Transforming multi-loop Feynman integrals to a canonical basis mandman

CHRISTOPH MEYER (HU BERLIN)

PHENOMENOLOGY OF ELEMENTARY PARTICLE PHYSICS GROUP

PARTICLE THEORY SEMINAR ZURICH

Motivation: Demand for multi-loop calculations

- Experimental precision @ LHC pushing below 5\%
e.g. $t \bar{t} @ 13 \mathrm{TeV}$

Measurement:

$$
\sigma_{t \bar{t}}=818.0 \pm 8.0 \pm 35.0 \mathrm{pb}^{\text {[ATLAS Collaboration '16] }}
$$

Theory NNLO + NNLL:

$$
\sigma_{t \bar{t}}=832.0_{-46}^{+40} \mathrm{pb} \quad \text { [M. Czakon, A. Mitov '13] }
$$

\Rightarrow Theory and experiment at $\mathcal{O}(5 \%)$ precision

- Increasing integrated luminosity \Rightarrow decrease statistical uncertainties
\Rightarrow Demand for precise theoretical predictions will grow

Introduction

Goal: Compute scalar multi-loop Feynman integrals

- Example: Single top-quark production @ NNLO QCD

Kinematics:

$$
\begin{gathered}
p_{1}^{2}=0, \quad p_{2}^{2}=0, \quad p_{3}^{2}=0, \quad p_{4}^{2}=m_{t}^{2} \\
s=\left(p_{1}+p_{2}\right)^{2}, \quad t=\left(p_{2}-p_{3}\right)^{2}
\end{gathered}
$$

- Consider whole family of integrals:
$\int \frac{\mathrm{d}^{d} l_{1}}{\mathrm{i} \pi^{d / 2}} \frac{\mathrm{~d}^{d} l_{2}}{\mathrm{i} \pi^{d / 2}} \frac{\left[\left(l_{1}-p_{2}\right)^{2}\right]^{-a_{8}}\left[\left(l_{2}+a_{3}+p_{1}{ }^{a_{1}}\right]_{1}^{2}-m_{w}^{2}\right]^{a_{9}}}{}{ }^{a_{2}}\left[\left(l_{1}+p_{3}\right)^{2}\right]^{a_{3}}\left[\left(l_{2}+p_{2}\right)^{2}\right]^{a_{4}}\left[\left(l_{1}-p_{4}\right)^{22}\right]^{a_{5}}\left[\left(l_{2}-p_{1}\right)^{2}\right]^{a_{6}}\left[\left(l_{1}+l_{2}-p_{1}+p_{3}\right)^{2}\right]^{a_{7}}$
with integer powers $a_{i} \in \mathbb{Z}$

Introduction: Integration by parts relations

- Infinite number of scalar integrals in one family

$$
I\left[a_{1}, \ldots, a_{n}\right]=\int \frac{\mathrm{d}^{d} l_{1}}{\mathrm{i} \pi^{d / 2}} \cdots \frac{\mathrm{~d}^{d} l_{L}}{\mathrm{i} \pi^{d / 2}} \frac{P_{t+1}^{-a_{t+1}} \cdots P_{n}^{-a_{n}}}{P_{1}^{a_{1}} \cdots P_{t}^{a_{t}}}
$$

Only a finite number is independent!

- Related by: Infinite number of Integration by parts relations:

- Relations can be applied systematically (Laporta algorithm) [s. Laporta'01]

\Rightarrow finite basis of independent master integrals

- Notation: vector of master integrals
dimensional regulator $\epsilon=(d-4) / 2 \underset{f}{\vec{f}\left(\epsilon,\left\{x_{i}\right\}\right)}=\left(\begin{array}{c}f_{1}\left(\epsilon,\left\{x_{i}\right\}\right) \\ \vdots \\ f_{m}\left(\epsilon,\left\{x_{i}\right\}\right)\end{array}\right)$
Δ Derivative of Feynman integral \Rightarrow Linear combination of Feynman integrals Idea: Express derivative of \vec{f} in terms of \vec{f} again:

$$
\mathrm{d} \vec{f}\left(\epsilon,\left\{x_{i}\right\}\right)=\sum_{j=1}^{M} \frac{\partial \vec{f}}{\partial x_{j}} \mathrm{~d} x_{j}=a\left(\epsilon,\left\{x_{i}\right\}\right) \vec{f}\left(\epsilon,\left\{x_{i}\right\}\right)
$$

w.r.t. the invariants

$$
a\left(\epsilon,\left\{x_{i}\right\}\right)=\sum_{j=1}^{M} a_{j}\left(\epsilon,\left\{x_{i}\right\}\right) \mathrm{d} x_{j}
$$

- $a_{j}\left(\epsilon,\left\{x_{i}\right\}\right)$ are $m \times m$ matrices of rational functions

Introduction: Example for differential equations

- Two loop sunrise:

$$
I\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right]=\int \frac{\mathrm{d}^{d} l_{1}}{\mathrm{i} \pi^{d / 2}} \frac{\mathrm{~d}^{d} l_{2}}{\mathrm{i} \pi^{d / 2}} \frac{\left.\left[\left(l_{1}-p\right)^{2}\right]^{-a_{4}}\left(l_{2}-p\right)^{2}\right]^{-a_{5}}}{\left[l_{1}^{2}\right]^{a_{1}}\left[l_{2}^{2}\right]^{a_{2}}\left[\left(l_{1}+l_{2}-p\right)^{2}-m^{2}\right]^{a_{3}}}
$$

- Family contains two master integrals: e.g. $\{I[1,1,1,0,0], I[1,1,2,0,0]\}$
- Rescale for dimensionless master integrals:

$$
f_{1}=\left(m^{2}\right)^{2 \epsilon-1} I[1,1,1,0,0] \quad f_{2}=\left(m^{2}\right)^{2 \epsilon} I[1,1,2,0,0]
$$

- Can only depend on dimensionless variable: $x=\frac{p^{2}}{m^{2}}$

Introduction: Example for differential equations

- Take derivative of master integral:

$$
\left.\begin{array}{rl}
\frac{\partial I[1,1,1,0,0]}{\partial s} & =\frac{-1}{2 s}(I[1,1,2,0,-1]+I[1,1,2,-1,0]) \\
& =\frac{1}{s}\left((1-2 \epsilon) I[1,1,1,0,0]-m^{2} I[1,1,2,0,0]\right)
\end{array}\right) \text { ।F }
$$

- Differential equation determines the master integrals up to integration constants
- Solve differential equation for $\vec{f}\left(\epsilon,\left\{x_{i}\right\}\right) \Rightarrow$ in general very hard!
- Turn to a different basis: $\vec{f}=T\left(\epsilon,\left\{x_{i}\right\}\right) \overrightarrow{f^{\prime}}$

$$
\mathrm{d} \overrightarrow{f^{\prime}}=a^{\prime} \overrightarrow{f^{\prime}}
$$

transformation law:

$$
a^{\prime}=T^{-1} a T-T^{-1} \mathrm{~d} T
$$

- Idea: Use a basis such that the differential equation is in ϵ-form:

$$
\begin{aligned}
a\left(\epsilon,\left\{x_{i}\right\}\right)=\epsilon \mathrm{d} \tilde{A} \quad \text { with } \quad \tilde{A}= & \sum_{l=1}^{N} \tilde{A}_{l} \log \left(L_{l}\left(\left\{x_{i}\right\}\right)\right) \\
\text { constant } & m \times m \text { matrices }
\end{aligned}
$$

- Call set of letters alphabet: $\mathcal{A}=\left\{L_{1}\left(\left\{x_{i}\right\}\right), \ldots, L_{N}\left(\left\{x_{i}\right\}\right)\right\}$

$$
\mathrm{d} \vec{f}\left(\epsilon,\left\{x_{i}\right\}\right)=\epsilon \mathrm{d} \tilde{A} \vec{f}(\epsilon,\{x\})
$$

Current status

- New method has been very successfull: e.g.

```
Two-loop non-leptonic B decays [G. Bell, T. Huber '14]
Two-loop Bhabha scattering [J.M. Henn, A. V. Smirnov, V. A. Smirnov '14]
Two-loop VV production [J. M. Henn, K. Melnikov, V. A. Smirnov '14; F. Caola, J. M. Henn, K. Melnikov, V. A. Smirnov '14; T. Gehrmann, A. v.
Three-loop ladder boxes [J.M. Henn, V.A. Smirnov '13]
Three-loop gg->H [M. Höschele, J. Hoff, T. Ueda '14]
Two-loop H->Z\gamma [R. Bonciani, V. Del Duca, H. Frellesvig, J. M. Henn, F. Moriello, V. A. Smirnov '15; T. Gehrmann, S. Guns,
many more...
```


How to find such a basis?

Several methods:

- Integrals with constant leading singularities
- Algorithms available for case of one variable
- $a\left(\epsilon,\left\{x_{i}\right\}\right)$ linear in ϵ : Magnus/Dyson series approach
- Diagonal blocks of $a\left(\epsilon,\left\{x_{i}\right\}\right)$ linear in $\epsilon \quad$ [T. Gehrmann, A. von Manteuffel, L. Tancredi, E. Weihs' 14$]$

Public implementatios only for single variable case:

- Implementation of Lees algorithm ${ }^{\text {[0. Gituliar, V. Magerya'16] }}$

Expansion of the transformation law

- Problem description:

Given differential equation with rational $a\left(\epsilon,\left\{x_{i}\right\}\right)$
Find invertible rational $T\left(\epsilon,\left\{x_{i}\right\}\right)$ such that:

$$
\epsilon \mathrm{d} \tilde{A}=T^{-1} a T-T^{-1} \mathrm{~d} T
$$

if it exists

- Equivalently:

$$
\mathrm{d} T-a T+\epsilon T \mathrm{~d} \tilde{A}=0 \quad \text { free of } T^{-1}
$$

Idea: Expand in ϵ and Solve for T order by order

Note: $\mathrm{d} \tilde{A}$ is unknown as well!

Expansion of the transformation law

- Transformation law:

$$
\mathrm{d} T-a T+\epsilon T \mathrm{~d} \tilde{A}=0
$$

- Invariant under: $\quad T \rightarrow T g(\epsilon)$
- Choice of $g(\epsilon) \boxtimes$ expansion of T starts with $T^{(0)} \neq 0$:

$$
T=\sum_{n=0}^{n_{\max }} \epsilon^{n} T^{(n)}
$$

For simplicity assume finite expansion: $\quad a=\sum_{k=0}^{k_{\text {max }}} \epsilon^{k} a^{(k)}$

[^0]
Expansion of the transformation law

- Expand transformation law:

$$
\begin{array}{r}
\mathrm{d} T^{(0)}-a^{(0)} T^{(0)}=0 \\
\mathrm{~d} T^{(n)}-\sum_{k=0}^{\min \left(k_{\text {max }}, n\right)} a^{(k)} T^{(n-k)}+T^{(n-1)} \mathrm{d} \tilde{A}=0
\end{array}
$$

Equation at order n contains only $T^{(k)}$ with $k \leq n \Longrightarrow$ solve order by order
Δ Highest order $n_{\max }$ unknown \Longrightarrow Check at each order n whether $n=n_{\max }$

$$
\text { Need to find rational solution } \Longrightarrow \text { solve with rational Ansatz }
$$

Linear ansatz with rational functions

- Transformation law is linear in $T^{(n)}$

Idea: Ansatz linear in parameters \Rightarrow equations linear in parameters

$$
\begin{aligned}
& \text { Ansatz: } \quad T^{(n)}=\sum_{k=1}^{R} \tau_{k}^{(n)} r_{k}\left(\left\{x_{i}\right\}\right) \\
& m \times m \text { matrix of parameters }
\end{aligned}
$$

What kind of rational functions should be used?

- Linearly independent over $\mathbb{C} \Longrightarrow$ no apparent redundancies
- As simple as possible \Rightarrow cheap computations
- Any rational function $=\mathbb{C}$ - linear combination of simple rational functions
\Longrightarrow solution for T can be represented as well

Linear ansatz with rational functions

- Univariate case:
polynomial division and partial fractioning

\Rightarrow Linear combination of monomials and rational functions with one pole
- Multivariate case:
- polynomial division generalizes straightforwardly
- generalization of partial fractioning:
[E. K. Leinartas '78, A. Raichev '12]
Leinartas decomposition

Two steps: Nullstellensatz decomposition and algebraic independence decomposition

Leinartas decomposition step 1: Nullstellensatz decomposition

Finite set of polynomials $\left\{f_{1}, \ldots f_{m}\right\}$ with no common zero (weak) Nullstellensatz \Downarrow
Exist polynomials $\left\{h_{1}, \ldots h_{m}\right\}$ such that $\sum_{i=1}^{m} h_{i} f_{i}=1$

Example: $\{x, 1+x y\}$ has no common zero $\Rightarrow h_{1}=-y, h_{2}=1$

Yields decomposition:

$$
\begin{aligned}
& \frac{1}{x(1+x y)}=\frac{(-y)(x)+(1)(1+x y)}{x(1+x y)}=\frac{-y}{1+x y}+\frac{1}{x}
\end{aligned}
$$

Leinartas decomposition step 2: algebraic independence

Finite set of algebraically dependent polynomials $\left\{f_{1}, \ldots f_{m}\right\}$
In

Exists polynomial κ in m variables $\kappa\left(f_{1}, \ldots, f_{m}\right)=0$

Example:

$$
\{x, y, x+y\} \text { is algebraically dependent } \Rightarrow \kappa\left(Y_{1}, Y_{2}, Y_{3}\right)=Y_{1}+Y_{2}-Y_{3}
$$

$$
\begin{gathered}
\kappa(x, y, x+y)=0 \quad \Rightarrow \quad(x)+(y)-(x+y)=0 \\
\Rightarrow \frac{(y)-(x+y)}{-(x)}=1
\end{gathered}
$$

Yields decomposition:

$$
\frac{1}{x y(x+y)}=\frac{(y)-(x+y)}{-x} \frac{1}{x y(x+y)}=-\frac{1}{x^{2}(x+y)}+\frac{1}{x^{2} y}
$$

Nice property:

Maximal number of algebraically independent polynomials given by number of variables For n variables \square summands with at most n distinct factors
\Rightarrow Reduces number of summands in ansatz

Summary Leinartas decomposition:

Apply step 1 and step 2 repeatedly \Rightarrow Linear combination of summands with algebraically independent denominator polynomials and no common zero Call these summands to be in Leinartas form

Ansatz for the $T^{(n)} \longmapsto$ rational functions in Leinartas form

Constraining the ansatz: Information from the trace

Recall:

$$
\mathrm{d} T^{(n)}-\sum_{k=0}^{\min \left(k_{\max }, n\right)} a^{(k)} T^{(n-k)}+T^{(n-1)} \mathrm{d} \tilde{A}=0
$$

$\Rightarrow \mathrm{d} \tilde{A}$ is unknown
But constrained by dlog-form: $\tilde{A}=\sum_{l=1}^{N} \alpha_{l} \log \left(L_{l}\left(\left\{x_{i}\right\}\right)\right)$

- denominator factors of $a\left(\epsilon,\left\{x_{i}\right\}\right) \quad \square$ set of polynomials $L_{l}\left(\left\{x_{i}\right\}\right)$
- $m \times m$ matrices $\alpha_{l} \quad \square$ unknown parameters

Additional information :

$$
\begin{gathered}
\operatorname{det}(T)=C(\epsilon) \exp \left(\int_{\gamma} \operatorname{Tr}\left[a^{(0)}\right]\right) \\
\operatorname{Tr}[\mathrm{d} \tilde{A}]=\operatorname{Tr}\left[a^{(1)}\right]
\end{gathered}
$$

- Fully determines transformation of 1-dim. sectors
- Formulas also hold for higher dimensional sectors
- Provide useful information for the ansatz

Algorithm Example: Sunrise reloaded

Input:

$$
\text { Differential form: } \quad a=\left(\begin{array}{cc}
\frac{1-2 \epsilon}{x} & \frac{2-3 \epsilon}{x} \\
\frac{(-1+2 \epsilon)}{(-1+x) x} & \frac{2-\epsilon(3+x)}{(-1+x) x}
\end{array}\right) \mathrm{d} x
$$

- Alphabet: $\mathcal{A}=\{-1+x, x\} \quad \underset{A}{ }=\alpha_{1} \log (-1+x)+\alpha_{2} \log (x)$

Determinant: $\operatorname{Tr}\left[a^{(0)}\right]=\left(\frac{2}{-1+x}-\frac{1}{x}\right) \mathrm{d} x \quad \square \quad \operatorname{det}(T) \propto \frac{(-1+x)^{2}}{x}$

- Traces:

$$
\operatorname{Tr}\left[a^{(1)}\right]=\left(\frac{-4}{-1+x}+\frac{1}{x}\right) \mathrm{d} x \quad \Longleftrightarrow \quad \operatorname{Tr}\left[\alpha_{1}\right]=-4, \quad \operatorname{Tr}\left[\alpha_{2}\right]=1
$$

- Ansatz: $\quad T^{(n)}=\tau_{1}^{(n)}+\tau_{2}^{(n)} x+\tau_{3}^{(n)} \frac{1}{x}$

Algorithm Example: first order

- Insert Ansatz into equation of order $\epsilon^{0}: \quad \mathrm{d} T^{(0)}-a^{(0)} T^{(0)}=0$
\diamond Each component \square an equation of the type:

$$
\frac{-\left(\tau_{1}^{(0)}\right)_{11}-2\left(\tau_{1}^{(0)}\right)_{21}}{x}-2\left(\tau_{2}^{(0)}\right)_{21}-2 \frac{\left(\tau_{3}^{(0)}\right)_{11}+\left(\tau_{3}^{(0)}\right)_{21}}{x^{2}}=0
$$

- Require to hold for all values $x \neq 0 \Rightarrow$ equations in the parameters:

$$
\left(\tau_{1}^{(0)}\right)_{11}+2\left(\tau_{1}^{(0)}\right)_{21}=0, \quad\left(\tau_{2}^{(0)}\right)_{21}=0, \quad\left(\tau_{3}^{(0)}\right)_{11}+\left(\tau_{3}^{(0)}\right)_{21}=0
$$

\diamond All components together \quad linear system of equations for the τ

Algorithm Example: first order

- General solution: $\quad \tau_{2}^{(0)}=\tau_{3}^{(0)}=0, \quad \tau_{1}^{(0)}=\left(\begin{array}{cc}\lambda_{1} & \lambda_{2} \\ -\frac{1}{2} \lambda_{1} & -\frac{1}{2} \lambda_{2}\end{array}\right), \quad \lambda_{1}, \lambda_{2} \in \mathbb{R}$

$$
\Rightarrow \quad T^{(0)}=\left(\begin{array}{cc}
\lambda_{1} & \lambda_{2} \\
-\frac{1}{2} \lambda_{1} & -\frac{1}{2} \lambda_{2}
\end{array}\right)
$$

ϵ - form only unique up to constant transformation \square redundancy expected
\Longrightarrow Fix λ_{1}, λ_{2} such that $\operatorname{rank}\left(T^{(0)}\right)$ is preserved, e.g. $\lambda_{1}=1, \lambda_{2}=0$

- Check series abortion:

$$
\operatorname{det}\left(T^{(0)}\right)=0 \quad \Longrightarrow \quad n_{\max } \neq 0
$$

Proceed to next order

Algorithm Example: second order

Equation of order ϵ^{1} :

$$
\mathrm{d} T^{(1)}-a^{(0)} T^{(1)}-a^{(1)} T^{(0)}+T^{(0)} \mathrm{d} \tilde{A}=0
$$

\Longrightarrow Insert ansatz for $T^{(1)}$ and $\tilde{A}=\alpha_{1} \log (-1+x)+\alpha_{2} \log (x)$
$T^{(0)}$ is completely fixed \square get linear system of equations for the $\tau_{i}^{(1)}$ and α_{1}, α_{2}
Additionally: $\operatorname{Tr}\left[\alpha_{1}\right]=-4, \quad \operatorname{Tr}\left[\alpha_{2}\right]=1$
\Rightarrow Solution determines $T^{(1)}$ up to 4 parameters $T^{(1)}=T^{(1)}\left(\lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6}\right)$

- Check series abortion: highest order of $a(\epsilon, x)$ is ϵ^{1}
\Rightarrow Sufficient to check only the equation of the next order:

$$
-a^{(1)} T^{(1)}-T^{(1)} \mathrm{d} \tilde{A}=0
$$

\Rightarrow Solution exists and fixes two of the four parameters

Algorithm Example: second order

$\diamond T^{(1)}=T^{(1)}\left(\lambda_{5}, \lambda_{6}\right) \quad$ attains ϵ-form for all λ_{5}, λ_{6} with $\operatorname{det}(T) \neq 0$
\Rightarrow remaining two degrees of freedom in the choice of constant transformation (could not be exploited for $T^{(0)}$ since it did not have full rank)

Output:

Full transformation: $\quad T=\left(\begin{array}{cc}1 & 0 \\ -\frac{1}{2} & 0\end{array}\right)+\epsilon\left(\begin{array}{cc}-\frac{7+x}{2} & \frac{-1+x^{2}}{2 x} \\ 2 & -\frac{-1+x}{2 x}\end{array}\right)$

- $\quad \epsilon$ - form: $\quad a^{\prime}=\left(\begin{array}{cc}0 & -\frac{\epsilon}{x} \\ \frac{2 \epsilon}{(-1+x)} & -\frac{4 \epsilon}{(-1+x)}+\frac{\epsilon}{x}\end{array}\right) \mathrm{d} x$
- Determinant as predicted: $\operatorname{det}(T)=-\frac{\epsilon(-1+3 \epsilon)(-1+x)^{2}}{4 x}$
- Recusion over subsectors \square huge gain in performance
- Derivative of Masterintegral $=$ Sum of Masterintegrals of the same or lower sectors

Differential Equation in block-triangular form:

Compute transformation recursively:

- Recusion over subsectors \square huge gain in performance
- Derivative of Masterintegral $=$ Sum of Masterintegrals of the same or lower sectors

Differential Equation in block-triangular form:

Compute transformation recursively:

algorithm just presented

- Recusion over subsectors \square huge gain in performance
- Derivative of Masterintegral $=$ Sum of Masterintegrals of the same or lower sectors

Differential Equation in block-triangular form:

$\square \epsilon$-form

Compute transformation recursively:

- Recusion over subsectors \square huge gain in performance
- Derivative of Masterintegral $=$ Sum of Masterintegrals of the same or lower sectors

Differential Equation in block-triangular form:

\square dlog-form

Compute transformation recursively:

- Recusion over subsectors \square huge gain in performance
- Derivative of Masterintegral $=$ Sum of Masterintegrals of the same or lower sectors

Differential Equation in block-triangular form:

Compute transformation recursively:

Analogous strategy:

- Extract rational ansatz for D from b
$\diamond b^{\prime}$ in dlog-form \Rightarrow only alphabet needed for ansatz

Implementation in Mathematica

Mathematica package CANONICA

- Implementation of the presented algorithm ${ }^{\text {[С.м. '16] }}$

Flexibility:

- High level functions: Input: differential equation Output: Transformation to ϵ - form
- Low level functions: Perform particular steps of the algorithm
- Successfully applied to many non-trivial examples
soon to be published...

Vector boson pair production @ NNLO QCD

Kinematics:

$$
p_{1}^{2}=0, \quad p_{2}^{2}=0, \quad p_{3}^{2}=m_{3}^{2}, \quad p_{4}^{2}=m_{4}^{2} \quad s=\left(p_{1}+p_{2}\right)^{2}, \quad t=\left(p_{1}-p_{3}\right)^{2}
$$

Depend on 3 scales: $\quad(1+x)(1+x y)=\frac{s}{m_{3}^{2}}, \quad-x z=\frac{t}{m_{3}^{2}}, \quad x^{2} y=\frac{m_{4}^{2}}{m_{3}^{2}}$

31 master integrals
Alphabet contains 12 letters:

$$
\begin{aligned}
\mathcal{A}= & \{x, 1+x, 1-y, y, 1+x y, 1+x(1+y-z), 1-z, \\
& z, z-y, z+x y, 1+x z 1+(1+x) y-z\}
\end{aligned}
$$

CANONICA runtime: < 1h

29 master integrals
Alphabet contains 14 letters:

$$
\begin{aligned}
\mathcal{A}= & \{x, 1+x, 1-y, y, 1+x y, 1+x(1+y-z), 1-z \\
& 1+(1+x) y-z z, z-y, z+x y, 1+x z, z-y+y z+x y z \\
& z-x y+x z+x y z)\}
\end{aligned}
$$

CANONICA runtime: < 1h

Single Top Quark Production @ NNLO QCD

Kinematics:

$$
p_{1}^{2}=0, \quad p_{2}^{2}=0, \quad p_{3}^{2}=0, \quad p_{4}^{2}=m_{t}^{2} \quad s=\left(p_{1}+p_{2}\right)^{2}, \quad t=\left(p_{2}-p_{3}\right)^{2}
$$

Depend on 3 scales: $\quad x=\frac{s}{m_{W}^{2}}, \quad y=\frac{t}{m_{W}^{2}}, \quad z=\frac{m_{t}^{2}}{m_{W}^{2}}$

31 master integrals
Alphabet contains 11 letters:

$$
\begin{aligned}
\mathcal{A}= & \{x, y, x+y, x-z, y-z, x+y-z, 1+x+y-z, \\
& -1+z, z-1-x+z, y(-1+z)+(1+x-z) z\}
\end{aligned}
$$

CANONICA runtime: < 1h

35 master integrals
Alphabet contains 13 letters:

CANONICA runtime: a few hours

Other topologies entail irrational letters \Rightarrow requires extension of the algorithm

Conclusions and Outlook

Conclusions:

- New algorithm applicable to the general case of rational $a\left(\epsilon,\left\{x_{i}\right\}\right)$
- Implemented in Mathematica Package CANONICA
- Tested for non-trivial examples

Outlook:

- Study further applications
- Better understanding of how to automatically choose ansatz
- Extension to irrational letters

Thank You!

[^0]: General case works too

