In various types of astronomical sources electrons are accelerated such that their
Lorentz factor is∼ 100 − 1000.

Just as examples consider photons scattering on electrons with a Lorentz factor
of 1000: radio photons with frequencyν0 = 109 Hz become ultraviolet photons,
ν = 1015 Hz, and optical photons,ν0 = 4 × 1014 Hz, becomeγ-rays with
frequencyν = 4 × 1020 Hz (about1.6 MeV ).

Clearly the inverse Compton scattering process is a mean of producing very
high energy photons. On the other hand this is also a way for ultrarelativistic
electrons to lose energy whenever they go through a region inwhich there are
many photons.

4.1 Comptonisation

Let’s consider a hot thin plasma, as is the case for instance in the vicinity of X-
ray binary sources, in the hot intergalactic gas in clustersof galaxies, or even in the
primordial plasma in the early phases of the Big Bang. Photons which pass through
such a medium will lose or acquire energy from the electrons.We consider the
non-relativistic regime in whichk Te ≪ me c2 (Te is the electron gas temperature)
and~ω ≪ me c2. As seen in equation (4.12) the energy transferred to stationary
electrons from the photons (if~ω ≪ me c2) is as follows:

∆ǫ

ǫ
=

~ω

me c2
(1 − cosα) . (4.19)

In the reference frame of the electron the scattering is simply Thomson scatter-
ing and the photons are isotropically distributed such thatif we average over the

2The electrons are relativistic sov
c
≈ 1.
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scattering angleα we get:

<
∆ǫ

ǫ
> =

~ω

me c2
, (4.20)

since< cosα >=
∫

cosα dΩ = 0.
On the other hand for the energy loss rate of high energy electrons in collision

with low energy photons, taking the low energy limit of equation (4.17), one finds:
(

dE

dt

)

=
4

3
σT c urad

(v

c

)2
. (4.21)

The number of scattered photons per second is equal to

σT Nphot c = σT urad
c

~ω0
, (4.22)

~ω0 is the photon energy before the scattering.
Thus the average energy gain of the photons per Compton collision becomes

<
∆ǫ

ǫ
> =

4

3

(v

c

)2
, (4.23)

obtained dividing equation (4.21) by equation (4.22) and putting ǫ = ~ω0.
If the electrons have a thermal distribution of velocities at temperatureTe, then

1
2 me < v2 > = 3

2 k Te and equation (4.23) reduces to

<
∆ǫ

ǫ
> = 4

k Te

me c2
. (4.24)

As a result the overall energy change of a photon is

∆ǫ

ǫ
= − ~ω0

me c2
+ 4

k Te

me c2
. (4.25)

Accordingly for~ω0 = k Te there is no energy transfer between the photons and
the electrons gas, whereas energy is transferred to the photons for~ω0 < 4 k Te

and to the electrons for~ω0 > 4 k Te.
The optical depth for Thomson scattering isτe = Ne σT l (if Ne is constant).

If τe ≫ 1 then the photon will be scattered several times before leaving the region,
more precisely it turns out that the number of scatterings isτ2

e . Instead, ifτe ≪ 1
the number of scatterings is justτe. Hence the condition for a significant distortion
of the photon spectrum by inverse Compton scattering is that

∆ǫ

ǫ
= 4

k Te

me c2
max(τe, τ

2
e ) ≥ 1 .

An exact treatment of the description of how the photon spectrum gets modified
through the scattering on electrons requires the use of the Boltzmann equation,
whose solution is quite involved.

35



However, when the electrons are non-relativistic, the fractional energy transfer
∆ǫ
ǫ per scattering is small. The Boltzmann equation can then be expanded to the

second order in this small quantity, leading to an approximation (the Fokker-Planck
equation), which for photons scattering off a non-relativistic thermal distribution of
electrons was first derived by Kompaneets (1957) [24] and is known asKompaneets
equation.

The Kompaneets equation is as follows:

∂n

∂y
=

1

x2

∂

∂x

[

x4

(

n + n2 +
∂n

∂x

)]

, (4.26)

wheren(ν) is the photon occupation number at frequencyν, x = hν
kT and

y =

∫

k Te

me c2
σT Ne dl , (4.27)

if Te does not depend on the position theny is proportional to the optical depthτ .
The term∂n/∂x represents the diffusion of photons along the frequency axis.

The termsn andn2 represent the cooling of the photons. One can easily verify that
the term in the brackets in equation (4.26) vanishes for a Bose-Einstein distribution,
for which the occupation number isn = [ exp (x + µ) − 1 ]−1, whereµ is the
chemical potential. Then this is a solution of the Kompaneets equation for which
∂n/∂y = 0. In general it has to be solved numerically.

An important application of the Kompaneets equation is the description of the
distortions of the spectrum of the2.7 K cosmic microwave background (CMB)
radiation. There are two important cases:

i. If for some reason the intergalactic gas were heated to a very high temper-
ature such thatTe ≫ Tr (Tr = 2.7 K is the CMB temperature), then the
Compton scattering would increase the energy of the photonsof the CMB.
As a result there would be a deviation from Planck’s distribution. If this
process occurred instead in the early universe before the epoch of recom-
bination, there would have been many scatterings and thus a new equilib-
rium would have been set up with a Bose-Einstein distribution with a non-
vanishing chemical potentialµ. In the previous situation, where the electrons
have been heated up after recombination there would not be enough time to
set up the equilibrium distribution and one would have to compute the spec-
trum according to the Kompaneets equation (4.26), but without the terms
n andn2 describing the cooling, since the photons cannot give away their
energy:

∂n

∂y
=

1

x2

∂

∂x

(

x4 ∂n

∂x

)

. (4.28)

Zeldovich and Sunyaev have found a solution to this equation, which leads
to:

∆uν

uν
= y

xex

ex − 1

[

x

(

ex + 1

ex − 1

)

− 4

]

, (4.29)
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where

uν =
8π hν3

c3

[

ex+µ − 1
]−1

is the radiation energy density per frequency for a blackbody spectrum. The
intensity of the CMB increases in the Wien region of the spectrum and de-
creases in the Rayleigh-Jeans region (x ≪ 1), where using equation (4.29)
one finds:

∆T

Tr
= −2y . (4.30)

COBE measurements have given the following constraints :

|µ| < 9 × 10−5

y . 1.2 × 10−5

wherey is theComptonisationparameter.

ii. A second important application is the Compton scattering of photons of the
CMB as they propagate to the Earth through regions of very hotionised
gas, as is in the case of clusters of galaxies which are embedded in an hot
intracluster gas (Sunyaev Zeldovich Effect1970) [25] [26].

As an example we consider the Coma cluster of galaxies:

Te ≃ 108 K is the electron temperature,Ne ≃ 3 × 103 m−3 is the electron
density3, σT = 6.6 × 10−29 m2, the core radius is∼ 0.5 Mpc and for the
extension of the cluster we take a radius of∼ 1 Mpc. With these values
we find y ≃ 0.9 × 10−4 and accordingly∆T/Tr ≃ −1.8 × 10−4 in the
Rayleigh-Jeans region.

This corresponds to a decrease of the temperature of the CMB of the order
of ∆T ∼ 0.1 mK in the Rayleigh-Jeans part of the spectrum. These are dif-
ficult measurements, which are now performed by several groups on already
a substantial amount of clusters.

From X-ray measurements one can determine the temperature and the elec-
tron density of a given cluster. From SZ measurements one candetermine
y and thus the size of the cluster. On the other hand the angulardiameter
is also inferred from the observations. Thus one can determine the angular
distance of the cluster and then the Hubble constant.

If the cluster is moving with respect to the CMB rest frame there will be
an additional spectral distortion due to the Doppler effectof the cluster bulk
velocity on the scattered CMB photons. The so-called kinetic SZ is of the
magnitude [26]:

∆TSZ

TCMB
= −y

vcluster

c
,

wherevcluster is the velocity component along the line of sight.

3or equivalently the proton density.
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Figure 4.4: Spectral distortion of the cosmic microwave background (CMB) radia-
tion due to the Sunyaev-Zeldovich effect (SZ). The left panel shows the Rayleigh-
Jeans brightness temperature. The thick solid line is the thermal SZ and the dashed
line is the kinetic SZE. For reference the2.7 K thermal spectrum of the CMB in-
tensity scaled by 0.0005 is shown by the dotted line in the left panel. The cluster
properties used to calculate the spectra are an electron temperature of10 keV , a
Comptony parameter of10−4, and a peculiar velocity of500 km s−1. From Ref.
[27]
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Figure 4.5: The measured SZ spectrum of Abell 2163. The data point at30 GHz
is from the Berkeley-Illinois-Maryland-Association (BIMA) array, at140 GHz it
is the weighted average of Diabolo and SuZIE measurements and at218 GHz and
270 GHz from SuZIE. The best fit thermal and kinetic SZ spectra are shown by
the dashed line and the dotted lines, respectively, with thespectra of the combined
effect shown by the solid line. The limits on the Comptony-parameter and the pe-
culiar velocity arey0 = 3.56+0.41+0.27

−0.41−0.19×10−4 andvp = 410+1030+460
−850−440 km s−1, re-

spectively, with statistical followed by systematic uncertainties at 68% confidence.
From Ref. [27]
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Chapter 5

Synchrotron radiation

The synchrotron radiation emitted by relativistic and ultrarelativistic electrons is
one of the dominant processes in high energy astrophysics. It is the radiation emit-
ted by very high energy electrons gyrating in a magnetic field. This mechanism is
at the origin of the radio emission of our Galaxy, from supernova remnants and ex-
tragalactic sources. One refers to it also as non-thermal emission, which means that
the spectrum cannot be described by a black body or a bremsstrahlung spectrum.

Consider a magnetic field~B, uniform and static, an electron with velocity~v,
moves according to the Lorentz equation:

d

dt
(γ me ~v) = e

(

~v ∧ ~B
)

, (5.1)

whereγ is the Lorentz factor. In a magnetic field the acceleration isalways per-
pendicular to the velocity vector of the particle, then~a‖ = 0 anddγ/dt = 0. Thus
equation (5.1) reduces to

γ me
d~v

dt
= e

(

~v ∧ ~B
)

= e v B sinα~i⊥ ,

with~i⊥ a unit vector perpendicular to~v andα the angle between the magnetic field
~B and the electron velocity~v. This way we get for the perpendicular component of
the acceleration:

|~a⊥| =
e v B sinα

me γ
. (5.2)

Following equation (2.5) with~a‖ = 0, we get for the total radiation loss rate of the
electron due to synchrotron radiation:

−
(

dE

dt

)

=
e2 γ4

6π ǫ0 c3
|a⊥|2

=
e2 γ4

6π ǫ0 c3

e2 v2 B2 sin2α

m2
e γ2

=
e4 B2

6π ǫ0 c m2
e

(v

c

)2
γ2 sin2α . (5.3)
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With Umag = B2/2 µ0 the energy density of the magnetic field,σT the Thomson
cross-section andc2 = 1/µ0ǫ0, equation (5.3) can also be written as:

−
(

dE

dt

)

= 2 σT c Umag

(v

c

)2
γ2 sin2α . (5.4)

This result is valid for an electron with a given angleα (called also thepitchangle).
Assuming an isotropic distribution of pitch angles we can average over it, taking
into account that the distribution is as follows1:

p (α) dα =
1

2
sinα dα ,

and that the average is given by:
∫ π

0
p (α) sin2α dα =

1

2

∫ π

0
sin3α dα =

2

3
,

we get for the radiation loss:

−
(

dE

dt

)

=
4

3
σT c Umag

(v

c

)2
γ2 . (5.5)

During its lifetime an high energy electron is likely to be randomly scattered, and
thus equation (5.5) is the correct expression for its average energy loss rate.

5.1 Synchrotron lifetime

For an ultrarelativistic electron (γ2 =
(

E/me c2
)2

andv ≃ c such thatvc ≃ 1)
equation (5.5) gets:

−
(

dE

dt

)

= ρ E2 , (5.6)

with ρ = 4
3 σT c Umag/m

2
e c4 .

This equation can be solved and leads to
(

1

E

)

= ρt + const .

Let’s assume that fort = 0, E = E0 ≫ me c2, then

E (t) =
E0

1 + ρ E0 t
. (5.7)

After the timet 1
2

= 1
ρ E0

the energy of the particle is half of its initial energy :

E
(

t 1
2

)

= E0
2 .

1Notice that
R π

0
p (α) dα = 1.
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Correspondingly

t 1
2
[s] =

5.1 × 108

(B [Gauss])2
me c2

E0
. (5.8)

We apply this result to the Crab nebula, which is the remaining of a supernova
explosion which took place in the year 1054. The Crab nebula is a strong emitter
of synchrotron radiation of about1038 erg/s, with a spectrum ranging from low
radiofrequencies up to theγ-ray frequencies. The synchrotron spectrum is rather
flat and decreases rapidly above a maximum frequency given by:

νmax = 0.07
e B
me c

(

E0

me c2

)2

, (5.9)

with a typical value ofB⊥ ≃ 5 × 10−4 Gauss. Solving equation (5.9) forE0 and
substituting in equation (5.8), one finds the following expression fort 1

2
:

t 1
2
[s] = 6.1 × 1011 (B [Gauss])−

3
2 (νmax [Hz])−

1
2 . (5.10)

For νmax ≃ 1020 Hz (andB ≃ 5 × 10−4 Gauss) we see thatt 1
2

is about10
weeks! Since the Crab nebula is now949 years old, this means that the nebula is
continuingly refurbished of ultrarelativistic electronsejected by the pulsar itself,
which lies in the centre of the nebula.

5.2 Spectral distribution of the synchrotron radiation

As next we compute the spectral distribution of the synchrotron radiation (see also
chapter 14 in Jackson). Consider a current~j (~x, t) which generates an electric field
which in the far (radiation) zone is given by:

~E =
1

r

~n ∧
(

~n ∧ ∂~j
∂t

)

c2
, (5.11)

where~n = ~x
r , with r = |~x|, is a unit vector directed towards the observer. For a

point charge the current is given by

~j (~x, t) = e ~v (t) δ3 (~x − ~z (t)) ,

with ~v (t) = ~̇z (t).
The emitted radiationErad per unit time and solid angledΩ is then

d2Erad

dΩ dt
= r2 c

16π2 ǫ0
|~E (t) |2 . (5.12)

Accordingly the total emitted radiation per solid angle is:

dErad

dΩ
= r2 c

16π2 ǫ0

∫ +∞

−∞
|~E (t) |2 dt . (5.13)
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Analogously to equation (2.7) one can apply Parseval’s theorem, so that

∫ +∞

−∞
|~E (t) |2 dt =

∫ +∞

−∞
|~E (ω) |2 dω ,

where~E (ω) is the Fourier transform of~E (t), defined similarly to equation (2.6).
From the definition of the emitted radiation,I (ω) = dErad/dω, following equa-
tions (2.8) and (2.9) we get in the same way2:

dI (ω)

dΩ
=

2 r2 c

16π2 ǫ0
|~E (ω) |2 . (5.14)

Taking the Fourier transform of the current,~j (~x, t):

~j
(

~k, ω
)

=
1

2π

∫

dt eiωt

∫

d3x e−i~k·~x ~j (~x, t) ,

from equation (5.11) one gets:

|~E (ω) |2 =
1

r2

2π ω2

c4
|~n ∧ ~n ∧~j

(

~k, ω
)

|2 , (5.15)

which inserted in equation (5.14) gives:

dI (ω)

dΩ
=

1

8π2 ǫ0

ω2

c3
2π |~n ∧ ~n ∧~j

(

~k, ω
)

|2 . (5.16)

For a pointlike charge, with~β = ~v
c , the current has the following expression:

~j
(

~k, ω
)

=
1

2π

∫

dt eiωt

∫

d3x e−i~k·~x e ~v (t) δ3 (~x − ~z (t))

=
e

2π
c

∫ +∞

−∞
dt eiωt e−i~k·~z(t) ~β (t) ,

then

dI (ω)

dΩ
=

e2 ω2

16π3 ǫ0 c
|
∫ +∞

−∞
~n ∧ ~n ∧ ~β (t) e

iω
“

t−~k·~z(t)
ω

”

dt |2 , (5.17)

with
~k
ω = ~n

c . Notice that the vector~n∧~n∧ ~β points to the same direction as~E (t).
We evaluate now equation (5.17) for relativistic electrons. The particles rotate

around the magnetic field lines at an angular frequencyω = eB/γme and with a
pitch angleα with respect to the magnetic field direction. At any time the orbit has
a certain radiusρ, which for instance at a given instant of time lies in thexy plane
as in Figure 5.1. We put the origin of the reference frame at the point where the

2Notice that the factor2 comes from the equality:
R +∞

−∞
|~E (ω) |2 dω = 2

R

∞

0
|~E (ω) |2 dω.
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Figure 5.1: Geometry for evaluating the intensity and polarisation properties of
synchrotron radiation. Att = 0 the particle velocity is along thex axis andρ is the
radius of curvature of the trajectory. From Ref. [1] and [10]

velocity vector~v of the particle lies in thexz plane. The vector~n pointing towards
the observer lies also in thexz plane:

~n = (cos θ, 0, sin θ) ,

whereθ is the angle between~n and~v at timet = 0. They axis points then att = 0
in the direction of the radius of the orbit,~ǫ⊥ lies on they axis and~ǫ‖ = ~n ∧ ~ǫ⊥.
At time t = 0 the particle is sitting at the origin of the reference frame,whereas
after a timet the particle has moved to a distancevt on the orbit, which can be
parametrized as follows:

~z (t) =

(

ρ sin
vt

ρ
, ρ − ρ cos

vt

ρ
, 0

)

,

whereas the corresponding velocity vector is(~β = ~v/c);

~β =

(

β cos
vt

ρ
, β sin

vt

ρ
, 0

)

, (5.18)

and thus
~n ∧

(

~n ∧ ~β
)

= −β sin
vt

ρ
~ǫ⊥ + β cos

vt

ρ
sinθ ~ǫ‖ .
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We need to know these function only for very short periods of the order ofρ/vc
as well as small anglesθ ∼ 1/γ, so that we can make an expansion and get (with
v ≃ c) :

~n ∧
(

~n ∧ ~β
)

≃ −ct

ρ
~ǫ⊥ + θ ~ǫ‖ . (5.19)

To evaluate equation (5.17) we need moreover:

ωt − ~k ~z (t) = ω

[

t − ~n

c
· ~z (t)

]

= ω

[

t − ρ

c
sin

vt

ρ
cosθ

]

≃ ω

[

t − βt +
ρ

c

1

6

(

vt

ρ

)3

+
ρ

c

vt

ρ

θ2

2
+ ...

]

which we expanded up to the third order in the small parameters θ andvt/ρ. Since
β =

√

1 − γ2, 1 − β ≃ 1
2γ2 and by inserting, whenever possible,β = 1 we get:

ωt − ~k ~z (t) ≃ ω

2

[(

1

γ2
+ θ2

)

t +
c2

3ρ2
t3
]

(5.20)

It is evident that the largest contributions come from the smallest values of the
term in brackets in the exponential in equation (5.17). If this term would be large
there would be many oscillations in the integral, which would average out to a very
small value. Moreover synchrotron radiation is strongly beamed in the direction of
motion of the electron. This implies that the main contribution comes from small
values ofθ andvt/ρ, thus justifying the approximation procedure.

Finally inserting equations (5.20) and (5.19) into equation (5.17) we find:

dI (ω)

dΩ
≃ e2 ω2

16π3 ǫ0 c
| − A⊥(ω) ~ǫ⊥ + A‖(ω) ~ǫ‖|2 , (5.21)

where

A⊥(ω) =
c

ρ

∫ +∞

−∞
t e

iω
2

h“

1
γ2 +θ2

”

t+ c2

3 ρ2 t3
i

dt

(5.22)

A‖(ω) = θ

∫ +∞

−∞
e

iω
2

h“

1
γ2 +θ2

”

t+ c2

3 ρ2 t3
i

dt

Let’s perform the following change of variables:

η =
ωρ

3c

(

1

γ2
+ θ2

)
3
2
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and introduce the new integration variable

x =
ct

ρ

1
√

1
γ2 + θ2

.

This way equations (5.22) become:

A⊥(ω) =
ρ

c

(

1

γ2
+ θ2

)
∫ +∞

−∞
x ei 3

2
η (x+ 1

3
x3)dx

(5.23)

A‖(ω) =
ρ θ

c

(

1

γ2
+ θ2

)
1
2
∫ +∞

−∞
ei 3

2
η (x+ 1

3
x3)dx .

Finally we find for equation (5.17):

dI (ω)

dΩ
=

e2

12π3 ǫ0 c

(ωρ

c

)2
(

1

γ2
+ θ2

)2
[

K2
2
3
(η) +

θ2

1
γ2 + θ2

K2
1
3
(η)

]

,

(5.24)
where we used the modified Bessel functions of order2/3 and1/3 respectively,
which are defined as follows:

K2
2
3
(η) =

√
3

∫ ∞

0
x sin

(

3

2
η

(

x +
1

3
x3

))

dx

(5.25)

K2
1
3
(η) =

√
3

∫ ∞

0
cos

(

3

2
η

(

x +
1

3
x3

))

dx .

In the limit casesη ≫ 1 andη ≪ 1 one can use the following asymptotic approxi-
mations of the modified Bessel functions:

η ≪ 1 Kν (η) ∼ 1

2
Γ (ν)

(

1

2
η

)−ν

, ν 6= 0

(5.26)

η ≫ 1 Kν (η) ∼
√

π

2η
e−η

(

1 + θ

(

1

η

))

.

Thus forη ≫ 1 equation (5.24) decreases ase−2η . From the definition ofη one
sees thatη gets large for all anglesθ if the frequencyω is large. Accordingly we
can define a critical frequency requiring2η = 1 for θ = 0. This gives:

ωc =
3

2
γ3

(

c

ρ

)

. (5.27)
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In the forward direction (θ = 0) one gets the following approximate expressions
for equation (5.17):

(

dI (ω)

dΩ

)

θ=0

≃ e2

4π ǫ0 c

[

Γ
(

2
3

)

π

]2
(

3

4

)
1
3 (ω ρ

c

)
2
3

for ω ≪ ωc ,

(5.28)
(

dI (ω)

dΩ

)

θ=0

≃ 3 e2

8π2 ǫ0 c
γ2

(

ω

ωc

)

e−
ω
ωc for ω ≫ ωc .

We see thus that forθ = 0 the spectrum increases first asω
2
3 , reaches a maxi-

mum for a valueω nearbyωc and then decreases exponentially.
One can also give a crude estimate of the angular dependence (onθ) of equation

(5.24) for a given frequencyω. We define, for a given frequencyω, the critical
angleθc from the relationη (θc) = η (0) + 1. For low frequencies (ω ≪ ωc as
defined by equation (5.27))η (0) is very small so thatη (θc) ≃ 1. Thus we get

θc ≃
[

(

3c

ωρ

)
2
3

− 1

γ2

]

1
2

≃ 1

γ

(

2 ωc

ω

)
1
3

for ω ≪ ωc , (since 1/γ2 ≪ 1).

(5.29)
On the other hand forω ≫ ωc, η (0) ≫ 1 and thus

dI

dΩ
≃
(

dI

dΩ

)

θ=0

e−
3
2
γ2θ2 ω

ωc , (5.30)

where we used the expansion (
(

1 + γ2 θ2
)

3
2 ≃ 1 + 3

2γ2 θ2 + ...). For the critical

angleθc ≃ 1
γ

(

2ωc

3ω

)
1
2 the spectral intensity decreases by1/e. One sees that at high

frequencies the radiation is very much directed in the forward direction.
As next we integrate equation (5.24) over the solid angle to give the energy

per frequency range radiated by the electron per complete orbit in the projected
normal plane. During such an orbit the emitted radiation is almost completely
confined to the solid angle which lies within an angle1

γ of a cone of half-angle
α, which is the pitch angle. Thus one can approximate the solidangle element by
dΩ = 2π sinα dθ (i.e. to replacesinθ by sinα). This way we find

I⊥ (ω) =
e2 ω2 ρ2 sinα

6π2 ǫ0 c3 γ4

∫ +∞

−∞

(

1 + γ2 θ2
)2

K2
2
3
(η) dθ

(5.31)

I‖ (ω) =
e2 ω2 ρ2 sinα

6π2 ǫ0 c3 γ2

∫ +∞

−∞

(

1 + γ2 θ2
)2

θ2 K2
1
3

(η) dθ ,

where the integration limits have been extended to±∞ rather than±π. However
since the integrand function is concentrated to small values of ∆θ aboutα, the

48



error in doing so is negligible. On the other hand this way it is possible to carry out
the integration, such as to get

I⊥ (ω) =

√
3 e2 γ sinα

8π ǫ0 c
[F (x) + G (x)]

(5.32)

I‖ (ω) =

√
3 e2 γ sinα

8π ǫ0 c
[F (x) − G (x)] ,

wherex = ω
ωc

andωc is the critical angular frequency defined in equation (5.27)
and the functionsF (x) andG (x) are given in terms of modified Bessel functions:

F (x) = x

∫ ∞

x
K 5

3
(y) dy ,

G (x) = x K 2
3
(x) ,

notice thatF (x) is maximal forx ≃ 0.29.
We recall that the radius of curvature, which enters in the definition of the

critical angular frequencyωc, is the one defined in the spiral orbit of the particle.
However the plane containing the particle’s orbit is inclined at a pitch angleα to
the magnetic field. Therefore, with respect to the guiding centre of the particle’s
trajectory, the radius of curvature isρ = v/ (ωr sinα), ωr = ωg/γ being the rela-
tivistic gyrofrequency, withωg = 2π νg = eB

me
the non-relativistic gyrofrequency.

This way we get

ωc = 2π νc =
3

2

( c

v

)

γ3 ωr sinα , (5.33)

or νc = 3
2γ2 νg sinα, from which we see that most of the radiation is emitted at

a frequencyν ≃ γ2 νg. Equation (5.32) represents the energy emitted in the two
polarisations during one period of the electron in its orbit, which corresponds to
the timeTr = ν−1

r = 2π γ me/e B.
the total emissivity of a single electron by synchrotron radiation is the sum of

the emissivity in the two polarisations divided byTr:

j (ω) =
I⊥ (ω)

Tr
+

I‖ (ω)

Tr
=

√
3 e3 B sinα

8π2 ǫ0 c me
F (x) . (5.34)

this is the spectral energy distribution, which has a broad maximum centered at the
frequencyν = 0.29 νc.

The total energy loss rate is thus given by

−
(

dE

dt

)

=

∫ ∞

0
j (ω) dω

= σT c Umag γ2 sin2α

(

9
√

3

4π

)

∫ ∞

0
F (x) dx . (5.35)
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Figure 5.2: The intensity spectrum of the synchrotron radiation of a single electron
shown (a) with linear axes and (b) with logarithmic axes. Thefunction is plotted
in terms ofx = ω/ωc = ν/νc, whereωc is the critical angular frequency,ωc =
2πνc = 3

2

(

c
v

)

γ3ωr sinα. From Ref. [1]
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The last integral can be performed to get:

9
√

3

4π

∫ ∞

0
F (x) dx = 2 .

Thus

−
(

dE

dt

)

= 2 σT c Umag γ2 sin2α ,

which is exactly equation (5.4).
With the asymptotic expressions forF (x), for x ≪ 1 andx ≫ 1, one gets the

following expansions forj (ω):

j (ν) ∝ ν
1
2 e−

ν
νc for x ≫ 1 (ν ≫ νc) , (5.36)

j (ω) =
e2

3
√

3 Γ
(

1
3

)

2π ǫ0 c

(

e B sinα

γ me

)
2
3

ω
1
3 for x ≪ 1 (ω ≪ ωc) . (5.37)

5.3 The synchrotron emission of a power-law distribution
of electron energies

The energy spectra of cosmic rays and cosmic ray electrons can be approximated
by power-law distributions of the form

N (E) dE = k E−p dE , (5.38)

whereN (E) dE is the number of electrons per unit volume in the energy interval
[E,E + dE], k being a constant. To get the emissivity of the electrons per unit
volume we have to compute

J (ω) =

∫ ∞

0
j (x) k E−p dE , (5.39)

wherex = ω
ωc

= ω
3
2

γ2 ωg sinα
= 2ω m2

e c4

3E2 ωg sinα
≡ A

E2 . ThusdE = −1
2A

1
2 x− 3

2 dx,

sinceE =
√

A/x, and therefore:

J (ω) =
k

2 A
p−1
2

∫ ∞

0
j (x) x

p−3
2 dx (5.40)

=

√
3 e3 B k sinα

8π2 ǫ0 c me (p + 1)

(

ω m3
e c4

3 e Bsinα

)− p−1
2

Γ

(

p

4
+

19

12

)

Γ

(

p

4
− 1

12

)

.

As last point we have to integrate over the pitch angleα, for which we shall
assume an isotropic distribution (clearly according to theapplication other distri-
butions will be more appropriate and thus the results will change). An isotropic
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distribution means thatα varies according to12 sinα dα, and therefore with equa-
tion (5.40) we see that we have to carry out the integral:

1

2

∫ π

0
sin

p+3
2 α dα =

√
π Γ

(

p+5
4

)

2 Γ
(

p+7
4

) . (5.41)

The emission per unit volume averaged over the pitch angle isthus given by

J (ω) =

√
3 e2 B k

16π2 ǫ0 c me (p + 1)

(

ω m3
e c4

3 e B

)− p−1
2

×
√

π Γ
(p

4 + 19
12

)

Γ
(p

4 − 1
12

)

Γ
(p

4 + 5
4

)

Γ
(p

4 + 7
4

) . (5.42)

The main dependences for the emissivity in the above formulae are

J (ω) ∝ k B
p+1
2 ω− p−1

2 , (5.43)

we see that if the electron energy spectrum has power-law index p the spectral
index of the synchrotron emission of these electrons isp−1

2 .

5.4 The radio emission of the Galaxy

Once detailed radio maps of the Galaxy were made it was soon realized that it was
essentially due to synchrotron radiation. The spectrum canbe described (in the
direction of the galactic north pole) as:

I (ν) ∼ ν−0.4 for ν . 200 MHz

I (ν) ∼ ν−0.9 for ν & 400 MHz .

This observed spectrum can be compared with the predicted spectrum assuming
that the energy spectrum of cosmic ray electrons observed atthe top of the Earth
atmosphere is representative of the local interstellar medium as a whole. Below
an energyE < 10 GeV the electron spectrum is strongly modulated by the Sun,
whereas forE > 10 GeV it can be described as follows:

N (E) dE = 2.9 × 10−5 E−3.3 dE

[

particles

m3 sec

]

. (5.44)

Let’s assume that this is representative for the ultrarelativistic electrons in the local
interstellar medium. Electrons of energyE = γ me c2 radiate most of their energy
at a frequencyν ≃ 28 γ2 B GHz, whereB is measured inTesla. Adopting an
average local magnetic field strengthB = 3 × 10−10 η Tesla (η ≃ 0.5 − 2), then
10 GeV electrons radiate most of their energy at a frequencyν ≃ 3.2 η GHz,
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Figure 5.3: The spectrum of the Galactic radio emission. Region I corresponds to
the anticentre direction at high galactic latitudes, and region II corresponds to the
interarm region. From Ref. [28]

Figure 5.4: Comparison of the observed radio emissivity of the interstellar medium
with that expected from the local electron energy spectrum for different values of
the magnetic field strength. The radio emissivity is shown inrelative units. The
adopted radio emissivity at10 MHz is 3 × 10−39 W m−2 Hz−1. From Ref. [1]
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which lies unfortunately just outside the range over which the galactic radio spec-
trum has been accurately measured. Therefore the best one can do is to find out
if the predicted spectrum matches smoothly onto the observed galactic radio spec-
trum, since the synchrotron radiation spectrum of a power-law distribution of elec-
trons energies is expected to be broad-band and smooth.

Inserting equation (5.44) into equations (5.42) or (5.43),we see thatp = 3.3
and p−1

2 = 1.15, thus

J (ω) ∝ k (η B)2.15 ω−1.15 .

By varyingη one can get quite a good qualitative agreement with the observations.
The assumption that the electrons can be described by the local measured spectrum
can be checked as well and has to be somewhat modified.

5.5 Synchrotron emission of Radiogalaxies

In 1954 Baade and Minkowski identified the radioemitting source Cygnus Aas
being due to the brightest galaxy in a cluster of galaxies with redshiftz = 0.057.
This way they found that the luminosity in the radio band corresponded to about
L ∼ 1045 erg/s, which is107 more than a typical galaxy emission in the radio and
about10 times the total optical luminosity of a galaxy. Early radio interferometer
observations established then the extended nature ofCygnus Asource, in form of a
double structure about a central elliptical galaxy. This behaviour is quite common
with a central galaxy or a quasar. These radio lobes are the result of gigantic
jets of relativistic particles ejected from the central galaxy. These particles collide
then with the intergalactic medium and also loose energy through interactions with
the magnetic field present in the lobes, then producing synchrotron radiation in
the radio band. Again the synchrotron age is short compared to the age of the
radiosource, requiring thus a continuous supply of relativistic electrons from the
radiogalaxy itself.

As next we estimate the energy content of a radiogalaxy, by evaluating the
minimal energy content in form of relativistic particles and stored in the magnetic
field.

For electrons we assume a power-law distribution as given inequation (5.38)

N (E) = k E−p ,

valid in the energy rangeE1 ≤ E ≤ E2. The total kinetic energy of the electrons
is then:

Ee =

∫ E2

E1

E N (E) dE = k

∫ E2

E1

E−p+1 dE . (5.45)

On the other hand the total synchrotron luminosityL due to the electrons3 is given

3The radiation loss of a single electron is given by equation (5.4), where we putB sinα =
B⊥ for the transverse component of the magnetic field, thus the radiation loss can be written as
const B2

⊥ E2, where the constant can be inferred from equation (5.4).
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Figure 5.5: The distribution of synchrotron radio emissionfrom nearby normal
galaxies. In the Andromeda galaxy (M31, NGC 224), the synchrotron radio emis-
sion originates from a ring of emission with no central concentration of the radio
emission, as in our Galaxy. There is a weak diffuse source in the central regions.
From Ref. [29]

Figure 5.6: Extension of the radiolobes of some galaxies andquasars.
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by:

L =

∫ E2

E1

const B2
⊥ E2 N (E) dE

= const B2
⊥ k

∫ E2

E1

E−p+2 dE .

(5.46)

Moreover the values ofE1 andE2 can be expressed through the critical frequency
as given in equation (5.33)4. Finally we get:

Ee = C̄ (p, ωc1 , ωc2) L B− 3
2 , (5.47)

whereC̄ depends onp, ωc1 andωc2.
From the observations (by measuringJ (ω) in equation (5.42)) one getsp, ωc1,

ωc2, L and thusEe.
The total energy stored in the radio lobes (particles and magnetic field) is given

by:
Etot = Ee + Ep + EB , (5.48)

whereEe is given by equation (5.47),EB = B2

8π V is the magnetic energy (V
being the volume of the radio lobes filled with a magnetic field), Ep is the energy
of protons and other heavy particles which we assume to be proportional toEe

(Ep = k̄ Ee with 1 . k̄ . 103. This way the total energy becomes

Etot =
(

1 + k̄
)

C̄ L B− 3
2 +

B2

8π
V . (5.49)

The magnetic field strength is unknown, so the best way to evaluate it is to min-
imize the total energy as a function ofB. Note that this value (sometimes called
equipartition field) is not a minimum value for the magnetic field but that which
leads to the lowest total energy.

The minimum of equation (5.49) leads to:

EB =
3

4

(

1 + k̄
)

Ee ,

which inserted into the expression for the magnetic energy gives:

B ∝

(

L

V

)
2
7

,

and
E

(min)
tot ∝ L

4
7 V

3
7 .

4Whereωci
∝ B⊥ E2

i with i = 1, 2 andγ2 ≃
`

E/mc2
´2

.
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As an example we consider the radio emission in theFornax A, for which the
observations give a valuep = 0.75 for the spectrum in betweenν1 ∼ 107 Hz
andν2 ∼ 1010 Hz. In that range the luminosity in the radioband isL = 2.8 ×
1041 erg/s. The estimated emission volume isV = 2.2× 1070 cm3 and assuming
k̄ = 100 one finds:

E
(min)
tot ≃ 1.3 × 1059 erg

B(min) ≃ 8 × 10−6 Gauss .

The frequency interval corresponds for synchrotron emission to an energy range of
the electrons between280 MeV and9 GeV , assumingB = B(min).

The density of the electrons is of the order10−10 cm−3 and then lifetime of
9 GeV electrons in an8 mGauss magnetic field is aboutt 1

2
∼ 1.4 × 107 years,

thus relatively short. One sees that there is the problem of the production of the
huge amount of energy which is possibly originated in a central supermassive black
hole.
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Chapter 6

The diffusion-loss equation for
high energy electrons

Here we will study how the various energy loss processes discussed in the previous
chapters will affect the spectrum of high energy electrons as they propagate from
their source through the interstellar medium.

The following equation describes the energy spectrum and particles density at
different points in the interstellar medium in the presenceof continuous energy
losses and supply of new particles from sources:

dN (E)

dt
=

d

dE
[b (E) N (E)] + Q (E, t) + D ∆N (E) , (6.1)

D is a scalar diffusion coefficient,N (E) is the number of particles per unit volume
in the energy rangeE,E + dE, Q (E, t) is the injection rate per unit volume of
new particles (for instance coming from supernovae). The particles (electrons)
within a certain volume overcome to energy gains and losses which can be written
as follows:

−
(

dE

dt

)

= b (E) , (6.2)

thusb (E) stands for the energy loss by bremsstrahlung (equation (2.18)), Comp-
ton or inverse Compton effect (equation (4.17)) or synchrotron radiation (equation
(5.5)).

The first term on the right hand side of equation (6.1) describes the fact that
due to energy losses the particles in the energy rangeE,E + dE get shifted to
another energy range and replaced by other particles, whichwhere before in an-
other range. The second term describes the injection of new particles and the third
term the diffusion. Equation (6.1) is also known asdiffusion-loss equationfor rel-
ativistic electrons. It is possible to solve equation (6.1)for a given distribution of
sources and boundary conditions [30]. Here we will just mention a special case
valid when considering steady state solutions (dN

dt = 0). For an infinite, uniform
distribution of sources each injecting electrons with a spectrumQ (E, t) = k E−p
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one finds that if bremsstrahlung dominatesN (E) ∼ E−p, that is the spectrum
stays unchanged, whereas if inverse Compton effect or synchrotron losses domi-
nateN (E) ∝ E−(p+1), the spectrum gets steeper by one power ofE.
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Chapter 7

Acceleration of high energy
particles

One of the most important and to a large extent still open problem in astrophysics
is the mechanism by which high energy particles are accelerated to ultrarelativistic
energies. In the following we will only briefly discuss the classical Fermi accelera-
tion mechanism, since in the meantime this subject has become quite involved and
a throughout treatment is beyond the scope of these notes.

The Fermi mechanism was first proposed by Fermi in 1949 [31] asa stochastic
means by which particles colliding with clouds in the interstellar medium could be
accelerated to high energies. In the original picture charged particles are reflected
from magnetic mirrorsassociated with irregularities in the galactic magnetic field,
or from massive clouds.

Consider thus a collision of a particle with a massive cloud,so that the velocity
of the latter remains unchanged. The angle between the initial direction and the
normal to the surface isθ. The centre of momentum frame coincides with that of
the cloud (as it is infinitely massive) moving at velocityV .

In that frame the particle’s energy in the collision is conserved, but in the ob-
server’s frame the energyE′ of the particle after the collision is given by:

E′ = γ2 E

[

1 +
2 V v cosθ

c2
+

(

V

c

)2
]

, (7.1)

whereE andv are respectively the energy and the velocity in the observerframe

before the collision andγ =
(

1 − V 2

c2

)−1/2
. Expanding the previous equation to

the second order inVc one gets:

E′ − E

E
≡ ∆E

E
=

2 V v cosθ

c2
+ 2

(

V

c

)2

. (7.2)

As next we have to average overθ. The probabilities of head-on and following
collisions are proportional to the relative velocities of approach of the particle and
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the cloud, namelyv + V cosθ andv − V cosθ, respectively. In the following we
will assumev ≃ c (relativistic particles) and thus the probabilities are proportional
to 1 + (V/c) cosθ, where0 ≤ θ ≤ π.

Moreover the probability that the pitch angleθ lies betweenθ andθ + dθ is
proportional tosinθ dθ, with x = cosθ, we find (in the limitv → c) that the
angular average over the first term in equation (7.2) becomes

<
2 V cosθ

c
>=

(

2 V

c

)

∫ +1
−1 x

(

1 + V
c x
)

dx
∫ +1
−1

(

1 + V
c x
)

dx
=

2

3

(

V

c

)2

.

Thus in the relativistic limit the average energy gain per collision is

<
∆E

E
>=

8

3

(

V

c

)2

. (7.3)

Thus the famous Fermi result tells that the average increasein energy is only of the
second order inVc . This result leads to an exponential increase in the energy of the
particle since the same fractional increase occurs at each collision.

If the mean free path between clouds along a field line isλ, than the average
(over angles) time between collisions turns out to betcoll = 2λ/c

Therefore the typical rate of energy increase is given by

dE

dt
=

∆E

tcoll
=

4

3

(

V 2

c λ

)

E ≡ α E . (7.4)

Let’s assume that the particle remains in the accelerating region for a characteristic
time τesc, we have then to add a term−N(E)

τesc
on the right hand side of equation

(6.1).
Suppose we are interested in the steady state solution of theso modified equa-

tion (6.1), thusdN/dt = 0, and moreover we assume that there is no source,
Q(E) = 0, and no diffusion. The energy loss term isb(E) = −dE

dt = −α E (here
it is an energy increase). This way we get the following equation

− d

dE
[α E N (E)] − N (E)

τesc
= 0 , (7.5)

which leads to
dN (E)

dE
= −

(

1 +
1

α τesc

)

N

E
,

or
N (E) = const E−x ,

wherex = 1 + (α τesc)
−1.

We thus see that the so obtained spectrum is a power-law, as confirmed after-
wards by the observations.

Clearly the above derivation is oversimplified, nevertheless more detailed cal-
culations lead also to power-law solutions [32].
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Appendix

• Some useful definitions and formulae

– Energy conversion factors:

E = hν =
hc

λ
=

1.2399

λ
= 4.136 × 10−15 ν eV

(λ in µm = 10−6 m and ν in Hz)

1 eV = 1.602 × 10−19 Joule = 1.602 × 10−12 erg

E = kT = 1.380 × 10−23 T Joule

= 8.617 × 10−5 T eV

(T in Kelvin)

• Astronomical wavebands

– Radio waveband :

3 × 106 Hz ≤ ν ≤ 3 × 1010 Hz

(3 MHz ≤ ν ≤ 30 GHz)

100 m ≥ λ ≥ 1 cm

– Millimetre and sub-millimetre waveband :

3 × 1010 Hz ≤ ν ≤ 3 × 1012 Hz

(30 GHz ≤ ν ≤ 3000 GHz)

10 mm ≥ λ ≥ 0.1mm
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– Infrared waveband :

3 × 1012 Hz ≤ ν ≤ 3 × 1014 Hz

100 µm ≥ λ ≥ 1 µm

– Optical waveband :

3 × 1014 Hz ≤ ν ≤ 1015 Hz

1 µm ≥ λ ≥ 300 nm

(10000
◦
A ≥ λ ≥ 3000

◦
A)

– Ultraviolet waveband :

1015 Hz ≤ ν ≤ 3 × 1016 Hz

300 nm ≥ λ ≥ 10 nm

– X-ray waveband :

3 × 1016 Hz ≤ ν ≤ 3 × 1019 Hz

10 nm ≥ λ ≥ 0.01 nm

(100
◦
A ≥ λ ≥ 0.1

◦
A)

0.1 keV ≤ E ≤ 100 keV

– γ-ray waveband :

ν ≥ 3 × 1019 Hz

λ ≤ 0.01 nm (0.1
◦
A)

E ≥ 100 keV
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