Non-leptonic *B*-decays at two loops in QCD

Tobias Huber Universität Siegen

Based on

- Bell, TH, [arXiv:1410.2804], JHEP
- Bell, Beneke, Li, TH, [arXiv:1507.03700], PLB
- Kränkl, TH, [arXiv:1503.00735], JHEP
- Kränkl, Li, TH, [arXiv:1606.02888], JHEP

Theory Seminar, Zürich, October 4th, 2016

Outline

- Introduction
- Theoretical framework
- Two-loop penguin amplitudes
- The decay $B \to D \, \pi$ at two loops
- Conclusion

Introduction to non-leptonic B decays

- $\bullet\,$ Non-leptonic B decays offer a rich and interesting phenomenology
 - Large data sets from B-factories, Tevatron, LHCb, in future Belle II
 - $\mathcal{O}(100)$ final states
 - Numerous observables:
 - * branching ratios
 - * CP asymmetries
 - * polarisations
 - * Dalitz plot analyses
 - * Combinations thereof
- Test of CKM mechanism (CP violation)
- Indirect search for New Physics
 - Not as sensitive as rare or radiative ${\cal B}$ decays, but large data sets

Introduction to non-leptonic B decays

- Theoretical description complicated by purely hadronic initial and final state
 - QCD effects from many different scales
- Theory approaches
 - Factorisation approaches: PQCD [Keum, Li, Sanda'00], QCDF [Beneke, Buchalla, Neubert, Sachrajda'99-'01]
 - * Disentangle long and short distances
 - QCD Factorisation
 - $*\,$ Systematic framework to all orders in α_s and leading power in Λ/m_b
 - * Problems with factorisation of power suppressed and annihilation contributions. Endpoint divergences
 - Flavour symmetries: Isospin, U-Spin ($d \leftrightarrow s$), V-Spin ($u \leftrightarrow s$), Flavour SU(3)
 - * Only few a priori assumptions about scales needed
 - * Implementation of symmetry breaking difficult
 - Dalitz plot analysis. Applied to 3-body decays
 - * Mostly a fit to data, but also QCD-based predictions possible [Kränkl, Mannel, Virto'15]

Effective theory for ${\cal B}$ decays

- M_W , M_Z , $m_t \gg m_b$: integrate out heavy gauge bosons and t-quark
- Effective Hamiltonian:

[Buras, Buchalla, Lautenbacher'96; Chetyrkin, Misiak, Münz'98]

$$\mathcal{H}_{eff} = \frac{G_F}{\sqrt{2}} \sum_{p=u,c} \lambda_p \left[C_1 Q_1^p + C_2 Q_2^p + \sum_{k=3}^6 C_k Q_k + C_8 Q_8 \right] + \text{h.c.}$$

$$\begin{aligned} Q_1^p &= (\bar{d}_L \gamma^\mu T^a p_L) (\bar{p}_L \gamma_\mu T^a b_L) & Q_4 &= (\bar{d}_L \gamma^\mu T^a b_L) \sum_q (\bar{q} \gamma_\mu T^a q) & Q_8 &= -\frac{g_s}{16\pi^2} m_b \, \bar{d}_L \, \sigma_{\mu\nu} G^{\mu\nu} b_R \\ Q_2^p &= (\bar{d}_L \gamma^\mu p_L) (\bar{p}_L \gamma_\mu b_L) & Q_5 &= (\bar{d}_L \gamma^\mu \gamma^\nu \gamma^\rho b_L) \sum_q (\bar{q} \gamma_\mu \gamma_\nu \gamma_\rho q) \\ Q_3 &= (\bar{d}_L \gamma^\mu b_L) \sum_q (\bar{q} \gamma_\mu q) & Q_6 &= (\bar{d}_L \gamma^\mu \gamma^\nu \gamma^\rho T^a b_L) \sum_q (\bar{q} \gamma_\mu \gamma_\nu \gamma_\rho T^a q) & \lambda_p &= V_{pb} V_{pd}^* \end{aligned}$$

QCD factorisation

• Amplitude in the limit $m_b \gg \Lambda_{\rm QCD}$

 $\langle I$

[Beneke, Buchalla, Neubert, Sachrajda'99-'04]

$$M_1 M_2 |Q_i|\bar{B}\rangle \simeq m_B^2 F_+^{B \to M_1}(0) f_{M_2} \int_0^1 du \ T_i^I(u) \phi_{M_2}(u)$$

 $+ f_B f_{M_1} f_{M_2} \int_0^1 d\omega dv du \ T_i^{II}(\omega, v, u) \phi_B(\omega) \phi_{M_1}(v) \phi_{M_2}(u)$

- $T^{I,II}$: Hard scattering kernels, perturbatively calculable
- $F_+: B \to M$ form factor $f_i: \text{decay constants}$ $\phi_i: \text{light-cone distribution amplitudes}$

Universal. From Sum Rules, Lattice

• Strong phases are $\mathcal{O}(\alpha_s)$ and/or $\mathcal{O}(\Lambda_{
m QCD}/m_b)$

Anatomy of QCD factorisation

Classification of amplitudes

• α_1 : colour-allowed tree amplitude

• α_2 : colour-suppressed tree amplitude

• $\alpha_4^{u,c}$: QCD penguin amplitudes

$$\sqrt{2} \langle \pi^{-} \pi^{0} | \mathcal{H}_{eff} | B^{-} \rangle = A_{\pi\pi} \lambda_{u} [\alpha_{1}(\pi\pi) + \alpha_{2}(\pi\pi)]
\langle \pi^{+} \pi^{-} | \mathcal{H}_{eff} | \bar{B}^{0} \rangle = A_{\pi\pi} \{ \lambda_{u} [\alpha_{1}(\pi\pi) + \alpha_{4}^{u}(\pi\pi)] + \lambda_{c} \alpha_{4}^{c}(\pi\pi) \}
- \langle \pi^{0} \pi^{0} | \mathcal{H}_{eff} | \bar{B}^{0} \rangle = A_{\pi\pi} \{ \lambda_{u} [\alpha_{2}(\pi\pi) - \alpha_{4}^{u}(\pi\pi)] - \lambda_{c} \alpha_{4}^{c}(\pi\pi) \}$$

$$\langle \pi^{-}\bar{K}^{0} | \mathcal{H}_{eff} | B^{-} \rangle = A_{\pi\bar{K}} \left[\lambda_{u}^{(s)} \alpha_{4}^{u} + \lambda_{c}^{(s)} \alpha_{4}^{c} \right]$$
$$\langle \pi^{+}K^{-} | \mathcal{H}_{eff} | \bar{B}^{0} \rangle = A_{\pi\bar{K}} \left[\lambda_{u}^{(s)} (\alpha_{1} + \alpha_{4}^{u}) + \lambda_{c}^{(s)} \alpha_{4}^{c} \right]$$

[Beneke, Neubert'03]

• Tree amplitudes α_1 and α_2 known analytically to NNLO

[Bell'07'09; Beneke,Li,TH'09]

Penguin amplitudes a_4^u and a_4^c to NLO

• NLO:

 $\alpha_4^u(\pi\pi) = -0.029 - [0.002 + 0.001i]_V + [0.003 - 0.013i]_P + [?? + ?? i]_{\mathcal{O}(\alpha_s^2)}$

$$+ \left[\frac{r_{\rm sp}}{0.485}\right] \left\{ [0.001]_{\rm LO} + [0.001 + 0.000i]_{HV+HP} + [0.001]_{\rm tw3} \right\}$$

 $= (-0.024^{+0.004}_{-0.002}) + (-0.012^{+0.003}_{-0.002})i$

 $\begin{aligned} \alpha_4^c(\pi\pi) &= -0.029 - [0.002 + 0.001i]_V - [0.001 + 0.007i]_P + [?? + ?? i]_{\mathcal{O}(\alpha_s^2)} \\ &+ \left[\frac{r_{\rm sp}}{0.485}\right] \left\{ [0.001]_{\rm LO} + [0.001 + 0.001i]_{HV+HP} + [0.001]_{\rm tw3} \right\} \\ &= (-0.028^{+0.005}_{-0.003}) + (-0.006^{+0.003}_{-0.002})i \end{aligned}$

Motivation for NNLO

- Direct CP asymmetries start at $\mathcal{O}(\alpha_s)$
 - Large (scale) uncertainties
 - NNLO is only first perturbative correction
 - NNLO is NLO for direct CP asymmetries!
- NLO results for tree amplitudes

$$\alpha_1(\pi\pi) = 1.009 + \left[0.023 + 0.010\,i\right]_{\rm NLO} - \left[\frac{r_{\rm sp}}{0.445}\right] \left\{ \left[0.014\right]_{\rm LOsp} + \left[0.008\right]_{\rm tw3} \right\} = 1.010 + 0.010i$$

 $\alpha_2(\pi\pi) = 0.220 - \left[0.179 + 0.077\,i\right]_{\rm NLO} + \left[\frac{r_{\rm sp}}{0.445}\right] \left\{ \left[0.114\right]_{\rm LOsp} + \left[0.067\right]_{\rm tw3} \right\} = 0.222 - 0.077i$

- Large cancellation in LO + NLO in $\alpha_2.$ Particularly sensitive to NNLO
- Problems with colour-suppressed, tree-dominated decays (e.g. $\bar{B}^0
 ightarrow \pi^0 \pi^0$)
 - However: New preliminary result by Belle: $\mathcal{B}(\bar{B}^0 \to \pi^0 \pi^0) = (0.90 \pm 0.16) \cdot 10^{-6}$
- Does factorisation hold at NNLO?

Penguin amplitudes at two loops

• $\mathcal{O}(70)$ diagrams at NNLO.

• Quite some book-keeping due to various insertions

• !!! Focus on $Q_1^{u,c}$ and $Q_2^{u,c}$ insertions !!!

Penguin amplitudes at two loops

• For $Q_{1,2}^{u,c}$ only a subset of ~ 25 diagrams contributes

- Regularize UV and IR divergences dimensionally. Poles up to $1/\epsilon^3$
- Reduction: Integration-by-parts relations, Laporta algorithm

[Tkachov'81; Chetyrkin, Tkachov'81] [Laporta'01; Anastasiou, Lazopoulos'04; Smirnov'08; Studerus, von Manteuffel'10,'12]

- Obtain a set of 29 master integrals

Master integrals

- \bullet Double: m_b^2 , $\mbox{ wavy: } m_c^2$, $\mbox{ solid: } \bar{u}\,m_b^2$, $\mbox{ dashed: } 0$.
- Most integrals are four-liners with three external legs
- Only one five-liner: Two-point function, one-scale integral

Kinematics

 $p^2 = q^2 = 0$ $p_b \qquad \qquad p_b^2 = m_b^2$

- Fermion loop with either m = 0 or $m = m_c$.
- Genuine two-scale problem: \bar{u} , m_c^2/m_b^2
- Threshold at $\bar{u} = 4m_c^2/m_b^2$
- Choice of suitable kinematic variables crucial

$$s = \sqrt{1 - 4z_c/\bar{u}} , r = \sqrt{1 - 4z_c} \quad \longleftrightarrow \quad \bar{u} , z_c = \frac{m_c^2}{m_b^2} \quad \longleftrightarrow \quad s_1 = \sqrt{1 - 4/\bar{u}} , r$$
 \downarrow
 $p = \frac{1 - \sqrt{u^2 + 4\bar{u}z_c}}{\bar{u}} , r$

Computing the masters

• Use differential equations in canonical form

$$d \vec{M}(\epsilon, x_n) = \epsilon d\tilde{A}(x_n) \vec{M}(\epsilon, x_n)$$

- Factorises kinematics from number of space-time dimensions.
- Together with boundary conditions, $\tilde{A}(x_n)$ completely fixes the solution
- Found canonical basis for all masters, including boundary conditions [Bell, TH'14]
 - First example of canonical basis in case of 2 different internal masses
 - Found analytical solution in terms of iterated integrals
- Benefits of canonical basis
 - System disentangles order by order in $\boldsymbol{\epsilon}$
 - Homogeneous (pure) functions to all orders in ϵ
 - No fake higher weights
 - QCD amplitude much simpler, especially denominators of pre-factors of masters
 - Catalyses convolution with LCDA

[Henn'13]

Canonical basis for master integrals I

• Differential equation (sample)

$$\frac{dM_{19}}{ds} = \frac{4\epsilon M_{18} r (r^2 + 1)}{((r^2 + 1)^2 - 4s^2)} - \frac{2\epsilon M_{19} r (r^2 + s^2 - 2)}{(1 - r^2)(r^2 - s^2)} + \frac{4\epsilon M_{20} r s}{((r^2 + 1)^2 - 4s^2)} - \frac{\epsilon M_{21} r (r^2 + 1)}{((r^2 + 1)^2 - 4s^2)}$$

Boundary conditions

-
$$M_{18}$$
 and M_{19} vanish in $s = r$ (i.e. in $u = 0$)

- M_{20} and M_{21} vanish in $s = +i\infty$ (i.e. in u = 1)

Canonical basis for master integrals II

• Differential equation

$$\frac{dM_{23}}{ds_1} = \frac{2\epsilon M_{23}s_1(5-s_1^2)}{(1-s_1^2)(3+s_1^2)} - \frac{\epsilon M_{24}(3-s_1)}{4(1-s_1^2)\sqrt{1+\frac{8z_c(1-s_1)}{(1+s_1)^2}}} + \frac{\epsilon M_{25}(3+s_1)}{4(1-s_1^2)\sqrt{1+\frac{8z_c(1+s_1)}{(1-s_1)^2}}}$$

• Variable transformation to rationalize irrational factors:

$$t = \frac{1 - s_1}{2} + \frac{1 + s_1}{2}\sqrt{1 + \frac{2(1 - r^2)(1 - s_1)}{(1 + s_1)^2}} \qquad v = \frac{1 + s_1}{2} + \frac{1 - s_1}{2}\sqrt{1 + \frac{2(1 - r^2)(1 + s_1)}{(1 - s_1)^2}}$$

Completing the calculation

• Master formula for two-loop hard-scattering kernel

 $\widetilde{T}_{i}^{(2)} = \widetilde{A}_{i1}^{(2)\mathrm{nf}} + Z_{ij}^{(1)} \widetilde{A}_{j1}^{(1)} + Z_{ij}^{(2)} \widetilde{A}_{j1}^{(0)} + Z_{\alpha}^{(1)} \widetilde{A}_{i1}^{(1)\mathrm{nf}} + (-i) \,\delta m^{(1)} \,\widetilde{A}_{i1}^{\prime(1)\mathrm{nf}}$ $+ Z_{ext}^{(1)} \left[\widetilde{A}_{i1}^{(1)\mathrm{nf}} + Z_{ij}^{(1)} \,\widetilde{A}_{j1}^{(0)} \right] - \widetilde{T}_{i}^{(1)} \left[C_{FF}^{(1)} + \widetilde{Y}_{11}^{(1)} \right] + \dots$

- Renormalisation of UV divergencies
- Subtraction of IR divergencies via matching onto SCET
 - * Subtlety: Evanescent operators both on QCD and SCET side.

$$O_1 = \bar{\chi} \frac{\not{\mu}_-}{2} (1 - \gamma_5) \chi \,\bar{\xi} \,\not{\eta}_+ (1 - \gamma_5) h_v ,$$

$$\tilde{O}_n = \bar{\xi} \,\gamma_\perp^\alpha \gamma_\perp^{\mu_1} \gamma_\perp^{\mu_2} \dots \gamma_\perp^{\mu_{2n-2}} \chi \,\bar{\chi} (1 + \gamma_5) \gamma_{\perp \alpha} \gamma_{\perp \mu_{2n-2}} \gamma_{\perp \mu_{2n-3}} \dots \gamma_{\perp \mu_1} h_v$$

- All poles cancel at first attempt ③
- Obtain $\alpha_4^{u,c}$ via convolution with LCDA
 - Can get α_4^u completely analytically
 - α_4^c almost completely analytically

Results: Penguin Amplitudes

• Only $Q_{1,2}$ contribution. Inputs from [Beneke, Li, TH'09]

$$\begin{split} a_4^u(\pi\bar{K})/10^{-2} &= -2.87 - [0.09 + 0.09i]_{V_1} + [0.49 - 1.32i]_{P_1} - [0.32 + 0.71i]_{P_2} \\ &+ \left[\frac{r_{\rm sp}}{0.434}\right] \left\{ [0.13]_{\rm LO} + [0.14 + 0.12i]_{\rm HV} - [0.01 - 0.05i]_{\rm HP} + [0.07]_{\rm tw3} \right\} \\ &= (-2.46^{+0.49}_{-0.24}) + (-1.94^{+0.32}_{-0.20})i \,, \\ a_4^c(\pi\bar{K})/10^{-2} &= -2.87 - [0.09 + 0.09i]_{V_1} + [0.05 - 0.62i]_{P_1} - [0.77 + 0.50i]_{P_2} \\ &+ \left[\frac{r_{\rm sp}}{0.434}\right] \left\{ [0.13]_{\rm LO} + [0.14 + 0.12i]_{\rm HV} + [0.01 + 0.03i]_{\rm HP} + [0.07]_{\rm tw3} \right\} \\ &= (-3.34^{+0.43}_{-0.27}) + (-1.05^{+0.45}_{-0.36})i \,. \end{split}$$

• NNLO correction sizable, but no breakdown of perturbative expansion

Results: Penguin Amplitudes

Results: Scale dependence

• Only form factor term, no spectator scattering

Results: Amplitude ratios

Ratio	NLO	NNLO
$\frac{P_{\pi\pi}}{T_{\pi\pi}}$	-0.121 - 0.021i	$-0.124^{+0.031}_{-0.060} + (-0.026^{+0.045}_{-0.046})i$
$\frac{P_{\rho\rho}}{T_{\rho\rho}}$	-0.035 - 0.009i	$-0.041^{+0.020}_{-0.016} + (-0.014^{+0.019}_{-0.018})i$
$\frac{P_{\pi\rho}}{T_{\pi\rho}}$	-0.038 - 0.005i	$-0.040^{+0.016}_{-0.030} + (-0.009^{+0.026}_{-0.026})i$
$\frac{P_{\rho\pi}}{T_{\rho\pi}}$	0.040 + 0.002i	$0.036^{+0.042}_{-0.023} + (-0.001^{+0.033}_{-0.033})i$
$\frac{C_{\pi\pi}}{T_{\pi\pi}}$	0.317 - 0.040i	$0.320_{-0.142}^{+0.255} + (-0.030_{-0.091}^{+0.150})i$
$\frac{C_{\rho\rho}}{T_{\rho\rho}}$	0.165 - 0.064i	$0.176_{-0.133}^{+0.187} + (-0.054_{-0.104}^{+0.142})i$
$\frac{C_{\pi\rho}}{T_{\pi\rho}}$	0.219 - 0.064i	$0.212_{-0.112}^{+0.197} + (-0.062_{-0.079}^{+0.114})i$
$\frac{C_{\rho\pi}}{T_{\rho\pi}}$	0.092 - 0.080i	$0.112_{-0.144}^{+0.189} + (-0.065_{-0.115}^{+0.152})i$
$\frac{T_{\rho\pi}}{T_{\pi\rho}}$	0.821 + 0.016i	$0.810^{+0.262}_{-0.200} + (\ 0.010^{+0.062}_{-0.062})i$
$\frac{\alpha_4^c(\pi K)}{\alpha_1(\pi\pi) + \alpha_2(\pi\pi)}$	-0.085 - 0.019i	$-0.087^{+0.022}_{-0.036} + (-0.021^{+0.029}_{-0.029})i$
$\frac{\alpha_4^c(\pi K^*)}{\alpha_1(\pi\pi) + \alpha_2(\pi\pi)}$	-0.029 - 0.005i	$-0.030^{+0.015}_{-0.026} + (-0.007^{+0.023}_{-0.023})i$
$\frac{\alpha_4^c(\rho K)}{\alpha_1(\rho\rho) + \alpha_2(\rho\rho)}$	0.037 + 0.004i	$0.034_{-0.021}^{+0.039} + (\ 0.001_{-0.030}^{+0.030})i$
$\frac{\alpha_4^c(\rho K^*)}{\alpha_1(\rho\rho) + \alpha_2(\rho\rho)}$	-0.023 - 0.010i	$-0.027^{+0.027}_{-0.016} + (-0.012^{+0.024}_{-0.023})i$

• Unpublished numbers. Only $Q_{1,2}$ contribution. Inputs from [Beneke,Li,TH'09].

Results: Amplitude ratios

Results: Direct CP asymmetries I

• Direct CP asymmetries in percent. Errors are CKM and hadronic, respectively.

f	NLO	NNLO	NNLO + LD	Exp
$\pi^- \bar{K}^0$	$0.71^{+0.13}_{-0.14}{}^{+0.21}_{-0.19}$	$0.77^{+0.14}_{-0.15}{}^{+0.23}_{-0.22}$	$0.10^{+0.02+1.24}_{-0.02-0.27}$	-1.7 ± 1.6
$\pi^0 K^-$	$9.42^{+1.77+1.87}_{-1.76-1.88}$	$10.18^{+1.91+2.03}_{-1.90-2.62}$	$-1.17^{+0.22+20.00}_{-0.22-\ \ 6.62}$	4.0 ± 2.1
$\pi^+ K^-$	$7.25^{+1.36}_{-1.36}{}^{+2.13}_{-2.58}$	$8.08^{+1.52}_{-1.51}{}^{+2.52}_{-2.65}$	$-3.23^{+0.61+19.17}_{-0.61-\ 3.36}$	-8.2 ± 0.6
$\pi^0 \bar{K}^0$	$-4.27_{-0.77}^{+0.83}_{-2.23}^{+1.48}$	$-4.33_{-0.78}^{+0.84}_{-2.32}^{+3.29}$	$-1.41_{-0.25}^{+0.27}_{-5.54}^{+5.54}_{-6.10}$	1 ± 10
$\delta(\pi \bar{K})$	$2.17^{+0.40+1.39}_{-0.40-0.74}$	$2.10^{+0.39+1.40}_{-0.39-2.86}$	$2.07^{+0.39+2.76}_{-0.39-4.55}$	12.2 ± 2.2
$\Delta(\pi \bar{K})$	$-1.15_{-0.22-0.84}^{+0.21+0.55}$	$-0.88^{+0.16+1.31}_{-0.17-0.91}$	$-0.48^{+0.09+1.09}_{-0.09-1.15}$	-14 ± 11

 $\delta(\pi \bar{K}) = A_{\rm CP}(\pi^0 K^-) - A_{\rm CP}(\pi^+ K^-)$

 $\Delta(\pi\bar{K}) = A_{\rm CP}(\pi^+K^-) + \frac{\Gamma_{\pi^-\bar{K}^0}}{\Gamma_{\pi^+K^-}} A_{\rm CP}(\pi^-\bar{K}^0) - \frac{2\Gamma_{\pi^0K^-}}{\Gamma_{\pi^+K^-}} A_{\rm CP}(\pi^0K^-) - \frac{2\Gamma_{\pi^0\bar{K}^0}}{\Gamma_{\pi^+K^-}} A_{\rm CP}(\pi^0\bar{K}^0)$

Results: Direct CP asymmetries II

• Direct CP asymmetries in percent

f	NLO	NNLO	NNLO + LD	Exp
$\pi^- \bar{K}^{*0}$	$1.36^{+0.25+0.60}_{-0.26-0.47}$	$1.49^{+0.27+0.69}_{-0.29-0.56}$	$0.27^{+0.05+3.18}_{-0.05-0.67}$	-3.8 ± 4.2
$\pi^0 K^{*-}$	$13.85^{+2.40}_{-2.70}{}^{+5.84}_{-5.86}$	$18.16^{+3.11+7.79}_{-3.52-10.57}$	$-15.81_{-2.83}^{+3.01}_{-15.39}^{+69.35}$	-6 ± 24
$\pi^+ K^{*-}$	$11.18^{+2.00+9.75}_{-2.15-10.62}$	$19.70_{-3.80-11.42}^{+3.37+10.54}$	$-23.07_{-4.05}^{+4.35}_{-20.64}^{+86.20}$	-23 ± 6
$\pi^0 \bar{K}^{*0}$	$-17.23_{-3.00-12.57}^{+3.33+7.59}$	$-15.11_{-2.65}^{+2.93}_{-10.64}^{+12.34}$	$2.16^{+0.39+17.53}_{-0.42-36.80}$	-15 ± 13
$\delta(\pi \bar{K}^*)$	$2.68^{+0.72}_{-0.67}{}^{+5.44}_{-4.30}$	$-1.54_{-0.58}^{+0.45}_{-9.19}^{+4.60}$	$7.26^{+1.21+12.78}_{-1.34-20.65}$	17 ± 25
$\Delta(\pi \bar{K}^*)$	$-7.18^{+1.38+3.38}_{-1.28-5.35}$	$-3.45_{-0.59}^{+0.67}{}^{+9.48}_{-4.95}$	$-1.02^{+0.19}_{-0.18}{}^{+4.32}_{-7.86}$	-5 ± 45

 $\hat{\alpha}_4^p(M_1M_2) = a_4^p(M_1M_2) \pm r_{\chi}^{M_2}a_6^p(M_1M_2) + \beta_3^p(M_1M_2)$

Results: Branching ratios

- Unpublished numbers. Only $Q_{1,2}$ contribution. Inputs from [Beneke,Li,TH'09].
- Branching ratios in 10^{-6} .

	NNLO	NLO	Experiment
$B^- o \pi^- \pi^0$	$5.43^{+2.66+2.05+1.27+0.52}_{-2.14-1.73-0.57-0.50}$	5.33	$5.48^{+0.35}_{-0.34}$
$\bar{B}^0_d \to \pi^+\pi^-$	$7.47_{-2.61}^{+3.15}_{-2.76}^{+3.36}_{-0.60}^{+0.30}_{-0.66}^{+1.18}_{-0.66}$	7.30	$5.10^{+0.19}_{-0.19}$
$\bar{B}^0_d \to \pi^0 \pi^0$	$0.35^{+0.14+0.19+0.33+0.20}_{-0.11-0.11-0.09-0.10}$	0.33	$1.33^{+0.46}_{-0.46}$
$B^- \to \pi^- \bar{K}^0$	$16.03^{+0.79}_{-0.77}{}^{+9.66}_{-6.68}{}^{+0.87}_{-1.28}{}^{+13.51}_{-5.61}$	14.94	$23.79^{+0.75}_{-0.75}$
$B^- \to \pi^0 K^-$	$9.57_{-0.74}^{+0.79}{}^{+5.00}_{-3.50}{}^{+0.18}_{-0.39}{}^{+7.15}_{-3.01}$	8.97	$12.94^{+0.52}_{-0.51}$
$\bar{B}^0_d \to \pi^+ K^-$	$14.01_{-1.03}^{+1.09}_{-5.76}^{+8.43}_{-0.12}^{+0.12}_{-1.03}^{+1.09}_{-5.76}^{+1.09}_{-0.26}^{-1.02}_{-1.92}^{+1.09}_{-1.92}^{+1.09}_{-1.02$	12.88	$19.57^{+0.53}_{-0.52}$
$\bar{B}^0_d ightarrow \pi^0 \bar{K}^0$	$5.82^{+0.31}_{-0.31}{}^{+4.05}_{-2.72}{}^{+0.07}_{-0.16}{}^{+5.58}_{-2.26}$	5.31	$9.93\substack{+0.49 \\ -0.49}$

• Errors are CKM, scale and inputs (masses, decay constants, FFs), Gegenbauer moments, power corrections

The decays $B \to D^{(*)} L$

- $L \in \{\pi, \rho, K^{(*)}, a_1(1260)\}$
- Only colour-allowed tree amplitude
 - No colour-suppressed tree amplitude, no penguins
 - Spectator scattering and weak annihilation power suppressed

$$BR(\bar{B}_0 \to D^+\pi^-) = \frac{G_F^2(m_B^2 - m_D^2)^2 |\vec{q}|}{16\pi m_B^2} \tau_{\bar{B}^0} |V_{ud}^* V_{cb}|^2 |a_1(D\pi)|^2 f_\pi^2 F_0^2(m_\pi^2) + O\left(\frac{\Lambda_{QCD}}{m_b}\right)$$

- Applications
 - Ratios of non-leptonic decay widths

$$\frac{\Gamma(\bar{B}_d \to D^+ \pi^-)}{\Gamma(\bar{B}_d \to D^{*+} \pi^-)} = \frac{(m_B^2 - m_D^2)^2 |\vec{q}|_{D\pi}}{4m_B^2 |\vec{q}|_{D^*\pi}^3} \left(\frac{F_0(m_\pi^2)}{A_0(m_\pi^2)}\right)^2 \left|\frac{a_1(D\pi)}{a_1(D^*\pi)}\right|^2$$

- Test of factorisation via ratios to semi-leptonic decay

$$\frac{\Gamma(\bar{B}_d \to D^{(*)+}\pi^-)}{d\Gamma(\bar{B}_d \to D^{(*)+}l^-\bar{\nu})/dq^2\big|_{q^2=m_\pi^2}} = 6\pi^2 |V_{ud}|^2 f_\pi^2 |a_1(D^{(*)}\pi)|^2$$

- Estimate size of power corrections, test of QCD factorisation

NNLO calculation

- NLO correction small
 - Colour suppression
 - Small Wilson Coefficient
- At NNLO
 - Again around 70 diagrams

- Again
 - Genuine two-scale problem: u , $z_c\equiv m_c^2/m_b^2$ (but no threshold)
 - Regularize UV and IR divergences dimensionally. Poles up to $1/\epsilon^4$
 - IBP & Laporta reduction
 - Calculation of masters in a canonical basis
 - UV renormalisation, IR subtraction, matching onto SCET
 - Cancellation of poles
 - Convolution with LCDA

[Kränkl, TH'15]

Result for $a_1(\bar{B}^0 \to D^+ K^-)$

 $a_1(D^+K^-) = 1.025 + [0.029 + 0.018i]_{\text{NLO}} + [0.016 + 0.028i]_{\text{NNLO}}$

 $= (1.069^{+0.009}_{-0.012}) + (0.046^{+0.023}_{-0.015})i$

Scale dependence

Branching ratios in QCD factorisation I

$$\mathsf{BR}(\bar{B}^0 \to D^+ \pi^-) = \frac{G_F^2 (m_B^2 - m_D^2)^2 |\vec{q}|_{D\pi}}{16\pi m_B} \tau_{\bar{B}^0} |V_{ud}^* V_{cb}|^2 |a_1(D\pi)|^2 f_\pi^2 F_0^2(m_\pi^2)$$

• Form factor parametrization from CLN

[Caprini,Lellouch,Neubert'97]

- Slope and normalization from fit to semileptonic data (HFAG)
- Calculation applies equally well to other $\bar{B}^0 \rightarrow D^{*+}L^-$ decays
- Branching ratios in $10^{-3}\,$

Decay	Theory (NNLO)	Experiment
$\bar{B}^0 \to D^+ \pi^-$	$3.93\substack{+0.43 \\ -0.42}$	2.68 ± 0.13
$\bar{B}^0 \to D^{*+} \pi^-$	$3.45_{-0.50}^{+0.53}$	2.76 ± 0.13
$\bar{B}^0 \to D^+ \rho^-$	$10.42^{+1.24}_{-1.20}$	7.5 ± 1.2
$\bar{B}^0 \to D^{*+} \rho^-$	$9.24_{-0.71}^{+0.72}$	6.0 ± 0.8

• NNLO central values about 20 - 30% larger than experimental ones

Branching ratios in QCD factorisation II

Decay mode	LO	NLO	NNLO	Exp.
$\bar{B}_d \to D^+ \pi^-$	3.58	$3.79^{+0.44}_{-0.42}$	$3.93^{+0.43}_{-0.42}$	2.68 ± 0.13
$\bar{B}_d \to D^{*+} \pi^-$	3.15	$3.32^{+0.52}_{-0.49}$	$3.45^{+0.53}_{-0.50}$	2.76 ± 0.13
$\bar{B}_d \to D^+ \rho^-$	9.51	$10.06^{+1.25}_{-1.19}$	$10.42^{+1.24}_{-1.20}$	7.5 ± 1.2
$\bar{B}_d \to D^{*+} \rho^-$	8.45	$8.91^{+0.74}_{-0.71}$	$9.24^{+0.72}_{-0.71}$	6.0 ± 0.8
$\bar{B}_d \to D^+ K^-$	2.74	$2.90^{+0.33}_{-0.31}$	$3.01 {}^{+0.32}_{-0.31}$	1.97 ± 0.21
$\bar{B}_d \to D^{*+} K^-$	2.37	$2.50^{+0.39}_{-0.36}$	$2.59^{+0.39}_{-0.37}$	2.14 ± 0.16
$\bar{B}_d \to D^+ K^{*-}$	4.79	$5.07^{+0.65}_{-0.62}$	$5.25^{+0.65}_{-0.63}$	4.5 ± 0.7
$\bar{B}_d \to D^{*+} K^{*-}$	4.30	$4.54^{+0.41}_{-0.40}$	$4.70^{+0.40}_{-0.39}$	-
$\bar{B}_d \to D^+ a_1^-$	10.82	$11.44^{+1.55}_{-1.48}$	$11.84^{+1.55}_{-1.50}$	6.0 ± 3.3
$\bar{B}_d \to D^{*+}a_1^-$	10.12	$10.66^{+1.11}_{-1.06}$	$11.06^{+1.10}_{-1.07}$	_

- Branching ratios in 10^{-3} for $b \to c \bar{u} d$ and 10^{-4} for $b \to c \bar{u} s$ transitions
- Have also B_s and Λ_b decays
- Non-negligible W-exchange contributions in $\bar{B}_d \to D^{(*)+}\pi^- / \rho^-$ decays? (not present in $\bar{B}_d \to D^{(*)+}K^{(*)-}$)

Tests of QCD factorisation

- Ratios of non-leptonic decay widths
 - Within error bars, no significant tension

Decay	Theory (NNLO)	Experiment
$\Gamma(\bar{B}^0 \to D^{*+}\pi^-)/\Gamma(\bar{B}^0 \to D^+\pi^-)$	$0.878^{+0.162}_{-0.150}$	1.03 ± 0.07
$\Gamma(\bar{B}^0\to D^+\rho^-)/\Gamma(\bar{B}^0\to D^+\pi^-)$	$2.653\substack{+0.163 \\ -0.158}$	2.80 ± 0.47

• Extraction of $|a_1|$ from ratios of non-leptonic and semi-leptonic BRs

$$\frac{\Gamma(\bar{B}_d \to D^{(*)+}\pi^-)}{d\Gamma(\bar{B}_d \to D^{(*)+}l^-\bar{\nu})/dq^2\big|_{q^2=m_\pi^2}} = 6\pi^2 |V_{ud}|^2 f_\pi^2 |a_1(D^{(*)}\pi)|^2$$

Decay	$ a_1 $ Theory (NNLO)	$ a_1 $ Experiment
$\bar{B}^0 \to D^+ \pi^-$	1.07 ± 0.01	0.89 ± 0.05
$\bar{B}^0 \to D^{*+} \pi^-$	1.07 ± 0.01	0.96 ± 0.03
$\bar{B}^0 \to D^+ \rho^-$	1.07 ± 0.01	0.91 ± 0.08
$\bar{B}^0 \to D^{*+} \rho^-$	1.07 ± 0.01	0.86 ± 0.06

- Quasi-universal value for $|a_1| \sim 1.07$ at NNLO. Experiment favours lower $|a_1|$.

• Leaves room for (negative) power corrections to the amplitude of $\sim 10-15\%$

Conclusion and Outlook

- $Q_{1,2}\text{-}\mathrm{contribution}$ to penguin amplitudes α_4^u and α_4^c at NNLO ready
 - NNLO shift in amplitudes is rather sizable
 - Shift in amplitude ratios, CP asymmetries, BRs is moderate
- NNLO correction to $\bar{B} \to D \, \pi$ ready
 - NNLO BRs $\sim 20-30\%$ above experimental values (NNLO and FFs \uparrow , Exp. \downarrow)
 - Room for power corrections to the colour-allowed tree-amplitude of $\sim 10-15\%$
- Future plans
 - Other insertions to α_4^u and α_4^c at NNLO, pheno based on NNLO results
 - Connect QCDF with flavour symmetries
 - Power suppressed amplitude a_6 at NNLO
 - QED corrections

Backup slides

Some definitions

$$A_{\pi\pi} = i \frac{G_F}{\sqrt{2}} m_B^2 F_+^{B \to \pi}(0) f_{\pi}$$
$$r_{\rm sp} = \frac{9f_{\pi} \hat{f}_B}{m_b \lambda_B F_+^{B \to \pi}(0)}$$
$$\lambda_B^{-1} = \int_0^\infty \frac{d\omega}{\omega} \phi_B(\omega, \mu)$$

 $\Delta A_{\rm CP}^-(\pi K) = A_{\rm CP}(B^- \to \pi^0 K^-) - A_{\rm CP}(\bar{B}^0 \to \pi^+ K^-) = \Delta A_{\rm CP}(\pi K)$ $\Delta A_{\rm CP}^0(\pi K) = A_{\rm CP}(B^- \to \pi^- \bar{K}^0) - A_{\rm CP}(\bar{B}^0 \to \pi^0 \bar{K}^0)$

Results: Direct CP asymmetries III

• Direct CP asymmetries in percent

f	NLO	NNLO	NNLO + LD	Exp
$ ho^- \bar{K}^0$	$0.38^{+0.07+0.16}_{-0.07-0.27}$	$0.22^{+0.04+0.19}_{-0.04-0.17}$	$0.30^{+0.06+2.28}_{-0.06-2.39}$	-12 ± 17
$ ho^0 K^-$	$-19.31_{-3.61}^{+3.42}_{-3.61}^{+13.95}_{-8.96}$	$-4.17^{+0.75+19.26}_{-0.80-19.52}$	$43.73_{-7.62}^{+7.07}{}^{+44.00}_{-7.62}$	37 ± 11
$\rho^+ K^-$	$-5.13^{+0.95+6.38}_{-0.97-4.02}$	$1.50^{+0.29+8.69}_{-0.27-10.36}$	$25.93_{-4.90}^{+4.43}_{-75.63}^{+25.40}$	20 ± 11
$ ho^0 ar{K}^0$	$8.63^{+1.59+2.31}_{-1.65-1.69}$	$8.99^{+1.66+3.60}_{-1.71-7.44}$	$-0.42^{+0.08+19.49}_{-0.08-\ 8.78}$	6 ± 20
$\delta(\rho \bar{K})$	$-14.17_{-2.96}^{+2.80}_{-5.39}^{+7.98}$	$-5.67^{+0.96}_{-1.01}{}^{+0.96}_{-9.79}$	$17.80_{-3.01}^{+3.15}_{-62.44}^{+19.51}$	17 ± 16
$\Delta(\rho \bar{K})$	$-8.75_{-1.66}^{+1.62}_{-6.48}^{+4.78}$	$-10.84_{-2.09}^{+1.98}_{-9.09}^{+11.67}$	$-2.43^{+0.46}_{-0.42}{}^{+4.60}_{-19.43}$	-37 ± 37

More on theory approaches to nonleptonic B-decays

- Perturbative QCD (PQCD) approach based on k_T -factorisation
- [see e.g. Keum,Li,Sanda'01]

- Factorises amplitudes according to

 $A(B \to M_1 M_2) = \phi_B \otimes H \otimes J \otimes S \otimes \phi_{M_1} \otimes \phi_{M_2}$

- Generates larger strong phases. Avoids endpoint divergences.
- However: Organises amplitude differently
- Introduces additional infrared prescriptions, e.g. exponentiation of Sudakov logarithms, phenomenological model for transverse momentum effects
- Discussion of theoretical uncertainties difficult, since no complete NLO ($O(\alpha_s^2)$) analysis available
- Independent information on hadronic input functions not available

