"432I" Models: Neutrinos and Gravitational Wave Probes

Benjamin A. Stefanek

The Roadmap

- Part 1: [Greljo and BAS: 1802.04274]
A. Overview of "4321" w/ family dependent gauge charges.
B. Solution to neutrino mass catastrophe with ISS mechanism.
- Part 2: [Baumholzer, Greljo and BAS: 1912.xxxxx]
A. Leptogenesis using the neutrino sector of " 4321 ".
- Part 3: [Greljo, Opferkuch and BAS: 1910.02014]
A. Potential to probe PS3-type models with gravitational waves.

"Pati-Salam" Leptoquark

- Anomalies in low-energy flavor data can coherently be explained by a single TeVscale massive vector boson mediator:

$$
U_{1}^{\mu}=(\mathbf{3}, \mathbf{1}, 2 / 3)
$$

- First leptoquark ever studied. Extremely interesting in the context of Pati-Salam quark-lepton unification.

$$
\begin{array}{r}
C_{S}\left(\bar{Q}_{L}^{i} \gamma_{\mu} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} L_{L}^{\beta}\right) \\
C_{T}\left(\bar{Q}_{L}^{i} \gamma_{\mu} \sigma^{a} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} \sigma^{a} L_{L}^{\beta}\right)
\end{array}
$$

For an updated fit: C. Cornella, J.
[D. Buttazzo, A. Greljo, G. Isidori,

Extended Gauge Group: The ${ }^{66} 432$ I ${ }^{9}$ Model

$$
\begin{gathered}
G=S U(4) \times S U(3)^{\prime} \times S U(2)_{L} \times U(1)^{\prime} \\
\downarrow \sim \mathrm{TeV} \\
G_{\mathrm{SM}}=S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}
\end{gathered}
$$

15 Broken Generators

$$
\begin{aligned}
G^{\prime} & =(\mathbf{8}, \mathbf{1}, 0) \\
Z^{\prime} & =(\mathbf{1}, \mathbf{1}, 0) \\
U_{1} & =(\mathbf{3}, \mathbf{1}, 2 / 3)
\end{aligned}
$$

New SM Fermion Embedding

- 3rd family SM fermions are charged under " 421 " and coupled directly to the LQ to address flavor anomalies.
- 1st and 2nd family SM fermions charged only under " 321 " and are not coupled directly to the LQ (avoids the FCNC problem of ordinary Pati-Salam).

"6432 I ${ }^{\text {T }}$ w/ Family Dependent Gauge Charges

- 1st and 2nd family quarks and leptons charged under " 321 " but are SU(4) singlets. Here, $\mathrm{i}=1,2$.

Dominantly Light Family SM Fermions						
Gauge				Global		
Field	$S U(4)$	$S U(3)^{\prime}$	$S U(2)_{L}$	$U(1)^{\prime}$	$U(1)_{B^{\prime}}$	$U(1)_{L^{\prime}}$
$q_{L}^{\prime i}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{2}$	$1 / 6$	$1 / 3$	0
$u_{R}^{\prime i}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{1}$	$2 / 3$	$1 / 3$	0
$d_{R}^{\prime i}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{1}$	$-1 / 3$	$1 / 3$	0
$\ell_{L}^{\prime i}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$-1 / 2$	0	1
$e_{R}^{\prime i}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	-1	0	1

- Third family quarks and leptons are embedded in fundamentals of SU(4).

Dominantly Third Family SM Fermions						
Gauge				Global		
Field	$S U(4)$	$S U(3)^{\prime}$	$S U(2)_{L}$	$U(1)^{\prime}$	$U(1)_{B^{\prime}}$	$U(1)_{L^{\prime}}$
ψ_{L}	$\mathbf{4}$	$\mathbf{1}$	$\mathbf{2}$	0	$1 / 4$	$1 / 4$
ψ_{R}^{u}	$\mathbf{4}$	$\mathbf{1}$	$\mathbf{1}$	$1 / 2$	$1 / 4$	$1 / 4$
ψ_{R}^{d}	$\mathbf{4}$	$\mathbf{1}$	$\mathbf{1}$	$-1 / 2$	$1 / 4$	$1 / 4$

$$
\psi_{L}=\binom{q_{L}^{\prime 3}}{\ell_{L}^{\prime 3}} \quad \psi_{R}^{u}=\binom{u_{R}^{\prime 3}}{\nu_{R}^{\prime 3}} \quad \psi_{R}^{d}=\binom{d_{R}^{\prime 3}}{e_{R}^{\prime 3}}
$$

Low Energy Limit of PS3:
[M. Bordone, C. Cornella, J. Fuentes-Martin, G. Isidori, 1712.01368]

First Attempt at a Model

- The Lagrangian for the light families looks just like the SM.

$$
\mathcal{L}_{12}=-\bar{q}_{L}^{\prime} Y_{u} \widetilde{H} u_{R}^{\prime}-\bar{q}_{L}^{\prime} Y_{d} H d_{R}^{\prime}-\bar{\ell}_{L}^{\prime} Y_{\nu} \widetilde{H} \nu_{R}^{\prime}-\bar{\ell}_{L}^{\prime} Y_{e} H e_{R}^{\prime}+\text { h.c. },
$$

\longrightarrow In the absence of Yukawas: $U(2)_{q}^{3} \times U(2)_{\ell}^{3}$
*Small 1st and 2nd family Yukawas only softly break this symmetry.

- The 3rd family Lagrangian contains just the following terms

$$
\mathcal{L}_{3}=-y_{H}^{u} \bar{\psi}_{L} \widetilde{H} \psi_{R}^{u}-y_{H}^{d} \bar{\psi}_{L} H \psi_{R}^{d}+\text { h.c. }
$$

- Light family - 3rd family mixing not allowed without new fields.

First Attempt at a Model

- The Lagrangian for the light families looks just like the SM.

$$
\mathcal{L}_{12}=-\bar{q}_{L}^{\prime} Y_{u} \widetilde{H} u_{R}^{\prime}-\bar{q}_{L}^{\prime} Y_{d} H d_{R}^{\prime}-\bar{\ell}_{L}^{\prime} Y_{\nu} \widetilde{H} \nu_{R}^{\prime}-\bar{\ell}_{L}^{\prime} Y_{e} H e_{R}^{\prime}+\text { h.c. },
$$

\longrightarrow In the absence of Yukawas: $U(2)_{q}^{3} \times U(2)_{\ell}^{3}$
*Small 1st and 2nd family Yukawas only softly break this symmetry.

- The 3rd family Lagrangian contains just the following terms

$$
\mathcal{L}_{3}=-y_{H}^{u} \bar{\psi}_{L} \widetilde{H} \psi_{R}^{u}-y_{H}^{d} \bar{\psi}_{L} H \psi_{R}^{d}+\text { h.c. }
$$

- Light family - 3rd family mixing not allowed without new fields.

First Attempt at a Model

- The Lagrangian for the light families looks just like the SM. $\mathcal{L}_{12}=-\bar{q}_{L}^{\prime} Y_{u} \widetilde{H} u_{R}^{\prime}-\bar{q}_{L}^{\prime} Y_{d} H d_{R}^{\prime}-\bar{\ell}_{L}^{\prime} Y_{\nu} \widetilde{H} \nu_{R}^{\prime}-\bar{\ell}_{L}^{\prime} Y_{e} H e_{R}^{\prime}+$ h.c.,
\longrightarrow In the absence of Yukawas: $U(2)_{q}^{3} \times U(2)_{\ell}^{3}$
*Small 1st and 2nd family Yukawas only softly break this symmetry.
- The 3rd family Lagrangian contains just the following terms

$$
\mathcal{L}_{3}=-y_{H}^{u} \bar{\psi}_{L} \widetilde{H} \psi_{R}^{u}-y_{H}^{d} \bar{\psi}_{L} H \psi_{R}^{d}+\text { h.c. }
$$

Predicts the same mass for the bottom quark and tau lepton.

- Light family - 3rd family mixing not allowed without new fields.

Third Family Quark and Lepton Masses

- Can add another Higgs to split the 3rd family quark and lepton masses.

Scalar Fields						
Gauge					Global	
Field	$S U(4)$	$S U(3)^{\prime}$	$S U(2)_{L}$	$U(1)^{\prime}$	$U(1)_{B^{\prime}}$	$U(1)_{L^{\prime}}$
H	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$1 / 2$	0	0
Φ	$\mathbf{1 5}$	$\mathbf{1}$	$\mathbf{2}$	$1 / 2$	0	0
Ω_{3}	$\overline{\mathbf{4}}$	$\mathbf{3}$	$\mathbf{1}$	$1 / 6$	$1 / 12$	$-1 / 4$
Ω_{1}	$\overline{\mathbf{4}}$	$\mathbf{1}$	$\mathbf{1}$	$-1 / 2$	$-1 / 4$	$3 / 4$

$$
\begin{aligned}
& v_{\mathrm{EW}}^{2}=v_{H}^{2}+v_{\Phi}^{2} \\
& \tan \beta=v_{\Phi} / v_{H}
\end{aligned}
$$

Up-type masses
$\begin{aligned} m_{t}^{\prime} & =\frac{v_{\mathrm{EW}}}{\sqrt{2}}\left(y_{H}^{u} \cos \beta+\frac{1}{2 \sqrt{6}} y_{\Phi}^{u} \sin \beta\right) \\ m_{\nu_{\tau}}^{\prime} & =\frac{v_{\mathrm{EW}}}{\sqrt{2}}\left(y_{H}^{u} \cos \beta-\frac{3}{2 \sqrt{6}} y_{\Phi}^{u} \sin \beta\right)\end{aligned}$

Down-type masses

$$
\begin{aligned}
& m_{b}^{\prime}=\frac{v_{\mathrm{EW}}}{\sqrt{2}}\left(y_{H}^{d} \cos \beta+\frac{1}{2 \sqrt{6}} y \frac{d}{d} \sin \beta\right) \\
& m_{\tau}^{\prime}=\frac{v_{\mathrm{EW}}}{\sqrt{2}}\left(y_{H}^{d} \cos \beta-\frac{3}{2 \sqrt{6}} y \frac{d}{\Phi} \sin \beta\right)
\end{aligned}
$$

Third Family Quark and Lepton Masses

- Can add another Higgs to split the 3rd family quark and lepton masses.
$\left\langle\Phi_{0}^{15}\right\rangle \equiv v_{\Phi} / \sqrt{2}$

Scalar Fields						
Gauge					Global	
Field	$S U(4)$	$S U(3)^{\prime}$	$S U(2)_{L}$	$U(1)^{\prime}$	$U(1)_{B^{\prime}}$	$U(1)_{L^{\prime}}$
H	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$1 / 2$	0	0
Φ	$\mathbf{1 5}$	$\mathbf{1}$	$\mathbf{2}$	$1 / 2$	0	0
Ω_{3}	$\overline{\mathbf{4}}$	$\mathbf{3}$	$\mathbf{1}$	$1 / 6$	$1 / 12$	$-1 / 4$
Ω_{1}	$\overline{\mathbf{4}}$	$\mathbf{1}$	$\mathbf{1}$	$-1 / 2$	$-1 / 4$	$3 / 4$

$$
\begin{aligned}
& v_{\mathrm{EW}}^{2}=v_{H}^{2}+v_{\Phi}^{2} \\
& \tan \beta=v_{\Phi} / v_{H}
\end{aligned}
$$

Up-type masses

$$
\begin{aligned}
m_{t}^{\prime} & =\frac{v_{\mathrm{EW}}}{\sqrt{2}}\left(y_{H}^{u} \cos \beta+\frac{1}{2 \sqrt{6}} y_{\Phi}^{u} \sin \beta\right) \\
m_{\nu_{\tau}}^{\prime} & =\frac{v_{\mathrm{EW}}}{\sqrt{2}}\left(y_{H}^{u} \cos \beta-\frac{3}{2 \sqrt{6}} y_{\Phi}^{u} \sin \beta\right)
\end{aligned}
$$

Down-type masses

$$
\begin{aligned}
& m_{b}^{\prime}=\frac{v_{\mathrm{EW}}}{\sqrt{2}}\left(y_{H}^{d} \cos \beta+\frac{1}{2 \sqrt{6}} y_{\Phi}^{d} \sin \beta\right) \\
& m_{\tau}^{\prime}=\frac{v_{\mathrm{EW}}}{\sqrt{2}}\left(y_{H}^{d} \cos \beta-\frac{3}{2 \sqrt{6}} y_{\Phi}^{d} \sin \beta\right)
\end{aligned}
$$

Third Family Quark and Lepton Masses

- Can add another Higgs to split the 3rd family quark and lepton masses.
$\left\langle\Phi_{0}^{15}\right\rangle \equiv v_{\Phi} / \sqrt{2}$

Scalar Fields						
Gauge					Global	
Field	$S U(4)$	$S U(3)^{\prime}$	$S U(2)_{L}$	$U(1)^{\prime}$	$U(1)_{B^{\prime}}$	$U(1)_{L^{\prime}}$
H	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$1 / 2$	0	0
Φ	$\mathbf{1 5}$	$\mathbf{1}$	$\mathbf{2}$	$1 / 2$	0	0
Ω_{3}	$\overline{\mathbf{4}}$	$\mathbf{3}$	$\mathbf{1}$	$1 / 6$	$1 / 12$	$-1 / 4$
Ω_{1}	$\overline{\mathbf{4}}$	$\mathbf{1}$	$\mathbf{1}$	$-1 / 2$	$-1 / 4$	$3 / 4$

$$
\begin{aligned}
& v_{\mathrm{EW}}^{2}=v_{H}^{2}+v_{\Phi}^{2} \\
& \tan \beta=v_{\Phi} / v_{H}
\end{aligned}
$$

Up-type masses
$m_{t}^{\prime}=\frac{v_{\mathrm{EW}}}{\sqrt{2}}\left(y_{H}^{u} \cos \beta+\frac{1}{2 \sqrt{6}} y_{\Phi}^{u} \sin \beta\right)$
$m_{\nu_{\tau}}^{\prime}=\frac{v_{\mathrm{EW}}}{\sqrt{2}}\left(y_{H}^{u} \cos \beta-\frac{3}{2 \sqrt{6}} y_{\Phi}^{u} \sin \beta\right)$

Requires Tuning: $\frac{\mathrm{meV}}{v_{\mathrm{EW}}} \sim 10^{-14}$

Down-type masses

$$
\begin{aligned}
& m_{b}^{\prime}=\frac{v_{\mathrm{EW}}}{\sqrt{2}}\left(y_{H}^{d} \cos \beta+\frac{1}{2 \sqrt{6}} y_{\Phi}^{d} \sin \beta\right) \\
& m_{\tau}^{\prime}=\frac{v_{\mathrm{EW}}}{\sqrt{2}}\left(y_{H}^{d} \cos \beta-\frac{3}{2 \sqrt{6}} y_{\Phi}^{d} \sin \beta\right)
\end{aligned}
$$

$$
\text { Bottom/Tau Splitting: } \frac{m_{b}}{m_{\tau}} \sim 2
$$

*Generic problem with low-scale QL-unification.
Resolved in our model- later in the talk.

Light-Third Family Mixing: EFT

- Light with 3rd family mixing is required, e.g. must generate the CKM.
- In the EFT picture, such operators are allowed at dimension-5, e.g. for quarks:

$$
\mathcal{L}_{d 5}=\frac{\lambda_{q}}{m_{\chi}}\left(\lambda_{H}^{u} \bar{q}_{L}^{\prime} \Omega_{3}^{T} \widetilde{H} \psi_{R}^{u}+\lambda_{H}^{d} \bar{q}_{L}^{\prime} \Omega_{3}^{T} H \psi_{R}^{d}\right)
$$

[M. Bordone, C. Cornella, J. Fuentes-Martin, G. Isidori, 1712.01368]

- How to UV complete?
- A single new vector-like fermion with the same quantum numbers as ψ_{L} can do the job. Contains vector-like partners to SM doublets.

Light-Third Family Mixing: UV Completion

- Can get a better fit to the data with two copies of χ and also introducing an SU(4)adjoint scalar Ω_{15} whose VEV gives another source of flavor and splits M_{Q} and M_{L}.

$$
\mathcal{L} \supset-\lambda_{15} \bar{\psi}_{L} \Omega_{15} \chi_{R}-\lambda_{15}^{\prime} \bar{\chi}_{L} \Omega_{15} \chi_{R}+\text { h.c. }
$$

Neutrino Mass Catastrophe

Up-type Dirac masses

$$
\begin{aligned}
m_{t}^{\prime} & =\frac{v_{\mathrm{EW}}}{\sqrt{2}}\left(y_{H}^{u} \cos \beta+\frac{1}{2 \sqrt{6}} y_{\Phi}^{u} \sin \beta\right) \\
m_{\nu_{\tau}}^{\prime} & =\frac{v_{\mathrm{EW}}}{\sqrt{2}}\left(y_{H}^{u} \cos \beta-\frac{3}{2 \sqrt{6}} y_{\Phi}^{u} \sin \beta\right) \Longrightarrow \rightarrow \text { Requires Tuning: } \frac{\mathrm{meV}}{v_{\mathrm{EW}}} \sim 10^{-14}
\end{aligned}
$$

Solution

- Accept a natural tau neutrino Dirac mass, i.e. $m_{\nu_{\tau}}^{\prime} \sim v_{\mathrm{EW}}$
- Add singlet fermions such that the inverse seesaw mechanism (ISS) can be implemented to obtain the correct neutrino masses.

```
[P. Fileviez Perez and M. Wise, 1307.6213]
```


Complete Neutrino Sector of " 432 I"

Right Handed Singlet Fermions						
Gauge					Global	
Field	$S U(4)$	$S U(3)^{\prime}$	$S U(2)_{L}$	$U(1)^{\prime}$	$U(1)_{B^{\prime}}$	$U(1)_{L^{\prime}}$
$\nu_{R}^{\prime i}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	0	1
S_{R}^{a}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	0	-1

$$
\mathcal{L}_{\nu}=-\Omega_{1}^{T} \overline{S_{R}^{c}} \lambda_{R} \psi_{R}^{u}-\overline{S_{R}^{c}} M_{R} \nu_{R}^{\prime}
$$

$\begin{gathered}\text { Lepton Number } \\ \text { Violating }\end{gathered} \longrightarrow-\frac{1}{2} \overline{S_{R}^{c}} \mu_{S} S_{R}-\frac{1}{2} \overline{\nu_{R}^{\prime c}} \mu_{R} \nu_{R}^{\prime}-\bar{\ell}_{L}^{\prime} Y_{S} \widetilde{H} S_{R}+$ h.c.

- Technically natural for lepton number violating parameters to be small, since $U(1)_{L^{\prime}}$ is restored in the limit where they vanish.
- For simplicity, focus here on the first 3 terms to implement the ISS. No major change if other terms are included (if they are small).

Simplified Neutrino Sector of "432I"

Right Handed Singlet Fermions						
Gauge				Global		
Field	$S U(4)$	$S U(3)^{\prime}$	$S U(2)_{L}$	$U(1)^{\prime}$	$U(1)_{B^{\prime}}$	$U(1)_{L^{\prime}}$
$\nu_{R}^{\prime i}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	0	1
S_{R}^{a}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	0	-1

- The neutrino mass matrix takes the ISS form:

$$
\mathcal{M}_{\nu}=\left(\begin{array}{ccc}
0 & M_{\nu}^{D} & 0 \\
\left(M_{\nu}^{D}\right)^{T} & 0 & \widetilde{M}_{R}^{T} \\
0 & \widetilde{M}_{R} & \mu_{S}
\end{array}\right) \quad \begin{array}{cc}
\widetilde{M}_{R}=\left(M_{R} \frac{v_{1}}{\sqrt{2}} \lambda_{R}\right) \\
\text { SU(4) breaking } \operatorname{VEV}\left\langle\Omega_{1}\right\rangle: \sim \mathrm{TeV}
\end{array}
$$

Inverse Seesaw Mechanism

$$
\mathcal{M}_{\nu}=\left(\begin{array}{ccc}
0 & M_{\nu}^{D} & 0 \\
\left(M_{\nu}^{D}\right)^{T} & 0 & \widetilde{M}_{R}^{T} \\
0 & \widetilde{M}_{R} & \mu_{S}
\end{array}\right), \quad M_{\nu}^{D}=\left(\begin{array}{cc}
\frac{v_{H}}{\sqrt{2}} U Y_{\nu}^{\text {diag }} & -f_{\nu} \lambda_{\ell} \\
0 & m_{\nu_{\tau}}^{\prime}
\end{array}\right)
$$

- ISS Hierarchy $\mu_{S} \ll M_{\nu}^{D}<\widetilde{M}_{R}$ which is naturally expected in the model gives 3 light Majorana neutrinos:

$$
M_{\mathrm{light}} \approx M_{\nu}^{D} \widetilde{M}_{R}^{-1} \mu_{S}\left(\widetilde{M}_{R}^{T}\right)^{-1}\left(M_{\nu}^{D}\right)^{T}
$$

- Parametrically, if $m_{D} \sim \mathrm{GeV}, m_{R} \sim \mathrm{TeV}$, works for $\mu_{S} \sim \mathrm{keV}$.

$$
m_{\nu} \sim\left(\frac{m_{D}}{m_{R}}\right)^{2} \mu_{S}
$$

Example ISS Mass Spectrum

PMNS Non-Unitarity and B-Anomalies

- 3×3 light neutrino mixing matrix is now non-unitary:

$$
N=\left[1-\frac{1}{2} \Theta \Theta^{\dagger}\right] U_{\mathrm{PMNS}}, \quad \Theta \approx M_{\nu}^{D} \widetilde{M}_{R}^{-1}
$$

- PMNS Non-Unitary probed by $\epsilon=1-N N^{\dagger} \approx \Theta \Theta^{\dagger}$, so parametrically there is a contribution at least as large as:

$$
\epsilon \sim \frac{m_{D}^{2}}{m_{R}^{2}} \sim \frac{m_{D}^{2}}{v_{1}^{2}\left|\lambda_{R}\right|^{2}}
$$

- Meanwhile,

$$
\Delta R_{D}^{\tau \ell} \approx 2.2 \Delta R_{D^{*}}^{\tau \ell} \approx \frac{5 v_{\mathrm{EW}}^{2}}{v_{1}^{2}+v_{3}^{2}} i\left\{\begin{array}{c}
\text { LHC Direct Search } \\
\text { Coloron Bound: } \\
v_{3} \gtrsim 1 \mathrm{TeV}
\end{array}\right.
$$

$\left.v_{1} \quad m_{D}\right)^{2}(1 \mathrm{TeV})^{2} \quad$ Sizable effect in B-
$\Longrightarrow v_{1} \lesssim 1 \mathrm{TeV}, \quad \epsilon \sim 10^{-2}\left(\frac{m_{D}}{100 \mathrm{GeV}}\right)\left(\frac{11 e V}{v_{1}\left|\lambda_{R}\right|}\right) \quad$ physics implies sizable PMNS unitarity violation.

Neutrino Benchmark Point

$$
\mathcal{M}_{\nu}=\left(\begin{array}{cc|cc|c}
0 & 0 & \frac{v_{H}}{\sqrt{2}} U Y_{\nu}^{\text {diag }} & -f_{\nu} \lambda_{\ell} & 0 \\
0 & 0 & 0 & m_{\nu_{\tau}}^{\prime} & 0 \\
\hline \frac{v_{H}}{\sqrt{2}} Y_{\nu}^{\text {diag }} U^{T} & 0 & \mu_{R} & 0 & M_{R}^{T} \\
-f_{\nu} \lambda_{\ell}^{T} & m_{\nu_{\tau}}^{\prime} & 0 & 0 & \frac{v_{1}}{\sqrt{2}} \lambda_{R}^{T} \\
\hline 0 & 0 & M_{R} & \frac{v_{1}}{\sqrt{2}} \lambda_{R} & \mu_{S}
\end{array}\right)
$$

Using Flavor Rotations: $\quad \mu_{S}=\operatorname{diag}\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$
$\frac{v_{H}}{\sqrt{2}} U Y_{\nu}^{\text {diag }}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)\left(\begin{array}{cc}m_{\nu_{e}}^{\prime} & 0 \\ 0 & m_{\nu_{\mu}}^{\prime}\end{array}\right)$

ISS Parameter	Value
$m_{\nu_{e}}^{\prime}$	1.67 GeV
$m_{\nu_{\mu}}^{\prime}$	38.3 GeV
$m_{\nu_{\tau}}^{\prime}$	10.0 GeV
$\sin \theta$	0.510
$f_{\nu} \lambda_{\ell}^{(1)}$	0.883 GeV
$f_{\nu} \lambda_{\ell}^{(2)}$	6.80 GeV
$m_{Q L}$	2.00 TeV
m_{R}	10.0 TeV
μ_{1}	0.720 keV
μ_{2}	0.871 keV
μ_{3}	1.28 keV

Simplifying Ansatz: $\quad \mu_{R}=0$

$$
M_{R}=\left(\begin{array}{cc}
m_{R} & 0 \\
0 & m_{R} \\
0 & 0
\end{array}\right), \quad \frac{v_{1}}{\sqrt{2}} \lambda_{R}=\left(\begin{array}{c}
0 \\
0 \\
m_{Q L}
\end{array}\right)
$$

Active Neutrino Parameters:

$$
\begin{array}{ll}
\sin ^{2} \theta_{12}=0.296, & \Delta m_{32}^{2}=2.56 \times 10^{-3} \mathrm{eV}^{2}, \\
\sin ^{2} \theta_{23}=0.425, & \Delta m_{21}^{2}=7.36 \times 10^{-5} \mathrm{eV}^{2} \\
\sin ^{2} \theta_{13}=0.0214
\end{array}
$$

Neutrino Benchmark Point

$\mathcal{M}_{\nu}=\left(\begin{array}{cc|cc|c}0 & 0 & \frac{v_{H}}{\sqrt{2}} U Y_{\nu}^{\text {diag }} & -f_{\nu} \lambda_{\ell} & 0 \\ 0 & 0 & 0 & m_{\nu_{\tau}}^{\prime} & 0 \\ \hline \frac{v_{H}}{\sqrt{2}} Y_{\nu}^{\text {diag }} U^{T} & 0 & \mu_{R} & 0 & M_{R}^{T} \\ -f_{\nu} \lambda_{\ell}^{T} & m_{\nu_{\tau}}^{\prime} & 0 & 0 & \frac{v_{1}}{\sqrt{2}} \lambda_{R}^{T} \\ \hline 0 & 0 & M_{R} & \frac{v_{1}}{\sqrt{2}} \lambda_{R} & \mu_{S}\end{array}\right)$

PMNS Unitarity Violation:

$$
\epsilon=\mathbf{1}-N N^{\dagger} \approx \Theta \Theta^{\dagger}
$$

Our Benchmark Point:

ISS Parameter	Value
$m_{\nu_{e}}^{\prime}$	1.67 GeV
$m_{\nu_{\mu}}^{\prime}$	38.3 GeV
$m_{\nu_{\tau}}^{\prime}$	10.0 GeV
$\sin \theta$	0.510
$f_{\nu} \lambda_{\ell}^{(1)}$	0.883 GeV
$f_{\nu} \lambda_{\ell}^{(2)}$	6.80 GeV
$m_{Q L}$	2.00 TeV
m_{R}	10.0 TeV
μ_{1}	0.720 keV
μ_{2}	0.871 keV
μ_{3}	1.28 keV

Current Bounds:

$$
|\epsilon|=\left(\begin{array}{lll}
4.04 \times 10^{-6} & 7.94 \times 10^{-6} & 2.21 \times 10^{-6} \\
7.94 \times 10^{-6} & 2.24 \times 10^{-5} & 1.70 \times 10^{-5} \\
2.21 \times 10^{-6} & 1.70 \times 10^{-5} & 2.50 \times 10^{-5}
\end{array}\right), \quad|\epsilon|<\left(\begin{array}{lll}
2.1 \times 10^{-3} & 1.0 \times 10^{-5} & 2.1 \times 10^{-3} \\
1.0 \times 10^{-5} & 4.0 \times 10^{-4} & 8.0 \times 10^{-4} \\
2.1 \times 10^{-3} & 8.0 \times 10^{-4} & 5.3 \times 10^{-3}
\end{array}\right)
$$

Neutrino Benchmark Point

$\mathcal{M}_{\nu}=\left(\begin{array}{cc|cc|c}0 & 0 & \frac{v_{H}}{\sqrt{2}} U Y_{\nu}^{\text {diag }} & -f_{\nu} \lambda_{\ell} & 0 \\ 0 & 0 & 0 & m_{\nu_{\tau}}^{\prime} & 0 \\ \hline \frac{v_{H}}{\sqrt{2}} Y_{\nu}^{\text {diag }} U^{T} & 0 & \mu_{R} & 0 & M_{R}^{T} \\ -f_{\nu} \lambda_{\ell}^{T} & m_{\nu_{\tau}}^{\prime} & 0 & 0 & \frac{v_{1}}{\sqrt{2}} \lambda_{R}^{T} \\ \hline 0 & 0 & M_{R} & \frac{v_{1}}{\sqrt{2}} \lambda_{R} & \mu_{S}\end{array}\right)$

PMNS Unitarity Violation:

$$
\epsilon=\mathbf{1}-N N^{\dagger} \approx \Theta \Theta^{\dagger}
$$

$$
\left|\epsilon_{33}\right| \approx\left(\frac{m_{\nu_{\tau}}^{\prime}}{m_{Q L}}\right)^{2}
$$

ISS Parameter	Value
$m_{\nu_{e}}^{\prime}$	1.67 GeV
$m_{\nu_{\mu}}^{\prime}$	38.3 GeV
$m_{\nu_{\tau}}^{\prime}$	10.0 GeV
$\sin \theta$	0.510
$f_{\nu} \lambda_{l}^{(1)}$	0.883 GeV
$f_{\nu} \lambda_{l}^{(2)}$	6.80 GeV
$m_{Q L}$	2.00 TeV
m_{R}	10.0 TeV
μ_{1}	0.720 keV
μ_{2}	0.871 keV
μ_{3}	1.28 keV

$$
\begin{gathered}
\text { Our Benchmark Point: } \\
|\epsilon|=\left(\begin{array}{cccc}
4.04 \times 10^{-6} & 7.94 \times 10^{-6} & 2.21 \times 10^{-6} \\
\hline 7.94 \times 10^{-6} & 2.24 \times 10^{-5} & 1.70 \times 10^{-5} \\
2.21 \times 10^{-6} & 1.70 \times 10^{-5} & 2.50 \times 10^{-5}
\end{array}\right), \quad|\epsilon|<\left(\begin{array}{ccc}
2.1 \times 10^{-3} & 1.0 \times 10^{-5} & 2.1 \times 10^{-3} \\
\hline 1.0 \times 10^{-5} & 4.0 \times 10^{-4} & 8.0 \times 10^{-4} \\
2.1 \times 10^{-3} & 8.0 \times 10^{-4} & 5.3 \times 10^{-3}
\end{array}\right)
\end{gathered}
$$

Probed by: $\mu \rightarrow e \gamma, \mu \rightarrow 3 e$

Embedding the ISS Solution in PS³

- Consider a toy model of the neutrino sector of PS^{3}

$$
\begin{aligned}
& \mathcal{L}_{\nu}=-\Omega_{1}^{T} \overline{S_{R}^{c}} \lambda_{R} \psi_{R}^{u}-\overline{S_{R}^{c}} M_{R} \nu_{R}^{\prime}-\frac{1}{2} \overline{S_{R}^{c}} \mu_{S} S_{R}-\frac{1}{2} \overline{\nu_{R}^{\prime c}} \mu_{R} \nu_{R}^{\prime}-\bar{\ell}_{L}^{\prime} Y_{S} \widetilde{H} S_{R}+\text { h.c. } \\
& \underset{\substack{ \\
\Omega_{1, i}^{T} \bar{S}_{R, a}^{c} \\
\left(\mathrm{i}=1,2,3 \text { for } \mathrm{Ps}_{\mathrm{i}}\right)}}{ } \lambda_{a i} \psi_{R, i}^{u} \underset{\text { Flavor Alignment }}{ } \widetilde{M}_{R}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
\lambda_{1} v_{1,1} & 0 & 0 \\
0 & \lambda_{2} v_{1,2} & 0 \\
0 & 0 & \lambda_{3} v_{1,3}
\end{array}\right) \\
& \text { O(1) Couplings: } \widetilde{M}_{R} \approx \operatorname{diag}\left(10^{4}, 10^{3}, 1\right) \mathrm{TeV}
\end{aligned}
$$

- This hierarchy can perhaps be absorbed into the Majorana mass for S_{R} :

$$
m_{\nu} \sim\left(\frac{m_{D}}{m_{R}}\right)^{2} \mu_{S}, \quad \mu_{S} \approx \operatorname{diag}\left(10^{6}, 10^{4}, 1\right) \mathrm{keV}
$$

Embedding the ISS Solution in PS ${ }^{3}$

- Consider a toy model of the neutrino sector of PS^{3}

$$
\begin{aligned}
& \mathcal{L}_{\nu}=-\Omega_{1}^{T} \overline{S_{R}^{c}} \lambda_{R} \psi_{R}^{u}-\overline{S_{R}^{c}} M_{R} \nu_{R}^{\prime}-\frac{1}{2} \overline{S_{R}^{c}} \mu_{S} S_{R}-\frac{1}{2} \overline{\nu_{R}^{\prime c}} \mu_{R} \nu_{R}^{\prime}-\bar{\ell}_{L}^{\prime} Y_{S}^{\prime} \bar{H} S_{R}+\text { h.c. } \\
& \downarrow \\
& \underset{(\mathrm{i}=1,2,3 \text { for } \mathrm{Ps} \mathrm{i})}{\Omega_{1, i}^{T} \overline{S_{R, a}^{c}} \lambda_{a i} \psi_{R, i}^{u}} \xrightarrow{\text { Flavor Alignment }} \quad \widetilde{M}_{R}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
\lambda_{1} v_{1,1} & 0 & 0 \\
0 & \lambda_{2} v_{1,2} & 0 \\
0 & 0 & \lambda_{3} v_{1,3}
\end{array}\right) \\
& \text { O(1) Couplings: } \widetilde{M}_{R} \approx \operatorname{diag}\left(10^{4}, 10^{3}, 1\right) \mathrm{TeV}
\end{aligned}
$$

- This hierarchy can perhaps be absorbed into the Majorana mass for S_{R} :

$$
m_{\nu} \sim\left(\frac{m_{D}}{m_{R}}\right)^{2} \mu_{S}, \quad \mu_{S} \approx \operatorname{diag}\left(10^{6}, 10^{4}, 1\right) \mathrm{keV}
$$

Part II

Leptogenesis in "4321" Models

Baryon Asymmetry of the Universe

- Why is there more matter than anti-matter?

$$
\text { Quantified by: } \quad Y_{B} \equiv \frac{n_{B}-n_{\bar{B}}}{s_{\gamma}} \sim 10^{-10}
$$

- Sakharov conditions:
- Baryon number violation
- $\quad C$ and $C P$ Violation
- Departure from thermal equilibrium

ARS Leptogenesis

Out of equilibrium production of sterile
neutrinos (at least one
small Yukawa)

ARS Leptogenesis

Enhanced by small mass splitting between the pseudo-

Dirac pairs of " 4321 "

ARS Leptogenesis

Enhanced by small mass splitting between the pseudo-

Dirac pairs of " 4321 "

Out of equilibrium production of sterile neutrinos (at least one small Yukawa)

$$
\Gamma_{S}\left(T_{\mathrm{EW}}\right)<\mathcal{H}\left(T_{\mathrm{EW}}\right)
$$

coherent
oscillations

\uparrow
$1 H$

Asymmetry communicated to SM at different rates. One sterile neutrino should stay out of equilibrium.

ARS Leptogenesis

Enhanced by small mass splitting between the pseudo-

Dirac pairs of " 4321 "

- Because one sterile neutrino does not equilibrate before EW sphaleron freeze-out at $T_{\mathrm{EW}} \sim 140 \mathrm{GeV}$:

$$
L_{\mathrm{SM}}=-L_{S}
$$

($L_{\text {tot }}$ conserved)

Processed into non-vanishing B-asymmetry by sphalerons. hep-ph/9803255]

Mass Spectrum for Leptogenesis

CP Violation

- A few options for complex phases:

$$
\mathcal{M}_{\nu}=\left(\begin{array}{ccc}
0 & M_{\nu}^{D} & M_{S}^{D} \\
\left(M_{\nu}^{D}\right)^{T} & \widetilde{\mu}_{R} & \widetilde{M}_{R}^{T} \\
\left(M_{S}^{D}\right)^{T} & \widetilde{M}_{R} & \mu_{S}
\end{array}\right) \quad Y_{S} \bar{\ell}_{L}^{\prime} \widetilde{H} S_{R}
$$

- Asymmetry proportional to Im part of Yukawa in the mass basis:

$$
\delta_{\alpha}=\sum_{i>j} \operatorname{Im}\left[F_{\alpha i}\left(F^{\dagger} F\right)_{i j} F_{j \alpha}^{\dagger}\right], \quad F_{\alpha I}=Y_{\alpha i} \mathcal{U}_{i I}
$$

"432 I" Leptogenesis

$$
\begin{gathered}
\frac{v_{H}}{\sqrt{2}} Y_{\nu}^{\text {diag }}=\left(\begin{array}{cc}
m_{\nu_{e}}^{\prime} & 0 \\
0 & m_{\nu_{\mu}}^{\prime}
\end{array}\right) \\
\underline{Y_{\nu_{e}}}=\sqrt{2} m_{\nu_{e}}^{\prime} / v_{H}
\end{gathered}
$$

$$
\underline{Y_{S}} \bar{\ell}_{L}^{\prime} \widetilde{H} S_{R}
$$

Part III

Gravitational Imprints of Flavor Hierarchies

The Main Idea

- Upcoming gravitational wave experiments (2030's) can probe particle physics processes beyond the reach of colliders.

Model Example: Pati-Salam Cubed

- 5d Pati-Salam gauge symmetry deconstructed onto three 4d sites:

$$
\begin{gathered}
P S^{3} \equiv P S_{1} \times P S_{2} \times P S_{3} \\
P S_{i}=\left[S U(4) \times S U(2)_{L} \times S U(2)_{R}\right]_{i}
\end{gathered}
$$

Fermions (one set per family)

$$
\begin{aligned}
\Psi_{L}^{(i)} & \equiv(\mathbf{4}, \mathbf{2}, \mathbf{1})_{i} \\
\Psi_{R}^{(i)} & \equiv(\mathbf{4}, \mathbf{1}, \mathbf{2})_{i}
\end{aligned}
$$

Scalar and Link Fields

$$
\begin{aligned}
& \Sigma_{1} \sim(\mathbf{4}, \mathbf{1}, \mathbf{2})_{1}, H_{3} \sim(\mathbf{1}, \mathbf{2}, \overline{\mathbf{2}})_{3} \\
& \Phi_{i j}^{L} \sim(\mathbf{1}, \mathbf{2}, \mathbf{1})_{i} \times(\mathbf{1}, \overline{\mathbf{2}}, \mathbf{1})_{j} \\
& \Phi_{i j}^{R} \sim(\mathbf{1}, \mathbf{1}, \mathbf{2})_{i} \times(\mathbf{1}, \mathbf{1}, \overline{\mathbf{2}})_{j} \\
& \Omega_{i j} \sim(\mathbf{4}, \mathbf{2}, \mathbf{1})_{i} \times(\overline{\mathbf{4}}, \overline{\mathbf{2}}, \mathbf{1})_{j}
\end{aligned}
$$

[M. Bordone, C. Cornella, J. FuentesMartin, G. Isidori, 1712.01368]

Model Example: Pati-Salam Cubed

- SM fermion masses and mixings are generated by breaking the PS3 gauge symmetry in a series of sequential steps.
- Flavor hierarchies <==> Series of hierarchical SSBs

Yukawas

$$
\begin{aligned}
& \mathcal{L} \supset \bar{\Psi}_{L}^{(3)} H_{3} \Psi_{R}^{(3)} \\
& \mathcal{L}_{23}=\frac{1}{\Lambda_{\mathrm{III}}} \bar{\Psi}_{L}^{(2)} \Omega_{23} H_{3} \Psi_{R}^{(3)}+\text { h.c. } \\
& \mathcal{L}_{12}=\frac{1}{\Lambda_{\mathrm{II}}^{2}} \bar{\Psi}_{L}^{(k)} \Phi_{k 3}^{L} H_{3} \Phi_{3 l}^{R} \Psi_{R}^{(l)}+\text { h.c. }
\end{aligned}
$$

Model Example: Pati-Salam Cubed

$U(2)$-breaking spurions perturb this picture

$$
\begin{array}{ll}
\mathcal{L}_{23}=\frac{1}{\Lambda_{\mathrm{III}}} \bar{\Psi}_{L}^{(2)} \Omega_{23} H_{3} \Psi_{R}^{(3)}+\text { h.c. } & \longrightarrow\left|V_{t s}\right| \sim \frac{\left\langle\Omega_{23}\right\rangle}{\Lambda_{\mathrm{III}}} \sim \frac{\Lambda_{\mathrm{IV}}}{\Lambda_{\mathrm{III}}} \\
\mathcal{L}_{12}=\frac{1}{\Lambda_{\mathrm{II}}^{2}} \bar{\Psi}_{L}^{(k)} \Phi_{k 3}^{L} H_{3} \Phi_{3 l}^{R} \Psi_{R}^{(l)}+\text { h.c. } & \longrightarrow \quad Y_{c} \sim \frac{\left\langle\Phi_{23}^{L}\right\rangle\left\langle\Phi_{32}^{R}\right\rangle}{\Lambda_{\mathrm{II}}^{2}} \sim \frac{\Lambda_{\mathrm{III}}^{2}}{\Lambda_{\mathrm{II}}^{2}}
\end{array}
$$

Phase Transitions of Pati-Salam Cubed

- Focus on the three PTs involving $\operatorname{SU}(4)$ breakings:

- These can very naturally be first-order phase transitions.

Cosmological Phase Transitions

- Nature of the PT controlled by the finite-temperature effective potential:

$$
\quad V_{\mathrm{eff}}(\underbrace{(g, \lambda, v, \phi, T)}_{\text {[fundamental parameters] }}=V_{0}+V_{\mathrm{CW}}+V_{T \neq 0}
$$

Figure from E. Madge

Cosmological First-Order Phase Transitions

- Due to decreasing temperature, the scalar field will eventually tunnel from the false to the true vacuum.
- Tunneling occurs when: $\Gamma\left(T_{\mathrm{n}}\right) H_{\mathrm{n}}^{-4} \sim 1$
- This defines the bubble nucleation temperature T_{n}.

At $T_{n}: \begin{aligned} & \text { Bubbles of broken phase } \\ & \text { nucleate and expand }\end{aligned}$
[see thesis by Moritz Breitbach]

GWs from Cosmological FOPTs

- Gravitational waves are relics of strong cosmological FOPTs!

- Bubbles expand- spherical symmetry ==> No GW yet. (Birkhoff's Theorem)
[D. Cutting, M. Hindmarsh, D.J. Weir 1802.05712]

- Bubbles collide, breaking spherical symmetry. Anisotropic energy distribution ==> GW

Calculation: Simplified 4-to-3 Model

- Take the simplest "4-to-3" breaking at the scale Λ_{I}.

- Computed " $4 \times 3-$ to -3 " breaking as well- qualitatively similar.

Calculation: Simplified 4-to-3 Model

- Consider the breaking pattern: $S U(4) \rightarrow S U(3)$

Massive gauge bosons: $\quad 15=8+6+1$

- Matter content [all in 4 of $\operatorname{SU}(4)$]

$$
\langle\Sigma\rangle=(0,0,0, v / \sqrt{2})^{T}, \quad \Psi_{L}, \quad \Psi_{R}
$$

Scalars:

Goldstones + Massive radial mode: $\boldsymbol{\operatorname { R e }} \Sigma_{4} \equiv \phi / \sqrt{2}$

- No Yukawa interactions (gauge symmetry)

$$
\mathcal{L}=\bar{\Psi} i \not D \Psi-\frac{1}{4}\left(F_{\mu \nu}^{a}\right)^{2}+\left|D_{\mu} \Sigma\right|^{2}+\lambda v^{2}|\Sigma|^{2}-\lambda|\Sigma|^{4}
$$

Model Parameters: g, λ, v

Calculation: Simplified 4-to-3 Model

- Finite temperature effective potential for $\boldsymbol{\operatorname { R e }} \Sigma_{4} \equiv \phi / \sqrt{2}$

$$
\underset{\text { [fundamental parameters] }}{\qquad V_{\mathrm{eff}}(g, \lambda, v, \phi, T)=V_{0}+V_{\mathrm{CW}}+V_{T \neq 0}}
$$

- Tree-level potential: $\quad V_{0}(\lambda, v, \phi)=-\frac{1}{2} \lambda v^{2} \phi^{2}+\frac{\lambda}{4} \phi^{4}$
- Coleman-Weinberg:

$$
\begin{gathered}
V_{C W}(g, \lambda, v, \phi)=\sum_{b} n_{b} \frac{m_{b}^{4}(\phi)}{64 \pi^{2}}\left(\ln \frac{m_{b}^{2}(\phi)}{\mu_{R}^{2}}-C_{a}\right) \\
\text { Zero temp }
\end{gathered} \begin{aligned}
& \text { e.g. } \\
& m_{Z^{\prime}}^{2}=\frac{3 g^{2} \phi^{2}}{8} \\
& m_{U}^{2}=\frac{g^{2} \phi^{2}}{4}
\end{aligned}
$$ part of:

(*) Small scalar quartics

Calculation: Simplified 4-to-3 Model

- Finite temperature effective potential for $\operatorname{Re} \Sigma_{4} \equiv \phi / \sqrt{2}$

$$
V_{\mathrm{eff}}(\underline{g, \lambda, v}, \phi, T)=V_{0}+V_{\mathrm{CW}}+V_{T \neq 0}
$$

[fundamental parameters] [temperature]

- 1-loop Thermal Potential:

$$
\begin{aligned}
& \text { e.g. } \\
& \Pi_{A_{\mu}^{a}}^{L}(T)=\frac{11}{6} g^{2} T^{2} \\
& \Pi_{A_{\mu}^{a}}^{T}(T)=0
\end{aligned}
$$

$$
V_{T \neq 0}(g, \lambda, v, \phi, T)=\frac{T^{4}}{2 \pi^{2}} \sum_{b} n_{b} J_{b}\left(\frac{m_{b}^{2}(\phi)+\Pi_{b}(T)}{T^{2}}\right)
$$

Finite temp part of:

Daisy
Resummation:

(*) Small scalar quartics

Results: Simplified 4-to-3 Model

- Resulting gravitational wave signal is naturally detectable if:

$$
g \sim 1, \lambda \ll 1
$$

(1)

PS ${ }^{3}$ embeds strong gauge group:

$$
g_{s} \sim 1
$$

-

5d gauge symmetry ==> suppressed scalar quartics.

Quartic coupling λ

Gauge Couplings of Pati-Salam-Cubed

- Choose large $\operatorname{SU}(4)$ coupling at the TeV scale (flavor anomalies)
- Must match onto QCD when " 4321 " is broken at the TeV scale:
$\frac{1}{g_{s}^{2}\left(\Lambda_{\mathrm{IV}}\right)}=\frac{1}{g_{4,3}^{2}\left(\Lambda_{\mathrm{IV}}\right)}+\frac{1}{g_{3,3}^{2}\left(\Lambda_{\mathrm{IV}}\right)}$
- Flavor anomalies + QCD dictate all gauge couplings are $O(1)$!

Gravitational Imprints of Pati-Salam Cubed:

Conclusions

- "4321" models at the TeV scale offer the most coherent explanation for the current flavor anomalies.
- Our work addressed a major phenomenological issue of lowscale quark-lepton unification by achieving the correct neutrino masses and mixings via the ISS mechanism.
- The naturally small mass splittings of the heavy right-handed neutrinos may be used for low-scale leptogenesis.
- The parameters of Pati-Salam-Cubed (which offers a compelling UV embedding of "4321") naturally yield a series of first-order SSBs that produce observable GWs.

