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• Part 1:


A. Overview of “4321” w/ family dependent gauge charges.


B. Solution to neutrino mass catastrophe with ISS mechanism.

• Part 2:


A. Leptogenesis using the neutrino sector of “4321”.

• Part 3:


A. Potential to probe PS3-type models with gravitational waves.

[Greljo and BAS: 1802.04274]

[Baumholzer, Greljo and BAS: 1912.xxxxx]

[Greljo, Opferkuch and BAS: 1910.02014]
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“Pati-Salam” Leptoquark
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Uµ
1 = (3,1, 2/3)

[D. Buttazzo, A. Greljo, G. Isidori, 
D. Marzocca, 1706.07808]

For an updated fit: C. Cornella, J. 
Fuentes-Martin, G. Isidori, 1903.11517

• Anomalies in low-energy flavor data can 
coherently be explained by a single TeV-
scale massive vector boson mediator:

• First leptoquark ever studied. Extremely 
interesting in the context of Pati-Salam 
quark-lepton unification.
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Extended Gauge Group: The “4321” Model
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• 3rd family SM fermions are charged 
under “421” and coupled directly to the 
LQ to address flavor anomalies.


• 1st and 2nd family SM fermions 
charged only under “321” and are not 
coupled directly to the LQ (avoids the 
FCNC problem of ordinary Pati-Salam).

G = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)0

GSM = SU(3)c ⇥ SU(2)L ⇥ U(1)Y

~TeV

15 Broken Generators

G0 = (8,1, 0)

U1 = (3,1, 2/3)

Z 0 = (1,1, 0)

New SM Fermion Embedding
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“4321” w/ Family Dependent Gauge Charges
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• 1st and 2nd family quarks 
and leptons charged 
under “321” but are SU(4) 
singlets. Here, i = 1,2.

• Third family quarks and 
leptons are embedded in 
fundamentals of SU(4).
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[M. Bordone, C. Cornella, J. Fuentes-Martin, G. Isidori, 1712.01368]

Low Energy Limit of PS3:
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First Attempt at a Model
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• The Lagrangian for the light families looks just like the SM.
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0
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• The 3rd family Lagrangian contains just the following terms

• Light family - 3rd family mixing not allowed without new fields.

*Small 1st and 2nd family Yukawas only softly break this symmetry.

In the absence of Yukawas: U(2)3q ⇥ U(2)3`
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u
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L
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d

H
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d
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• The Lagrangian for the light families looks just like the SM.
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L Yu

eH u
0
R � q

0
L Yd H d

0
R � `

0
L Y⌫

eH ⌫
0
R � `

0
L Ye H e

0
R + h.c. ,

• The 3rd family Lagrangian contains just the following terms

Predicts the same mass 
for the bottom quark 

and tau lepton.

• Light family - 3rd family mixing not allowed without new fields.

In the absence of Yukawas: U(2)3q ⇥ U(2)3`
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*Small 1st and 2nd family Yukawas only softly break this symmetry.
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First Attempt at a Model
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• The Lagrangian for the light families looks just like the SM.

L12 = �q
0
L Yu

eH u
0
R � q

0
L Yd H d

0
R � `

0
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eH ⌫
0
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0
L Ye H e

0
R + h.c. ,

• The 3rd family Lagrangian contains just the following terms

Predicts the same mass 
for the top quark and 

tau neutrino.

Predicts the same mass 
for the bottom quark 

and tau lepton.

• Light family - 3rd family mixing not allowed without new fields.

*Small 1st and 2nd family Yukawas only softly break this symmetry.

In the absence of Yukawas: U(2)3q ⇥ U(2)3`
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Third Family Quark and Lepton Masses
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• Can add another Higgs to split the 3rd family quark and 
lepton masses.
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Third Family Quark and Lepton Masses
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• Can add another Higgs to split the 3rd family quark and 
lepton masses.
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Third Family Quark and Lepton Masses
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• Can add another Higgs to split the 3rd family quark and 
lepton masses.
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Requires Tuning:  
meV

vEW
⇠ 10�14 Bottom/Tau Splitting:  

mb

m⌧
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*Generic problem with low-scale QL-unification. 
Resolved in our model- later in the talk.
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H
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Light-Third Family Mixing: EFT
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• Light with 3rd family mixing is required, e.g. must generate the CKM.

Ben Stefanek | “4321” Models: Neutrinos and Gravitational Wave Probes

[M. Bordone, C. Cornella, J. Fuentes-Martin, G. Isidori, 1712.01368]

• In the EFT picture, such operators are allowed at dimension-5, e.g. for 
quarks:

• How to UV complete?

• A single new vector-like fermion with the same quantum numbers as        
can do the job. Contains vector-like partners to SM doublets.
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Light-Third Family Mixing: UV Completion
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[C. Cornella, J. Fuentes-Martin, G. Isidori, 1903.11517]

,

• Can get a better fit to the data with two copies of    and also introducing an SU(4)-
adjoint scalar      whose VEV gives another source of flavor and splits MQ and ML.

�
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Neutrino Mass Catastrophe
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• Accept a natural tau neutrino Dirac mass, i.e. 


• Add singlet fermions such that the inverse seesaw mechanism 
(ISS) can be implemented to obtain the correct neutrino masses.
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Up-type Dirac masses

Requires Tuning:  
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vEW
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[P. Fileviez Perez and M. Wise, 1307.6213]

Solution
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Complete Neutrino Sector of “4321”
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Lepton Number Conserving 

Lepton Number 

Violating
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• Technically natural for lepton number violating parameters to be 
small, since U(1)L’  is restored in the limit where they vanish.


• For simplicity, focus here on the first 3 terms to implement the ISS. 
No major change if other terms are included (if they are small).
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Simplified Neutrino Sector of “4321”
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Lepton Number Conserving Lepton Number Violating
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• The neutrino mass matrix takes the ISS form:
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SU(4) breaking VEV       : ~ TeV
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h⌦1i
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Inverse Seesaw Mechanism
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• ISS Hierarchy                     which is naturally expected in the 
model gives 3 light Majorana neutrinos:
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Example ISS Mass Spectrum
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Can be 
moved
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PMNS Non-Unitarity and B-Anomalies
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• 3x3 light neutrino mixing matrix is now non-unitary:

N =
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• PMNS Non-Unitary probed by                          , so 
parametrically there is a contribution at least as large as:
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Neutrino Benchmark Point
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ISS Parameter Value
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Using Flavor Rotations:

Simplifying Ansatz:

µS = diag(µ1 , µ2 , µ3)

µR = 0 Active Neutrino Parameters:

�m2
32 = 2.56⇥ 10�3 eV2 ,

�m2
21 = 7.36⇥ 10�5 eV2 .

sin2 ✓12 = 0.296 ,

sin2 ✓23 = 0.425 ,

sin2 ✓13 = 0.0214 .
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Neutrino Benchmark Point
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ISS Parameter Value

m0
⌫e

1.67 GeV
m0

⌫µ
38.3 GeV

m0
⌫⌧

10.0 GeV

sin ✓ 0.510

f⌫�
(1)
` 0.883 GeV

f⌫�
(2)
` 6.80 GeV

mQL 2.00 TeV
mR 10.0 TeV

µ1 0.720 keV
µ2 0.871 keV
µ3 1.28 keV

M⌫ =

0

BBBBBBB@

0 0 vHp
2
UY diag

⌫ �f⌫ �` 0

0 0 0 m0
⌫⌧

0
vHp
2
Y diag
⌫ UT 0 µR 0 MT

R

�f⌫ �T
` m0

⌫⌧
0 0 v1p

2
�T
R

0 0 MR
v1p
2
�R µS

1

CCCCCCCA

Ben Stefanek | “4321” Models: Neutrinos and Gravitational Wave Probes

✏ = 1�NN† ⇡ ⇥⇥†

PMNS Unitarity Violation:
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Current Bounds:Our Benchmark Point:

[S. Antusch, O. Fischer, 1407.6607]
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Neutrino Benchmark Point
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Embedding the ISS Solution in PS3
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• Consider a toy model of the neutrino sector of PS3

Flavor Alignment

( i = 1,2,3 for PSi )

• This hierarchy can perhaps be absorbed into the Majorana mass 
for SR:

fMR ⇡ diag(104, 103, 1) TeVO(1) Couplings:

µS ⇡ diag(106, 104, 1) keV,
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Embedding the ISS Solution in PS3
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• Consider a toy model of the neutrino sector of PS3

Flavor Alignment

( i = 1,2,3 for PSi )

• This hierarchy can perhaps be absorbed into the Majorana mass 
for SR:

fMR ⇡ diag(104, 103, 1) TeVO(1) Couplings:

µS ⇡ diag(106, 104, 1) keV,
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Part II

[Baumholzer, Greljo, BAS]  
work in progress New

Leptogenesis in “4321” Models
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Baryon Asymmetry of the Universe
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• Why is there more matter than anti-matter? 
 
 
 
 

• Sakharov conditions:


• Baryon number violation


• C and CP Violation


• Departure from thermal equilibrium

Requires new 
physics beyond 
the SM. What 
about “4321”?

Quantified by: YB ⌘
nB � nB

s�
⇠ 10�10
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ARS Leptogenesis
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Out of equilibrium 
production of sterile 

neutrinos (at least one 
small Yukawa)

[Akhmedov, Rubakov, Smirnov, 
hep-ph/9803255]

[B. Shuve, I. Yavin, 1401.2459]
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ARS Leptogenesis
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Out of equilibrium 
production of sterile 

neutrinos (at least one 
small Yukawa)

CP  
Violation

[Akhmedov, Rubakov, Smirnov, 
hep-ph/9803255]

[B. Shuve, I. Yavin, 1401.2459]
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Enhanced by small mass 
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• Because one sterile neutrino does not equilibrate before EW 
sphaleron freeze-out at                   :

LSM = �LS
Processed into non-vanishing 
B-asymmetry by sphalerons.

Ltot(         conserved) [Akhmedov, Rubakov, Smirnov, 
hep-ph/9803255]
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Gravitational Imprints of Flavour Hierarchies
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The mass hierarchy among three generations of quarks and charged leptons is one of the greatest

mysteries in particle physics. In various flavour models, the origin of this phenomenon is attributed

to a series of hierarchical spontaneous symmetry breakings, most of which are beyond the reach

of particle colliders. We point out that the observation of multi-peaked stochastic gravitational

waves from a series of cosmological phase transitions might be a unique probe of the mechanism

behind flavour hierarchies. To illustrate the point, we show how future ground- and space-based

gravitational wave observatories could detect up to three peaks in recently proposed PS
3
model.

I. INTRODUCTION

The first direct detection of gravitational waves (GW)
was a stunning confirmation of the theory of general rela-
tivity and marked the discovery of the only messenger via
which the universe can be probed back to the Planck era.
To take advantage of this unique window into the uni-
verse, the next few decades will see a plethora of ground-
and space-based gravitational wave observatories being
built across twelve decades in frequency. In addition to
what can be learned on the astrophysical front, this ex-
perimental e↵ort o↵ers an immense opportunity to probe
fundamental physics in the early universe. Indeed, many
particle physics processes that produce a stochastic grav-
itational wave background have already been identified,
such as the primordial spectrum expected from inflation,
violent first order phase transitions, cosmic strings, non-
perturbative particle production, primordial black holes,
etc. Many of these process are expected to produce a
frequency spectrum with a single peak, with the notable
exception being the nearly scale-invariant spectrum from
inflation.

Not as frequently discussed is the possibility of observ-
ing a multi-peaked gravitational wave signal, in either
single or multiple experiments, and what such a signal
might tell us about open puzzles in fundamental physics.
One intriguing possibility is that a multi-peaked signal
could come from a series of sequential first-order phase
transitions. As the peak frequency of the GW spectrum
from a first order phase transition is set by the vacuum
expectation value (VEV) in the broken phase, the ob-
servation of a multi-peaked signal could contain informa-
tion about the scales of multiple spontaneous symmetry
breakings (SSBs), with the first breaking giving the high-
est frequency peak and the last the lowest.

A longstanding question within fundamental physics is
that of the flavor puzzle, which refers to why the Stan-
dard Model (SM) fermion Yukawa couplings are spread

a
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b
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over so many orders of magnitude, with a top quark
Yukawa that is O(1) but an electron Yukawa which is
six orders of magnitude smaller. Just the quark sector
alone has a hierarchy which covers 4-5 decades and also
contains the puzzle of why the CKM mixing matrix is
close to identity.

It has been proposed that the flavor hierarchies could
be generated via a series of hierarchical SSBs [1–4]. These
types of models typically associate flavour with a fun-
damental gauge symmetry at high energies. The SM
fermion masses and mixings are then generated via spon-
taneous breaking of this gauge symmetry down to the
SM, usually in several steps. The aforementioned mod-
els are compatible with the lowest SSB occuring at the
TeV scale, which is highly motivated as it is the scale
which is currently being probed and perhaps also in or-
der to explain flavour anomalies. Interestingly enough,
if the final symmetry breaking occurs via a first order
phase transition at the TeV scale, it could leave an ob-
servable GW signal in upcoming space-based interferom-
eters such as LISA. Additionally, if one fixes the final
SSB at the TeV scale, the observed pattern of fermion
masses and mixings is compatible with first order phase
transitions associated with the higher breakings (which
may set masses/mixings for the light families) produc-
ing GW which may be observable in future ground-based
interferometers such as Einstein Telescope. Such a sce-
nario would lead to a spectacular signature involving a
multi-peaked GW signal, the peak frequencies of which
contain information about the flavour hierarchies, spread
across future GW experiments covering four decades of
frequency space. This separation in frequency can be
roughly seen by taking the geometric mean of the quark
masses of each family and looking at how many decades
separate them,
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One should keep in mind that this is only a rough sketch
of the idea. To further develop this idea, we will take the

• Upcoming gravitational wave experiments (2030’s) can probe particle 
physics processes beyond the reach of colliders.
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the U(2)Q ⇥ U(2)L global flavor symmetry appears as a
subgroup of an approximate flavor symmetry of the sys-
tem emerging at low energies [U(2)5]. Last but not least,
the localization of the Higgs field on the third-generation
site provides a natural screening mechanism for the Higgs
mass term against the heavy energy scales related to the
symmetry breaking of the heavy fields coupled to the
light generations.

II. THE MODEL

The gauge symmetry of the model holding at high en-
ergies is PS3 ⌘ PS1 ⇥ PS2 ⇥ PS3, where

PSi = SU(4)i ⇥ [SU(2)L]i ⇥ [SU(2)R]i . (1)

The fermion content is the same as in the SM plus three
right-handed neutrinos, such that each fermion family is
embedded in left- and right-handed multiplets of a given
PSi subgroup:

 (i)

L ⇠ (4,2,1)i ,  (i)

R ⇠ (4,1,2)i . (2)

The subindex i = 1, 2, 3 denotes the site that, before any
symmetry breaking, can be identified with the generation
index.

The SM gauge group is a subgroup of the diagonal
group, PSdiag = PS1+2+3, which corresponds to the origi-
nal PS gauge group. The SSB breaking PS3 ! SM occurs
in a series of steps at di↵erent energy scales (see Fig. 1)
with appropriate scalar fields acquiring non-vanishing
VEVs, as described below.

I. High-scale vertical breaking [PS1 ! SM1].
At some heavy scale, ⇤1 > 103 TeV, the PS1 group is
broken to SM1, where

SMi = SU(3)i ⇥ [SU(2)L]i ⇥ [U(1)Y]i , (3)

by the VEV of a scalar field ⌃1 ⇠ (4,1,2)1, charged
only under PS1 (or localized on the first site). Via this
breaking 9 gauge fields with exotic quantum numbers (6
LQ fields, a W

±
R , and a Z

0, all coupled only to the first
generation) acquire a heavy mass and decouple.

II. Horizontal breaking 1–2 [SM1 ⇥ PS2 ! SM1+2].
Gauge fields on di↵erent sites are broken to their diagonal
subgroup via appropriate link fields, or scalar bilinears.
On both links (1–2 and 2–3) we introduce the following
set of link fields

�L
ij ⇠ (1,2,1)i ⇥ (1, 2̄,1)j ,

�R
ij ⇠ (1,1,2)i ⇥ (1,1, 2̄)j ,

⌦ij ⇠ (4,2,1)i ⇥ (4̄, 2̄,1)j ,

(4)

such that

h�L
iji 6= 0 ) [SU(2)L]i ⇥ [SU(2)L]j ! [SU(2)L]i+j ,

h�R
iji 6= 0 ) [SU(2)R]i ⇥ [SU(2)R]j ! [SU(2)R]i+j ,

h⌦iji 6= 0 )

⇢
SU(4)i ⇥ SU(4)j ! SU(4)i+j

[SU(2)L]i ⇥ [SU(2)L]j ! [SU(2)L]i+j .

FIG. 1. Moose diagram of the model (up) and symmetry
breaking sequence.

At a scale ⇤12 < ⇤1 the 1–2 link fields acquire a VEV.
As a result, the vertical breaking occurring on the first
site is mediated also to the second site, and the gauge
symmetry is reduced to SM1+2 ⇥ PS3.
Thanks to this second breaking, 9 exotic gauge fields

coupled mainly to the second generation, and 12 SM-like
gauge fields coupled in a non-universal way to the first
two families acquire a heavy mass and can be integrated
out. Below the scale ⇤12 the residual dynamical gauge
sector is invariant under a global U(2)5 flavor symmetry
acting on the first two generations of SM fermions [39].
At this stage there is still no local coupling between

the fermions of the first two generations and the scalar
fields sitting on the third site (H3 and eH3) that contain
the SM Higgs. In other words, we have not yet generated
an e↵ective Yukawa coupling for the light generations.
The hierarchy between ⇤1, ⇤12, and the VEVs of the

1–2 link fields does not need to be specified. The lower
bound on the lowest of such scales, that we fix to be
103 TeV, is set by the tight limits on flavor-changing
neutral currents involving the first two generations (most
notably K–K̄ and D–D̄ mixing [40], and KL ! µe [41]).
With this choice, we can ignore the e↵ect of d � 6 e↵ec-
tive operators generated at this scale.

III. Horizontal breaking 2–3 [SM1+2 ⇥ PS3 ! SM].
The scale characterizing the dynamics of the 2–3 link
fieds is ⇤23 ⇠ 102 TeV. We assume a specific hierarchy
among this scale and the VEVs of the link fields:

⇤23 > h�L,R
23 i > h⌦23i ⌘ ⇤3 ⇠ 1 TeV . (5)

This hierarchy is a key ingredient to generate the correct
pattern for the Yukawa couplings (discussed in detail be-
low) and, at the same time, address the flavor anomalies.
At energies h�L,R

23 i > E > ⇤3 we can decouple a W
±
L , a

W
±
R , and two Z

0 fields with mass of O(10 TeV), that are
too heavy to be probed at colliders and have no impact
on flavor physics because of the U(2)5 flavor symmetry.

2

FIG. 1. Schematic view of the Pati-Salam Cubed model de-

tailed in Section II. The horizontal dotted lines represent the

energy scales at which phase transitions occur. Indicated be-

tween the lines are the gauge symmetry of the corresponding

phase. Phase transitions marked with red arrows lead to po-

tentially sizeable stochastic GW signature (See Section III).

PS
3 model of Ref. [4] as a concrete example in what fol-

lows, though the idea generalizes to any series of related
SSBs that produce strongly first-order phase transitions.

II. MODEL EXAMPLE: PATI-SALAM CUBED

As a prototype example, we focus on the PS
3 model

first introduced in Ref. [4]. Here, the original Pati-Salam
gauge group is deconstructed to three sites PS

3
⌘ PS1⇥

PS2 ⇥PS3 where each copy acts on one family of the SM
fermions. In particular, the entire SM family, including
the right-handed neutrino, fits into two left- and right-

chiral multiplets,  (i)
L ⌘ (4,2,1)i and  (i)

R ⌘ (4,1,2)i,

embedding left-handed quark and lepton doublets, Q
(i)
L

and L
(i)
L , and right-handed singlets u

(i)
R , ⌫

(i)
R , d

(i)
R and e

(i)
R ,

respectively. The label i = 1, 2, 3 denotes the correspond-
ing gauge group PSi ⌘ [SU(4) ⇥ SU(2)L ⇥ SU(2)R]i.

The model undergoes through a series of spontaneous
symmetry breakings occurring at di↵erent energy scales
as illustrated in Fig. 1. The first breaking (after infla-
tion) is triggered by the vev of ⌃1 which is 4 of SU(4)1.1

The subsequent breakings to the diagonal subgroups of
neighbouring sites is achieved by the appropriate scalar
link fields in bifundamental representations, �L,R

ij and
⌦ij . More specifically, �ij ’s are in 2 of the correspond-
ing SU(2)i and 2̄ of SU(2)j , while similarly, ⌦ij is

1
We propose a slight variation of the original model breaking

[SU(2)R]1 before inflation e↵ectively solving the monopole prob-

lem of low-scale PS models []. PS0
1 in Fig. 1 is defined as

[SU(4) ⇥ SU(2)L ⇥ U(1)]1.

(4,2,1)i ⇥ (4̄, 2̄,1)j . Finally, the Higgs fields live at the
third site, H3 ⌘ (1,2, 2̄)3.

The higher-dimensional formulation of the model, in
which PS

3 emerges in four space-time dimensions, can
justify small scalar quartic couplings, which is crucial to
ensure hierarchical vevs and, at the same time, induce
strong first-order phase transition as shown later.

Below the scale ⇤II, the unbroken phase of the the-
ory, SM1+2 ⇥PS3, leads to an approximate U(2) flavour
symmetry observed in the SM at low-energies. The lower
bound on this scale, ⇤II & 103 TeV, follows from strin-
gent limits on flavour changing neutral currents (FCNC)
induced by the heavy gauge bosons coupling first two gen-
erations []. At this level, Yukawa interactions are only

allowed for the third family, L �  ̄(3)
L H3 

(3)
R , predict-

ing vanishing light-fermion masses and the CKM matrix
equal to identity. (The smallness of the tau neutrino mass
is achieved by the inverse seesaw mechanism [5].) The
perturbation to this picture is obtained by the higher-
dimensional operators

L23 =
1

⇤III
 ̄(2)

L ⌦23H3 
(3)
R + h.c. ,

L12 =
1

⇤2
II

 ̄(k)
L �L

k3H3�
R
3l 

(l)
R + h.c. ,

(1)

after the link fields acquire vevs. The leading U(2) break-
ing spurion, following from the first term, generates the
mixing of the 3rd and light families, |Vts| ⇠ h⌦23i /⇤23.
The light fermion masses are instead due to the second
term, yc ⇠

⌦
�L

23

↵ ⌦
�R

32

↵
/⇤2

12. The UV completion of
the e↵ective operators in Eq. (1) has been discussed in
Refs. [4, 5]. We assume the scales generating the oper-
ators to coincide with the preceding symmetry breaking
scales, ⇤III ⇠ h�23i and ⇤II ⇠ h�12i, respectively. From
here, it follows that the four-step breaking, i) 104 TeV,
ii) 103 TeV, iii) 102 TeV, and iv) 1 TeV, is well com-
patible with the observed pattern of fermion masses and
mixings at low-energies.2

As we will show later, the three SU(4) phase tran-
sitions naturally induce the stochastic GW signature
within the reach of next-generation interferometers.

III. GRAVITATIONAL WAVE CALCULATION

A. Toy Model

We follow standard techniques for computing the GW
spectra from first-order phase transitions [refs]. For con-
creteness, we calculate in a toy “4 to 3” model where
SU(4) is broken to SU(3) by the VEV of a complex scalar

2
Another independent argument to keep the first two SSBs close

to the bounds implied by FCNC is the avoid large tuning of the

Higgs mass which is only partially screened from the two sites.

2

FIG. 1. Schematic view of the Pati-Salam Cubed model de-

tailed in Section II. The horizontal dotted lines represent the

energy scales at which phase transitions occur. Indicated be-

tween the lines are the gauge symmetry of the corresponding

phase. Phase transitions marked with red arrows lead to po-

tentially sizeable stochastic GW signature (See Section III).

PS
3 model of Ref. [4] as a concrete example in what fol-

lows, though the idea generalizes to any series of related
SSBs that produce strongly first-order phase transitions.

II. MODEL EXAMPLE: PATI-SALAM CUBED

As a prototype example, we focus on the PS
3 model

first introduced in Ref. [4]. Here, the original Pati-Salam
gauge group is deconstructed to three sites PS

3
⌘ PS1⇥

PS2 ⇥PS3 where each copy acts on one family of the SM
fermions. In particular, the entire SM family, including
the right-handed neutrino, fits into two left- and right-

chiral multiplets,  (i)
L ⌘ (4,2,1)i and  (i)

R ⌘ (4,1,2)i,

embedding left-handed quark and lepton doublets, Q
(i)
L

and L
(i)
L , and right-handed singlets u

(i)
R , ⌫

(i)
R , d

(i)
R and e

(i)
R ,

respectively. The label i = 1, 2, 3 denotes the correspond-
ing gauge group PSi ⌘ [SU(4) ⇥ SU(2)L ⇥ SU(2)R]i.

The model undergoes through a series of spontaneous
symmetry breakings occurring at di↵erent energy scales
as illustrated in Fig. 1. The first breaking (after infla-
tion) is triggered by the vev of ⌃1 which is 4 of SU(4)1.1

The subsequent breakings to the diagonal subgroups of
neighbouring sites is achieved by the appropriate scalar
link fields in bifundamental representations, �L,R

ij and
⌦ij . More specifically, �ij ’s are in 2 of the correspond-
ing SU(2)i and 2̄ of SU(2)j , while similarly, ⌦ij is

1
We propose a slight variation of the original model breaking

[SU(2)R]1 before inflation e↵ectively solving the monopole prob-

lem of low-scale PS models []. PS0
1 in Fig. 1 is defined as

[SU(4) ⇥ SU(2)L ⇥ U(1)]1.

(4,2,1)i ⇥ (4̄, 2̄,1)j . Finally, the Higgs fields live at the
third site, H3 ⌘ (1,2, 2̄)3.

The higher-dimensional formulation of the model, in
which PS

3 emerges in four space-time dimensions, can
justify small scalar quartic couplings, which is crucial to
ensure hierarchical vevs and, at the same time, induce
strong first-order phase transition as shown later.

Below the scale ⇤II, the unbroken phase of the the-
ory, SM1+2 ⇥PS3, leads to an approximate U(2) flavour
symmetry observed in the SM at low-energies. The lower
bound on this scale, ⇤II & 103 TeV, follows from strin-
gent limits on flavour changing neutral currents (FCNC)
induced by the heavy gauge bosons coupling first two gen-
erations []. At this level, Yukawa interactions are only

allowed for the third family, L �  ̄(3)
L H3 

(3)
R , predict-

ing vanishing light-fermion masses and the CKM matrix
equal to identity. (The smallness of the tau neutrino mass
is achieved by the inverse seesaw mechanism [5].) The
perturbation to this picture is obtained by the higher-
dimensional operators

L23 =
1

⇤III
 ̄(2)

L ⌦23H3 
(3)
R + h.c. ,

L12 =
1

⇤2
II

 ̄(k)
L �L

k3H3�
R
3l 

(l)
R + h.c. ,

(1)

after the link fields acquire vevs. The leading U(2) break-
ing spurion, following from the first term, generates the
mixing of the 3rd and light families, |Vts| ⇠ h⌦23i /⇤23.
The light fermion masses are instead due to the second
term, yc ⇠

⌦
�L

23

↵ ⌦
�R

32

↵
/⇤2

12. The UV completion of
the e↵ective operators in Eq. (1) has been discussed in
Refs. [4, 5]. We assume the scales generating the oper-
ators to coincide with the preceding symmetry breaking
scales, ⇤III ⇠ h�23i and ⇤II ⇠ h�12i, respectively. From
here, it follows that the four-step breaking, i) 104 TeV,
ii) 103 TeV, iii) 102 TeV, and iv) 1 TeV, is well com-
patible with the observed pattern of fermion masses and
mixings at low-energies.2

As we will show later, the three SU(4) phase tran-
sitions naturally induce the stochastic GW signature
within the reach of next-generation interferometers.

III. GRAVITATIONAL WAVE CALCULATION

A. Toy Model

We follow standard techniques for computing the GW
spectra from first-order phase transitions [refs]. For con-
creteness, we calculate in a toy “4 to 3” model where
SU(4) is broken to SU(3) by the VEV of a complex scalar

2
Another independent argument to keep the first two SSBs close

to the bounds implied by FCNC is the avoid large tuning of the

Higgs mass which is only partially screened from the two sites.
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the U(2)Q ⇥ U(2)L global flavor symmetry appears as a
subgroup of an approximate flavor symmetry of the sys-
tem emerging at low energies [U(2)5]. Last but not least,
the localization of the Higgs field on the third-generation
site provides a natural screening mechanism for the Higgs
mass term against the heavy energy scales related to the
symmetry breaking of the heavy fields coupled to the
light generations.

II. THE MODEL

The gauge symmetry of the model holding at high en-
ergies is PS3 ⌘ PS1 ⇥ PS2 ⇥ PS3, where

PSi = SU(4)i ⇥ [SU(2)L]i ⇥ [SU(2)R]i . (1)

The fermion content is the same as in the SM plus three
right-handed neutrinos, such that each fermion family is
embedded in left- and right-handed multiplets of a given
PSi subgroup:

 (i)

L ⇠ (4,2,1)i ,  (i)

R ⇠ (4,1,2)i . (2)

The subindex i = 1, 2, 3 denotes the site that, before any
symmetry breaking, can be identified with the generation
index.

The SM gauge group is a subgroup of the diagonal
group, PSdiag = PS1+2+3, which corresponds to the origi-
nal PS gauge group. The SSB breaking PS3 ! SM occurs
in a series of steps at di↵erent energy scales (see Fig. 1)
with appropriate scalar fields acquiring non-vanishing
VEVs, as described below.

I. High-scale vertical breaking [PS1 ! SM1].
At some heavy scale, ⇤1 > 103 TeV, the PS1 group is
broken to SM1, where

SMi = SU(3)i ⇥ [SU(2)L]i ⇥ [U(1)Y]i , (3)

by the VEV of a scalar field ⌃1 ⇠ (4,1,2)1, charged
only under PS1 (or localized on the first site). Via this
breaking 9 gauge fields with exotic quantum numbers (6
LQ fields, a W

±
R , and a Z

0, all coupled only to the first
generation) acquire a heavy mass and decouple.

II. Horizontal breaking 1–2 [SM1 ⇥ PS2 ! SM1+2].
Gauge fields on di↵erent sites are broken to their diagonal
subgroup via appropriate link fields, or scalar bilinears.
On both links (1–2 and 2–3) we introduce the following
set of link fields

�L
ij ⇠ (1,2,1)i ⇥ (1, 2̄,1)j ,

�R
ij ⇠ (1,1,2)i ⇥ (1,1, 2̄)j ,

⌦ij ⇠ (4,2,1)i ⇥ (4̄, 2̄,1)j ,

(4)

such that

h�L
iji 6= 0 ) [SU(2)L]i ⇥ [SU(2)L]j ! [SU(2)L]i+j ,

h�R
iji 6= 0 ) [SU(2)R]i ⇥ [SU(2)R]j ! [SU(2)R]i+j ,

h⌦iji 6= 0 )

⇢
SU(4)i ⇥ SU(4)j ! SU(4)i+j

[SU(2)L]i ⇥ [SU(2)L]j ! [SU(2)L]i+j .

FIG. 1. Moose diagram of the model (up) and symmetry
breaking sequence.

At a scale ⇤12 < ⇤1 the 1–2 link fields acquire a VEV.
As a result, the vertical breaking occurring on the first
site is mediated also to the second site, and the gauge
symmetry is reduced to SM1+2 ⇥ PS3.
Thanks to this second breaking, 9 exotic gauge fields

coupled mainly to the second generation, and 12 SM-like
gauge fields coupled in a non-universal way to the first
two families acquire a heavy mass and can be integrated
out. Below the scale ⇤12 the residual dynamical gauge
sector is invariant under a global U(2)5 flavor symmetry
acting on the first two generations of SM fermions [39].
At this stage there is still no local coupling between

the fermions of the first two generations and the scalar
fields sitting on the third site (H3 and eH3) that contain
the SM Higgs. In other words, we have not yet generated
an e↵ective Yukawa coupling for the light generations.
The hierarchy between ⇤1, ⇤12, and the VEVs of the

1–2 link fields does not need to be specified. The lower
bound on the lowest of such scales, that we fix to be
103 TeV, is set by the tight limits on flavor-changing
neutral currents involving the first two generations (most
notably K–K̄ and D–D̄ mixing [40], and KL ! µe [41]).
With this choice, we can ignore the e↵ect of d � 6 e↵ec-
tive operators generated at this scale.

III. Horizontal breaking 2–3 [SM1+2 ⇥ PS3 ! SM].
The scale characterizing the dynamics of the 2–3 link
fieds is ⇤23 ⇠ 102 TeV. We assume a specific hierarchy
among this scale and the VEVs of the link fields:

⇤23 > h�L,R
23 i > h⌦23i ⌘ ⇤3 ⇠ 1 TeV . (5)

This hierarchy is a key ingredient to generate the correct
pattern for the Yukawa couplings (discussed in detail be-
low) and, at the same time, address the flavor anomalies.
At energies h�L,R

23 i > E > ⇤3 we can decouple a W
±
L , a

W
±
R , and two Z

0 fields with mass of O(10 TeV), that are
too heavy to be probed at colliders and have no impact
on flavor physics because of the U(2)5 flavor symmetry.

• 5d Pati-Salam gauge symmetry deconstructed onto three 4d 
sites:

PS3 ⌘ PS1 ⇥ PS2 ⇥ PS3
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• SM fermion masses and mixings are generated by breaking 
the PS3 gauge symmetry in a series of sequential steps.


• Flavor hierarchies <==> Series of hierarchical SSBs
2

FIG. 1. Schematic view of the Pati-Salam Cubed model de-

tailed in Section II. The horizontal dotted lines represent the

energy scales at which phase transitions occur. Indicated be-

tween the lines are the gauge symmetry of the corresponding

phase. Phase transitions marked with red arrows lead to po-

tentially sizeable stochastic GW signature (See Section III).

PS
3 model of Ref. [4] as a concrete example in what fol-

lows, though the idea generalizes to any series of related
SSBs that produce strongly first-order phase transitions.

II. MODEL EXAMPLE: PATI-SALAM CUBED

As a prototype example, we focus on the PS
3 model

first introduced in Ref. [4]. Here, the original Pati-Salam
gauge group is deconstructed to three sites PS

3
⌘ PS1⇥

PS2 ⇥PS3 where each copy acts on one family of the SM
fermions. In particular, the entire SM family, including
the right-handed neutrino, fits into two left- and right-

chiral multiplets,  (i)
L ⌘ (4,2,1)i and  (i)

R ⌘ (4,1,2)i,

embedding left-handed quark and lepton doublets, Q
(i)
L

and L
(i)
L , and right-handed singlets u

(i)
R , ⌫

(i)
R , d

(i)
R and e

(i)
R ,

respectively. The label i = 1, 2, 3 denotes the correspond-
ing gauge group PSi ⌘ [SU(4) ⇥ SU(2)L ⇥ SU(2)R]i.

The model undergoes through a series of spontaneous
symmetry breakings occurring at di↵erent energy scales
as illustrated in Fig. 1. The first breaking (after infla-
tion) is triggered by the vev of ⌃1 which is 4 of SU(4)1.1

The subsequent breakings to the diagonal subgroups of
neighbouring sites is achieved by the appropriate scalar
link fields in bifundamental representations, �L,R

ij and
⌦ij . More specifically, �ij ’s are in 2 of the correspond-
ing SU(2)i and 2̄ of SU(2)j , while similarly, ⌦ij is

1
We propose a slight variation of the original model breaking

[SU(2)R]1 before inflation e↵ectively solving the monopole prob-

lem of low-scale PS models []. PS0
1 in Fig. 1 is defined as

[SU(4) ⇥ SU(2)L ⇥ U(1)]1.

(4,2,1)i ⇥ (4̄, 2̄,1)j . Finally, the Higgs fields live at the
third site, H3 ⌘ (1,2, 2̄)3.

The higher-dimensional formulation of the model, in
which PS

3 emerges in four space-time dimensions, can
justify small scalar quartic couplings, which is crucial to
ensure hierarchical vevs and, at the same time, induce
strong first-order phase transition as shown later.

Below the scale ⇤II, the unbroken phase of the the-
ory, SM1+2 ⇥PS3, leads to an approximate U(2) flavour
symmetry observed in the SM at low-energies. The lower
bound on this scale, ⇤II & 103 TeV, follows from strin-
gent limits on flavour changing neutral currents (FCNC)
induced by the heavy gauge bosons coupling first two gen-
erations []. At this level, Yukawa interactions are only

allowed for the third family, L �  ̄(3)
L H3 

(3)
R , predict-

ing vanishing light-fermion masses and the CKM matrix
equal to identity. (The smallness of the tau neutrino mass
is achieved by the inverse seesaw mechanism [5].) The
perturbation to this picture is obtained by the higher-
dimensional operators

L23 =
1

⇤III
 ̄(2)

L ⌦23H3 
(3)
R + h.c. ,

L12 =
1

⇤2
II

 ̄(k)
L �L

k3H3�
R
3l 

(l)
R + h.c. ,

(1)

after the link fields acquire vevs. The leading U(2) break-
ing spurion, following from the first term, generates the
mixing of the 3rd and light families, |Vts| ⇠ h⌦23i /⇤23.
The light fermion masses are instead due to the second
term, yc ⇠

⌦
�L

23

↵ ⌦
�R

32

↵
/⇤2

12. The UV completion of
the e↵ective operators in Eq. (1) has been discussed in
Refs. [4, 5]. We assume the scales generating the oper-
ators to coincide with the preceding symmetry breaking
scales, ⇤III ⇠ h�23i and ⇤II ⇠ h�12i, respectively. From
here, it follows that the four-step breaking, i) 104 TeV,
ii) 103 TeV, iii) 102 TeV, and iv) 1 TeV, is well com-
patible with the observed pattern of fermion masses and
mixings at low-energies.2

As we will show later, the three SU(4) phase tran-
sitions naturally induce the stochastic GW signature
within the reach of next-generation interferometers.

III. GRAVITATIONAL WAVE CALCULATION

A. Toy Model

We follow standard techniques for computing the GW
spectra from first-order phase transitions [refs]. For con-
creteness, we calculate in a toy “4 to 3” model where
SU(4) is broken to SU(3) by the VEV of a complex scalar

2
Another independent argument to keep the first two SSBs close

to the bounds implied by FCNC is the avoid large tuning of the

Higgs mass which is only partially screened from the two sites.

2

FIG. 1. Schematic view of the Pati-Salam Cubed model de-

tailed in Section II. The horizontal dotted lines represent the

energy scales at which phase transitions occur. Indicated be-

tween the lines are the gauge symmetry of the corresponding

phase. Phase transitions marked with red arrows lead to po-

tentially sizeable stochastic GW signature (See Section III).

PS
3 model of Ref. [4] as a concrete example in what fol-

lows, though the idea generalizes to any series of related
SSBs that produce strongly first-order phase transitions.

II. MODEL EXAMPLE: PATI-SALAM CUBED

As a prototype example, we focus on the PS
3 model

first introduced in Ref. [4]. Here, the original Pati-Salam
gauge group is deconstructed to three sites PS

3
⌘ PS1⇥

PS2 ⇥PS3 where each copy acts on one family of the SM
fermions. In particular, the entire SM family, including
the right-handed neutrino, fits into two left- and right-

chiral multiplets,  (i)
L ⌘ (4,2,1)i and  (i)

R ⌘ (4,1,2)i,

embedding left-handed quark and lepton doublets, Q
(i)
L

and L
(i)
L , and right-handed singlets u

(i)
R , ⌫

(i)
R , d

(i)
R and e

(i)
R ,

respectively. The label i = 1, 2, 3 denotes the correspond-
ing gauge group PSi ⌘ [SU(4) ⇥ SU(2)L ⇥ SU(2)R]i.

The model undergoes through a series of spontaneous
symmetry breakings occurring at di↵erent energy scales
as illustrated in Fig. 1. The first breaking (after infla-
tion) is triggered by the vev of ⌃1 which is 4 of SU(4)1.1

The subsequent breakings to the diagonal subgroups of
neighbouring sites is achieved by the appropriate scalar
link fields in bifundamental representations, �L,R

ij and
⌦ij . More specifically, �ij ’s are in 2 of the correspond-
ing SU(2)i and 2̄ of SU(2)j , while similarly, ⌦ij is

1
We propose a slight variation of the original model breaking

[SU(2)R]1 before inflation e↵ectively solving the monopole prob-

lem of low-scale PS models []. PS0
1 in Fig. 1 is defined as

[SU(4) ⇥ SU(2)L ⇥ U(1)]1.

(4,2,1)i ⇥ (4̄, 2̄,1)j . Finally, the Higgs fields live at the
third site, H3 ⌘ (1,2, 2̄)3.

The higher-dimensional formulation of the model, in
which PS

3 emerges in four space-time dimensions, can
justify small scalar quartic couplings, which is crucial to
ensure hierarchical vevs and, at the same time, induce
strong first-order phase transition as shown later.

Below the scale ⇤II, the unbroken phase of the the-
ory, SM1+2 ⇥PS3, leads to an approximate U(2) flavour
symmetry observed in the SM at low-energies. The lower
bound on this scale, ⇤II & 103 TeV, follows from strin-
gent limits on flavour changing neutral currents (FCNC)
induced by the heavy gauge bosons coupling first two gen-
erations []. At this level, Yukawa interactions are only

allowed for the third family, L �  ̄(3)
L H3 

(3)
R , predict-

ing vanishing light-fermion masses and the CKM matrix
equal to identity. (The smallness of the tau neutrino mass
is achieved by the inverse seesaw mechanism [5].) The
perturbation to this picture is obtained by the higher-
dimensional operators

L23 =
1

⇤III
 ̄(2)

L ⌦23H3 
(3)
R + h.c. ,

L12 =
1

⇤2
II

 ̄(k)
L �L

k3H3�
R
3l 

(l)
R + h.c. ,

(1)

after the link fields acquire vevs. The leading U(2) break-
ing spurion, following from the first term, generates the
mixing of the 3rd and light families, |Vts| ⇠ h⌦23i /⇤23.
The light fermion masses are instead due to the second
term, yc ⇠

⌦
�L

23

↵ ⌦
�R

32

↵
/⇤2

12. The UV completion of
the e↵ective operators in Eq. (1) has been discussed in
Refs. [4, 5]. We assume the scales generating the oper-
ators to coincide with the preceding symmetry breaking
scales, ⇤III ⇠ h�23i and ⇤II ⇠ h�12i, respectively. From
here, it follows that the four-step breaking, i) 104 TeV,
ii) 103 TeV, iii) 102 TeV, and iv) 1 TeV, is well com-
patible with the observed pattern of fermion masses and
mixings at low-energies.2

As we will show later, the three SU(4) phase tran-
sitions naturally induce the stochastic GW signature
within the reach of next-generation interferometers.

III. GRAVITATIONAL WAVE CALCULATION

A. Toy Model

We follow standard techniques for computing the GW
spectra from first-order phase transitions [refs]. For con-
creteness, we calculate in a toy “4 to 3” model where
SU(4) is broken to SU(3) by the VEV of a complex scalar

2
Another independent argument to keep the first two SSBs close

to the bounds implied by FCNC is the avoid large tuning of the

Higgs mass which is only partially screened from the two sites.

Yukawas

2

FIG. 1. Schematic view of the Pati-Salam Cubed model de-

tailed in Section II. The horizontal dotted lines represent the

energy scales at which phase transitions occur. Indicated be-

tween the lines are the gauge symmetry of the corresponding

phase. Phase transitions marked with red arrows lead to po-

tentially sizeable stochastic GW signature (See Section III).

PS
3 model of Ref. [4] as a concrete example in what fol-

lows, though the idea generalizes to any series of related
SSBs that produce strongly first-order phase transitions.

II. MODEL EXAMPLE: PATI-SALAM CUBED

As a prototype example, we focus on the PS
3 model

first introduced in Ref. [4]. Here, the original Pati-Salam
gauge group is deconstructed to three sites PS

3
⌘ PS1⇥

PS2 ⇥PS3 where each copy acts on one family of the SM
fermions. In particular, the entire SM family, including
the right-handed neutrino, fits into two left- and right-

chiral multiplets,  (i)
L ⌘ (4,2,1)i and  (i)

R ⌘ (4,1,2)i,

embedding left-handed quark and lepton doublets, Q
(i)
L

and L
(i)
L , and right-handed singlets u

(i)
R , ⌫

(i)
R , d

(i)
R and e

(i)
R ,

respectively. The label i = 1, 2, 3 denotes the correspond-
ing gauge group PSi ⌘ [SU(4) ⇥ SU(2)L ⇥ SU(2)R]i.

The model undergoes through a series of spontaneous
symmetry breakings occurring at di↵erent energy scales
as illustrated in Fig. 1. The first breaking (after infla-
tion) is triggered by the vev of ⌃1 which is 4 of SU(4)1.1

The subsequent breakings to the diagonal subgroups of
neighbouring sites is achieved by the appropriate scalar
link fields in bifundamental representations, �L,R

ij and
⌦ij . More specifically, �ij ’s are in 2 of the correspond-
ing SU(2)i and 2̄ of SU(2)j , while similarly, ⌦ij is

1
We propose a slight variation of the original model breaking

[SU(2)R]1 before inflation e↵ectively solving the monopole prob-

lem of low-scale PS models []. PS0
1 in Fig. 1 is defined as

[SU(4) ⇥ SU(2)L ⇥ U(1)]1.

(4,2,1)i ⇥ (4̄, 2̄,1)j . Finally, the Higgs fields live at the
third site, H3 ⌘ (1,2, 2̄)3.

The higher-dimensional formulation of the model, in
which PS

3 emerges in four space-time dimensions, can
justify small scalar quartic couplings, which is crucial to
ensure hierarchical vevs and, at the same time, induce
strong first-order phase transition as shown later.

Below the scale ⇤II, the unbroken phase of the the-
ory, SM1+2 ⇥PS3, leads to an approximate U(2) flavour
symmetry observed in the SM at low-energies. The lower
bound on this scale, ⇤II & 103 TeV, follows from strin-
gent limits on flavour changing neutral currents (FCNC)
induced by the heavy gauge bosons coupling first two gen-
erations []. At this level, Yukawa interactions are only

allowed for the third family, L �  ̄(3)
L H3 

(3)
R , predict-

ing vanishing light-fermion masses and the CKM matrix
equal to identity. (The smallness of the tau neutrino mass
is achieved by the inverse seesaw mechanism [5].) The
perturbation to this picture is obtained by the higher-
dimensional operators

L23 =
1

⇤III
 ̄(2)

L ⌦23H3 
(3)
R + h.c. ,

L12 =
1

⇤2
II

 ̄(k)
L �L

k3H3�
R
3l 

(l)
R + h.c. ,

(1)

after the link fields acquire vevs. The leading U(2) break-
ing spurion, following from the first term, generates the
mixing of the 3rd and light families, |Vts| ⇠ h⌦23i /⇤23.
The light fermion masses are instead due to the second
term, yc ⇠

⌦
�L

23

↵ ⌦
�R

32

↵
/⇤2

12. The UV completion of
the e↵ective operators in Eq. (1) has been discussed in
Refs. [4, 5]. We assume the scales generating the oper-
ators to coincide with the preceding symmetry breaking
scales, ⇤III ⇠ h�23i and ⇤II ⇠ h�12i, respectively. From
here, it follows that the four-step breaking, i) 104 TeV,
ii) 103 TeV, iii) 102 TeV, and iv) 1 TeV, is well com-
patible with the observed pattern of fermion masses and
mixings at low-energies.2

As we will show later, the three SU(4) phase tran-
sitions naturally induce the stochastic GW signature
within the reach of next-generation interferometers.

III. GRAVITATIONAL WAVE CALCULATION

A. Toy Model

We follow standard techniques for computing the GW
spectra from first-order phase transitions [refs]. For con-
creteness, we calculate in a toy “4 to 3” model where
SU(4) is broken to SU(3) by the VEV of a complex scalar

2
Another independent argument to keep the first two SSBs close

to the bounds implied by FCNC is the avoid large tuning of the

Higgs mass which is only partially screened from the two sites.

2

the U(2)Q ⇥ U(2)L global flavor symmetry appears as a
subgroup of an approximate flavor symmetry of the sys-
tem emerging at low energies [U(2)5]. Last but not least,
the localization of the Higgs field on the third-generation
site provides a natural screening mechanism for the Higgs
mass term against the heavy energy scales related to the
symmetry breaking of the heavy fields coupled to the
light generations.

II. THE MODEL

The gauge symmetry of the model holding at high en-
ergies is PS3 ⌘ PS1 ⇥ PS2 ⇥ PS3, where

PSi = SU(4)i ⇥ [SU(2)L]i ⇥ [SU(2)R]i . (1)

The fermion content is the same as in the SM plus three
right-handed neutrinos, such that each fermion family is
embedded in left- and right-handed multiplets of a given
PSi subgroup:

 (i)

L ⇠ (4,2,1)i ,  (i)

R ⇠ (4,1,2)i . (2)

The subindex i = 1, 2, 3 denotes the site that, before any
symmetry breaking, can be identified with the generation
index.

The SM gauge group is a subgroup of the diagonal
group, PSdiag = PS1+2+3, which corresponds to the origi-
nal PS gauge group. The SSB breaking PS3 ! SM occurs
in a series of steps at di↵erent energy scales (see Fig. 1)
with appropriate scalar fields acquiring non-vanishing
VEVs, as described below.

I. High-scale vertical breaking [PS1 ! SM1].
At some heavy scale, ⇤1 > 103 TeV, the PS1 group is
broken to SM1, where

SMi = SU(3)i ⇥ [SU(2)L]i ⇥ [U(1)Y]i , (3)

by the VEV of a scalar field ⌃1 ⇠ (4,1,2)1, charged
only under PS1 (or localized on the first site). Via this
breaking 9 gauge fields with exotic quantum numbers (6
LQ fields, a W

±
R , and a Z

0, all coupled only to the first
generation) acquire a heavy mass and decouple.

II. Horizontal breaking 1–2 [SM1 ⇥ PS2 ! SM1+2].
Gauge fields on di↵erent sites are broken to their diagonal
subgroup via appropriate link fields, or scalar bilinears.
On both links (1–2 and 2–3) we introduce the following
set of link fields

�L
ij ⇠ (1,2,1)i ⇥ (1, 2̄,1)j ,

�R
ij ⇠ (1,1,2)i ⇥ (1,1, 2̄)j ,

⌦ij ⇠ (4,2,1)i ⇥ (4̄, 2̄,1)j ,

(4)

such that

h�L
iji 6= 0 ) [SU(2)L]i ⇥ [SU(2)L]j ! [SU(2)L]i+j ,

h�R
iji 6= 0 ) [SU(2)R]i ⇥ [SU(2)R]j ! [SU(2)R]i+j ,

h⌦iji 6= 0 )

⇢
SU(4)i ⇥ SU(4)j ! SU(4)i+j

[SU(2)L]i ⇥ [SU(2)L]j ! [SU(2)L]i+j .

FIG. 1. Moose diagram of the model (up) and symmetry
breaking sequence.

At a scale ⇤12 < ⇤1 the 1–2 link fields acquire a VEV.
As a result, the vertical breaking occurring on the first
site is mediated also to the second site, and the gauge
symmetry is reduced to SM1+2 ⇥ PS3.
Thanks to this second breaking, 9 exotic gauge fields

coupled mainly to the second generation, and 12 SM-like
gauge fields coupled in a non-universal way to the first
two families acquire a heavy mass and can be integrated
out. Below the scale ⇤12 the residual dynamical gauge
sector is invariant under a global U(2)5 flavor symmetry
acting on the first two generations of SM fermions [39].
At this stage there is still no local coupling between

the fermions of the first two generations and the scalar
fields sitting on the third site (H3 and eH3) that contain
the SM Higgs. In other words, we have not yet generated
an e↵ective Yukawa coupling for the light generations.
The hierarchy between ⇤1, ⇤12, and the VEVs of the

1–2 link fields does not need to be specified. The lower
bound on the lowest of such scales, that we fix to be
103 TeV, is set by the tight limits on flavor-changing
neutral currents involving the first two generations (most
notably K–K̄ and D–D̄ mixing [40], and KL ! µe [41]).
With this choice, we can ignore the e↵ect of d � 6 e↵ec-
tive operators generated at this scale.

III. Horizontal breaking 2–3 [SM1+2 ⇥ PS3 ! SM].
The scale characterizing the dynamics of the 2–3 link
fieds is ⇤23 ⇠ 102 TeV. We assume a specific hierarchy
among this scale and the VEVs of the link fields:

⇤23 > h�L,R
23 i > h⌦23i ⌘ ⇤3 ⇠ 1 TeV . (5)

This hierarchy is a key ingredient to generate the correct
pattern for the Yukawa couplings (discussed in detail be-
low) and, at the same time, address the flavor anomalies.
At energies h�L,R

23 i > E > ⇤3 we can decouple a W
±
L , a

W
±
R , and two Z

0 fields with mass of O(10 TeV), that are
too heavy to be probed at colliders and have no impact
on flavor physics because of the U(2)5 flavor symmetry.
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FIG. 1. Schematic view of the Pati-Salam Cubed model de-

tailed in Section II. The horizontal dotted lines represent the

energy scales at which phase transitions occur. Indicated be-

tween the lines are the gauge symmetry of the corresponding

phase. Phase transitions marked with red arrows lead to po-

tentially sizeable stochastic GW signature (See Section III).

PS
3 model of Ref. [4] as a concrete example in what fol-

lows, though the idea generalizes to any series of related
SSBs that produce strongly first-order phase transitions.

II. MODEL EXAMPLE: PATI-SALAM CUBED

As a prototype example, we focus on the PS
3 model

first introduced in Ref. [4]. Here, the original Pati-Salam
gauge group is deconstructed to three sites PS

3
⌘ PS1⇥

PS2 ⇥PS3 where each copy acts on one family of the SM
fermions. In particular, the entire SM family, including
the right-handed neutrino, fits into two left- and right-

chiral multiplets,  (i)
L ⌘ (4,2,1)i and  (i)

R ⌘ (4,1,2)i,

embedding left-handed quark and lepton doublets, Q
(i)
L

and L
(i)
L , and right-handed singlets u

(i)
R , ⌫

(i)
R , d

(i)
R and e

(i)
R ,

respectively. The label i = 1, 2, 3 denotes the correspond-
ing gauge group PSi ⌘ [SU(4) ⇥ SU(2)L ⇥ SU(2)R]i.

The model undergoes through a series of spontaneous
symmetry breakings occurring at di↵erent energy scales
as illustrated in Fig. 1. The first breaking (after infla-
tion) is triggered by the vev of ⌃1 which is 4 of SU(4)1.1

The subsequent breakings to the diagonal subgroups of
neighbouring sites is achieved by the appropriate scalar
link fields in bifundamental representations, �L,R

ij and
⌦ij . More specifically, �ij ’s are in 2 of the correspond-
ing SU(2)i and 2̄ of SU(2)j , while similarly, ⌦ij is

1
We propose a slight variation of the original model breaking

[SU(2)R]1 before inflation e↵ectively solving the monopole prob-

lem of low-scale PS models []. PS0
1 in Fig. 1 is defined as

[SU(4) ⇥ SU(2)L ⇥ U(1)]1.

(4,2,1)i ⇥ (4̄, 2̄,1)j . Finally, the Higgs fields live at the
third site, H3 ⌘ (1,2, 2̄)3.

The higher-dimensional formulation of the model, in
which PS

3 emerges in four space-time dimensions, can
justify small scalar quartic couplings, which is crucial to
ensure hierarchical vevs and, at the same time, induce
strong first-order phase transition as shown later.

Below the scale ⇤II, the unbroken phase of the the-
ory, SM1+2 ⇥PS3, leads to an approximate U(2) flavour
symmetry observed in the SM at low-energies. The lower
bound on this scale, ⇤II & 103 TeV, follows from strin-
gent limits on flavour changing neutral currents (FCNC)
induced by the heavy gauge bosons coupling first two gen-
erations []. At this level, Yukawa interactions are only

allowed for the third family, L �  ̄(3)
L H3 

(3)
R , predict-

ing vanishing light-fermion masses and the CKM matrix
equal to identity. (The smallness of the tau neutrino mass
is achieved by the inverse seesaw mechanism [5].) The
perturbation to this picture is obtained by the higher-
dimensional operators

L23 =
1

⇤III
 ̄(2)

L ⌦23H3 
(3)
R + h.c. ,

L12 =
1

⇤2
II

 ̄(k)
L �L

k3H3�
R
3l 

(l)
R + h.c. ,

(1)

after the link fields acquire vevs. The leading U(2) break-
ing spurion, following from the first term, generates the
mixing of the 3rd and light families, |Vts| ⇠ h⌦23i /⇤23.
The light fermion masses are instead due to the second
term, yc ⇠

⌦
�L

23

↵ ⌦
�R

32

↵
/⇤2

12. The UV completion of
the e↵ective operators in Eq. (1) has been discussed in
Refs. [4, 5]. We assume the scales generating the oper-
ators to coincide with the preceding symmetry breaking
scales, ⇤III ⇠ h�23i and ⇤II ⇠ h�12i, respectively. From
here, it follows that the four-step breaking, i) 104 TeV,
ii) 103 TeV, iii) 102 TeV, and iv) 1 TeV, is well com-
patible with the observed pattern of fermion masses and
mixings at low-energies.2

As we will show later, the three SU(4) phase tran-
sitions naturally induce the stochastic GW signature
within the reach of next-generation interferometers.

III. GRAVITATIONAL WAVE CALCULATION

A. Toy Model

We follow standard techniques for computing the GW
spectra from first-order phase transitions [refs]. For con-
creteness, we calculate in a toy “4 to 3” model where
SU(4) is broken to SU(3) by the VEV of a complex scalar

2
Another independent argument to keep the first two SSBs close

to the bounds implied by FCNC is the avoid large tuning of the

Higgs mass which is only partially screened from the two sites.

L23 =
1

⇤III
 

(2)
L ⌦23H3 

(3)
R + h.c.
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the U(2)Q ⇥ U(2)L global flavor symmetry appears as a
subgroup of an approximate flavor symmetry of the sys-
tem emerging at low energies [U(2)5]. Last but not least,
the localization of the Higgs field on the third-generation
site provides a natural screening mechanism for the Higgs
mass term against the heavy energy scales related to the
symmetry breaking of the heavy fields coupled to the
light generations.

II. THE MODEL

The gauge symmetry of the model holding at high en-
ergies is PS3 ⌘ PS1 ⇥ PS2 ⇥ PS3, where

PSi = SU(4)i ⇥ [SU(2)L]i ⇥ [SU(2)R]i . (1)

The fermion content is the same as in the SM plus three
right-handed neutrinos, such that each fermion family is
embedded in left- and right-handed multiplets of a given
PSi subgroup:

 (i)

L ⇠ (4,2,1)i ,  (i)

R ⇠ (4,1,2)i . (2)

The subindex i = 1, 2, 3 denotes the site that, before any
symmetry breaking, can be identified with the generation
index.

The SM gauge group is a subgroup of the diagonal
group, PSdiag = PS1+2+3, which corresponds to the origi-
nal PS gauge group. The SSB breaking PS3 ! SM occurs
in a series of steps at di↵erent energy scales (see Fig. 1)
with appropriate scalar fields acquiring non-vanishing
VEVs, as described below.

I. High-scale vertical breaking [PS1 ! SM1].
At some heavy scale, ⇤1 > 103 TeV, the PS1 group is
broken to SM1, where

SMi = SU(3)i ⇥ [SU(2)L]i ⇥ [U(1)Y]i , (3)

by the VEV of a scalar field ⌃1 ⇠ (4,1,2)1, charged
only under PS1 (or localized on the first site). Via this
breaking 9 gauge fields with exotic quantum numbers (6
LQ fields, a W

±
R , and a Z

0, all coupled only to the first
generation) acquire a heavy mass and decouple.

II. Horizontal breaking 1–2 [SM1 ⇥ PS2 ! SM1+2].
Gauge fields on di↵erent sites are broken to their diagonal
subgroup via appropriate link fields, or scalar bilinears.
On both links (1–2 and 2–3) we introduce the following
set of link fields

�L
ij ⇠ (1,2,1)i ⇥ (1, 2̄,1)j ,

�R
ij ⇠ (1,1,2)i ⇥ (1,1, 2̄)j ,

⌦ij ⇠ (4,2,1)i ⇥ (4̄, 2̄,1)j ,

(4)

such that

h�L
iji 6= 0 ) [SU(2)L]i ⇥ [SU(2)L]j ! [SU(2)L]i+j ,

h�R
iji 6= 0 ) [SU(2)R]i ⇥ [SU(2)R]j ! [SU(2)R]i+j ,

h⌦iji 6= 0 )

⇢
SU(4)i ⇥ SU(4)j ! SU(4)i+j

[SU(2)L]i ⇥ [SU(2)L]j ! [SU(2)L]i+j .

FIG. 1. Moose diagram of the model (up) and symmetry
breaking sequence.

At a scale ⇤12 < ⇤1 the 1–2 link fields acquire a VEV.
As a result, the vertical breaking occurring on the first
site is mediated also to the second site, and the gauge
symmetry is reduced to SM1+2 ⇥ PS3.
Thanks to this second breaking, 9 exotic gauge fields

coupled mainly to the second generation, and 12 SM-like
gauge fields coupled in a non-universal way to the first
two families acquire a heavy mass and can be integrated
out. Below the scale ⇤12 the residual dynamical gauge
sector is invariant under a global U(2)5 flavor symmetry
acting on the first two generations of SM fermions [39].
At this stage there is still no local coupling between

the fermions of the first two generations and the scalar
fields sitting on the third site (H3 and eH3) that contain
the SM Higgs. In other words, we have not yet generated
an e↵ective Yukawa coupling for the light generations.
The hierarchy between ⇤1, ⇤12, and the VEVs of the

1–2 link fields does not need to be specified. The lower
bound on the lowest of such scales, that we fix to be
103 TeV, is set by the tight limits on flavor-changing
neutral currents involving the first two generations (most
notably K–K̄ and D–D̄ mixing [40], and KL ! µe [41]).
With this choice, we can ignore the e↵ect of d � 6 e↵ec-
tive operators generated at this scale.

III. Horizontal breaking 2–3 [SM1+2 ⇥ PS3 ! SM].
The scale characterizing the dynamics of the 2–3 link
fieds is ⇤23 ⇠ 102 TeV. We assume a specific hierarchy
among this scale and the VEVs of the link fields:

⇤23 > h�L,R
23 i > h⌦23i ⌘ ⇤3 ⇠ 1 TeV . (5)

This hierarchy is a key ingredient to generate the correct
pattern for the Yukawa couplings (discussed in detail be-
low) and, at the same time, address the flavor anomalies.
At energies h�L,R

23 i > E > ⇤3 we can decouple a W
±
L , a

W
±
R , and two Z

0 fields with mass of O(10 TeV), that are
too heavy to be probed at colliders and have no impact
on flavor physics because of the U(2)5 flavor symmetry.
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FIG. 1. Schematic view of the Pati-Salam Cubed model de-

tailed in Section II. The horizontal dotted lines represent the

energy scales at which phase transitions occur. Indicated be-

tween the lines are the gauge symmetry of the corresponding

phase. Phase transitions marked with red arrows lead to po-

tentially sizeable stochastic GW signature (See Section III).

PS
3 model of Ref. [4] as a concrete example in what fol-

lows, though the idea generalizes to any series of related
SSBs that produce strongly first-order phase transitions.

II. MODEL EXAMPLE: PATI-SALAM CUBED

As a prototype example, we focus on the PS
3 model

first introduced in Ref. [4]. Here, the original Pati-Salam
gauge group is deconstructed to three sites PS

3
⌘ PS1⇥

PS2 ⇥PS3 where each copy acts on one family of the SM
fermions. In particular, the entire SM family, including
the right-handed neutrino, fits into two left- and right-

chiral multiplets,  (i)
L ⌘ (4,2,1)i and  (i)

R ⌘ (4,1,2)i,

embedding left-handed quark and lepton doublets, Q
(i)
L

and L
(i)
L , and right-handed singlets u

(i)
R , ⌫

(i)
R , d

(i)
R and e

(i)
R ,

respectively. The label i = 1, 2, 3 denotes the correspond-
ing gauge group PSi ⌘ [SU(4) ⇥ SU(2)L ⇥ SU(2)R]i.

The model undergoes through a series of spontaneous
symmetry breakings occurring at di↵erent energy scales
as illustrated in Fig. 1. The first breaking (after infla-
tion) is triggered by the vev of ⌃1 which is 4 of SU(4)1.1

The subsequent breakings to the diagonal subgroups of
neighbouring sites is achieved by the appropriate scalar
link fields in bifundamental representations, �L,R

ij and
⌦ij . More specifically, �ij ’s are in 2 of the correspond-
ing SU(2)i and 2̄ of SU(2)j , while similarly, ⌦ij is

1
We propose a slight variation of the original model breaking

[SU(2)R]1 before inflation e↵ectively solving the monopole prob-

lem of low-scale PS models []. PS0
1 in Fig. 1 is defined as

[SU(4) ⇥ SU(2)L ⇥ U(1)]1.

(4,2,1)i ⇥ (4̄, 2̄,1)j . Finally, the Higgs fields live at the
third site, H3 ⌘ (1,2, 2̄)3.

The higher-dimensional formulation of the model, in
which PS

3 emerges in four space-time dimensions, can
justify small scalar quartic couplings, which is crucial to
ensure hierarchical vevs and, at the same time, induce
strong first-order phase transition as shown later.

Below the scale ⇤II, the unbroken phase of the the-
ory, SM1+2 ⇥PS3, leads to an approximate U(2) flavour
symmetry observed in the SM at low-energies. The lower
bound on this scale, ⇤II & 103 TeV, follows from strin-
gent limits on flavour changing neutral currents (FCNC)
induced by the heavy gauge bosons coupling first two gen-
erations []. At this level, Yukawa interactions are only

allowed for the third family, L �  ̄(3)
L H3 

(3)
R , predict-

ing vanishing light-fermion masses and the CKM matrix
equal to identity. (The smallness of the tau neutrino mass
is achieved by the inverse seesaw mechanism [5].) The
perturbation to this picture is obtained by the higher-
dimensional operators

L23 =
1

⇤III
 ̄(2)

L ⌦23H3 
(3)
R + h.c. ,

L12 =
1

⇤2
II

 ̄(k)
L �L

k3H3�
R
3l 

(l)
R + h.c. ,

(1)

after the link fields acquire vevs. The leading U(2) break-
ing spurion, following from the first term, generates the
mixing of the 3rd and light families, |Vts| ⇠ h⌦23i /⇤23.
The light fermion masses are instead due to the second
term, yc ⇠

⌦
�L

23

↵ ⌦
�R

32

↵
/⇤2

12. The UV completion of
the e↵ective operators in Eq. (1) has been discussed in
Refs. [4, 5]. We assume the scales generating the oper-
ators to coincide with the preceding symmetry breaking
scales, ⇤III ⇠ h�23i and ⇤II ⇠ h�12i, respectively. From
here, it follows that the four-step breaking, i) 104 TeV,
ii) 103 TeV, iii) 102 TeV, and iv) 1 TeV, is well com-
patible with the observed pattern of fermion masses and
mixings at low-energies.2

As we will show later, the three SU(4) phase tran-
sitions naturally induce the stochastic GW signature
within the reach of next-generation interferometers.

III. GRAVITATIONAL WAVE CALCULATION

A. Toy Model

We follow standard techniques for computing the GW
spectra from first-order phase transitions [refs]. For con-
creteness, we calculate in a toy “4 to 3” model where
SU(4) is broken to SU(3) by the VEV of a complex scalar

2
Another independent argument to keep the first two SSBs close

to the bounds implied by FCNC is the avoid large tuning of the

Higgs mass which is only partially screened from the two sites.

Yt ⇠ 1
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U(2)-breaking spurions perturb this picture 

SM12 ⇥ PS3
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• U(2) Flavor symmetry

• CKM Matrix = Identity

• Yukawas allowed only for 3rd family
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SU(4)⇥ SU(3)0 ! SU(3)
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• Focus on the three PTs involving SU(4) breakings:

• These can very naturally be first-order phase transitions.
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E�ective Potential and Phase Transitions
e�ective Potential:
Ve�(ĥ, „̂, T ) = Vtree(ĥ, „̂) + Vloop(ĥ, „̂) + Vthermal(ĥ, „̂, T )
finite-T corrections restore symmetry at high T

=∆ symmetry breaking phase transition in the early universe
cross-over:

�

Ve�

1st-order:

�

Ve�

Eric Madge (JGU Mainz) Leptophilic DM from Gauged Lepton Number Planck 2018 5 / 11

Cross-over 1st-order
hi
gh
-te
m
p.

lo
w
-te
m
p.

�(T )

Figure from E. Madge 

[fundamental parameters] [temperature]

Ve↵(g,�, v,�, T ) = V0 + VCW + VT 6=0
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• Nature of the PT controlled by the finite-temperature 
effective potential:
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�(T )

• Due to decreasing temperature, the scalar field will 
eventually tunnel from the false to the true vacuum.


• Tunneling occurs when:


• This defines the bubble nucleation temperature     .   
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[see thesis by Moritz Breitbach]
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• Bubbles expand- spherical 
symmetry ==> No GW yet.  
(Birkhoff’s Theorem)

• Bubbles collide, breaking 
spherical symmetry. 
Anisotropic energy 
distribution ==> GW

[D. Cutting, M. Hindmarsh, D.J. Weir 
1802.05712]

• Gravitational waves are relics of strong cosmological FOPTs!
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<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

SU(4)⇥ SU(3)0 ! SU(3)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

SU(4) ! SU(3)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

SU(2)3 ! SU(2)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

• Take the simplest “4-to-3” breaking at the scale     .

• Computed “4x3-to-3” breaking as well- qualitatively similar.

⇤I
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�(T )

• Consider the breaking pattern: 
 
Massive gauge bosons:

SU(4) ! SU(3)
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FIG. 2. Complete gravitational wave spectrum, which we term the Triglav signature, assuming three first-order phase transitions

in the Pati-Salam Cubed model. The second family peak is based on the benchmark point shown in Fig. 3, corresponding to

↵ ' 0.2 and �/H ' 500. The additional peaks are obtained by varying the vacuum expectation value of the toy model from

Section IIIA as well as the e↵ective relativistic degrees of freedom in the plasma, corresponding to a change in ↵ by the ratio

1.5 : 1 : 0.9, while �/H ' 500 is fixed for all three peaks. The projected experimental sensitivities are the power-law integrated

curves and not the experimental noise curves, see Appendix C for details.

⌃ in the fundamental representation of SU(4). The mat-
ter content includes one set of the doublets  L and  R,
also in the fundamental representation of SU(4). This
setup is expected to model well the first SSB in PS

3 at
the scale ⇤1 (see Fig. 1). The Lagrangian of this toy
model is
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a. The breaking SU(4) ! SU(3)
occurs when the complex scalar ⌃ acquires a VEV of
the form h⌃i = (0, 0, 0, v/

p
2)T . The 7 broken genera-

tors correspond to a massive vector leptoquark Uµ and
Z

0 gauge boson. The decomposition of ⌃ under the un-
broken SU(3) is 4 = 3 + 1, with the entire complex 3

and the imaginary part of 1 containing the leptoquark
and Z

0 goldstones, respectively. The remaining degree of
freedom Re⌃4 ⌘ �/

p
2 is a massive radial mode which

has a tree level potential of

V0(�, v, �) = �
1

2
�v

2
�

2 +
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4
�

4
, (3)

where we have traded µ for the VEV defined as v =
µ/

p
�. Thus, the parameters of the model are g, �, and

v.
We study the dynamics of the phase transition and

compute the resulting GW spectrum using the full finite-
temperature e↵ective potential for �

Ve↵(g, �, v, �, T ) = V0 + VCW + VT 6=0 , (4)

where V0 is the tree level potential of Eq. (3) and VCW

is the one-loop Coleman-Weinberg correction

VCW (g, �, v, �) =
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which we have written here in Landau gauge using the
MS renormalization scheme which gives Ca = 3/2 (5/6)
for scalars (gauge bosons). The sum on b is over all
bosons which have a �-dependent mass and nb is the
total number of degrees of freedom of the boson. The
final piece VT 6=0 is the finite temperature correction to
the potential

VT 6=0(g, �, v, �, T ) =
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which in the second line also includes a correction
from resummed Daisy diagrams which runs over scalars
and the longitudinal modes of gauge bosons with a �-
dependent mass. The inclusion of this contribution is
important as it acts to prevent symmetry restoration at
high temperatures and reduces the strength of the phase
transition due to a partial cancellation of the cubic terms
in � which provide the barrier between the false and true
vacua. The thermal function Jb(x2), the �-dependent
masses mb(�), and the Debye masses ⇧b(T ) are all given
in the supplemental material for our toy 4 to 3 model
(and for two other models for comparison).

,  L ,  R .
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• No Yukawa interactions (gauge symmetry)

L =  i /D � 1
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• Matter content [ all in 4 of SU(4) ]  
 
 
 
Scalars:

15 = 8 + 6 + 1

4 = 3 + 1

Leptoquark + Z’

Goldstones + Massive radial mode:
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FIG. 2. Complete gravitational wave spectrum, which we term the Triglav signature, assuming three first-order phase transitions

in the Pati-Salam Cubed model. The second family peak is based on the benchmark point shown in Fig. 3, corresponding to

↵ ' 0.2 and �/H ' 500. The additional peaks are obtained by varying the vacuum expectation value of the toy model from

Section IIIA as well as the e↵ective relativistic degrees of freedom in the plasma, corresponding to a change in ↵ by the ratio

1.5 : 1 : 0.9, while �/H ' 500 is fixed for all three peaks. The projected experimental sensitivities are the power-law integrated

curves and not the experimental noise curves, see Appendix C for details.
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where we have traded µ for the VEV defined as v =
µ/

p
�. Thus, the parameters of the model are g, �, and

v.
We study the dynamics of the phase transition and

compute the resulting GW spectrum using the full finite-
temperature e↵ective potential for �

Ve↵(g, �, v, �, T ) = V0 + VCW + VT 6=0 , (4)

where V0 is the tree level potential of Eq. (3) and VCW

is the one-loop Coleman-Weinberg correction
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which we have written here in Landau gauge using the
MS renormalization scheme which gives Ca = 3/2 (5/6)
for scalars (gauge bosons). The sum on b is over all
bosons which have a �-dependent mass and nb is the
total number of degrees of freedom of the boson. The
final piece VT 6=0 is the finite temperature correction to
the potential
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which in the second line also includes a correction
from resummed Daisy diagrams which runs over scalars
and the longitudinal modes of gauge bosons with a �-
dependent mass. The inclusion of this contribution is
important as it acts to prevent symmetry restoration at
high temperatures and reduces the strength of the phase
transition due to a partial cancellation of the cubic terms
in � which provide the barrier between the false and true
vacua. The thermal function Jb(x2), the �-dependent
masses mb(�), and the Debye masses ⇧b(T ) are all given
in the supplemental material for our toy 4 to 3 model
(and for two other models for comparison).
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[fundamental parameters] [temperature]

Ve↵(g,�, v,�, T ) = V0 + VCW + VT 6=0
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FIG. 2. Complete gravitational wave spectrum, which we term the Triglav signature, assuming three first-order phase transitions

in the Pati-Salam Cubed model. The second family peak is based on the benchmark point shown in Fig. 3, corresponding to

↵ ' 0.2 and �/H ' 500. The additional peaks are obtained by varying the vacuum expectation value of the toy model from

Section IIIA as well as the e↵ective relativistic degrees of freedom in the plasma, corresponding to a change in ↵ by the ratio

1.5 : 1 : 0.9, while �/H ' 500 is fixed for all three peaks. The projected experimental sensitivities are the power-law integrated

curves and not the experimental noise curves, see Appendix C for details.

⌃ in the fundamental representation of SU(4). The mat-
ter content includes one set of the doublets  L and  R,
also in the fundamental representation of SU(4). This
setup is expected to model well the first SSB in PS

3 at
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where we have traded µ for the VEV defined as v =
µ/

p
�. Thus, the parameters of the model are g, �, and

v.
We study the dynamics of the phase transition and

compute the resulting GW spectrum using the full finite-
temperature e↵ective potential for �

Ve↵(g, �, v, �, T ) = V0 + VCW + VT 6=0 , (4)

where V0 is the tree level potential of Eq. (3) and VCW

is the one-loop Coleman-Weinberg correction
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which we have written here in Landau gauge using the
MS renormalization scheme which gives Ca = 3/2 (5/6)
for scalars (gauge bosons). The sum on b is over all
bosons which have a �-dependent mass and nb is the
total number of degrees of freedom of the boson. The
final piece VT 6=0 is the finite temperature correction to
the potential
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which in the second line also includes a correction
from resummed Daisy diagrams which runs over scalars
and the longitudinal modes of gauge bosons with a �-
dependent mass. The inclusion of this contribution is
important as it acts to prevent symmetry restoration at
high temperatures and reduces the strength of the phase
transition due to a partial cancellation of the cubic terms
in � which provide the barrier between the false and true
vacua. The thermal function Jb(x2), the �-dependent
masses mb(�), and the Debye masses ⇧b(T ) are all given
in the supplemental material for our toy 4 to 3 model
(and for two other models for comparison).
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• Coleman-Weinberg:
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e.g.

(*) Small scalar quartics

Zero temp 
part of:
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[fundamental parameters] [temperature]

Ve↵(g,�, v,�, T ) = V0 + VCW + VT 6=0
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• 1-loop Thermal Potential: 
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FIG. 2. Complete gravitational wave spectrum, which we term the Triglav signature, assuming three first-order phase transitions

in the Pati-Salam Cubed model. The second family peak is based on the benchmark point shown in Fig. 3, corresponding to

↵ ' 0.2 and �/H ' 500. The additional peaks are obtained by varying the vacuum expectation value of the toy model from

Section IIIA as well as the e↵ective relativistic degrees of freedom in the plasma, corresponding to a change in ↵ by the ratio

1.5 : 1 : 0.9, while �/H ' 500 is fixed for all three peaks. The projected experimental sensitivities are the power-law integrated

curves and not the experimental noise curves, see Appendix C for details.
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which in the second line also includes a correction
from resummed Daisy diagrams which runs over scalars
and the longitudinal modes of gauge bosons with a �-
dependent mass. The inclusion of this contribution is
important as it acts to prevent symmetry restoration at
high temperatures and reduces the strength of the phase
transition due to a partial cancellation of the cubic terms
in � which provide the barrier between the false and true
vacua. The thermal function Jb(x2), the �-dependent
masses mb(�), and the Debye masses ⇧b(T ) are all given
in the supplemental material for our toy 4 to 3 model
(and for two other models for comparison).
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e.g.

(*) Small scalar quartics
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Results: Simplified 4-to-3 Model

47
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• Resulting gravitational wave signal is naturally detectable if:
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• PS3 embeds 
strong gauge 
group:

gs ⇠ 1
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• 5d gauge 
symmetry ==> 
suppressed 
scalar quartics.
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Gauge Couplings of Pati-Salam-Cubed
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• Choose large SU(4) coupling at the TeV scale (flavor anomalies)

• Must match onto  
QCD when “4321” 
is broken at the 
TeV scale:
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• Flavor anomalies + 
QCD dictate all 
gauge couplings 
are O(1)!
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Gravitational Imprints of Pati-Salam Cubed: 
“Triglav Signature”
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• “4321” models at the TeV scale offer the most coherent 
explanation for the current flavor anomalies.


• Our work addressed a major phenomenological issue of low-
scale quark-lepton unification by achieving the correct 
neutrino masses and mixings via the ISS mechanism.  


• The naturally small mass splittings of the heavy right-handed 
neutrinos may be used for low-scale leptogenesis.


• The parameters of Pati-Salam-Cubed (which offers a 
compelling UV embedding of “4321”) naturally yield a series 
of first-order SSBs that produce observable GWs.
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