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1. Why is this interesting?
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Perturbation theory
A generic cross section can be written as 

The  are computed using Feynman diagrams.  

Hopefully, the series converges rapidly and a limited number of orders is sufficient 
to describe the process 

cn
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σ = ∑
n

cnαn
s



LO process
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∼ σ0
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LO process
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2

∼ σ0

(p1 + p2)2 ≡ s
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NLO process
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+

2

Real emission of a gluon
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NLO process

7

+

2

Real emission of a gluon

s′� ≠ s

s′� = (p1 + p2 − k)2 ≡ zs
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NLO process

8

+

2

Real emission of a gluon

s′� ≠ s

s′� = (p1 + p2 − k)2 ≡ zs
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= gsT
pμ

p ⋅ k
u(p)ϵ*μ (k)

k, μ

p

Emission of a soft gluon: 
the eikonal Feynman rule



NLO process
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+

2

Real emission of a gluon

s′� ≠ s

s′� = (p1 + p2 − k)2 ≡ zs
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= gsT
pμ

p ⋅ k
u(p)ϵ*μ (k)

Emission of a soft gluon: 
the eikonal Feynman rule

k, μ

p

Diverges for  and  k → 0 k //p



NLO process
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+

2

Real emission of a gluon

+

Virtual exchange of a gluon

s′� = zs s′� = s

Melissa van Beekveld



Origin of large logarithms
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+

2

+
s′� = zs s′� = s

∼
dσ1

dz
= αs (c1 ( ln(1 − z)

1 − z )
+

+ d1δ(1 − z) + f1)
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Why is this a problem?
Perturbation theory: 

Ideally, the series converges rapidly and a limited number of orders is sufficient 
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dσ
dz

= ∑
n

cnαn
s = σ0δ(1 − z) + αs (

m=1

∑
m=0

d1m ( lnm(1 − z)
1 − z )

+
+ d′�1δ(1 − z) + f1) + …



for              this is not small…z → 1
Perturbation theory: 

Ideally, the series converges rapidly and a limited number of orders is sufficient 
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dσ
dz

= ∑
n

cnαn
s = σ0δ(1 − z) + αs (

m=1

∑
m=0

d1m ( lnm(1 − z)
1 − z )

+
+ d′�1δ(1 − z) + f1) + …

Why is this a problem?



It gets worse…
There is no guarantee that the next order will get smaller! 
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dσ
dz

=
∞

∑
n=0

αn
s [

2n−1

∑
m=0

dnm ( lnm(1 − z)
1 − z )

+
+ d′�nδ(1 − z) + fn]



15

0.0 0.2 0.4 0.6 0.8 1.0

z

10�2

10�1

100

101

102

103

104

105

↵
n s

ln
2n

�
1 (

1�
z)

1�
z

αs(M2
Z) = 0.12

darker color = higher power of n



16

0.0 0.2 0.4 0.6 0.8 1.0

z

10�2

10�1

100

101

102

103

104

105

↵
n s

ln
2n

�
1 (

1�
z)

1�
z

αs(M2
Z) = 0.12

darker color = higher power of n

The perturbative calculation might be broken for z → 1



What if…
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dσ
dz

=
∞

∑
n=0

αn
s [

2n−1

∑
m=0

dnm ( lnm(1 − z)
1 − z )

+
+ d′�nδ(1 − z) + fn]

We could predict the form of  for all n?dnm



What if…
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dσ
dz

=
∞

∑
n=0

αn
s [

2n−1

∑
m=0

dnm ( lnm(1 − z)
1 − z )

+
+ d′�nδ(1 − z) + fn]

dσ
dz

=
∞

∑
n=1

αn
s d2n−1 ( ln2n−1(1 − z)

1 − z )
+

+
∞

∑
n=1

αn
s d2n−2 ( ln2n−2(1 − z)

1 − z )
+

+ … +
∞

∑
n=0

αn
s [fn]

And we could organize the perturbative series in a new way

We could predict the form of  for all n?dnm



Resummation: A new series
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LO 
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NNLO 
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αsL2

α2
s L4

αn
s L2n

αsL
α2

s L3

αn
s L2n−1

αs

α2
s L2

αn
s L2n−2

… 

…

σresum = σ0e
1
αs h(0)(αsL)eh(1)(αsL) . . .
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1

L2n ∼ ( ln2n−1(1 − z)
1 − z )

+
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LO 

NLO 

NNLO 
NnLO

αsL2

α2
s L4

αn
s L2n

αsL
α2

s L3

αn
s L2n−1

αs

α2
s L2

αn
s L2n−2

… 

…

σresum = σ0e
1
αs h(0)(αsL)eh(1)(αsL) . . .

Leading-Log (LL)
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1

L2n ∼ ( ln2n−1(1 − z)
1 − z )

+

Resummation: A new series
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LO 

NLO 

NNLO 
NnLO

αsL2

α2
s L4

αn
s L2n

αsL
α2

s L3

αn
s L2n−1

αs

α2
s L2

αn
s L2n−2

… 

…

σresum = σ0e
1
αs h(0)(αsL)eh(1)(αsL) . . .

Next-to-Leading-Log (NLL)
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1

L2n ∼ ( ln2n−1(1 − z)
1 − z )

+

Resummation: A new series



How does resummation solve it?
• Prove that the logarithmic terms can be predicted at all orders 

• Separate them from the off-shell degrees of freedom 
This introduces an arbitrary scale and usually asks for a conjugate space to 
factorize the kinematics 

• Demand that the cross section does not depend on this scale 

• Leads to an evolution equation, whose solution is an exponent 
This means that you have the terms under control at all orders
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dσ
dz

∝
∞

∑
n=0

αn
s [

2n−1

∑
m=0

dnm ( lnm(1 − z)
1 − z )

+
+ d′�nδ(1 − z) + fn]

Leading-power contributions
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• Universal process-independent form 
• Localized at threshold 
• Linked to the soft and collinear divergences 
• Resummation well understood 
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But there is more…

24 Melissa van Beekveld

dσ
dz

∝
∞

∑
n=0

αn
s [

2n−1

∑
m=0

dnm ( lnm(1 − z)
1 − z )

+
+ d′�nδ(1 − z) + d′�′ �nm lnm(1 − z) + f′�n]



dσ
dz

∝
∞

∑
n=0

αn
s [

2n−1

∑
m=0

dnm ( lnm(1 − z)
1 − z )

+
+ d′�nδ(1 − z) + d′�′ �nm lnm(1 − z) + f′�n]

Next-to-leading-power contributions
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• Suppressed to leading power, but still singular 
• No general resummation framework for these! 
• Check of higher order corrections 
• Might be relevant experimentally 
• Might help to reduce scale uncertainties
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2. What is the origin of these  
next-to-leading power logarithms?
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Universality of NLP logs
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[1706.04018]
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Let us first examine what happens when a colorless final state is produced



NLO Amplitude at NLP 
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At NLP, also one ‘internal’ emission contributes LP diagrams (same as before)



NLO Amplitude at NLP
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n = 2
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k → 0



NLO Amplitude at NLP
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n = 2
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k → 0



NLO Amplitude at NLP
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n = 2
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k → 0



NLO Amplitude at NLP
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n = 2
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k → 0



NLO Amplitude at NLP
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Eikonal
n = 2
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𝒪 ( 1
k )



n = 2

NLO Amplitude at NLP
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Scalar
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𝒪 ( 1
k ) + 𝒪(1)



n = 2

NLO Amplitude at NLP
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Spin

Needs to be inserted 
at the right place in  
the matrix element!

{
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𝒪 (1)



n = 2

NLO Amplitude at NLP
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Orbital

i
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𝒪 (1)



n = 2

NLO Amplitude at NLP
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= 𝒜scal + 𝒜spin + 𝒜orb
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Result is derived by using the soft approximation of the matrix element & the Ward identity 
Can also be derived from an all order factorization theorem (see e.g. 1503.05156, 1610.06842)



Towards the NLP cross section
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∝ 𝒪 ( 1
k2 ) ∝ 𝒪 ( 1

k )
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Towards the NLP cross section
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Eikonal factor
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Towards the NLP cross section
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Shift in Born matrix element
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Towards the NLP cross section
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Integrate over phase space        one obtains all NLP terms!

Towards the NLP cross section

Demonstrated for DY, (di-)Higgs, VV, in [1706.04018] 



Let’s extend these results

• What happens with colored particles in the final state? 

• What role do soft quarks play?
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[1905.08741] 



Prompt photon production
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pp → γ + X
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Photon recoils against hard radiation, singular behavior for 

u1 = (p1 − pγ)2 = − svw

t1 = (p2 − pγ)2 = − s(1 − v)

s4 = (p1 + p2 − pγ)2 = sv(1 − w)

w → 1



Simplest channel:
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q(p1)q̄(p2) → γ(pγ)g(k)g(pR)

qq̄
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Similar NLP amplitude emerges!
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n = 3 ±



Similar NLP amplitude emerges!
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Difference:  
sign change for final state radiation
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n = 3 ±
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Process: q(p1)q̄(p2) → γ(pγ)g(k)g(pR)
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Towards the NLP cross section
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Process: q(p1)q̄(p2) → γ(pγ)g(k)g(pR)
Eikonal factors
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Towards the NLP cross section

Interferences are created! 
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Process: q(p1)q̄(p2) → γ(pγ)g(k)g(pR)
Shifts in Born amplitude
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Towards the NLP cross section
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Process: q(p1)q̄(p2) → γ(pγ)g(k)g(pR)
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Towards the NLP cross section

After integration over phase space all LL terms up to NLP are obtained.  
Missing LP NLL terms are recovered by adding the                     splittings. g → gg(qq̄)



Process that addresses all questions
Prompt photon production  

52

pp → γ + X
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     channel
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g(p1)q(p2) → γ(pγ)g(k)q(pR)
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qg



     channel
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g(p1)q(p2) → γ(pγ)g(k)q(pR)
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qg

but also:



     channel
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g(p1)q(p2) → γ(pγ)g(k)q(pR)
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qg

but also:

Can be handled in the same way as before



Soft gluon emission: 

56

p

k

p − k ≃ p

∝ 𝒪 ( 1
k )
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Why did we only talk about gluon emission?



p

k

p − k ≃ p

Soft gluon emission: 
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p

k

p − k ≃ p

∝ 𝒪 ( 1
k )

Soft quark emission: 

∝ 𝒪 ( 1

k )
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Why did we only talk about gluon emission?



Soft gluon emission: 
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p

k

p − k ≃ p

∝ 𝒪 ( 1
k )

Soft quark emission: 

p

k

p − k ≃ p

∝ 𝒪 ( 1

k )
How to handle the soft quark contributions?

Melissa van Beekveld

Why did we only talk about gluon emission?



Initial state splitting
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When     becomes soft, this creates a contribution to the NLP logs 

Note:  
The hard process has now changed from                  to  

q

qg → qγ qq̄ → gγ

Melissa van Beekveld



When     becomes soft, this creates a contribution to the NLP logs 

Note:  
The hard process has now changed from                  to  

Final state (exclusive) splitting 
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q

qg → qγ qg → qg

Melissa van Beekveld



Either g or q can become soft, or  

Leads to                contributions, since final state partons 

are unobserved  

Final state (inclusive) splitting
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( 1
1 − z )

+

q//g
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And they interfere!
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Quark emission operator (schematically)
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Full NLP NLO amplitude
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+
m

∑
i=1

Ti
1

2pi ⋅ k
𝒬i ⊗ ℳi,LO

Soft gluon contribution

Soft quark contribution
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Leading-logarithmic terms at LP and NLP
• By combining the soft quark and gluon amplitude, all LP + NLP LL terms are 

obtained 

• All 7 NLO prompt photon channels [Gordon, Vogelsang, 1993] can be correctly 
described up to LL NLP  

• Also works for DIS and e+e- to jets 
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Leading-logarithmic terms at LP and NLP
• By combining the soft quark and gluon amplitude, all LP + NLP LL terms are 

obtained 

• All 7 NLO prompt photon channels [Gordon, Vogelsang, 1993] can be correctly 
described up to LL NLP  

• Also works for DIS and e+e- to jets 
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Take-home message 1: 
Soft quarks and gluons generate all NLP LL contributions at NLO 

Open questions:  
1. How does this extend to higher orders? 

2. What happens at NLP NLL, in particular with final state next-to-collinear contributions? 



67

3. What is the numerical impact 
of NLP logarithms?

Melissa van Beekveld

[1905.11771]



NLP resummation of prompt photon
Threshold resummation of powers of  with  

We consider joint resummation of threshold and recoil to NLL, 

ln(1 − x2
T) x2

T =
4p2

T

s
x̃2

T =
4p′�2

T

Q2

68

Can lower the invariant  
mass  necessary to  
produce the photon 

Q2

threshold joint

•    

•    
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Joint resummation
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[0010080, 1701.01464]
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Joint resummation
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Mellin transform hard scattering
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Joint resummation
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PDFs
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Joint resummation
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Fourier transform
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Joint resummation
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Resummed exponent
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Joint resummation
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The inverse transform links threshold and 
recoil logs. To recover threshold resummation: 
put  to zero.QT

Inverse Mellin transform
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Approximation of kinematic function
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Produces   when integrated overδ (b − i(N + 1)pT /p2
T) ∫

d2QT

(2π)2

[0409234]
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Approximation

• Reduces the 5D integral to 1D 

• Numerically more stable 

• Converges to the result obtained by setting  
 μ̄ = pT = QT /2
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Joint resummation
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Resummed exponent
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Resummed exponent
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initial state initial state final state interference
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Resummed exponent
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initial state initial state final state interference
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There is no general NLP resummation framework, but can we make an educated guess?



Extension to NLP
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initial state initial state final state interference

Joint resummation:  
• Recoil can be separated from threshold resummation. 
• Gives NLP contribution for . N → ∞
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Threshold resummation at NLP
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Isolate pure threshold behavior in:

How to ‘dress’ this with NLP contributions?
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Threshold resummation at NLP
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zN−1 − 1
1 − z

A(1)
a → ( zN−1 − 1

1 − z
− zN−1) A(1)

aOption 1:
[9611272, 0704.3180] 
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Threshold resummation at NLP
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Option 2: = − ∫
Q2/N̄2

μ2
F

dk2
T

k2
T

Aa(αs(k2
T))ln N̄ → − ∫

Q2/N̄2

μ2
F

dk2
T

k2
T

Paa (αs(k2
T))

[0202251, 0309264] 
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Splitting functions
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Option 2a: Include only diagonal contributions up to NLP



Splitting functions
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Option 2a: Include only diagonal contributions up to NLP

P(1)
q→q+g = CF ( 1 + z2

1 − z )
+

NLP= 2CF [( 1
1 − z )

+
− 1]

P(1)
g→g+g = 2CA [( z

1 − z )
+

+
1 − z

z
+ z(1 − z)] NLP= 2CA [( 1

1 − z )
+

− 1]



Splitting functions
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Option 2a: Include only diagonal contributions up to NLP

Option 2b: Include also off-diagonal contributions up to NLP



Splitting functions
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Option 2a: Include only diagonal contributions up to NLP

Option 2b: Include also off-diagonal contributions up to NLP

P(1)
q→g+q = CF [ 1 + (1 − z)2

z ] NLP= CF P(1)
g→q+q̄ = TR [z2 + (1 − z)2] NLP= TR



Splitting functions
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Option 2a: Include only diagonal contributions up to NLP

Option 2b: Include also off-diagonal contributions up to NLP

Option 2c: Keep the full form of the splitting functions

P(1)
q→q+g = CF ( 1 + z2

1 − z )
+

P(1)
g→g+g = 2CA [( z

1 − z )
+

+
1 − z

z
+ z(1 − z)] P(1)

q→g+q = CF [ 1 + (1 − z)2

z ] P(1)
g→q+q̄ = TR [z2 + (1 − z)2]



Numerical results

• Results for LHC@13 TeV, MMHT 
PDF set,  

• NLP effects smaller than LL  NLL 

• The NLP effects of option 1 (=2a) 
give a 5-10% correction 

μF = μ = Q = 2pT

→
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Scale dependence

Numerical correction of 
option 2b and 2c depends 
on the scale

90

ra
tio

 w
.r.

t. 
N

LL
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Scale dependence
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ra
tio

 w
.r.

t. 
μ

=
Q

=
2p

T Cause of scale dependence:  
the LP NLL expression 
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Scale dependence
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Cause of scale dependence:  
the LP NLL expression 

ra
tio

 w
.r.

t. 
μ

=
Q

=
2p

T

Take-home message 2: 
Scale dependence hugely 
decreased by including 
off-diagonal contributions 
of the splitting functions 
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Scale dependence
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Open questions: 
• What happens when all NLP 

contributions are included? 
• How do other processes behave?ra

tio
 w

.r.
t. 

μ
=

Q
=

2p
T

Both approaches only 
include NLP effects of 
collinear origin 
So not all LL NLP contributions at 
NLO are covered!
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Conclusions

• NLP amplitude for soft gluons is universal and creates a shift to the Born matrix element 
– But note that the emission of soft quarks is needed to create the full NLO expression at NLP 

• For processes with final state partons we recover all LL NLP contributions at NLO 
– If one were to extend this to NLL, one has to worry about (next-to-)collinear emissions 

• Gluon NLP terms give a 5-10% correction to the NLL distribution for prompt photon 

• Including quark emissions can significantly decrease the scale dependence
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Extra slides
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Recoil NLP correction
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Can be regarded as a wide angle contribution, 
as it is only there for non-zero kT



Isolating threshold behavior
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Extended evolution
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Non-singlet evolution is diagonal:

Singlet: 2x2 matrix, off-diagonal terms correspond to flavor changes (quark emission)

Stems from evolution  from  to αs(k2
T) μ2

F Q2/N̄2

Same term as in option 1

Similar approach for the fragmentation function



Scale dependence of direct vs fragmentation components
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