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Abstract

The aim of this report is to review in detail a recursive method to compute a multipole post-
Minkowski expansion in general relativity as presented in [1] by S. Detweiler and L.H. Brown.
The idea behind this work is to integrate the content of their paper with some additional infor-
mation taken from previous literature so as to make the topic more accessible to the non-expert.
Moreover, some of the calculations which were skipped in the paper are presented here.
A post-Minkowski approximation of general relativity is a power series expansion in the gravi-
tational constant G. We will show how to compute a complete step in the iterative procedure,
which takes an approximate solution of the Einstein’s field equations and produces a new solu-
tion with an error decreased by a factor of G.
The choice of pursuing an alternative approach to the more popular post-Newtonian (PN) ex-
pansion is motivated by the fact that PN approaches are hampered by internal inconsistencies,
due to the appearance of divergent integrals at higher orders in the approximation. Another
advantage of this method is that nowhere we impose a particular gauge choice, in particular
we do not require the existence of a harmonic coordinate system.
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Notation and General Setting

We start by introducing some basic notation and conventions adopted throughout the report.
The partial derivative is represented by the operator ∂a and only the Minkowski metric ηab and
its inverse ηab are used to lower and raise tensor indices. We will make extensive use of the
d’Alambertian operator in Minkowski space time � := ηab∂a∂b, while only occasionally we will
use the covariant derivative of a tensor, denoted with ∇a. The signature of the metric follows
the mostly plus convention (−+ ++), so that ηab = ηab = diag(−1,+1,+1,+1).
Let us consider multiple sources of gravitational field. The position of each of them is described
by a world line za(s) parametrised by the proper time s. We will adopt outgoing-null spherical
coordinates (s, r, θ, φ) centered on the world line. The field s at any event P is the value of s at
the vertex of the future null cone through that point, i.e. s(P ) = s(Q) where Q is the vertex
of the null cone from za(s) containing P . Since P lies on the null cone of Q, the space time
interval between xa and za is

Ω(xa, za(s)) = ηab(x
a − za(s))(xb − zb(s)) = 0. (2.1)

Figure 2.1: Outgoing-null spherical coordinates. P is on the future null cone of Q(za) and ka is a null
vector along the distance of the two points.

Following [2], let r be the spatial distance in Minkowski spacetime betweenQ and P as measured
in the instaneous rest frame of Q at the appropriate advanced time. The setting is depicted in
Figure 2.1. Then, in the rest frame of Q, where v = (−1, 0, 0, 0), r =

∣∣x0 − z0(s)∣∣ = x0 − z0(s)
because r ≥ 0. Therefore, moving to a generic reference frame the radial coordinate is equal to

r(xa) = −va[xa − za(Q)]. (2.2)
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In terms of the null spacetime separation vector, we can also define

ka(x) :=
xa − za(Q)

r
(2.3)

and notice that kava = −1. Finally, θ and φ are the usual angles as defined in the standard
spherical coordinates. Because P and Q are always on each other’s null cones, if the world line
za(s) is given, then Q is determined uniquely by P , as it is located on the intersection of the
world line and the past null cone of P .
Taking the derivative of a tensor field T ab defined along a world line is an easy task by use of
the chain rule:

∂cT
ab = −(∂cs)

∂T ab

∂s
= −kc

∂T ab

∂s
, (2.4)

where in the second equality we used that 0 = −ds + kadx
a so ds/dxb = kb. We can derive

some basic relations which will be useful throughout the rest of the analysis:

∂br(x
a) = ∂b(−vaxa) + vaz

a(Q))

= −va(∂bxa − ∂az (Q))− ∂bva(xa − za(Q))

= −va(δab + kbv
a) + kbv̇ark

a

= −vb + kb(1 + rkav̇
a)

= nb + rkbkav̇
a,

(2.5)

where na := ka − va is an outward-pointing spatial unit vector. Using the relation just found
and the Leibniz rule of the derivative,

r∂akb = ∂a(rkb)− (∂ar)kb

= ∂a(xb − zb(Q))− (−va + ka + rkakcv̇
c)kb

= ∂a(x
cηbc) + kavb + vakb − kakb(1 + rkcv̇

c)

= ηab + vakb + vbka − kakb(1 + rkcv̇
c).

(2.6)

Let us now introduce the metric gab of a generic space time as a symmetric and invertible
tensor. It is convenient to split it in a background Minkowski metric plus a perturbation and
define hab in terms of the inverse metric gab by

gab =
√
−ggab := ηab − hab. (2.7)

We also introduce the Einstein tensor density

Eab(h) = (−2g)(Rab − 1

2
Rgab), (2.8)

which is explicitly related to hab through the following relation, as given by [3]:

Eab(h) = −�hab + ∂a∂ch
cb + ∂b∂ch

ca − ηab∂c∂dhcd − τab(h). (2.9)

The quantity τab(h) contains all the quadratic terms in h and its derivatives. The Bianchi
identity rewritten in terms of the Einstein tensor density Eab is easily computed:
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∇a(G
ab) = ∇a

(
1

2(−g)
Eab

)
= − 1

2(−g2)
ggde(∂agde)E

ab +
1

2(−g)
∂aE

ab +
1

2(−g)
ΓccaE

ab +
1

2(−g)
ΓbacE

ac

=
1

2(−g)

(
− gde(∂agde)Eab + ∂aE

ab + ΓccaE
ab + ΓbacE

ac

)
=

1

2(−g)

(
− 2ΓccaE

ab + ∂aE
ab + ΓccaE

ab + ΓbacE
ac

)
= 0.

(2.10)

To go from the third to the fourth line we used the fact that

EabΓdda =
1

2
gde(∂agde + ∂dgea − ∂egda)Eab =

1

2
gde(∂agde)E

ab, (2.11)

where the last two terms in parenthesis are antisymmetric in the indices d and e and vanish
when they are contracted with the inverse metric gde. Finally we can express the divergence of
Eab as

∂aE
ab = 2ΓccaE

ab − ΓccaE
ab − ΓbacE

ac

= (η b
c Γdda − Γbac)E

ac.
(2.12)

Let us turn our focus on the post-Minkowski expansion. The iterative procedure is based on a
"nonlinearity expansion" of the metric tensor in powers of a parameter ε:

hab(ε) =
∑
n

εnh
(n)
ab . (2.13)

As it is noted in [4], the parameter ε does not have any physical significance, and this series
does not represent the physical field. The only role of ε is to attribute a weight to every term
of the series so as to define their order of magnitude and give a meaning to the expansion.
The idea of the post-Minkowski approach is to adopt ε ≡ G and assume that it is a small
quantity compared to the characteristic masses and distances of the problem at hand. The
power of this method resides in the fact that we are not imposing any gauge condition on the
metric tensor, clearly in contrast to the commonly adopted restriction to the harmonic gauge
∂b(
√
−ggab) = Γcda gcd = 0. This represents an advantage, as for systems with strong internal

gravity, e.g. black holes, a harmonic coordinate system may not be suited to cover the whole
manifold in a nonsingular manner (see [5]).

Let us implement this expansion for the setting presented above. At order zero hab0 = 0, at first
order hab1 = O(G), and so forth. In general

gab =
√
−g gab = ηab +

∑
n

Gnhab (n). (2.14)

As it is not possible to expand the field at a singularity, we enclose every source by boundaries.
In spacetime these boundaries are 3-dimensional surfaces of constant radius in outgoing-null
spherical coordinates centered around each source. They have the topological properties of
time-like cylinders. In this way we avoid to introduce an energy-momentum tensor and the
geometric data is given as conditions on the boundaries.
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Outside the inner boundaries the metric gab satisfies the Einstein’s equations in the vacuum,
which in terms of 2.8 are

Eab(h) = 0. (2.15)

This means that at every order the metric hab(n) satisfies (see [6])

∂ah
ab
(n) = Hb

(n)

�hab(n) = ∂Hab
(n) +Nab

(n)(h
ab
(m)) with m < n.

(2.16)

Here Nab
(n) is a source term depending on hab(m) and ∂H

ab
(n) is a gauge term which is O(Gn+1) and

has the form

∂Hab
(n) = ∂aλb(n) + ∂bλa(n) − ηab∂cλc(n). (2.17)

From now on we will drop the parenthesis on the indexes which indicate the order of the
approximation. At every order we assume that

Eab(hn) = O (Gn+1), (2.18)

and at every iterative step we compute a correction δhabn = O (Gn) defined by

habn (x) := habn−1(x) + δhabn (x;G). (2.19)

The improved approximation is given by a solution of the following differential equation:

�δhabn = �(habn − habn−1)
= −Eab(habn ) + ∂a∂ch

cb
n + ∂b∂ch

ca
n − ηab∂ca∂dhcdn − 16πτab(hn)+

+ Eab(habn−1)− (∂a∂ch
cb
n−1 + ∂b∂ch

ca
n−1 − ηab∂ca∂dhcdn−1 − 16πτab(hn−1))

= Eab(habn−1)− Eab(habn ) + ∂a∂cδh
cb
n + ∂b∂cδh

ca
n − ηab∂c∂dδhcdn − 16πτab(δhn)

= Eab(habn−1) +O (Gn+1).

(2.20)

In the last line we used the recursive condition 2.18. Note that τab is quadratic in the metric
and its derivatives, so it does not contain terms O(Gn). Furthermore, in order to write the
final expression we also require the restriction

∂aδh
ab
n = O(Gn+1). (2.21)

We verify that 2.19 is a more accurate solution of the field equations by plugging the solution
into Einstein’s tensor density and by adding and subtracting the same quantity Eab(hn−1),

Eab(hn) = Eab(hn−1 + δhn)− Eab(hn−1) + �δhabn +O(Gn+1)

= ∂a∂cδh
cb
n + ∂b∂cδh

ca
n − ηab∂c∂dδhcdn −

(
τab(hn−1 + δhn)− τab(hn−1)

)
+O(Gn+1)

= O(Gn+1).

(2.22)

In the first line we used 2.20 and in the second we used 2.9 together with the linearity of 2.9 in
hab for the first four terms. Using 2.21 we conclude that the first three terms are O(Gn+1), as
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well as the quadratic term in brackets, since each of its terms contains at least a first derivative
of the metric.
The other main ingredient of this expansion is the decomposition into tensor multipole moments.
To make use of it we need to introduce some additional elements. First, we will shorten the
notation for the tensor product of l unit vectors na (cf. 2.5) by writing it as NL := na1 ...nal ,
with the capital superscript letter indicating the number of indices in the sequence. In a similar
way, the sequence of l partial derivatives will be denoted as ∂L := ∂a1 ...∂al . Secondly, we will
represent the symmetric part of a tensor with parenthesis on its indices

T(abc)de :=
1

3!
(Tabcde + Tacbde + Tbacde + Tbcade + Tcabde + Tcbade). (2.23)

We will make extensive use from now on of tensors which are symmetric and completely trace-
free (STF). The STF part of a tensor is obtained in two steps. First we take the symmetric
part

Sa1..aN =
1

l!

∑
π

Aaπ(1)...aπ(N)
. (2.24)

The summation goes over the l! permutations π of the indices. Then we remove all the traces

[Tabc]
STF = T(abc) −

1

5

[
δabT(kkc) − δacT(kbk) − δbcT(akk)

]
. (2.25)

It is easy to verify that the factor in front is chosen so that this tensor vanishes when contracting
two of the three free indices, or in other words, so that it is indeed traceless. However, the
simplicity of this example can be misleading, for we might add just one index and the procedure
above would not work anymore. Indeed, let us proceed as before and assume a form like

[Tabcd]
STF = T(abcd) − a δ(abT e

cd)e . (2.26)

With the parameter a to be fixed. In particular this does not work because the trace of the
right hand side contains a term of the form 1

6
aδcdTbbee which cannot be set to zero by any choice

of a 6= 0. That is why it is necessary to assume the more general form

[Tabcd]
STF = T(abcd) − a δ(abT e

cd)e + b δ(abδcd)T
b
b

e
e (2.27)

Following [2], this suggests that in general we should assume an expression of the form

[Ta1...aN ]STF = Ta1...aN − a2 δ(a1a2T b
a3aN )b + a4 δ(a1a2δa3a4T

b1
a5...aN )b1

b2
b2

+ ...

=

[N
2
]∑

k=0

(−1)ka2k δ(a1a2 ...δa2k−1a2kT
b1

a2k+1aN )b1
... bN
bN

.
(2.28)

Here [N
2

] indicates the largest integer less than or equal to N
2
. Allowing for the symmetrisation

of the indices, a contraction of the k-th term gives a term which is contracted k times, or k+ 1
times. Therefore, when cancelling terms after a contraction we have to deal only with the k-th
and (k+1)-th terms. Choosing two indices a1 and a2 for the contraction, and counting the
possible ways in which these contractions can be placed among the N ! terms of the right hand
side of 2.28 we come up with the following condition for the prefactor:

a2(k+1) =
(N − 2k)(N − 2k − 1)

2(k + 1)(2N − 2k − 1)
a2k, (2.29)
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which can be solved by induction, with the base case a0 = 1,

a2k =

(
N
k

)(
N
2k

)(
2N
2k

) =
N !

k!(N − k)!

N !

2k!(N − 2k)!

2k!(2N − 2k)!

(2N)!

=
N !

k!(N − k)!

N !

(N − 2k)!

(2N − 2k)!!(2N − 2k − 1)!!

(2N)!!(2N − 1)!!
=

(2N − 2k − 1)!!N !

k!(N − 2k)!(2N − 1)!!
.

(2.30)

As a reminder, the semifactorial of n is defined as n!! = n(n− 2)(n− 4)... and is related to the
factorial by the property n! = n!!(n− 1)!! .
Just like the spherical harmonics Y (θ, φ), the set of all STF tensors of rank l generates an
irreducible representation of the (spatial) rotation group O(3) of weight l. Indeed there exists a
bilinear mapping between them and the spherical harmonics (cf. [5]). Let us consider a generic
scalar function f(θ, φ); we can expand it as a power series in the unit radial vector n with
coefficients that are rank-l STF tensors,

f(θ, φ) =
∑
L

FLNL(θ, φ). (2.31)

We will also impose that these STF tensors be spatial with respect to va(s). This is obtained
by means of a projection operator

fab := ηab + vavb, (2.32)

which projects every tensor to a spatial three manifold instantaneously orthogonal to va. The
symmetric and trace-free tensors which are also spatial are dubbed "SSTF" for short. Moreover,
the totally antisymmetric tensor which is orthogonal to va is

εabc := εabcdvd, (2.33)

of which we will make extensive use in the decomposition of the metric tensor and its derivatives.
From now on we will reserve capital script letters like A or P to denote SSTF tensors which
depend on s but are independent of θ, φ and r.

Going back to our expansion scheme, we can expand the metric tensor at every order as a power
series in a similar way,

hab (n)(x, t) =
∑
L

NL(θ, φ)h
ab (n)
L (r, t). (2.34)

To obtain the radiation field we need to take the transverse-traceless part of the most general
metric given by 2.34.
This kind of simultaneous expansion is expected a priori to produce a good approximation
everywhere outside the source, assuming that the expansion is indeed convergent, as remarked
in [6]. This is different, for example, from an expansion in inverse powers of r at fixed null
coordinate, which produces a valid approximation only asymptotically. To be more precise
we can characterise a source of gravitational waves by some length scales: its Schwarzschild
radius 2GM/c2 (= 2M with G = c = 1) and the characteristic wavelength of its gravitational
waves. According to these scales we can consider some regions in the space around the source:
a weak field zone, characterised by r � GM

c2
and a far wave zone, characterised by r � λ. The

nonlinearity approach followed here is expected to be valid in the former, assuming that the
radius of the source is smaller than its Schwarzschild radius, while the asymptotic expansion
will yield a good approximation only in the latter.
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Linear order approximation

The scope of this section is to compute a linear solution of the field equations in the post-
Minkowski expansion scheme. We consider now the retarded Green’s function G+(x − x′) ≡
G(x− x′) of the d’Alembert operator in flat spacetime, which is a solution of

�G(x− x′) = −4πδ4(x− x′). (3.1)

It can be easily checked that G(x− x′) = 2θ
(
x0 − x′ 0

)
δ
(
Ω(x− x′)

)
, where Ω is the spacetime

interval as defined in 2.1. We can rewrite this result in a more useful form by expanding δ(Ω):

δ(Ω) = δ
(
ηab(x

a − x′a)(xb − x′b)
)

= δ
(
[(x0 − x′0) + (xi − x′i)][−(x0 − x′0) + (xi − x′i)]

)
= δ
(
− (x0 − x′0)2 + (xi − x′i)2

)
= δ
(
− (sx − s)2 + (r)2

)
= δ
(
r2 − (sx − s)2)

)
=
δ
(
s− (sx − s)

)
2|s− sx|

∣∣∣∣
s>sx

+
δ
(
s− (s− sx)

)
2|s− sx|

∣∣∣∣
s<sx

=
δ
(
sx
)

2r

∣∣∣∣
s>sx

+
δ
(
2s− sx

)
2r

∣∣∣∣
s<sx

.

(3.2)

In the fourth line we moved to a outgoing-null coordinate system and from the fifth to the sixth
line we used the well known property of the delta function. In the retarded solution the second
term drops, since s > sx, and we obtain

G(x− z(s)) =
1

r
δ(sx)θ(s− sx) (3.3)

As stated in the previous section, we are concerned with the inhomogeneous wave equation

�hab = −ρab, (3.4)

where ρab can be expressed in terms of its multipolar decomposition, also called multipolar
skeleton,

ρab(x) = 4π

∫
MabL

1 ∂Lδ
(4)
(
x− z(s)

)
ds. (3.5)

The solution is given by the convolution of the Green’s function 3.3 with ρab,
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hab(x) =

∫
d4x′G(x− x′)ρab(x′)

=

∫
d4x′G(x− x′) ∂′L

∫
dsMabL

1 (s)δ(4)(x′ − zs)

= −
∫
d4x′

[
∂′d1G(x− x′) ∂′

L(l̂1)

∫
dsMabL

1 (s)δ(4)(x′ − zs) +

+ ∂′L

∫
dsG(x− x′)MabL

1 (s)δ(4)(x′ − zs)
]

= −
∫
d4x′ ∂′d1G(x− x′) ∂′

L(l̂1)

∫
dsMabL

1 (s)δ(4)(x′ − zs)

= −
∫
ds

∂

∂zs
∂′
L(l̂1)

G(x− zs)MabL
1 (s)

= ∂d1

∫
ds ∂′

L(l̂1)
G(x− zs)MabL

1 (s)

= ...(repeat integration by part l times)...

= ∂L

∫
dsG(x− zs)MabL

1 (s)

= ∂L

∫
ds

1

r
δ(sx)θ(s− sx)MabL

1 (s)

= ∂L

[
1

r
MabL

1 (sx)

]
.

(3.6)

The relation just obtained is important for the rest of the discussion. Here the notation used
for the partial derivatives is to be understood as ∂L(l̂k) = ∂d1 ...∂dk−1

∂dk+1
...∂dl . On the third line

we integrated by parts on the variable x′l1 and then dropped the boundary term on the fourth,
by inverting the order of the integrals and knowing that G(x−z(s)) vanishes far away from the
source. Secondly, after realising that the integrand depends on z(s) only through the Green’s
function in the form x − z(s) (fifth line), we replaced the derivative over z(s) with minus the
derivative over xl1 and we pulled it out of the integral. This steps had to be repeated l times
in order to get to the final expression.
The result of 3.6 is the most general metric field which satisfies the wave equation 3.4 and
which contains only outgoing waves. Incidentally, this last point depends on the definition of
the null coordinate we gave at the beginning. If we were interested in incoming wave solutions,
we could have defined s at a point P as s(P ) = s(Q) where Q is the vertex of the past null
cone containing P . We express 3.6 as a sum over its multipole components:

MabL
1 = vavbAL1 + 2v(aBb)L1 + 2v(aεb)q

(dlCL−1)q1 + 2v(af b)(dlDL−1)1 + fabEL1 + FabL1 +

+ 2εa)q
(dlGL−1)q(b1 + 2fa)(dlHL−1)(b

1 + 2εa)q(dlJ L−2
1q fdl−1)(b + fa(dlKL−21 fdl−1)b.

(3.7)

Here the reverse parenthesis serve to represent the symmetrisation over the indices a and b. If
the notation seems chaotic, it is good to keep in mind that only indices pertaining to the same
SSTF tensor can be symmetrised, as every SSTF mode is independent from the others. We
remark that the multipoles BL1 ,CL1 ,HL

1 and J L
1 lack the monopole mode l = 0, while FL1 and

GL1 do not even have a dipole mode l = 1. Moreover, FL1 and GL1 both give a contribution to
h1ab which is transverse to na and traceless. This means that they represent the moments of
the sources of gravitational waves located inside the inner boundaries. Even though we are not
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imposing here any gauge condition, a restriction on these SSTF objects arises as a consequence
of 2.21.
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N-th order approximation

The content of this section is the core of this expansion, as it provides a way to get from an
approximate solution of the field equations to a solution of a higher order, more accurate by a
factor of G. The idea is to start from the linear solution just computed and apply the algorithm
recursively.
In order to do so, we start by considering the correction of the metric at the n-th order δhabn as
a sum of two terms:

δhabn = pabn + qabn . (4.1)

We define qabn to satisfy the homogeneous wave equation

�qabn = 0. (4.2)

The other term pn by definition is a solution of the inhomogeneous equation

�pabn = Eab
n−1. (4.3)

Because pabn can be decomposed in a unique way into SSTF tensors we can algorithmically
construct qabn (cf. [6]), with the additional condition on their derivatives that

∂ap
ab
n + ∂aq

ab
n = O(Gn+1). (4.4)

This is an important point, as it will allow later to find a relation between the SSTF objects
constituting the two components of the metric.
Being a solution of the homogeneous wave equation, qabn is given by a decomposition into
multipole moments which is analogous to the one constructed for the metric at the first order
(cf. 3.7):

qabn (x) =
∞∑
l=0

∂L

[
1

r
MabL

n (sx)

]
. (4.5)

We note that this satisfies 4.2 everywhere except on the world line, as it is clearly singular for
r = 0. We will then modify the definition 4.2 accordingly, to avoid this problem.
As before, a formal solution is given by the convolution of the Green’s function of the � operator
with the nonhomogeneous term,

pabn = − 1

4π

∫
Eab
n−1(x

′)G(x− x′)d4x′. (4.6)

The derivative acts only on the Green’s function and therefore
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∂ap
ab
n = − 1

4π

∫
d4x′Eab

n−1(x
′)∂aG(x− x′)

=
1

4π

∫
d4x′Eab

n−1(x
′)∂′aG(x− x′)

=
1

4π

∫
d4x′∂′a[E

ab
n−1(x

′)G(x− x′)]− 1

4π

∫
d4x′∂′aE

ab
n−1(x

′)G(x− x′)

=
1

4π

∫
d4x′∂′a[E

ab
n−1(x

′)G(x− x′)] +O(Gn+1)

= − 1

4π

∫
ds′
[ ∮

∂′ar
′Eab

n−1(x
′)G(x− x′)r20 sin θ′dθ′dφ′

]
+O(Gn+1).

(4.7)

We made use of the antisymmetry of the Green’s function to replace the derivative over x with
the derivative over x′ which allowed us then to integrate by parts. Once more we used 2.12
to ascribe the second term in the third line to a term of higher order in G, as the Christoffel
symbols are O(G). In the last passage we wrote the integration over the spatial coordinates
explicitly and applied Stokes’ theorem, integrating over the inner boundaries at constant radius
(the radial vector is normal). The minus sign is due to the convention chosen for the orientation
of the boundaries.
Let us consider a generic point xa. It is clear from 3.3 that the Green’s function is nonvanishing
only on its past null cone. Consequently, the integral vanishes always except for the values of
s such that the boundaries intersect the past null cone, that is, at s and at about s− 2r0. This
idea is represented graphically in Figure 4.1.

Figure 4.1: Minkowski diagram of the intersection of the past null cone with an inner boundary. The
point of intersection closest to the field point has null coordinate value s and the one further away has
value approximately s− 2r0 for a spherical boundary of radius r0.

Now we want to make a Taylor expansion of the Green’s function into multipole modes and we
choose to do it around s− ro, the most convenient point in light of what we have just observed,

G(xa − x′a) =
∞∑
l=0

(−r′)l

l!
N ′L∂LG[xa − za(s− r0 + r′)] +O(G). (4.8)
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Plugging it into 4.7 and using that ∂′ar′
∣∣
s−r0

= ∂′ar
′
∣∣
s

+O(G),

∂ap
ab
n = − 1

4π

∞∑
l=0

∫
ds′
[

(−r0)l

l!

∮
∂′ar
′Eab

n−1(s
′ − r0)N ′L∂LG(x− z(s′))r20 sin θ′dθ′dφ′

]
+O(Gn+1)

= −
∞∑
l=0

∫
ds′
[

(−r0)l+2

4πl!

∮
∂′ar
′Eab

n−1(s
′ − r0)N ′L∂LG(x− z(s′)) sin θ′dθ′dφ′

]
+O(Gn+1)

= −
∞∑
l=0

∞∑
m=0

∫
ds′

(−r0)l+2m+2

4π(l + 2m)!

d2m

ds′2m

[ ∮
∂′ar
′Eab

n−1(s
′ − r0)N̂ ′L sin θ′dθ′dφ′

]
×

× ∂LG(x− z(s′)) +O(Gn+1)

= −
∞∑
l=0

∫
ds′KbLn (s) ∂LG(x− z(s)) +O(Gn+1).

(4.9)

To go from the second to the third line we expressed NL in terms of the combination of
SSTF tensors N̂L, as our aim is to express the integrand in terms of SSTF tensors. To
achieve that, we applied 2.32 as described in the introduction and then we applied the identity:∫
dsf(s)va∂aG(x− z(s)) =

∫
ds df

ds
G(x− z(s)) for 2m consecutive times to transform the term

N ′L∂LG(x − z(s)). At the end we grouped the part integrated along the angular coordinates
along with the prefactors and the summation over m in the term KbL

n (s) and we express it in
terms of SSTF tensors:

KbLn (s) = vbPLn (s) + εb q(dlQ
L−1) q
n (s) +R bL

n (s) + f b〈dlS L−1〉n (s). (4.10)

Here by 〈·〉 we indicate the SSTF part of a tensor. After some effort we have finally obtained a
decomposition of ∂apabn . The tensors PL...SL determine the structure of the sources. Thanks to
4.4 we can relate the SSTF components of the two parts and obtain in particular the following
matching conditions at every order:

ȦLn + BLn + D̈Ln − PLn = O(Gn+1)

ḂLn + FLn + ḦL
n −RL

n = O(Gn+1)

ĊLn + GLn + J̈ L
n −QLn = O(Gn+1)

ḊLn + ELn +HL
n + K̈Ln − SLn = O(Gn+1).

(4.11)

This set of coupled differential equation is fundamental, as any solution to them provides a
corresponding qabn and together with pabn completes the task of obtaining an improved solution
of the field equations. We note that every equation is linear and homogeneous so the system
can be solved by standard methods without much computational effort.

However, this alone is not enough to complete successfully a recursive step. There is indeed
an aspect to consider regarding the solution of 4.11 which can be illustrated by a heuristic
reasoning. The consequences of this observation call for an additional step in the recursive
procedure and will be described in the next section.
The equations 4.11 can be seen as a set of inhomogeneous differential equations for the modes
ALn ... KLn . As it is well known the general solution is given by the solution of the homogeneous
equation plus a particular solution of the inhomogeneous equation. A possibility for the latter
is to consider the system

13



BLn = PLn +O(Gn+1)

FLn = RL
n − ḂLn +O(Gn+1)

GLn = QLn +O(Gn+1)

ELn = SLn +O(Gn+1),

(4.12)

Obtained from the complete one by setting the remaining multipoles to zero. This is a sensible
choice from a physical point of view, as it can describe steady objects which are not affected
by tidal forces. Such a solution however fails for l = 0 and l = 1 as the low modes Bn, Fan and
Gan do not exist. This means we have to take into account the pathological cases as well,

Ȧn + D̈n − Pn = O(Gn+1)

Ȧbn + Bbn + D̈bn − Pbn = O(Gn+1)

Ḃbn + Ḧb
n −Rb

n = O(Gn+1)

Ċbn + J̈ b
n −Qbn = O(Gn+1).

(4.13)

We stop for a moment to give a physical interpretation of 4.13, the same way it is done in [5].
We obtain that the momentum is given by

P 0 =
1

4
(A1 + Ḋ1) P a =

1

4
(Ȧa1 + D̈a1 + Ḣa

1), (4.14)

while the displacement of the center of mass from the world line is given by

Y a =
Aa1 + Ḋa1 −Ha

1

A1 +D1

(4.15)

By using 4.13 we conclude that Ḃan + Ḧa
n is related to the change of 3-momentum of the source

with respect to the world line, while Ȧan + D̈bn is related to the change of the displacement of
the center of mass, and consequently to the change of the dipole moment of the source. This
also implies that Ra is analogous to the force, while Pa has no classical analogue. In the same
way, without giving the details, the first equation is related to the change of mass monopole,
and the last one to the change of the spin angular momentum. While the latter are not a cause
of concern, some problems arise regarding the physical interpretation of the second and third
equations. Indeed the variation of the dipole moment and the linear momentum reflects the
fact that the source is moving with respect to the predetermined world line, which was given
ahead of time as a result of the approximation at the previous order. Indeed the variation in
time of these quantities is computed with respect to the world line and not to the center of
mass of the source. This however implies that we have to take into account an increasingly
large number of multipoles in order to describe the motion of the source adequately. In order
to avoid this situation, we have to go back before improving the field equations and make sure
the world line is chosen such that

Ra
n − Ṗan = O(Gn+1) (4.16)

In this way we obtain the condition that Ḧb
n − Äbn −

...
Dbn = O(Gn+1) and so the second and

third equations of 4.13 are solved when all this multipoles are zero. In this way we do not
have to deal with a large amount of multipoles anymore. In the next part we will focus on the
condition 4.16 and understand how it emerges naturally.
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Equations of motion

As concluded at the end of the previous section, before we compute the next approximation of
the metric through the iteration of the field equation, it is necessary to adjust the world line.
This adjustment can be achieved through a so called retarded Poincaré transformation, which
can be seen as a generalisation of a Lorentz transformation. This section has three main goals:
the first one is to introduce the retarded Poicaré transformation and describe its properties;
the second is to understand how the transformation can be used to pull the field along a new
world line so as to maintain the same order of approximation to the field equation; the third is
to see how to choose the transformation in a way that the equations of motion are satisfied at
every order.

Let us start from the first point. The retarded Poincaré transformation is a diffeomorphism
from the causal future of a world line za onto the causal future of another world line z′a′ in
Minkowski spacetime. It is more general than a Lorentz transformation and possesses some
useful properties, which we are going to explore.
To begin with, the transformation is defined by

y′a := Λa′

b(sx)x
b + ξa

′
(sx). (5.1)

We fix the choice of ξa′ up to an additional constant by imposing

ξ̇a
′
= −Λ̇a′

bz
b(s). (5.2)

We define also the tensor η′a′b′ and its inverse η′a′b′ , with which we lower and raise primed
indices, as

η′a′b′ := Λc
a′Λ

d
b′ηcd, η′a

′b′ := Λa′

cΛ
b′

dη
cd. (5.3)

Using the definition of the retarded Poincaré transformation 5.1, together with 5.2 and 2.2 it
follows that

∂ya
′

∂xb
=

∂

∂xb

[
Λa′

b(sx)x
b + ξa

′
(sx)

]
= Λa′

b(sx)− kbΛ̇a′

c(sx)x
c − kbξ̇a

′

= Λa′

b(sx)− Λ̇a′

c(sx)kb (xc − zc(s))
= Λa′

b(sx)− rΛ̇a′

c(sx)k
c kb.

(5.4)

Because ya is on the null cone, its s coordinate shares the same value of za and we can define
a radial coordinate in the primed reference system with the following property:
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r′ := −v′a′(ya
′ − z′a′)

= −η′a′b′Λb′

cv
c(Λa′

c(s)x
b + ηa

′
(s)− Λa′

b(s) z
b(s)− ηa′(s))

= −ηcbΛb
a′Λ

a′

b(x
b − zb)vc

= −vb(xb − zb) = r.

(5.5)

We used that η′a′b′Λb′
c = ηcbΛ

b
a′ , which is an immediate consequence of the definitions 5.3.

Moreover we can show an analogous property for kb:

kb = − ∂s

∂xb
= −∂y

a

∂xb
∂s

∂ya
=
(

Λa′

b(sx)− rΛ̇a′

c(sx)k
c kb

)
k′a′ . (5.6)

Contracting this expression with kb yields 0 = kbk
b = Λa′

bk
bk′b′ − rΛ̇a′

ck
c kbk

b k′b′ and so the
second term on the right hand side vanishes, leaving Λa′

bk
bk′a′ = 0. Instead, contraction with

va and an easy rearrangement yields

Λ̇b′

ak
ak′b′ = −(1 + Λb′

cv
ck′b′)/r = −(1 + v′bk′b′)/r = 0, (5.7)

and lets us drop the second term on the right hand side of 5.6, which simplifies to

ka = Λb′

ak
′
b′ . (5.8)

Incidentally, 5.7 is also necessary to find an inverse to the transformation of the tensor compo-
nents. Starting from 5.4, we come up with the ansatz

∂xb

∂ya′
= Λb

a′(sy)− rΛ̇b
d′(sy)k

d′ ka′ . (5.9)

It is easy to see that when multipling 5.4 and 5.9, the cross products and the product of the
second terms vanish thanks to 5.7 and the product of the first terms gives trivially the identity.
By applying the transformation 5.1 to a world line za and taking the derivative with respect to
s of the new world line z′a′ we obtain v′a′ = Λa′

bv
b which together with 5.3 implies

η′a′b′v
′a′v′b

′
= −1. (5.10)

This means that s is the proper time even for the transformed world line, and we can simplify
the notation by dropping the subscripts of s in 5.9.
Summarising, we showed that the retarded Poincaré transformation leaves unchanged the scalar
fields s and r and the null vector ka, which means in turn that the future null cone is preserved.
For any world line there are many retarded Poincaré transformations which differ from one
another by a spatial rotation. To address this problem let us consider a tetrad basis attached
to the world line za. The general way to transport this basis can be written in the following
way:

ėa
′

i = −Ω′a
′

b′e
b′

i , (5.11)

where Ω′a
′

b′ is given by

Ω′a
′

b′ = v̇′a
′
v′b′ − v′a

′
v̇′b′ + v′c′ ω

′
d′ ε

a′ c′d′

b′ . (5.12)
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The first two terms represent the contribution from the Fermi-Walker transport, which leaves
the spacelike tetrad fields unchanged, while the third term, proportional to the angular velocity
tensor ω′a′ and antisymmetric, acts as a spatial rotation and leaves the timelike tetrad field
constant. We neglect this last term. With this choice we pick up a single retarded Poincaré
transformation among the infinite ones that transport the world line za = (s, 0, 0, 0) to z′a′(s)
and include a rotation of the coordinate basis.
As we know, the transformations that preserve the Minkowski metric are the Lorentz trans-
formations and therefore we consider changes of basis of the form ea

′
= Λa′

be
b, in which the

matrices Λa′

b depend on the spacetime coordinates [7]. By plugging the transformation law into
5.11 we obtain

Λ̇a′

b = −Ω′a
′

c′Λ
c′

b, (5.13)

which has a unique solution given suitable initial conditions.

Now that we have introduced the essential tools, we see how to implement them in order to
achieve the transformation compatibly with our expansion scheme. Let us consider a single
source and split the field at every order into a background habB and a self-field part habA ,

habn = habA + habB . (5.14)

The self-field contains at least the O(G) part of the field produced by the source itself, while
the background contains at least the O(G) part of all the other sources. Let us define the
transformation with Λa′

b(s = 0) = δa
′

b to match smoothly to the initial data and with Λ̇(s) =
O(Gn). In this transformation the background field is the same function in the new coordinates
as it was in the old ones, while the self-field is boosted and accelerated through a time dependent
Lorentz transformation

h′A
a′b′(y) = Λa′

cΛ
b′

dh
cd
A (x) + δa

′

c δ
b′

d h
cd
B (y)

= δa
′

c δ
b′

d h
cd
n (y) +

(
Λa′

cΛ
b′

dh
cd
A (x)− δa′c δb

′

d h
cd
A (y)

) (5.15)

In the second line we just rewrote the expression in a way that does not refer explicitly to the
background field. In particular, the expression in brackets vanishes for s = 0 and is proportional
to habA , so that we can approximate it with sΛ̇hA = O(sGn+1). To verify that the accuracy of the
approximation is maintained we consider Ea′b′(h′a

′b′(y)) and split it into its linear and quadratic
part

Ea′b′(h′a
′b′(y)) = Ea′b′(δa

′

c δ
b′

d h
cd
n (y)) + Ea′b′

lin (Λa′

cΛ
b′

dh
cd
A (x)− δa′c δb

′

d h
cd
A (y))+

+ Ea′b′

τ +O(s2G2n+2).
(5.16)

Here Eτ depends both on Λa′
cΛ

b′

dh
cd
A (x) − δa′c δb

′

d h
cd
A (y) and δa′c δb

′

d h
cd
n (y), while terms which are

quadratic in Λa′
cΛ

b′

dh
cd
A (x)− δa′c δb

′

d h
cd
A (y) are of higher order. With the observations carried out

so far we can conlcude that

Ea′b′(h′a
′b′(y)) = O(Gn+1) +O(sGn+2). (5.17)

This means that the approximation is preserved as long as s = O(G−1), which is in general
satisfied.
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At this point we can see how the transformation 5.15 allows for the equations of motion to be
satisfied. In what follows we will assume for simplicity that at the first order A1 is the the only
O(G) mode, while the others are O(G2) and negligible. Looking back at 3.7 we will consider
the terms linear in A1, so that we can pull the latter out of the derivative and write

MabL
1 = AL1 ∂L

(
1

r
vavb

)
. (5.18)

We will refer to the components of Pan and Ra
n which are linear in A1 and therefore contain v̇a

or v̈a respectively as PaA and Ra
A. These tensors are O(G2). To obtain an expression for them,

first we need to find the part of the Einstein’s tensor density which is linear in A1,

Eab
A = −2

r
A1

[
v̈(akb) +

1

r
v̇(a(kb) − vb)) + v̇(akb)kcv̇

c − 1

2
ηab
(
kcv̈

c +
1

r
kcv̇

c + (kcv̇
c)2
)]
. (5.19)

We skipped the details of this tedious calculation which require only basic relations, namely
2.9 and 2.5. Also, we can neglect all the combinations of the velocity and its derivatives which
are O(G2) as A1 is already O(G). Now we can extract from 3.7 the monopole and dipole parts
and relate them to PaA and Ra

A. In particular for the monopole part we obtain

∂ap
ab
n (l=0) = −

∞∑
m=0

b 2m,m

∫
ds

r2m0
(2m)!

d2m

ds′2m

[
1

4π

∮
r0,s

r20∂arE
ab
A (s′ − r0) sin θ dθ dφ

]
= −

∞∑
m=0

1

2m+ 1

∫
ds

r2m0
(2m)!

d2m

ds2m

[
A1(v̇

b + r0v̈
b) +O(G3)

]
s−r0

.

(5.20)

The symbol O(G3) can be pulled out of the brackets as the prefactors do not carry any depen-
dence on G. Using 4.10 we can compare the two expressions and conclude that

Kb
A (l=0)(s) = Rb

A(s) = −A1

∞∑
m=0

[
r2m0

(2m+ 1)!

d2m

ds2m
(v̇b + r0v̈

b)

]
s−r0

+O(G3) (5.21)

We can proceed in the same way for the dipole part,

∂ap
ab
n (l=1) = −

∞∑
m=0

b 2m+1,m

∫
ds

r2m0
(2m+ 1)!

d2m

ds′2m

[
1

4π

∮
r0,s

r30∂arE
ab
A (s′ − r0)nd sin θ dθ dφ

]
×

× ∂dG(x− z(s))

= −
∞∑
m=0

3

2m+ 3

∫
ds

r2m0
(2m+ 1)!

d2m

ds2m

[
− 1

3
A1r

2
0v

bv̈b +O(G3)

]
s−r0

∂dG(x− z(s))

=
∞∑
m=0

∫
ds

r2m+2
0

4π(2m+ 3)(2m+ 1)!

d2m

ds2m

[
A1v

bv̈b
]
s−r0

∂dG(x− z(s)) +O(G3)

(5.22)

In both cases the solution of the integrals in square brackets are given in [1], as well as the
value of the coefficients. The general way to obtain them is identical to how we obtained 2.30.
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The sign difference between 5.20 and 5.22 is due to an alternating sign in 4.9. By comparison
with 4.10, this time we take only the part which is linear in vb,

Kb
A (l=1)(s) = PbA(s) = A1

∞∑
m=0

[
r2m+2
0

(2m+ 3)(2m+ 1)!

d2m

ds2m
v̈b
]
s−r0

+O(G3). (5.23)

At this point we can put the two expressions together

[Rb
A − ṖbA](s) = −A1v̇

b
∣∣∣
s−r0
−A1

∞∑
m=0

[
r2m+2
0

(2m+ 3)!

d2m

ds2m
...
v b +

r2m+1
0

(2m+ 1)!

d2m

ds2m
v̈b+

+
r2m+2
0

(2m+ 3)(2m+ 1)!

d2m

ds2m
...
v b
]
s−r0

+O(G3)

= −A1v̇
b
∣∣∣
s−r0
− A1

∞∑
m=0

[
r2m+2
0

(2m+ 2)!

d2m

ds2m
...
v b +

r2m+1
0

(2m+ 1)!

d2m

ds2m
v̈b
]
s−r0

+O(G3)

= −A1

[
v̇b +

∞∑
m=0

[
r2m+2
0

(2m+ 2)!

d2m+2

ds2m+2
v̇b
]

+
∞∑
m=0

[
r2m+1
0

(2m+ 1)!

d2m+1

ds2m+1
v̇b
]]

s−r0
+O(G3)

= −A1

∞∑
m=0

[
rm0
m!

dm

dsm
v̇b
]
s−r0

+O(G3)

= −A1v̇
b +O(G3).

(5.24)

To go from the third to the fourth line we realised that the first two terms in square brackets
contribute to the even terms of a series where we replace 2m+m with m, while the third term
in square bracket contributes to the odd terms in the same series. We realise at this point that
this expression is exactly the Taylor series of −A1v̇

b around s − r0, but evaluated at s, like
the left hand side of the equation. Let us consider now a retarded Poincaré transformation
performed before the n-th iteration of the field equations. The acceleration of the world line
will be modified according to

v̇b
′

n = Λb′

av̇
a
n−1 + λ̇b

′

av
a
n−1. (5.25)

Assume that Λb′
a(s) is determined everywhere except for some value s0, let us define F b′ :=

[Rb
A−ṖbA](s0) and temporarily Λ̇b′

a(s0) = 0. Now, for Λ̇b′
a(s0) = O(Gn) different from zero, we

can enforce the equations of motion at s0 too by imposing that

A1Λ̇
b′

a(s0)v
a
n−1 = F b′ (5.26)

Indeed, using 6.9 and 5.25, we obtain

A1Λ
b′

av̇
a
n−1 = O(Gn+1). (5.27)

This represents three differential equations for the six free parameters of Λb′
a. The remaining

three are fixed by 5.13. Using 6.9 we can rewrite this last relation in the form of an iteration
of the equations of motion for the source, with F b′ representing a residual force remaining on
the world line zn−1(s):

A1v̇
b′

n = A1Λ
b′

av̇
a
n−1 + F b′ . (5.28)
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Behaviour at future null infinity

We turn our attention to the asymptotic behaviour of the radiation field. In particular we
will study the limit at future-null infinity, obtained by computing the limit of large r while
keeping s = t − r constant. We will see that some problems arise when trying to carry out a
multipole expansion in this limit. The aim of this section is to give an idea of the main steps
needed to extend the iterative procedure explained previously to this asymptotic regime. We
consider an isolated system and keep using outgoing-null spherical coordinates, but attached to
a nonaccelerating world line near the center of the system. We will verify that in this limit the
metric admits at every order an expansion in inverse powers of r, along with a simultaneous
expansion in G. In particular hab1 will admit a multipolar decomposition like in 3.7, with the
O(G2) part also being O(r−2),

hab1 =
1

r
χab1 (s, θ, φ) +O(Gr−2). (6.1)

It is clear then that χab represents the dominant part of the outgoing radiation at large distances.
However, a problem emerges already at second order when trying to evaluate pab2 . As it is shown
in [6] we can write for an arbitrary integer M

pab2 = NL

M∑
k=1

1

rk

(
TLk (s) + log(r)UL

k (s)

)
+ V L

N (r, s), (6.2)

where the remainder V L
N is O(r−N). The problem resides in the logarithms as they make the

post-Minkowski expansion ill defined: the n-th approximation becomes larger than the (n+ 1)-
th at sufficiently large distances. The presence of this logarithmic terms can be seen as a
consequence of the surfaces of constant null coordinate s in the region described by outgoing-
null coordinates that do not match the future null cones in the wave region (cf. [8]). This
mismatch can be solved by a gauge transformation, which we are going to describe next.
As a consequence of the restriction on the form of ntioned at the end of that section, the form
of the field χab is restrained as well:

kaχ
ab
1 = −vb(A1 + Ḋ1)− (Bb1 + Ḣb

1). (6.3)

We note that if the right hand side of this equation were to vanish, then the linear part of 2.9
would vanish and the dominant contribution to the Einstein tensor density would come from
τab. More precisely it would be equal to

Eab
n−1 = − 1

r2
kakbΨn(s, θ, φ) + Ēab

n−1, (6.4)

where Ēab
n−1 = O(G2r−3) and Ψn(s, θ, φ) contains contractions of derivatives of χab. But we can

always apply a gauge transformation to set 6.3 equal to zero. Let us remember the expression
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for the momentum in terms of multipoles 4.14 and conclude that the second term in 6.3 can
be made to vanish after a boost. To get D = 0 we use another transformation with �λa = 0,
described in [5] (eq. 2.9b). This condition is the harmonic gauge, in which the field equations
2.16 are satisfied with Hb(n) = 0 and the general form of the metric is preserved. Finally, with
the condition λ0 = 1

2
A1log r, λi = −1

4
A1n

i, we obtain at leading order in 1
r
and neglecting the

terms in Ȧ1,

hab1 =
1

2r
A1k

akb, (6.5)

where we used 2.5. We can easily see that indeed now kaχ
ab = 0.

At the generic order n we assume that the metric has an expansion in inverse powers of r, in
analogy with what was done before only in G before,

habn−1 =
1

r
χabn−1(s, θ, φ) +O(Gr−2)

δχabn−1 = χabn−1 − χabn−2,
(6.6)

under the condition that

kaχ
ab
n−1 = 0. (6.7)

In the same way we have just proceeded at first order, we have

Eab
n−1 = − 1

r2
kakbΨn(s, θ, φ) + Ēab

n−1 (6.8)

and we look for an improved solution habn = habn−1 + δhabn . This can be plugged into 2.9 to obtain

Eab(hn−1 + δhn) = O(Gn+1r−3). (6.9)

We can go through the same passages described in the previous section to construct the general
solution at the n-th order, but we encounter an obstacle. When we evaluate the third line of 4.7
we cannot anymore neglect the second integral, because in the wave zone we have 6.9. Instead
we end up with the modified condition

∂ap
ab
n + ∂aq

ab
n =

1

r2
ζbn+1(s, θ, φ). (6.10)

We can define a tensor γab such that its derivative is equal to the right hand side of 6.10:

∂aγ
ab = −kaγ̇bn+1 = − 1

r2
ζbn+1 +O(r−3), (6.11)

which leads us to an expression of the same form of 4.4, as desired,

∂ap
ab
n + ∂aq

ab
n + ∂aγ

ab
n+1 = O(Gn+1r−3) (6.12)

Moreover, by taking the second derivative of γab we obtain

�γabn+1 = kck
cγ̈abn+1 +O(Gn+1r−3) = O(Gn+1r−3). (6.13)

This is fundamental as it implies that the metric obeys the same field equations even after the
introduction of the correcting term γab
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�(habn + γabn+1) = Eab
n−1 +O(Gn+1r−3). (6.14)

Eventually, a further correction ∂λabn = O(Gn) that leaves the linear part of the operator Eab

invariant is required to eliminate the logarithmic terms. However we will not investigate the
details of such a transformation.
Summing up, the new iterative step to construct the metric at the next order is given by

δhabn := pabn + qabn + δλabn + γabn+1. (6.15)

With this and 2.19 we have obtained a proper power expansion in inverse powers of r with the
ansatz 6.6 holding at every order.
To conclude the iterative procedure we should prove 6.7 and 6.8. For the former, note that,
since δhabn = 1

r
δχabn (s, θ, φ) +O(Gnr−2), its derivative is equal to

∂aδh
ab
n = −1

r
kaδχ̇abn +O(Gnr−2) (6.16)

But from 6.11 it must be that ∂aδhabn = O(Gnr−2), so kaδχ̇abn = 0. Because δχabn = 0 on the
initial hypersurface for n > 1, kaδχabn = 0 everywhere. So 6.7 is proven by induction using 6.6b.
We have neglected here the analysis of the term δλabn , but for a rigorous analysis we should
make sure that its derivative does not produce terms of lower order. To check 6.8, we have to
go back to consider 2.22 and plug the new definition 6.15 for the iterative step. Using 6.14 and
the property of the transformation δλan stated above we obtain

Eab(hn) = ∂a∂c(p
cb
n + qcbn + γcbn−1) + ∂b∂c(p

ca
n + qcan + γcan−1)− ηab∂c∂d(pcdn + qcdn + γcdn−1) +

− τab(hn) + τab(hn−1) +O(Gn+1r−3).

(6.17)

Now it can be shown that indeed 6.8 holds at every order with a recursive expression for
Ψn(s, θ, φ).
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Conclusions

We presented a method to improve the accuracy of an approximate solution to Einstein’s
equations which can be iterated to any order. Let us quickly recap the crucial passages: the first
step was to construct a linear solution hab1 ; secondly Pb and Rb were computed, along with the
boundary conditions for Eab; the world line was then adjusted by means of a retarded Poincaré
transformation, which preserved the accuracy of the approximation, and the field equations
were iterated by computing qab and pab at the next order; eventually a small correction γab and
a transformation δλab were added to the metric to enforce a proper behaviour at future null
infinity.
A weakness of this approach is the difficulty to relate the physics of the sources to the conditions
at the inner boundaries in the presence of tidal forces. Instead, a strength of this approach
is that it can be possibly implemented in a straightforward way to be run by a computer.
However, there also exist analytical approaches to compute post-Minkowski approximations at
more than linear order. One example is given by [9], where techniques from perturbative field
theory are used to compute relevant physical quantities up to third post-Minkowski order for a
system of binary spinless objects and compared with state-of-the-art results for post-Newtonian
expansions.
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