The role of soft quarks in next-to-leading power threshold effects

Melissa van Beekveld (Nikhef & Radboud University)

1905.08741 (with Wim Beenakker, Eric Laenen, Chris White) 1905.11771 (with Wim Beenakker, Eric Laenen, Anuradha Misra)

Particle Theory seminar Zurich - 26th of November, 2019

1. Why is this interesting?

Perturbation theory

A generic cross section can be written as

$$\sigma = \sum_{n} c_{n} \alpha_{s}^{n}$$

The c_n are computed using Feynman diagrams.

Hopefully, the series converges rapidly and a **limited** number of orders is sufficient to describe the process

Radboud University

LO process

LO process

2

Real emission of a gluon

Melissa van Beekveld 6

Real emission of a gluon

 $s' = (p_1 + p_2 - k)^2 \equiv zs$

7 Melissa van Beekveld

NLO process

 k, μ

Real emission of a gluon

 $s' = (p_1 + p_2 - k)^2 \equiv zs$

Emission of a soft gluon: the eikonal Feynman rule

 $= g_s \mathbf{T} \frac{p^{\mu}}{p \cdot k} u(p) \epsilon^*_{\mu}(k)$

NLO process

Emiss the ei

Real emission of a gluon

 $s' = (p_1 + p_2 - k)^2 \equiv zs$

Emission of a soft gluon: the eikonal Feynman rule

 $= g_s \mathbf{T} \frac{p^{\mu}}{p \cdot k} u(p) \epsilon^*_{\mu}(k)$

Diverges for $k \to 0$ and k//p

Real emission of a gluon

Melissa van Beekveld 10

Virtual exchange of a gluon

Origin of large logarithms

Nik hef Radboud University

Why is this a problem?

Perturbation theory:

$$\frac{d\sigma}{dz} = \sum_{n} c_n \alpha_s^n = \sigma_0 \delta(1-z) + \alpha_s \left(\sum_{m=0}^{m=1} d_{1m} \left(\frac{\ln^m (1-z)}{1-z}\right)\right)$$

Ideally, the series converges rapidly and a **limited** number of orders is sufficient

 $\left(\frac{z}{z}\right)_{+} + d_1'\delta(1-z) + f_1 + \dots$

Why is this a problem?

Perturbation theory:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}z} = \sum_{n} c_n \alpha_s^n = \sigma_0 \delta(1-z) + \alpha_s \left(\sum_{m=0}^{m=1} d_{1m} \left(\frac{\ln^m (1-z)}{1-z}\right)\right)$$

Ideally, the series converges rapidly and a limited number of orders is sufficient

for $z \to 1$ this is not small... $z) + d'_1 \delta(1-z) + f_1 + \dots$

It gets worse...

There is no guarantee that the next order will get smaller!

$$\frac{d\sigma}{dz} = \sum_{n=0}^{\infty} \alpha_s^n \left[\sum_{m=0}^{2n-1} d_{nm} \left(\frac{\ln^m (1-z)}{1-z} \right)_+ \right]$$

$+ d'_n \delta(1-z) + f_n$

What if...

We could predict the form of d_{nm} for all n?

$$\frac{d\sigma}{dz} = \sum_{n=0}^{\infty} \alpha_s^n \left[\sum_{m=0}^{2n-1} d_{nm} \left(\frac{\ln^m (1-z)}{1-z} \right)_+ \right]$$

for all n? + $d'_n \delta(1-z) + f_n$

What if...

We could predict the form of d_{nm} for all n?

$$\frac{d\sigma}{dz} = \sum_{n=0}^{\infty} \alpha_s^n \left[\sum_{m=0}^{2n-1} d_{nm} \left(\frac{\ln^m (1-z)}{1-z} \right)_+ + d'_n \delta(1-z) + f_n \right]$$

And we could organize the perturbative series in a new way

$$\frac{\mathrm{d}\sigma}{\mathrm{d}z} = \sum_{n=1}^{\infty} \alpha_s^n d_{2n-1} \left(\frac{\ln^{2n-1}(1-z)}{1-z} \right)_+ + \sum_{n=1}^{\infty} \alpha_s^n d_{2n-2} \left(\frac{\ln^{2n-1}(1-z)}{1-z} \right)_+ + \sum_{n=1}^{\infty} \alpha_s^n d_$$

Resummation: A new series

 $\sigma_{\text{resum}} = \sigma_0 e^{\frac{1}{\alpha_s} h^{(0)}(\alpha_s L)} e^{h^{(1)}(\alpha_s L)} \dots$

Resummation: A new series

 $\sigma_{\text{resum}} = \sigma_0 e^{\frac{1}{\alpha_s} h^{(0)}(\alpha_s L)} e^{h^{(1)}(\alpha_s L)} \dots$

Leading-Log (LL)

Resummation: A new series

 $\sigma_{\text{resum}} = \sigma_0 e^{\frac{1}{\alpha_s} h^{(0)}(\alpha_s L)} e^{h^{(1)}(\alpha_s L)} \dots$

Next-to-Leading-Log (NLL)

How does resummation solve it?

- Prove that the logarithmic terms can be predicted at all orders
- Separate them from the off-shell degrees of freedom This introduces an arbitrary scale and usually asks for a conjugate space to factorize the kinematics
- Demand that the cross section does not depend on this scale
- Leads to an evolution equation, whose solution is an exponent This means that you have the terms under control at all orders

Leading-power contributions

$$\frac{\mathrm{d}\sigma}{\mathrm{d}z} \propto \sum_{n=0}^{\infty} \alpha_s^n \left[\sum_{m=0}^{2n-1} d_{nm} \left(\frac{\ln^m(1-z)}{1-z} \right)_+ + d'_n \delta(1-z) \right]_{+} + d'_n \delta(1-z) \right]_{+}$$

- Universal process-independent form
- Localized at threshold
- Linked to the soft and collinear divergences
- Resummation well understood

But there is more...

$$\frac{\mathrm{d}\sigma}{\mathrm{d}z} \propto \sum_{n=0}^{\infty} \alpha_s^n \left[\sum_{m=0}^{2n-1} d_{nm} \left(\frac{\ln^m (1-z)}{1-z} \right)_+ + d'_n \delta(1-z) \right]_{+} \right]$$

$(z) + d_{nm}'' \ln^m (1-z) + f_n'$

Next-to-leading-power contributions

$$\frac{\mathrm{d}\sigma}{\mathrm{d}z} \propto \sum_{n=0}^{\infty} \alpha_s^n \left[\sum_{m=0}^{2n-1} d_{nm} \left(\frac{\ln^m(1-z)}{1-z} \right)_+ + d'_n \delta(1-z) \right]_{+} \right]$$

- Check of higher order corrections
- Might be relevant experimentally

 $(z) + d''_{nm} \ln^m (1-z) + f'_n$

 Suppressed to leading power, but still singular No general resummation framework for these! Might help to reduce scale uncertainties

Nik hef Radboud University

2. What is the origin of these next-to-leading power logarithms?

Radboud University

Universality of NLP logs

Let us first examine what happens when a *colorless* final state is produced

[1706.04018]

Radboud University

$$\mathscr{A}_{\text{NLP}} = \sum_{i=1}^{\infty} \mathbf{T}_i \left(\frac{2p_i - \kappa}{2p_i \cdot k} - \frac{i\kappa}{p_i \cdot k} \Sigma_i^{\sigma \alpha} - \frac{i}{p_i} \right)$$

$$\mathscr{A}_{\text{NLP}} = \sum_{i=1}^{\infty} \mathbf{T}_{i} \left(\frac{2p_{i} - \kappa}{2p_{i} \cdot k} - \frac{i\kappa}{p_{i} \cdot k} \Sigma_{i}^{\sigma\alpha} - \frac{i}{p_{i}} \right)$$

$$\mathscr{A}_{\text{NLP}} = \sum_{i=1}^{n} \mathbf{T}_{i} \left(\frac{2p_{i}^{\sigma} - k^{\sigma}}{2p_{i} \cdot k} - \frac{ik^{\sigma}}{p_{i} \cdot k} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{ik^{\sigma}}{p_{j} \cdot k} \right)$$

 $\frac{ik^{\alpha}}{p_i \cdot k} L_i^{\sigma \alpha} \otimes \mathscr{M}_{\text{LO}} \varepsilon_{\sigma}^*(k)$

$$\begin{aligned} \mathbf{\mathcal{A}}_{\text{NLP}} &= \sum_{i=1}^{n=2} \mathbf{T}_{i} \left(\frac{2p_{i}^{\sigma} - k^{\sigma}}{2p_{i} \cdot k} - \frac{ik^{\alpha}}{p_{i} \cdot k} \Sigma_{i}^{\sigma \alpha} - \frac{\sigma^{\alpha}}{p_{i} \cdot k} \right) \end{aligned}$$

 $-\frac{ik^{\alpha}}{p_i\cdot k}L_i^{\sigma\alpha}\right)\otimes\mathscr{M}_{\mathrm{LO}}\,\varepsilon_{\sigma}^*(k)$

$$\mathscr{A}_{\text{NLP}} = \sum_{i=1}^{n=2} \mathbf{T}_{i} \left(\frac{2p_{i}^{\sigma} - k^{\sigma}}{2p_{i} \cdot k} - \frac{ik^{\alpha}}{p_{i} \cdot k} \Sigma_{i}^{\sigma \alpha} - \mathcal{O}\left(\frac{1}{k}\right) + \mathcal{O}(1) \right)$$

 $-\frac{ik^{\alpha}}{p_i\cdot k}L_i^{\sigma\alpha}\right)\otimes\mathscr{M}_{\mathrm{LO}}\,\varepsilon_{\sigma}^*(k)$

$$\mathscr{A}_{\text{NLP}} = \sum_{i=1}^{n=2} \mathbf{T}_{i} \left(\frac{2p_{i}^{\sigma} - k^{\sigma}}{2p_{i} \cdot k} - \frac{ik^{\alpha}}{p_{i} \cdot k} \Sigma_{i}^{\sigma} \right)$$

 $\mathcal{O}(1)$

Needs to be inserted at the right place in the matrix element!

Nik hef Radboud University

$$\mathscr{A}_{\text{NLP}} = \sum_{i=1}^{n=2} \mathbf{T}_i \left(\frac{2p_i^{\sigma} - k^{\sigma}}{2p_i \cdot k} - \frac{ik^{\alpha}}{p_i \cdot k} \Sigma_i^{\sigma \alpha} \right)$$

 $L_{i}^{\sigma\alpha} = -i\left(p_{i}^{\sigma}\frac{\partial}{\partial p_{i\alpha}} - p_{i}^{\alpha}\frac{\partial}{\partial p_{i\sigma}}\right)$ **Orbital** $- \frac{ik^{\alpha}}{p_i \cdot k} L_i^{\sigma \alpha}) \otimes \mathscr{M}_{\mathrm{LO}} \, \varepsilon_{\sigma}^*(k)$ $\mathcal{O}(1)$

NLO Amplitude at NLP

$$\mathscr{A}_{\text{NLP}} = \sum_{i=1}^{n=2} \mathbf{T}_{i} \left(\frac{2p_{i}^{\sigma} - k^{\sigma}}{2p_{i} \cdot k} - \frac{ik^{\alpha}}{p_{i} \cdot k} \Sigma_{i}^{\sigma\alpha} - \frac{ik^{\alpha}}{p_{i} \cdot k} \Sigma_{i}^{\alpha} - \frac{ik^{\alpha}}{p_{i} \cdot k} \Sigma_{i}^{\sigma\alpha} - \frac{ik^{\alpha}}{p_{i} \cdot k} \Sigma_{i}^{\alpha} - \frac{ik^{$$

Result is derived by using the soft approximation of the matrix element & the Ward identity Can also be derived from an all order factorization theorem (see e.g. 1503.05156, 1610.06842)

 $-\frac{ik^{\alpha}}{n_i\cdot k}L_i^{\sigma\alpha}\right)\otimes\mathscr{M}_{\mathrm{LO}}\,\varepsilon_{\sigma}^*(k)$

$$|\mathscr{A}_{\rm NLP}|^2 = \sum_{\rm colors} |\mathscr{A}_{\rm scal}|^2 + 2\operatorname{Re}\left[(\mathscr{A}_{\rm sp} + K \frac{2p_1 \cdot p_2}{p_1 \cdot kp_2 \cdot k} |\mathscr{M}_{\rm LO}(p_1 + kp_2 \cdot k)|\right]$$

 $pin + \mathscr{A}_{orb})^{\dagger} \mathscr{A}_{scal}$

$|\delta p_1, p_2 + \delta p_2)|^2$

$$|\mathscr{A}_{\rm NLP}|^2 = \sum_{\rm colors} |\mathscr{A}_{\rm scal}|^2 + 2\operatorname{Re}\left[(\mathscr{A}_{\rm sp} = K \frac{2p_1 \cdot p_2}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_2 \cdot k} | \mathscr{M}_{\rm LO}(p_1 + \frac{p_1 \cdot kp_2 \cdot k}{p_1 \cdot kp_$$

 $_{\text{pin}} + \mathscr{A}_{\text{orb}})^{\dagger} \mathscr{A}_{\text{scal}}$

$|\delta p_1, p_2 + \delta p_2)|^2$

$$|\mathscr{A}_{\rm NLP}|^2 = \sum_{\rm colors} |\mathscr{A}_{\rm scal}|^2 + 2\operatorname{Re}\left[(\mathscr{A}_{\rm sp} + K \frac{2p_1 \cdot p_2}{p_1 \cdot kp_2 \cdot k} |\mathscr{M}_{\rm LO}(p_1 + K p_2 \cdot k) \right]$$

 $(\sin + \mathscr{A}_{orb})^{\dagger} \mathscr{A}_{scal}$

 $\left|\delta p_1, p_2 + \delta p_2\right|^2$

rn matrix element

 $\delta p_{i;j}^{\alpha} \equiv -\frac{1}{2} \left(k^{\alpha} + \frac{p_j \cdot k}{p_i \cdot p_j} p_i^{\alpha} - \frac{p_i \cdot k}{p_i \cdot p_j} p_j^{\alpha} \right)$

Nikhef Radboud University

Integrate over phase space — one obtains all NLP terms!

Demonstrated for DY, (di-)Higgs, VV, in [1706.04018]

 $pin + \mathscr{A}_{orb})^{\dagger} \mathscr{A}_{scal}$

$|\delta p_1, p_2 + \delta p_2)|^2$

Let's extend these results

What happens with colored particles in the final state?

What role do soft quarks play?

Prompt photon production

 $pp \rightarrow \gamma + X$

Photon recoils against hard radiation, singular behavior for $w \rightarrow 1$

$$u_{1} = (p_{1} - p_{\gamma})^{2} = -svw$$

$$t_{1} = (p_{2} - p_{\gamma})^{2} = -s(1 - v)$$

$$s_{4} = (p_{1} + p_{2} - p_{\gamma})^{2} = sv(1 - w)$$

 \boldsymbol{q}

Simplest channel: $q\bar{q}$

$q(p_1)\bar{q}(p_2) \rightarrow \gamma(p_\gamma)g(k)g(p_R)$

Similar NLP amplitude emerges!

Similar NLP amplitude emerges!

$$\mathscr{A}_{\text{NLP}} = \sum_{i=1}^{n=3} \mathbf{T}_i \left(\frac{2p_i^{\sigma} \pm k^{\sigma}}{2p_i \cdot k} - \frac{ik^{\alpha}}{p_i \cdot k} \Sigma_i^{\sigma\alpha} - \frac{ik^{\alpha}}{p_i \cdot k} \right)$$

$\cdot \frac{ik^{\alpha}}{p_i \cdot k} L_i^{\sigma \alpha} \\ \end{pmatrix} \otimes \mathscr{M}_{\mathrm{LO}} \, \mathcal{E}_{\sigma}^*(k)$ Difference: sign change for final state radiation

Process: $q(p_1)\bar{q}(p_2) \rightarrow \gamma(p_\gamma)g(k)g(p_R)$

$$\begin{split} |\mathscr{A}_{\mathrm{NLP},q\bar{q}}|^{2} &= \frac{C_{F}}{C_{A}} \Biggl[C_{F} \frac{2p_{1} \cdot p_{2}}{(p_{1} \cdot k)(p_{2} \cdot k)} \Biggl| \mathscr{M}_{\mathrm{LO}}^{q\bar{q}}(p_{1} + \delta p_{1;2}, p_{2} + \delta p_{2;1}) \Biggr|^{2} \\ &+ \frac{1}{2} C_{A} \frac{2p_{1} \cdot p_{R}}{(p_{1} \cdot k)(p_{R} \cdot k)} \Biggl| \mathscr{M}_{\mathrm{LO}}^{q\bar{q}}(p_{1} + \delta p_{1;R}, p_{R} - \delta p_{R;1}) \Biggr|^{2} \\ &+ \frac{1}{2} C_{A} \frac{2p_{2} \cdot p_{R}}{(p_{2} \cdot k)(p_{R} \cdot k)} \Biggl| \mathscr{M}_{\mathrm{LO}}^{q\bar{q}}(p_{2} + \delta p_{2;R}, p_{R} - \delta p_{R;2}) \Biggr|^{2} \\ &- \frac{1}{2} C_{A} \frac{2p_{1} \cdot p_{2}}{(p_{1} \cdot k)(p_{2} \cdot k)} \Biggl| \mathscr{M}_{\mathrm{LO}}^{q\bar{q}}(p_{1} + \delta p_{1;2}, p_{2} + \delta p_{2;1}) \Biggr|^{2} \end{split}$$

Nikhef Radboud University

Process:
$$q(p_1)\bar{q}(p_2) \rightarrow \gamma(p_{\gamma})g(k)g(p_R)$$

Eikonal factors
 $|\mathscr{A}_{\text{NLP},q\bar{q}}|^2 = \frac{C_F}{C_A} \left[C_F \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \left| \mathscr{M}_{\text{LO}}^{q\bar{q}}(p_1 + \delta p_{1;2}, p_2 + \delta p_{2;1}) \right|^2 + \frac{1}{2} C_A \frac{2p_1 \cdot p_R}{(p_1 \cdot k)(p_R \cdot k)} \left| \mathscr{M}_{\text{LO}}^{q\bar{q}}(p_1 + \delta p_{1;R}, p_R - \delta p_{R;1}) \right|^2 + \frac{1}{2} C_A \frac{2p_2 \cdot p_R}{(p_2 \cdot k)(p_R \cdot k)} \left| \mathscr{M}_{\text{LO}}^{q\bar{q}}(p_2 + \delta p_{2;R}, p_R - \delta p_{R;2}) \right|^2 - \frac{1}{2} C_A \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \left| \mathscr{M}_{\text{LO}}^{q\bar{q}}(p_1 + \delta p_{1;2}, p_2 + \delta p_{2;1}) \right|^2 \right]$

Nikhef Radboud University

Process:
$$q(p_1)\bar{q}(p_2) \to \gamma(p_{\gamma})g(k)g(p_R)$$

Shifts in E
 $|\mathscr{A}_{\text{NLP},q\bar{q}}|^2 = \frac{C_F}{C_A} \left[C_F \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \left| \mathscr{M}_{\text{LO}}^{q\bar{q}}(p_1 + \delta p_1) + \frac{1}{2}C_A \frac{2p_1 \cdot p_R}{(p_1 \cdot k)(p_R \cdot k)} \right| \mathscr{M}_{\text{LO}}^{q\bar{q}}(p_1 + \frac{1}{2}C_A \frac{2p_2 \cdot p_R}{(p_2 \cdot k)(p_R \cdot k)} \left| \mathscr{M}_{\text{LO}}^{q\bar{q}}(p_2 + \frac{1}{2}C_A \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \right| \mathscr{M}_{\text{LO}}^{q\bar{q}}(p_1 + \frac{1}{2}C_A \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \left| \mathscr{M}_{\text{LO}}^{q\bar{q}}(p_1 + \frac{1}{2}C_A \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \right| \mathscr{M}_{\text{LO}}^{q\bar{q}}(p_1 + \frac{1}{2}C_A \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \left| \mathscr{M}_{\text{LO}}^{q\bar{q}}(p_1 + \frac{1}{2}C_A \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \right| \mathscr{M}_{\text{LO}}^{q\bar{q}}(p_1 + \frac{1}{2}C_A \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \right| \mathscr{M}_{\text{LO}}^{q\bar{q}}(p_1 + \frac{1}{2}C_A \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \left| \mathscr{M}_{\text{LO}}^{q\bar{q}}(p_1 + \frac{1}{2}C_A \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \right| \mathscr{M}_{\text{LO}}^{q\bar{q}}(p_1 + \frac{1}{2}C_A \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \right| \mathscr{M}_{\text{LO}}^{q\bar{q}}(p_1 + \frac{1}{2}C_A \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \right| \mathscr{M}_{\text{LO}}^{q\bar{q}}(p_1 + \frac{1}{2}C_A \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \right| \mathscr{M}_{\text{LO}}^{q\bar{q}}(p_1 + \frac{1}{2}C_A \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \right| \mathscr{M}_{\text{LO}}^{q\bar{q}}(p_1 + \frac{1}{2}C_A \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \right| \mathscr{M}_{\text{LO}}^{q\bar{q}}(p_1 + \frac{1}{2}C_A \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \right| \mathscr{M}_{\text{LO}}^{q\bar{q}}(p_1 + \frac{1}{2}C_A \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \right| \mathscr{M}_{\text{LO}}^{q\bar{q}}(p_1 + \frac{1}{2}C_A \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \right| \mathscr{M}_{\text{LO}}^{q\bar{q}}(p_1 + \frac{1}{2}C_A \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \right| \mathscr{M}_{\text{LO}}^{q\bar{q}}(p_1 + \frac{1}{2}C_A \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \right| \mathscr{M}_{\text{LO}}^{q\bar{q}}(p_1 + \frac{1}{2}C_A \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \right| \mathscr{M}_{\text{LO}}^{q\bar{q}}(p_1 + \frac{1}{2}C_A \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \right|$

Born amplitude $|_{1;2}, p_2 + \delta p_{2;1})|^2$

 $\left| \delta p_{1;R}, p_R - \delta p_{R;1} \right|^2$ $\left| \delta p_{2;R}, p_R - \delta p_{R;2} \right|^2$ $\left| \delta p_{1;2}, p_2 + \delta p_{2;1} \right|^2$

Process: $q(p_1)\bar{q}(p_2) \rightarrow \gamma(p_\gamma)g(k)g(p_R)$

$$|\mathscr{A}_{\mathrm{NLP},qar{q}}|^2 = rac{C_F}{C_A} \Bigg[C_F rac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \Big| \mathscr{M}_{\mathrm{LO}}^{qar{q}}(p_1 + \delta p_{1;2}, p_2 + \delta p_{2;1}) \Big|^2$$

After integration over Missing LP NLL terms

phase space all LL terms up to NLP are obtained.
are recovered by adding the
$$g \rightarrow gg(q\bar{q})$$
 splittings.
 $+\frac{1}{2}C_{A}\frac{2p_{2}\cdot p_{R}}{(p_{2}\cdot k)(p_{R}\cdot k)}\left|\mathscr{M}_{\mathrm{LO}}^{q\bar{q}}(p_{2}+\delta p_{2;R},p_{R}-\delta p_{R;2})\right|^{2}$
 $-\frac{1}{2}C_{A}\frac{2p_{1}\cdot p_{2}}{(p_{1}\cdot k)(p_{2}\cdot k)}\left|\mathscr{M}_{\mathrm{LO}}^{q\bar{q}}(p_{1}+\delta p_{1;2},p_{2}+\delta p_{2;1})\right|^{2}$

$$\frac{1}{2} \sum_{k=1}^{2} \left| \mathcal{M}_{\mathrm{LO}}^{q\bar{q}}(p_{2} + \delta p_{2;R}, p_{R} - \delta p_{R;2}) \right|^{2}$$

$$- \frac{1}{2} C_{A} \frac{2p_{1} \cdot p_{2}}{(p_{1} \cdot k)(p_{2} \cdot k)} \left| \mathcal{M}_{\mathrm{LO}}^{q\bar{q}}(p_{1} + \delta p_{1;2}, p_{2} + \delta p_{2;1}) \right|^{2}$$

Process that addresses all questions

Prompt photon production $pp \rightarrow \gamma + X$

Why did we only talk about gluon emission?

Soft gluon emission:

Why did we only talk about gluon emission?

Soft gluon emission:

Why did we only talk about gluon emission?

Soft gluon emission:

Initial state splitting

When *q* becomes soft, this creates a contribution to the NLP logs

Note: The hard process has now changed from $qg \rightarrow q\gamma$ to $q\bar{q} \rightarrow g\gamma$

Final state (exclusive) splitting

When *q* becomes soft, this creates a contribution to the NLP logs

Note: The hard process has now changed from $qg \rightarrow q\gamma$ to $qg \rightarrow qg$

Radboud University

Final state (inclusive) splitting

are unobserved

Either g or q can become soft, or q//g

Leads to $\left(\frac{1}{1-z}\right)$ contributions, since final state partons

And they interfere!

Quark emission operator (schematically)

Full NLP NLO amplitude

Leading-logarithmic terms at LP and NLP

- By combining the soft quark and gluon amplitude, all LP + NLP LL terms are obtained
- All 7 NLO prompt photon channels [Gordon, Vogelsang, 1993] can be correctly described up to LL NLP
- Also works for DIS and e+e- to jets

Leading-logarithmic terms at LP and NLP

- By combining the soft quark and gluon amplitude, all LP + NLP LL terms are obtained
- All 7 NLO prompt photon channels [Gordon, Vogelsang, 1993] can be correctly described up to LL NLP
- Also works for DIS and e+e- to jets

Take-home message 1: Soft quarks and gluons generate all NLP LL contributions at NLO **Open questions:** 1. How does this extend to higher orders? 2. What happens at NLP NLL, in particular with final state next-to-collinear contributions?

Radboud University

3. What is the numerical impact of NLP logarithms?

[1905.11771]

NLP resummation of prompt photon

- Threshold resummation of powers of $\ln(1 x_T^2)$ with $x_T^2 = \frac{4p_T^2}{2}$
- We consider joint resummation of threshold and recoil to NLL, $\tilde{x}_T^2 = \frac{4p_T'^2}{O^2}$

Can lower the invariant mass Q^2 necessary to produce the photon

 $\vec{\mathbf{p}}_T$

$$p_T^3 \frac{\mathrm{d}\sigma_{AB \to \gamma + X}^{(\mathrm{direct, joint)}}(x_T^2)}{\mathrm{d}p_T} = \frac{p_T^4}{8\pi S^2} \sum_{a,b} \int_{\mathcal{C}} \frac{\mathrm{d}N}{2\pi i} f_{a/A}(N,\mu_F) f_{b/B}(N,\mu_F) \\ \times \int \frac{\mathrm{d}^2 \mathbf{Q}_T}{(2\pi)^2} \left(\frac{S}{4|\mathbf{p}_T - \mathbf{Q}_T/2|^2} \right)^{N+1} \int_0^1 \mathrm{d}\tilde{x}_T^2 (\tilde{x}_T^2)^N \frac{|\mathbf{x}|^2}{4|\mathbf{p}_T - \mathbf{Q}_T/2|^2} \\ \times \int \mathrm{d}^2 \mathbf{b} \, \mathrm{e}^{i\mathbf{b}\cdot\mathbf{Q}_T} \, P_{abd}(N,b,Q,\mu_F,\mu).$$

 $\mu_F)$

 $\frac{|\mathcal{M}_{ab\to\gamma d}(\tilde{x}_T^2)|^2}{\sqrt{1-\tilde{x}_T^2}}C_{\delta}^{(ab\to\gamma d)}(\alpha_s,\tilde{x}_T^2)$

[0010080, 1701.01464]

$$p_T^3 \frac{\mathrm{d}\sigma_{AB \to \gamma + X}^{(\mathrm{direct, joint})}(x_T^2)}{\mathrm{d}p_T} = \frac{p_T^4}{8\pi S^2} \sum_{a,b} \int_{\mathcal{C}} \frac{\mathrm{d}N}{2\pi i} f_{a/A}(N,\mu_F) f_{b/B}(N,\mu_F) \int_{b/B}^{N} \frac{\mathrm{Mellin tr}}{\mathrm{Mellin tr}}$$

$$\times \int \frac{\mathrm{d}^2 \mathbf{Q}_T}{(2\pi)^2} \left(\frac{S}{4|\mathbf{p}_T - \mathbf{Q}_T/2|^2} \right)^{N+1} \int_0^1 \mathrm{d}\tilde{x}_T^2 (\tilde{x}_T^2)^N \frac{|X|}{2\pi i}$$

$$\times \int \mathrm{d}^2 \mathbf{b} \, \mathrm{e}^{i\mathbf{b}\cdot\mathbf{Q}_T} P_{abd}(N,b,Q,\mu_F,\mu).$$

$\mu_F)$ ransform hard scattering

 $\frac{|\mathcal{M}_{ab\to\gamma d}(\tilde{x}_T^2)|^2}{\sqrt{1-\tilde{x}_T^2}}C_{\delta}^{(ab\to\gamma d)}(\alpha_s,\tilde{x}_T^2)$

PDFs

$$p_T^3 \frac{d\sigma_{AB \to \gamma + X}^{(\text{direct, joint)}}(x_T^2)}{dp_T} = \frac{p_T^4}{8\pi S^2} \sum_{a,b} \int_{\mathcal{C}} \frac{dN}{2\pi i} f_{a/A}(N,\mu_F) f_{b/B}(N,\mu_F) dp_{B/B}(N,\mu_F) dp_$$

11.

 $\mu_F)$

 $\frac{|\mathcal{M}_{ab\to\gamma d}(\tilde{x}_T^2)|^2}{\sqrt{1-\tilde{x}_T^2}}C_{\delta}^{(ab\to\gamma d)}(\alpha_s,\tilde{x}_T^2)$

$$p_T^3 \frac{\mathrm{d}\sigma_{AB \to \gamma + X}^{(\mathrm{direct, joint})}(x_T^2)}{\mathrm{d}p_T} = \frac{p_T^4}{8\pi S^2} \sum_{a,b} \int_{\mathcal{C}} \frac{\mathrm{d}N}{2\pi i} f_{a/A}(N,\mu_F) f_{b/B}(N,\mu_F) dp_{B/B}(N,\mu_F) \int_{0}^{1} \mathrm{d}\tilde{x}_T^2 (\tilde{x}_T^2)^N \frac{|X|}{2\pi i^2} \\ \times \int \frac{\mathrm{d}^2 \mathbf{Q}_T}{(2\pi)^2} \left(\frac{S}{4|\mathbf{p}_T - \mathbf{Q}_T/2|^2} \right)^{N+1} \int_{0}^{1} \mathrm{d}\tilde{x}_T^2 (\tilde{x}_T^2)^N \frac{|X|}{2\pi i^2} \\ \times \int \mathrm{d}^2 \mathbf{b} \, \mathrm{e}^{i\mathbf{b}\cdot\mathbf{Q}_T} P_{abd}(N,b,Q,\mu_F,\mu).$$
Fourier transform

 $\mu_F)$

 $\frac{|\mathcal{M}_{ab\to\gamma d}(\tilde{x}_T^2)|^2}{\sqrt{1-\tilde{x}_T^2}}C_{\delta}^{(ab\to\gamma d)}(\alpha_s,\tilde{x}_T^2)$
Joint resummation

$$p_T^3 \frac{\mathrm{d}\sigma_{AB \to \gamma + X}^{(\mathrm{direct, joint)}}(x_T^2)}{\mathrm{d}p_T} = \frac{p_T^4}{8\pi S^2} \sum_{a,b} \int_{\mathcal{C}} \frac{\mathrm{d}N}{2\pi i} f_{a/A}(N,\mu_F) f_{b/B}(N,\mu_F) \\ \times \int \frac{\mathrm{d}^2 \mathbf{Q}_T}{(2\pi)^2} \left(\frac{S}{4|\mathbf{p}_T - \mathbf{Q}_T/2|^2} \right)^{N+1} \int_0^1 \mathrm{d}\tilde{x}_T^2 (\tilde{x}_T^2)^N \frac{|x|}{2\pi} \\ \times \int \mathrm{d}^2 \mathbf{b} \, \mathrm{e}^{i\mathbf{b}\cdot\mathbf{Q}_T} \, P_{abd}(N,b,Q,\mu_F,\mu).$$
Resummed exponent

 $\mu_F)$

 $\frac{|\mathcal{M}_{ab\to\gamma d}(\tilde{x}_T^2)|^2}{\sqrt{1-\tilde{x}_T^2}}C_{\delta}^{(ab\to\gamma d)}(\alpha_s,\tilde{x}_T^2)$

Joint resummation

$$p_T^3 \frac{\mathrm{d}\sigma_{AB \to \gamma+X}^{(\mathrm{direct,joint})}(x_T^2)}{\mathrm{d}p_T} = \frac{p_T^4}{8\pi S^2} \sum_{a,b} \int_{\mathcal{C}} \frac{\mathrm{d}N}{2\pi i} f_{a/A}(N,\mu_F) f_{b/B}(N,\mu_F) \int_{b/B}^{1} (N,\mu_F) \int$$

put \mathbf{Q}_T to zero.

 $\mu_F)$

 $\frac{|\mathcal{M}_{ab\to\gamma d}(\tilde{x}_T^2)|^2}{\sqrt{1-\tilde{x}_T^2}}C_{\delta}^{(ab\to\gamma d)}(\alpha_s,\tilde{x}_T^2)$

The inverse transform links threshold and recoil logs. To recover threshold resummation:

Approximation of kinematic function

$$\left(\frac{S}{4(\mathbf{p}_T - \mathbf{Q}_T/2)^2}\right)^{N+1} = \left(\frac{4p_T^2}{S}\right)^{-N-1} \left(1 - \frac{\mathbf{p}_T \cdot \mathbf{Q}}{p_T^2}\right)^{N+1}$$

Produces $\delta \left(\mathbf{b} - i(N+1)\mathbf{p}_T/p_T^2 \right)$ when integrated over $\left[\frac{\mathrm{d}^2 \mathbf{Q}_T}{(2\pi)^2} \right]$

 $\left(\frac{\mathbf{Q}_T}{2} + \frac{Q_T^2}{4p_T^2}\right)^{-N-1}$

 $\simeq (x_T^2)^{-N-1} \exp\left[(N+1)\frac{\mathbf{p}_T \cdot \mathbf{Q}_T}{p_T^2} \left[1 + \mathcal{O}\left(Q_T/p_T\right)\right]\right]$

[0409234]

Approximation

- Reduces the 5D integral to 1D
- Numerically more stable
- Converges to the result obtained by setting $\bar{\mu} = p_T = Q_T/2$

Joint resummation

$$p_T^3 \frac{\mathrm{d}\sigma_{AB \to \gamma + X}^{(\mathrm{direct, joint)}}(x_T^2)}{\mathrm{d}p_T} = \frac{p_T^4}{8\pi S^2} \sum_{a,b} \int_{\mathcal{C}} \frac{\mathrm{d}N}{2\pi i} f_{a/A}(N,\mu_F) f_{b/B}(N,\mu_F) \\ \times \int \frac{\mathrm{d}^2 \mathbf{Q}_T}{(2\pi)^2} \left(\frac{S}{4|\mathbf{p}_T - \mathbf{Q}_T/2|^2} \right)^{N+1} \int_0^1 \mathrm{d}\tilde{x}_T^2 (\tilde{x}_T^2)^N \frac{|x|}{2\pi} \\ \times \int \mathrm{d}^2 \mathbf{b} \, \mathrm{e}^{i\mathbf{b}\cdot\mathbf{Q}_T} \, P_{abd}(N,b,Q,\mu_F,\mu).$$
Resummed exponent

 $\mu_F)$

 $\frac{|\mathcal{M}_{ab\to\gamma d}(\tilde{x}_T^2)|^2}{\sqrt{1-\tilde{x}_T^2}}C_{\delta}^{(ab\to\gamma d)}(\alpha_s,\tilde{x}_T^2)$

Resummed exponent

 $P_{abd}(N, b, Q, \mu_F, \mu) =$ $\exp\left[E_a^{\mathrm{PT}}(N,b,Q,\mu_F,\mu) + E_b^{\mathrm{PT}}(N,b,Q,\mu_F,\mu) + F_d(N,Q,\mu) + g_{abd}(N,\mu)\right]$ initial state initial state final state interference

$$\begin{split} E_{a}^{\rm PT}(N,b,Q,\mu_{F},\mu) &= \int_{0}^{Q^{2}} \frac{\mathrm{d}k_{T}^{2}}{k_{T}^{2}} A_{a}(\alpha_{s}(k_{T}^{2})) \left[J_{0}(bk_{T})K_{0}\left(\frac{2Nk_{T}}{Q}\right) + \ln\left(\frac{\bar{N}k_{T}}{Q}\right) \right] \\ &- \ln \bar{N} \int_{\mu_{F}^{2}}^{Q^{2}} \frac{\mathrm{d}k_{T}^{2}}{k_{T}^{2}} A_{a}(\alpha_{s}(k_{T}^{2})) \end{split}$$

Resummed exponent

 $P_{abd}(N, b, Q, \mu_F, \mu) =$ $\exp\left[E_{a}^{\rm PT}(N, b, Q, \mu_{F}, \mu) + E_{b}^{\rm PT}(N, b, Q, \mu_{F}, \mu) + F_{d}(N, Q, \mu) + g_{abd}(N, \mu)\right]$ initial state initial state final state interference

$$E_{a}^{PT}(N, b, Q, \mu_{F}, \mu) = \int_{0}^{Q^{2}} \frac{dk_{T}^{2}}{k_{T}^{2}} A_{a}(\alpha_{s}(k_{T}^{2})) \left[J_{0}(bk_{T})K_{0}\left(\frac{2Nk_{T}}{Q}\right) + \ln\left(\frac{\bar{N}k_{T}}{Q}\right) \right] \\ -\ln\bar{N} \int_{\mu_{F}^{2}}^{Q^{2}} \frac{dk_{T}^{2}}{k_{T}^{2}} A_{a}(\alpha_{s}(k_{T}^{2}))$$

There is no general NLP resummation framework, but can we make an educated guess?

Extension to NLP

 $P_{abd}(N, b, Q, \mu_F, \mu) =$ $\exp\left[E_{a}^{\rm PT}(N, b, Q, \mu_{F}, \mu) + E_{b}^{\rm PT}(N, b, Q, \mu_{F}, \mu) + F_{d}(N, Q, \mu) + g_{abd}(N, \mu)\right]$ initial state initial state final state interference

$$\begin{split} E_{a}^{\rm PT}(N,b,Q,\mu_{F},\mu) &= \int_{0}^{Q^{2}} \frac{\mathrm{d}k_{T}^{2}}{k_{T}^{2}} A_{a}(\alpha_{s}(k_{T}^{2})) \left[J_{0}(bk_{T})K_{0}\left(\frac{2Nk_{T}}{Q}\right) + \ln\left(\frac{\bar{N}k_{T}}{Q}\right) \right] \\ &- \ln \bar{N} \int_{\mu_{F}^{2}}^{Q^{2}} \frac{\mathrm{d}k_{T}^{2}}{k_{T}^{2}} A_{a}(\alpha_{s}(k_{T}^{2})) \end{split}$$

Joint resummation:

- Recoil can be separated from threshold resummation.
 - Gives NLP contribution for $N \to \infty$.

Threshold resummation at NLP

Isolate pure threshold behavior in:

$$E_a^{\text{thres}}(N, Q, \mu_F, \mu) = -\int_{Q^2}^{Q^2/N^2} \frac{\mathrm{d}k_T^2}{k_T^2} A_a \left(\alpha_s(k_T^2) - \ln \bar{N} \int_{\mu_F^2}^{Q^2} \frac{\mathrm{d}k_T^2}{k_T^2} A_a \left(\alpha_s(k_T^2) - \ln \bar{N} \int_{\mu_F^2}^{Q^2} \frac{\mathrm{d}k_T^2}{k_T^2} A_a \left(\alpha_s(k_T^2) - \frac{1}{1-z} \int_{\mu_F^2}^{(1-z)^2} \frac{\mathrm{d}k_T^2}{1-z} \right) dz$$

How to 'dress' this with NLP contributions?

 $)\right) \ln\left(\frac{Nk_T}{Q}\right)$

 $\binom{2}{T}$)).

 $^{2Q^{2}}rac{\mathrm{d}k_{T}^{2}}{k_{T}^{2}}A_{a}\left(lpha_{s}(k_{T}^{2})
ight)$

Threshold resummation at NLP

$$E_{a}^{\text{thres}}(N,Q,\mu_{F},\mu) = -\int_{Q^{2}}^{Q^{2}/\bar{N}^{2}} \frac{\mathrm{d}k_{T}^{2}}{k_{T}^{2}} A_{a} \left(\alpha_{s}(k_{T}^{2})\right)$$
$$-\ln \bar{N} \int_{\mu_{F}^{2}}^{Q^{2}} \frac{\mathrm{d}k_{T}^{2}}{k_{T}^{2}} A_{a} \left(\alpha_{s}(k_{T}^{2})\right)$$
$$= \int_{0}^{1} \mathrm{d}z \frac{z^{N-1}-1}{1-z} \int_{\mu_{F}^{2}}^{(1-z)^{2}Q} \int_{\mu_{F}^{2}}^{(1-z)^{2}Q} \mathrm{d}z$$
Option 1:
$$\frac{z^{N-1}-1}{1-z} A_{a}^{(1)} \rightarrow \left(\frac{z^{N-1}-1}{1-z}\right)$$

 $))\ln\left(\frac{Nk_T}{Q}\right)$

 ${T \choose T}$

 $^{2Q^{2}} \frac{\mathrm{d}k_{T}^{2}}{k_{T}^{2}} A_{a}\left(lpha_{s}(k_{T}^{2})
ight)$

 $\cdot z^{N-1} A_a^{(1)}$

[9611272, 0704.3180]

Threshold resummation at NLP

$$E_{a}^{\text{thres}}(N,Q,\mu_{F},\mu) = -\int_{Q^{2}}^{Q^{2}/\bar{N}^{2}} \frac{\mathrm{d}k_{T}^{2}}{k_{T}^{2}} A_{a} \left(\alpha_{s}(k_{T}^{2})\right)$$
$$-\ln \bar{N} \int_{\mu_{F}^{2}}^{Q^{2}} \frac{\mathrm{d}k_{T}^{2}}{k_{T}^{2}} A_{a} \left(\alpha_{s}(k_{T}^{2})\right)$$
$$\mathbf{Option 2:} = -\int_{\mu_{F}^{2}}^{Q^{2}/\bar{N}^{2}} \frac{\mathrm{d}k_{T}^{2}}{k_{T}^{2}} A_{a} (\alpha_{s}(k_{T}^{2})) \ln \bar{N} \to -$$

 $\left(\frac{Nk_T}{Q}\right)$

 $\binom{2}{T}$).

 $\int_{\mu^2}^{Q^2/\bar{N}^2} \frac{\mathrm{d}k_T^2}{k_T^2} P_{aa}\left(\alpha_s(k_T^2)\right)$

[0202251, 0309264]

Option 2a: Include only diagonal contributions up to NLP

Option 2a: Include only diagonal contributions up to NLP

$$\begin{split} P_{q \to q+g}^{(1)} &= C_F \left(\frac{1+z^2}{1-z} \right)_+ \stackrel{\text{NLP}}{=} 2C_F \left[\left(\frac{1}{1-z} \right)_+ -1 \right] \\ P_{g \to g+g}^{(1)} &= 2C_A \left[\left(\frac{z}{1-z} \right)_+ + \frac{1-z}{z} + z(1-z) \right] \stackrel{\text{NLP}}{=} 2C_A \left[\left(\frac{1}{1-z} \right)_+ -1 \right] \end{split}$$

Radboud University

Option 2a: Include only diagonal contributions up to NLP

Option 2b: Include also off-diagonal contributions up to NLP

Option 2a: Include only diagonal contributions up to NLP

Option 2b: Include also off-diagonal contributions up to NLP

$$P_{q \to g+q}^{(1)} = C_F \left[\frac{1 + (1-z)^2}{z} \right] \stackrel{\text{NLP}}{=} C_F \qquad P_{g \to q+\bar{q}}^{(1)} = T_R \left[\frac{1 + (1-z)^2}{z} \right]$$

$\left[z^2 + (1-z)^2\right] \stackrel{\text{NLP}}{=} T_R$

Option 2a: Include only diagonal contributions up to NLP

Option 2b: Include also off-diagonal contributions up to NLP

Option 2c: Keep the full form of the splitting functions

$$P_{q \to q+g}^{(1)} = C_F \left(\frac{1+z^2}{1-z}\right)_+ \qquad P_{g \to g+g}^{(1)} = 2C_A \left[\left(\frac{z}{1-z}\right)_+ + \frac{1-z}{z} + z(1-z)\right] \qquad P_{q \to g+q}^{(1)} = C_F$$

ons up to NLP utions up to NLF

$\frac{\text{functions}}{\left[\frac{1+(1-z)^2}{z}\right]}$

$$P_{g \to q + \bar{q}}^{(1)} = T_R \left[z^2 + (1 - z)^2 \right]$$

Radboud University

Numerical results

- Results for LHC@13 TeV, MMHT PDF set, $\mu_F = \mu = Q = 2p_T$
- NLP effects smaller than $LL \rightarrow NLL$
- The NLP effects of option 1 (=2a) give a 5-10% correction

Radboud University

Numerical correction of option 2b and 2c depends on the scale

Cause of scale dependence: the LP NLL expression

Cause of scale dependence: the LP NLL expression

Take-home message 2: Scale dependence hugely decreased by including off-diagonal contributions of the splitting functions

Radboud University

Both approaches only include NLP effects of collinear origin So not all LL NLP contributions at

Open questions:

NLO are covered!

- What happens when all NLP contributions are included?
- How do other processes behave?

Conclusions

- NLP amplitude for soft gluons is universal and creates a shift to the Born matrix element - But note that the emission of soft quarks is needed to create the full NLO expression at NLP
- For processes with final state partons we recover all LL NLP contributions at NLO - If one were to extend this to NLL, one has to worry about (next-to-)collinear emissions
- Gluon NLP terms give a 5-10% correction to the NLL distribution for prompt photon ullet
- Including quark emissions can significantly decrease the scale dependence ullet

Extra slides

Recoil NLP correction

$$\begin{split} E_a^{\text{recoil}}(N,Q,\mu) &= 2A_a^{(1)}\frac{\alpha_s}{\pi} \int_0^{2N} \frac{\mathrm{d}x}{x} \left(1+2\alpha_s b_0 \ln \frac{\alpha_s}{2\lambda}\right) \\ &+ \frac{x}{N} I_1(x) K_0(x) \right] + \mathcal{O}\left(\frac{1}{N^2}\right) \\ &\simeq A_a^{(1)}\frac{\alpha_s}{2\pi} \left(\frac{\zeta(2)}{1-2\lambda} + \frac{\ln \bar{N}}{N}\right) \equiv h_{a,\text{res}}^{(1)} \end{split}$$

Can be regarded as a wide angle contribution, as it is only there for non-zero k_T

$\left[\frac{x}{N}\right) \left[(I_0(x) - 1) K_0(x) - \frac{1}{2} \right]$

 $_{ ext{ecoil}}(\lambda,lpha_s).$

Isolating threshold behavior

$$\begin{split} E_{a}^{\text{joint}} \left(N, b = i \frac{N+1}{p_{T}}, Q, \mu \right) &= \int_{0}^{Q^{2}} \frac{\mathrm{d}k_{T}^{2}}{k_{T}^{2}} A_{a}(\alpha_{s}(k_{T}^{2})) \left[K_{0}\left(\frac{2Nk_{T}}{Q}\right) + \ln\left(\frac{\bar{N}k_{T}}{Q}\right) \right] \\ &+ \int_{0}^{Q^{2}} \frac{\mathrm{d}k_{T}^{2}}{k_{T}^{2}} A_{a}(\alpha_{s}(k_{T}^{2})) \left[I_{0}\left(\frac{(N+1)k_{T}}{p_{T}}\right) - 1 \right] K_{0}\left(\frac{Nk_{T}}{p_{T}}\right) . \end{split}$$

 $\equiv E_a^{\text{leading}}(N, Q, \mu) + E_a^{\text{recoil}}(N, Q, \mu).$

Extended evolution

$$P_{aa}(N) = -A_a(\alpha_s) \ln \bar{N} - B_a(\alpha_s) + \mathcal{O}(1/N)$$

Non-singlet evolution is diagonal:

$$\exp\left[\frac{P_{\rm NS}^{(0)}(N)}{2\pi b_0}\ln(1-2\lambda)\right] = \exp\left[\frac{1}{2\pi b_0}\left(-2A_q^{(1)}\ln\bar{N}-2B_q^{(1)}-2B_q^{(1)}\right)\right]$$

Stems from evolution $\alpha_s(k_T^2)$ from μ_F^2 to Q^2/N^2

Singlet: 2x2 matrix, off-diagonal terms correspond to flavor changes (quark emission)

Similar approach for the fragmentation function

Same term as in option 1

Scale dependence of direct vs fragmentation components

