
Hawking Radiation

Stefania Mombelli

December 2019

Supervised by Prof. Philippe Jetzer



Contents

1 Introduction 3

2 Basic notions on Schwarzschild spacetime and Penrose diagrams 3

2.1 Schwarzschild solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Penrose diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Killing vector �eld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Some notions of quantum �eld theory 7

3.1 Quantum �eld theory of the real scalar �eld in �at spacetime . . . . . . . . . . . 7

3.2 Quantum �eld theory in an external potential or curved, asymptotically �at

spacetime (no horizon) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 Introducing some minimal assumptions on the metric . . . . . . . . . . . 9

3.2.2 Introducing some minimal assumptions on the �eld operators . . . . . . . 9

3.2.3 De�ning some scattering operators . . . . . . . . . . . . . . . . . . . . . 10

3.2.4 Determining Ψ = SΨ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Particle creation by gravitational collapse 13

4.1 The classical Klein-Gordon �eld on the Schwarzschild background . . . . . . . . 13

4.2 De�ning the Hilbert spaces of incoming and outgoing one-particle states . . . . . 14

4.3 Postulating the �eld operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.4 Determining Ψ = SΨ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.5 Interpreting the state vector Ψ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.6 Determining 〈N 〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Discussion 25

1



Abstract

This work is a review of some articles and books concerning the phenomenon of Hawking

radiation. We will �rst give a short introduction on the Schwarzschild solution and on Penrose

diagrams, which will be useful throughout the whole work. After that, we will discuss quantum

�eld theory on a curved spacetime and we will apply it to the massless Klein-Gordon �eld on

the Schwarzschild spacetime. This will allow us to study the phenomenon of particle creation

by a black hole and in particular to calculate the expected number of particles detected far

away from it.
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1 Introduction

The purpose of this work is to review some literature regarding Hawking radiation. The name

Hawking radiation indicates the phenomenon of particle creation by black holes, which arises

when considering quantum �eld theory in a Schwarzschild or Kerr spacetime. In this work, we

will focus on studying the production of massless Klein-Gordon particles by a Schwarzschild

black hole.

In quantum �eld theory on a curved spacetime, the metric is treated classically but is

coupled to matter �elds which are treated quantum mechanically, like in the well known case

of quantum �eld theory in an external classical potential. If one considers a spacetime which

has an initial �at region (1), followed by a region of curvature (2) and by a �nal �at region (3),

this theory can be treated like a scattering theory.

In the particular case of the Klein-Gordon �eld, the deep reason for the creation of particles

is contained in the fact that, as we will see, one can express the operator φ obeying the Klein-

Gordon equation (∂µ∂
µ +m2)φ = 0 as

φ =
∑
i

(
Fiai + F̄ia

†
i

)
,

where the {Fi} are a complete orthonormal family of complex valued positive frequency solu-

tions of the equation (∂µ∂
µ + m2)F = 0, while the {F̄i} are their complex conjugates (which

represent negative frequency solutions). Indeed, the scattering of these solutions by the classical

metric will cause a mixing between the sets {Fi} and {F̄i}, which results in a di�erent splitting

of the operator φ into annihilation and creation operator. This means that the initial vacuum

state Ψ0(1), i.e. the state satisfying ai(1)Ψ0(1) = 0 in region (1), will not be the same as the �nal

vacuum state, because in region (3) we have ai(3)Ψ0(1) 6= 0, due to the fact that ai(1) and ai(3)

are di�erent operators. This also implies that, in order to have a well de�ned notion of particle,

one has to be able to de�ne the notion of positive and negative frequency unambiguously. As

we will see, this is possible in �at spacetime but not, for example, on the black hole horizon.

Therefore, it is not clear what the physical meaning of a "particle at the horizon" is.

Following the work of Wald ([2]), we will develop a quantum scattering theory which will

allow us to quantify the particle production by a Schwarzschild black hole. In particular, we

are interested in calculating the expected number of particles produced by it.

2 Basic notions on Schwarzschild spacetime and Penrose

diagrams

In this work, we will study the phenomenon of Hawking radiation created by a black hole

formed by a spherically symmetric collapse, i.e. a non-rotating Schwarzschild black hole.

2.1 Schwarzschild solution

The Schwarzschild metric is the most general solution to the Einstein �eld equations for a

spherically symmetric matter distribution of total mass M, under the assumption of no rotation

and that the cosmological constant is zero. It is valid in vacuum, i.e., in the space region outside

of the mass distribution, and it is static. In units with c = G = ~ = 1, the Schwarzschild metric
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for mass M is de�ned as

ds2 =

(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 − r2(dθ2 + sin2θdϕ2) (1)

where t is the time coordinate (measured by a stationary clock located in�nitely far from the

massive body), r is the radial coordinate (measured as the circumference, divided by 2π, of

a sphere centered around the massive body) and θ and ϕ are the angular coordinates. The

radius rs = 2M is called Schwarzschild radius and de�nes the event horizon of the black hole.

At rs = 2M , the solution seems to have a singularity. This singularity is not physical, but it is

due to a bad choice of coordinates.

We can apply the following coordinate transformation

T =
( r

2M
− 1
)1/2

exp
( r

4M

)
sinh

(
t

4M

)
(2)

X =
( r

2M
− 1
)1/2

exp
( r

4M

)
cosh

(
t

4M

)
(3)

for r > 2M and

T =
(

1− r

2M

)1/2

exp
( r

4M

)
cosh

(
t

4M

)
(4)

X =
(

1− r

2M

)1/2

exp
( r

4M

)
sinh

(
t

4M

)
(5)

for r < 2M . The new coordinates are called Kruskal-Szekeres coordinates. In these coordinates,

the Schwarzschild metric takes the form

ds2 =
2M

r
exp

(
1− r

2M

)
(dT 2 − dX2)− r2(dθ2 + sin2θdϕ2). (6)

One notices that the singularity at r = 2M disappears. Furthermore, it can be easily observed

from (6) that the radial light-like geodesics (the worldlines of light rays moving in a radial

direction) correspond to diagonal straight lines in the chart. In Kruskal-Szekeres coordinates,

the Schwarzschild solution can be extended to regions that are not covered by Schwarzschild

coordinates. Speci�cally, one can show that (6) is a valid solution to the Einstein �eld equations

in vacuum for any (X,T ) ∈ R2. One distinguishes four regions, de�ned below and illustrated

in �gure 1.

Region I exterior region r(T,X) > 2M and X > 0

Region II interior of black hole 0 < r(T,X) < 2M and T > 0

Region III parallel exterior region r(T,X) > 2M and X < 0

Region IV interior of white hole 0 < r(T,X) < 2M and T < 0

For the purpose of this work, it will be useful to introduce three more coordinate systems

in region I of the Schwarzschild spacetime. The �rst one is given by Regge-Wheeler coordinates

(t, r∗, θ, ϕ), where

r∗ = r + 2M ln
( r

2M
− 1
)
. (7)

It maps r ∈ (2M,∞) 7→ r∗ ∈ (−∞,∞). The metric in these coordinates reads

ds2 =

(
1− 2M

r

)
(dt2 − dr2

∗) + r2(dθ2 + sin2θdϕ2) (8)
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Figure 1: Kruskal-Szekeres coordinates. This picture is taken from [8].

with r = r(r∗). The second system is represented by the ingoing Eddington-Finkelstein coor-

dinates (v, r, θ, ϕ), where v = t + r∗ is called advanced time. The metric in these coordinates

reads

ds2 = −
(

1− 2M

r

)
dv2 + 2dvdr + r2(dθ2 + sin2θdϕ2). (9)

The advanced time v is a constant parameter along null geodesics that enter the black hole.

The third system is represented by the outgoing Eddington-Finkelstein coordinates (u, r, θ, ϕ),

the coordinate u = t− r∗ is called retarded time. The metric in these coordinates reads

ds2 = −
(

1− 2M

r

)
du2 − 2dudr + r2(dθ2 + sin2θdϕ2). (10)

The retarded time u is a constant parameter along null geodesics that exit the white hole. One

can show (see chapter 6.4 of [4]) that the Eddington-Finkelstein coordinates are related to the

Kruskal coordinates (if we set U = T −X and V = T +X) in the following way

U = −exp(−κu), (11)

V = exp(κv), (12)

where U is called Kruskal retarded time and V is called Kruskal advanced time.

2.2 Penrose diagrams

Penrose diagrams are useful to illustrate the causal relation in a spacetime. They are �nite

two-dimensional representations of a spacetime with the property that worldlines of massless

particles are straight diagonal lines. They are obtained by compactifying light-like coordinates

to map them onto a �nite interval. The construction of Penrose diagrams is illustrated in section

4.5.3 of [8]. Throughout this work, we will deal with a Schwarzschild spacetime parametrized by

Kruskal-Szekeres coordinates. Figure 2 shows the Penrose diagram of the analytically extended

Schwarzschild solution. In this diagram, null geodesics in the X − T plane are at ±45◦ to the

vertical. Each point of the diagram represents a 2-sphere of area 4πX2. The following table

summarises some particularly interesting points in this diagram.
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Figure 2: Penrose diagram of the extended Schwarzschild solution. This picture is taken from

[8].

i0 (T,X) = (0, 1) space in�nity

i+ (T,X) = (1, 0) in�nite future

i− (T,X) = (−1, 0) in�nite past

I + T +X = 1 in�nite light-like future

I − T −X = −1 in�nite light-like past.

Most of the diagram is not relevant to a black hole formed by gravitational collapse. The

Penrose diagram describing this latter case is depicted in �gure 3.

Figure 3: Penrose diagram describing gravitational collapse. This picture is taken from [2].

In this case, the metric is exactly the Schwarzschild metric everywhere outside the surface of

the collapsing object, which is represented by a time-like geodesic. Inside the object the metric

is completely di�erent, the white hole horizon, the past r = 0 singularity and the parallel

exterior region do not exist and are replaced by a time-like curve representing the origin of

polar coordinates.

2.3 Killing vector �eld

A Killing vector �eld K is a vector �eld whose �ow is an isometry

LKgµν = 0, (13)
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where LKgµν denotes the Lie derivative of the metric gµν with respect to K. A spacetime is

called stationary if it admits a Killing vector �eld that is asymptotically time-like.

The Schwarzschild solution is static (and hence stationary). Therefore, it admits such a

Killing �eld, which we call time translation Killing vector �eld. Moreover, in the presence of a

black hole, the Killing vector �eld is light-like on the event horizon and space-like in the interior

of the black hole.

Given Killing vector �eld K, one can de�ne the surface gravity κ as follows

Ka∇aK
b = κKb. (14)

If we consider K to be the time translation Killing vector �eld of the Schwarzschild solution

with mass M , we obtain κ = 1
4M

.

3 Some notions of quantum �eld theory

3.1 Quantum �eld theory of the real scalar �eld in �at spacetime

The purpose of this section is to brie�y recapitulate the standard quantum �eld theory of the

free Klein-Gordon �eld in order to establish the notation for the following sections. We will

follow section II of [2].

The quantized Klein-Gordon �eld φ is a Hermitian operator satisfying the Klein-Gordon

equation

(∂µ∂
µ +m2)φ(x) = 0. (15)

The Hilbert space on which the operator φ acts is taken to be H = L2(M+) where M+ is

the positive mass shell (i.e. M+ is the submanifold of the Fourier transformed Minkowski space

de�ned by −kµkµ + m2 = 0 with kµ future directed). This space is interpreted as the Hilbert

space of one particle states. The dual Hilbert space to H is denoted by H̄ and the Hilbert

space of states is taken to be the symmetric Fock space F (H ) de�ned by

F (H ) = C⊕H ⊕ (H ⊗H )s ⊕ (H ⊗H ⊗H )s ⊕ ... (16)

where the subscript s denotes the symmetric tensor product.

We shall use the following notation: elements of the symmetrized tensor product of n

copies of H will be denoted by Greek letters with n latin upper indices (e.g. ξa ∈ H and

ξabc ∈ (H ⊗H ⊗H )s, but we can also write ξ ∈ H for one particle states if no confusion

will arise), while elements of the symmetrized tensor product of n copies of H̄ are denoted by

barred Greek letters with n lower latin indices (e.g. ξ̄a ∈ H̄ , or ξ̄ ∈ H̄ ). We will write an

element ψ ∈ F (H ) as

ψ = (c, ξa, ξab, ξabc, ...). (17)

A contraction of indices, e.g. ξaσ̄a, will denote the complex number obtained by applying σ̄a
to ξa. In the following, we will consider the standard scalar product on H ,

(σ, ξ) = ξaσ̄a. (18)

For every τ̄ ∈ H̄ we de�ne the annihilation operator a(τ̄) : F (H )→ F (H ) by

a(τ̄)ψ = (ξaτ̄a,
√

2ξabτ̄a,
√

3ξabcτ̄a, ...) (19)
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where ψ is de�ned in (17). Similarly, for every τ ∈H , we de�ne the creation operator a†(τ) :

F (H )→ F (H ) by

a†(τ)ψ = (0, cτa,
√

2τ (aξb),
√

3τ (aξbc), ...), (20)

where

τ (aξbc...z) =

√
1

n!

∑
σ∈Sn

τσ(a)ξσ(b)σ(c)...σ(z), (21)

where the set {a, b, c, ..., z} contains n elements and Sn is the group of permutations of the

elements of this set.

Before proceeding further, it is useful to discuss some features of the space of solutions of

the classical Klein-Gordon equation

(∂µ∂
µ +m2)F (x) = 0. (22)

On this space, the expression

(F,G)KG = i

∫
Σ

(F̄ ∂µG−G∂µF̄ )dΣµ, (23)

where Σ is an asymptotically �at spacelike hypersurface, de�nes a scalar product. One can

show that this scalar product is independent of the choice of Σ. The space of positive frequency

solutions of �nite Klein-Gordon norm K is isomorphic to H , and the correspondence is given

by

F̂ (kµ) = σF (kµ)δ(kνkν +m2) (24)

where F̂ denotes the fourier transform of F and σF indicates the element of H corresponding

to F under this isomorphism. Moreover, one can show that

(F,G)KG = (σF , σG) (25)

where the scalar product on the right is the one de�ned in (18). Similarly, the space of negative

frequency solutions of �nite Klein-Gordon norm K̄ is isomorphic to H̄ and one can show that

(F̄ , Ḡ)KG = −(σ̄F , σ̄G) = −(σG, σF ). (26)

As shown in [2], the previous de�nitions allow us to express the operator φ satisfying equa-

tion (15) as

φ =
∑
i

(Fiai + F̄ia
†
i ), (27)

where {Fi} is an orthonormal basis of K , σi = σFi
, σ̄i = σF̄i

, ai = a(σ̄i) and a
†
i = a†(σi).

3.2 Quantum �eld theory in an external potential or curved, asymp-

totically �at spacetime (no horizon)

It is now necessary to develop a quantum �eld theory in a curved spacetime (where a potential

could also be present) which can be later applied to the case of the Schwarzschild solution, in

order to study the phenomenon of particle creation by black holes. We will start by considering

a situation where no horizon is present and we will develop a theory, similar to a scattering

theory, where the metric and the potential will be treated classically while the matter �elds

will be treated quantum mechanically.
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We will start by making some minimal assumptions on the spacetime background and on

the �eld operators. This will allow us to uniquely determine the S-matrix S associated to

this scattering theory and the state Ψ = SΨ0, where Ψ0 represents the vacuum state in the

asymptotic past and Ψ is its image under S living in the asymptotic future. Ψ will therefore

contain information on the particle creation process.

3.2.1 Introducing some minimal assumptions on the metric

In this section we will consider the quantum �eld theory associated with the operator φ satis-

fying the equation

(∇µ∇µ +m2 + V (x))φ(x) = 0, (28)

where ∇µ denotes the covariant derivative and V is some potential. We will assume that the

spacetime curvature and V have compact support. Equation (28) is a generalization of the

Klein-Gordon equation in curved spacetime and reduces to equation (15) outside the union of

the supports of V and the curvature. Moreover, one can show that

(F,G)KG = i

∫
Σ

(F̄∇µG−G∇µF̄ )dΣµ, (29)

de�nes a scalar product in this space. In expression (29), Σ indicates an asymptotically �at

spacelike hypersurface and one can show that the value of (F,G)KG is independent of the

choice of Σ. Moreover, outside of the support of V and the curvature, expression (29) reduces

to expression (23).

3.2.2 Introducing some minimal assumptions on the �eld operators

The next step is to introduce some assumptions on the operator φ. We will denote with F the

Hilbert space on which φ acts. In the far past and in the far future (more precisely, outside

the union of supports of V and the curvature), we want the states of F to look like the states

of the free �eld F (H ), de�ned in (16). If we denote with Fin(H ) and Fout(H ) two copies

of F (H ), we can state this assumption more precisely by requiring there to be isomorphisms

U : F → Fin(H ) and W : F → Fout(H ) such that we have

UφU−1 = φin =
∑
i

(Giai + Ḡia
†
i ) (30)

and

WφW−1 = φout =
∑
j

(Hjbj + H̄jb
†
j). (31)

Here, a and a† denote the annihilation and creation operators on Fin(H ), while b and b†

denote the annihilation and creation operators on Fout(H ). Gi are solutions of the classical

version of equation (28) which agree in the past with the free solution Fi appearing in equation

(27) (more precisely, Gi may be constructed by choosing a spacelike hypersurface which lies

entirely outside the support of the curvature and V in the past and assigning the value and

time deivative of Fi on that slice as initial data for a solution of the classical equation (28)).

Similarly, Hi are solutions of the classical version of (28) which agree in the far future with

Fi. Fin(H ) and Fout(H ) can be interpreted as the spaces of incoming and outgoing particle

states. The S-matrix, de�ned as S = WU−1, relates Fin(H ) to Fout(H ) and therefore gives
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Figure 4: The relationships between the Hilbert space of states F and the "in" and "out"

Hilbert spaces Fin(H ) and Fout(H ). This picture is taken from [2].

all the relevant information concerning the scattering process. The situation is depicted in

�gure 4.

By left-multiplying equation (30) by S and right-multiplying it by S−1 and by comparing

it to equation (31), we obtain

S

[∑
i

(
Giai + Ḡia

†
i

)]
S−1 =

∑
i

(
Hjbj + H̄jb

†
j

)
, (32)

which is equivalent to∑
i

[
Gi(SaiS

−1) + Ḡi(Sa
†
iS
−1)
]

=
∑
i

(
Hjbj + H̄jb

†
j

)
. (33)

We now take the scalar product of Gn with both sides of (33) and obtain

(Gn,
∑
i

[
Gi(SaiS

−1) + Ḡi(Sa
†
iS
−1)
]
)KG = (Gn,

∑
i

(
Hjbj + H̄jb

†
j

)
)KG, (34)

which is equivalent to∑
i

[
(Gn, Gi)KG(SaiS

−1) + (Gn, Ḡi)KG(Sa†iS
−1)
]

=
∑
i

(
(Gn, Hj)KGbj + (Gn, H̄j)KGb

†
j

)
.

(35)

Since {Gi} is an orthonormal basis of the space of the solutions of the classical Klein-Gordon

equation, and since the space of positive frequency solutions and the space of negative frequency

solutions are orthogonal to each other, we have that (Gn, Gi)KG = δni and that (Gn, Ḡi)KG = 0.

Therefore, we obtain

SanS
−1 =

∑
i

(
(Gn, Hj)KGbj + (Gn, H̄j)KGb

†
j

)
. (36)

Equation (36) illustrates very well the mixing of creation and annihilation operators due to the

scattering.

3.2.3 De�ning some scattering operators

We will now introduce some operators which will allow us to rewrite (36) in a cleaner way.

These operators will contain information about the mixing of positive and negative frequencies
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due to the scattering. Since we will refer to [2] for some proofs, we will use the same notation

as there.

Let F be a positive frequency solution of the classical free Klein-Gordon equation (22). Let

G be a solution of the classical version of equation (28) which agrees with F in the far past. In

the future, G will agree with some solution of (22) (which can be a superposition of positive

and negative frequency solutions). Decomposing this classical free �eld solution into its positive

and negative components, we can uniquely write

G = H ′ + H̄ ′′, (37)

where H ′ and H ′′ are solutions of the classical version of equation (28) which agree in the

future with positive frequency free �eld solutions, denoted F ′ and F ′′ respectively. We de�ne

the operators C : H →H and D : H → H̄ by

CσF = σF ′ (38)

and

DσF = σ̄F ′′ . (39)

The situation is depicted in �gure 5. Moreover, we de�ne the operators C̄ : H̄ → H̄ and

D̄ : H̄ →H by

C̄σ̄ = Cσ (40)

and

D̄σ̄ = Dσ. (41)

We are now in position to rewrite equation (36) in a more compact form. For all states

σ ∈H , we have

Sa(σ̄)S−1 = b(Cσ)− b†(Dσ). (42)

A detailed proof for this can be found in section III of [2]. Setting τ = Cσ and de�ning the

operator E : H̄ →H by

E = D̄C̄−1, (43)

we have for all τ ∈H

Figure 5: The action of the operators C, D and E.

Sa(C−1τ)S−1 = b(τ̄)− b†(Eτ̄). (44)
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Given a solution of (28) of the form (37), the operator Ē maps the one-particle state associated

with the positive frequency part to the one associated with the negative frequency part after

the scattering.

Since all the necessary operators have been introduced, we can now proceed to the next

step, consisting of determining the image of the incoming vacuum state under the S-matrix,

using the result (44).

3.2.4 Determining Ψ = SΨ0

We begin by de�ning

Ψ = SΨ0, (45)

where Ψ0 is the incoming vacuum state (Ψ0 ∈ Fin(H )). Physically, Ψ contains complete

information on particle creation from the vacuum. By right-multiplying both sides of equation

(44) by Ψ, we obtain

Sa(C−1τ)Ψ0 =
[
b(τ̄)− b†(Eτ̄)

]
Ψ. (46)

Since a is the annihilation operator on Fin(H ) and Ψ0 ∈ Fin(H ) is the vacuum state of

Fin(H ), we have that a(C−1τ)Ψ0 = 0. Equation (46) then becomes

b(τ̄)Ψ = b†(Eτ̄)Ψ. (47)

Writing

Ψ = (c, ηa, ηab, ηabc, ηabcd, ...) (48)

and solving equation (47) component by component (using the de�nition of creation and anni-

hilation operators de�ned in (19) and (20)), we �nd for the �rst four terms

ηaτ̄a = 0 (49a)
√

2ηabτ̄a = c(Eτ̄)b (49b)
√

3ηabcτ̄a =
√

2(Eτ̄)(bηc) (49c)
√

4ηabcdτ̄a =
√

3(Eτ̄)(bηcd). (49d)

Since these equations need to be satis�ed for all τ ∈ H , it follows from (49a) that ηa = 0

(ηa is the zero vector in the vector space H ). Equation (49c) then implies that ηabc = 0. By

induction, it follows that η
abc...z︸︷︷︸

n = 0 for n odd. This means that the amplitude for being in a

state with an odd number of particles vanishes, i.e. particles are created in pairs. Equation

(49b) states that E and ηab, seen as operators from H̄ to H , must be proportional. This

means that there exists1 a state εab ∈ (H ⊗H )s such that

εabξ̄a = (Eξ̄)b (50)

for every ξ ∈H and such that

ηab = (c/
√

2)εab. (51)

1As explained in [2], in order for such a state to exist, the operator E must satisfy two conditions. It must

be a symmetric operator and it must satisfy the condition tr(E†E) < ∞ in order for the scattering theory to

exist. If these conditions are satis�ed, one can show that the norm of Ψ = SΨ0 is �nite. The behavior of E

depends on the choice of the �eld equations and on the spacetime metric. In the case of a Klein-Gordon �eld

on a Schwarzschild background, these conditions are satis�ed, as shown in [2]. Therefore, we do not need to

care about them.
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Equation (49d) then yields

ηabcd = c((3 · 1)/(4 · 2))1/2ε(abεcd) (52)

and by induction, we obtain for the n-particle state (n even)

ηabcd...yz = c((2n)!1/2/(2n · n!))ε(abεcd...εyz). (53)

Therefore, the state Ψ = SΨ0 has following form

Ψ = Ψ(εab) = c(1, 0, 2−1/2εab, 0, ((3 · 1)/(4 · 2))1/2ε(abεcd), 0, ...). (54)

We can choose c to make ‖Ψ‖ = 1.

In order for the theory to be consistent, it remains to show that the remainder of the

S-matrix of this theory is uniquely determined and that the S-matrix is unitary (i.e., that

S−1 = S†). A proof for this can be found in section III of [2].

In summary, a consistent theory satisfying our initial requirements does exist. Using this

theory, we found that particles are created in pairs. In the next section, we will apply this

theory to the Klein-Gordon �eld on a Schwarzschild background in order to quantify the particle

creation by black holes.

4 Particle creation by gravitational collapse

We have now reached the main point of this work, where we will try to apply the theory devel-

oped in the previous section to the Klein-Gordon �eld together with the Schwarzschild solution.

First of all, we will show that the Schwarzschild solution satis�es the minimal requirements for

this theory to be applied. Then, we will �nd what the operator E (and therefore the state εab)

looks like. This will allow us to determine the state Ψ = SΨ0 which results when gravitational

collapse of a body occurs with no particles initially present (i.e. starting with the vacuum

incoming state Ψ0). Finally, we will determine the expectation value of the number of particles

〈N 〉 observed at late times (i.e. when the black hole has settled down).

4.1 The classical Klein-Gordon �eld on the Schwarzschild background

We will start by considering the Schwarzschild extended spacetime of �gure 2. The classical

Klein-Gordon equation looks

(∇µ∇µ +m2)φ = 0, (55)

where∇µ is the covariant derivative associated to the Schwarzschild metric. Since the Schwarzschild

spacetime has spherical symmetry, it makes sense to expand φ in spherical harmonics

φ(t, r∗, θ, ψ) =
∞∑
l=0

l∑
m=−l

flm(r∗, t)

r
Ylm(θ, ψ), (56)

where flm(r∗, t) is a function of r∗ and t (Regge-Wheeler coordinates). By plugging (56) into

(55), we obtain

∂2flm
∂t2

− ∂2flm
∂r2
∗

+

(
1− 2M

r

)[
l(l + 1)

r2
+

2M

r3
+m2

]
flm = 0, (57)

13



which we can also write as
∂2flm
∂t2

− ∂2flm
∂r2
∗

+ Vl(r)flm = 0, (58)

where

Vl(r) =

(
1− 2M

r

)[
l(l + 1)

r2
+

2M

r3
+m2

]
, (59)

with r = r(r∗), has limits

Vl(r)→

{
0, (r∗ → −∞, i.e. r → 2M)

m2, (r∗ → +∞, i.e. r → +∞).
(60)

Equation (58) has then the form of the wave equation for a massless scalar �eld f in a two-

dimensional �at spacetime with a scalar potential (59). If we set m = 0, the solution flm of

(58) in the asymptotic past has the form

flm,−(t, r∗) = f−(t− r∗) + g−(t+ r∗) = f−(u) + g−(v) (61)

where f− and g− approach a free solution (i.e. a solution of (58) where Vl(r) = 0). f− and

g− describe the part of the wave incoming from the white hole, respectively incoming from

I −. The coordinates u and v are the Eddington-Finkelstein coordinates. Similarly, in the

asymptotic future, the solution has the form

flm,+(t, r∗) = f+(t− r∗) + g+(t+ r∗) = f+(u) + g+(v) (62)

where f+ and g+ approach again a free solution and describe the part of the wave outgoing

to I +, respectively outgoing to the black hole. Therefore, in Regge-Wheeler coordinates,

the situation looks like the one described in the previous section, where no curvature but a

potential is present, and the solutions of the Klein-Gordon equation approach free solutions

in the asymptitic past and future. Therefore, the theory developed in the previous section

can be applied to the massless Klein-Gordon �eld in these coordinates. Moreover, a massless

Klein-Gordon �eld in Schwarzschild spacetime is determined by its boundary conditions (i.e.

by specifying the free solutions which it approaches), or "data", on the white hole horizon and

I − or, equivalently, by its data on the black hole horizon and I +. In the massive case, i.e.

m 6= 0, these nice results do not occur in Regge-Wheeler coordinates, because at r → +∞
the solution of (58) does not look like a free solution, since it is distorted by a non vanishing

potential. In order to take advantage of the nice properties that the massless Klein-Gordon

�eld has in Regge-Wheeler coordinates, we will explicitly treat the massless Klein-Gordon case

below. The Klein-Gordon equation then becomes

∇µ∇µφ = 0. (63)

However, all the results should apply to the massive case, as well as to other �elds propagating

in the Schwarzschild background (see [13] for a detailed discussion).

4.2 De�ning the Hilbert spaces of incoming and outgoing one-particle

states

So far, we have have made sure that, if we work in Regge-Wheeler coordinates, we can directly

apply the theory developed in the previous section to the massless Klein-Gordon �eld. The
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next step is to de�ne the Hilbert space of incoming and outgoing one-particle states. Since we

have seen that solutions of the massless Klein-Gordon equation can be put into correspondence

with functions on the white hole horizon together with functions on I −, and because of the

correspondence (24), we expect the one-particle Hilbert space Hin of incoming states to be the

direct sum of a Hilbert space of particles incoming from in�nity and a Hilbert space of particles

incoming from the white hole

Hin = Hin,∞ ⊕Hin,wh. (64)

At I −, there exists a time-translation Killing vector �eld. Hence, the time translation param-

eter is well de�ned and we have a well de�ned notion of positive frequency solutions, namely

those solutions whose Fourier transform on I − with respect to t (or v) contain only posi-

tive frequencies. This allows us to de�ne the space Hin,∞ unambiguously. However, it is not

possible to unambiguously de�ne the notion of positive frequency solution on the white hole,

because on the white hole horizon the Killing vector �eld is light-like. This means that there

does not exist a well de�ned time translation parameter with respect to which one can take

the Fourier transform. The Fourier transform could be taken for example with respect to the

Schwarzschild retarded time coordinate u or the Kruskal retarded time U (de�ned in (11)).

Since these parameters are related by U = −exp(−κu), this leads to distinct notions of positive

frequency, because in the two cases the space of positive frequency solutions do not coincide.

For the same reason, there is ambiguity in the de�nition of the Hilbert space Hout,bh of particles

propagating into the black hole, and hence in the de�nition of

Hout = Hout,∞ ⊕Hout,bh. (65)

However, as we will see next, it is possible to make physical predictions which avoid this

ambiguity.

First, ambiguities in the de�nition of Hin can be eliminated by replacing the extended

Schwarzschild spacetime by the spacetime appropriate to a collapsing spherical body (Figure

3), which describes black holes occurring in nature. This eliminates the white hole horizon and

makes Hin be simply Hin,∞, which is unambiguously de�ned.

Ambiguities in the de�nition of Hout do not play an important role in our case, since we are

interested in the results of measurements made at in�nity. To see this, we need the following

result.

Theorem. The spaces F (H1 ⊕H2) and F (H1) ⊗F (H2) are isomorphic and for Ψ1 ⊗ Ψ2,

Ψ3 ⊗ Ψ4 ∈ F (H1) ⊗ F (H2) the following expression de�nes a scalar product on F (H1) ⊗
F (H2):

(Ψ1 ⊗Ψ2,Ψ3 ⊗Ψ4)F (H1)⊗F (H2) = (Ψ1,Ψ3)F (H1) · (Ψ2,Ψ4)F (H2),

where (·, ·)F (H1)⊗F (H2) is the standard scalar product on F (H1)⊗F (H2) and (·, ·)F (Hi) denotes

the standard scalar product on F (Hi).

Therefore, one can view a state Ψ ∈ F (Hout,∞⊕Hout,bh) as a state Ψ1⊗Ψ2 ∈ F (Hout,∞)⊗
F (Hout,bh) where Ψ1 contains all information about particles propagating at in�nity and Ψ2

contains information about "particles" propagating into the black hole (where the notion of par-

ticle depends on the arbitrary choice of positive frequency solutions on the black hole horizon).

Any measurement at in�nity can be represented by an operator O on F (Hout,∞)⊗F (Hout,bh)
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of the form O = Õ ⊗ I1, where I1 is the identity operator on F (Hout,bh) and Õ is a Hermitian

operator on F (Hout,∞). Therefore, we have that

(Ψ, OΨ)F (Hout,∞)⊗F (Hout,bh) (66)

=(Ψ1 ⊗Ψ2, (ÕΨ1)⊗Ψ2)F (Hout,∞)⊗F (Hout,bh) (67)

=(Ψ1, ÕΨ1)F (Hout,∞) · (Ψ2,Ψ2)F (Hout,bh) (68)

=(Ψ1, ÕΨ1)F (Hout,∞). (69)

The last step follows from the fact that we normalize states Ψ2 ∈ F (Hout,bh) such that ‖Ψ2‖ =

1. A change in the de�nition of positive frequency on the black hole horizon will induce a

trasformation on the creation and annihilation operators associated with the states representing

particles which enter the black hole of the form (42), but will leave unchanged the creation and

annihilation operators associated with the states representing particles which propagate to

in�nity. This will cause the expression for the state Ψ to change to Ψ′ = SΨ, where S has

the form S = I2 ⊗ S̃, where I2 is the identity on F (Hout,∞) and S̃ is a unitary operator on

F (Hout,bh). It follows then that

(Ψ′, OΨ′)F (Hout,∞)⊗F (Hout,bh) (70)

=(SΨ, OSΨ)F (Hout,∞)⊗F (Hout,bh) (71)

=(Ψ1 ⊗ (S̃Ψ2), (ÕΨ1)⊗ (S̃Ψ2))F (Hout,∞)⊗F (Hout,bh) (72)

=(Ψ1, ÕΨ1)F (Hout,∞) · ((S̃Ψ2), (S̃Ψ2))F (Hout,bh) (73)

=(Ψ1, ÕΨ1)F (Hout,∞) · (Ψ2,Ψ2)F (Hout,bh) (74)

=(Ψ1, ÕΨ1)F (Hout,∞) (75)

=(Ψ, OΨ)F (Hout,∞)⊗F (Hout,bh). (76)

The fourth step follows from the fact that S̃ is unitary, while the last step follows from the

previous calculation. Thus, predictions of the theory with regard to measurements made at

in�nity must be independent of the de�nition of positive frequency on the horizon. As a

consequence, if we are concerned only with the results of measurements made at in�nity, we

can arbitrarily de�ne the set of positive frequency solutions on the black hole horizon in such

a way that it is convenient for our calculations.

4.3 Postulating the �eld operators

We are now in position to postulate the �eld operators acting on F (Hin) and F (Hout). Since

at I −, at I + and on the black hole horizon the solutions of the massless classical Klein-Gordon

equation asymptotically approach free solutions, the states of the system should asymptotically

look like states of the free �eld Hilbert space Fin(H ) and Fout(H ). As in the previous section,

these assuptions allow to postulate the �eld operator

UφU−1 =
∑
i

(Giai + Ḡia
†
i ) (77)

where Gi is the solution of equation (63) with the same data at I − as the free �eld solution

Fi, ai = aFi
and U : F (Hin)→ Fin(H ) is an isomorphism. Similarly, we postulate

WφW−1 =
∑
i

(Hibi + H̄ib
†
i +Kici + K̄ic

†
i ) (78)
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where Hi is the solution of (63) with the same data at I + as Fi and vanishing data on the

horizon, where {Ki} is a set of solutions of (63) which vanish on I + (we call it the set of

"positive frequency solutions at the black hole horizon"), such that {Ki} and their complex

conjugates {K̄i} span all solutions which vanish on I +. Here, ci and c
†
i are the annihilation

and creation operators on F (Hout,bh) associated with the "positive frequency" solution Ki and

W : F (Hout)→ Fout(H ) is an isomorphism.

4.4 Determining Ψ = SΨ0

The mathematical structure of the theory described so far is the same as in the previous

section, and we can directly use the results of the analysis given there for the outgoing state

Ψ ∈ F (Hout,∞ ⊕Hout,bh) (equation (54)), where εab is the two-particle state associated with

the operator E = DC
−1
, where the operators C : Hin → Hout,∞ ⊕Hout,bh and D : Hin →

Hout,∞ ⊕Hout,bh are de�ned as before, except for the fact that now "in the asymptotic future"

means "at I + and on the back hole" and "in the asymptotic past" now means "at I −". Our

purpose is now to determine the E, and consequently the two-particle state εab. This is done

by determining how the operator E acts on all elements of a basis of Hout,∞ ⊕Hout,bh. The

process is described step by step below.

1. Introducing an orthonormal basis of Hout,∞ ⊕Hout,bh

For every ω, l, m we denote with Pωlm the free classical solution generated by the data

ω−1/2exp(iωu)Ylm(θ, ψ) at I + associated with the positive frequency ω. In the following,

due to the de�nitions of the operators C and D (equations (38) and (39)), we will have

to deal with one-particle states associated with this classical solution. We could think of

using Pωlm and correspondence (24), but since we will have to deal with states propagating

in the spacetime, it could be useful to approximate such correspondence by building

wavepackets with a very small frequency spread, and therefore associate the one-particle

state with these wavepackets. Let us �x a real number L with 0 < L� 1 and de�ne

Pjnlm = L−1/2

∫ (j+1)L

jL

exp(− 2πinω′/L)Pω′lmdω
′. (79)

then the set {Pjnlm} with j ≥ 0 corresponds to an orthonormal basis of Hout,∞ with

respect to the Klein-Gordon scalar product. These wavepackets are made up of frequencies

within L of ω = jL. They are peaked around the retarded time u = 2πn/L and have

a time spread ∼ 2π/L. We will use the symbol iρ
a to denote the element of Hout,∞

corresponding to the wavepacket Pjnlm, where the index i stands for jnlm.

We can construct a basis {Qjnlm} of Hout,bh using the same procedure, starting from the

free "positive frequency" solutions Qωlm generated by the data ω−1/2exp(iωv)Ylm on the

black hole horizon. We use the symbol iσ
a to denote the basis element corresponding

to Qjnlm. The union of the two sets {iρa} and {iσa} gives then an orthonormal basis of

Hout,∞ ⊕Hout,bh.

2. Constructing wave packets with postive frequency data at I −

If we observe de�nitions (38), (39) and (43), we notice that, in order to determine the ac-

tion of operator E on elements of Hout,∞⊕Hout,bh, we need to work with wave packets gen-

erated by purely positive frequency data L−1/2
∫ (j+1)L

jL
exp(−2πinω′/L)ω′−1/2exp(iω′v)Ylmdω

′

at I −. Therefore, we proceed as follows.
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• Wave packets with data at late advanced times at I −

We consider the solutions Pjnlm and Qjnlm at late retarded and advanced times (i.e.

for large n) and we prescribe data at late advanced times at I − for the solution

Yjnlm = RPjnlm + TQjnlm, (80)

where T = Tlm(ω) =: Ti and R = Rlm(ω) =: Ri denote the trasmission and re�ection

amplitudes, i.e. the amplitude for the solution Yjnlm to be trasmitted into the black

hole and to be re�ected to I +. We denote the corresponding elements of Hout,∞ ⊕
Hout,bh as

iγ
a = Ti iσ

a +Ri iρ
a. (81)

Since the operator Ē maps the part of the iγ
a associated to positive frequency data at

I + and on the black hole horizon to the part of iγ
a associated to negative frequency

data at I + and on the black hole horizon, it is clear that

DC−1
iγ
a = Ē iγ

a = 0. (82)

This is due to the fact that the solution iγ
a is only associated to positive frequency

data at I + and on the black hole 2, and therefore the part of iγ
a associated to

positive frequency data is represented by iγ
a itself, while the part of iγ

a associated

to negative frequency data is the zero vector of Hout (the vector which corresponds

to the trivial solution of the classical Klein-Gordon equation). It remains now to

construct new wave packets associated to data at earlier advanced times on I −.

• Wave packets with data at advanced times around v = 0 at I −

For a moment, we go back to the extended Schwarzschild spacetime. In a similar way

as above, we consider the solutions Pjnlm and Qjnlm at late retarded and advanced

times and we prescribe data at late retarded times on the white hole horizon for the

solution

Xjnlm = tPjnlm + rQjnlm (83)

where t = tlm(ω) =: ti and r = rlm(ω) =: ri denote the amplitude for the solution

Xjnlm to be trasmitted to I + and to be re�ected into the black hole, respectively.

We denote the corresponding basis elements as

iλ
a = ti iρ

a + ri iσ
a. (84)

Keeping this de�nition in mind, we now move back to the spacetime associated to

a collapsing body, where the white hole horizon is replaced by a null geodesic of

constant advanced time v = v0. For convenience, we set v0 = 0.

We �rst consider a free solution φ of the classical Klein-Gordon equation associated

with the data φ0exp(−iωu) at I +. Suppose we are interested in how an observer

with a�ne parameter λ on the surface of the collapsing body sees this solution. In

order to understand this, let us apply the following coordinate transformation

u = −1

κ
ln(−U), (85)

2This happens because the wave packet Yjnlm associated to the state iγ
a gets scattered at late times. For

this reason, it propagates through a region of space which is almost �at (and not through the collapsing body).

Therefore, the mixing of positive and negative frequencies does not occur.
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Figure 6: Penrose diagram of gravitational collapse. This picture is taken from [2].

which follows immediately from (11). Let us now set λ = 0 at the point where

the oberver's geodesic crosses the black hole horizon. Since, as one can show, the

parameter λ depends smoothly on U and dU
dλ

∣∣∣
λ=0
6= 0, and since U(λ = 0) = 0 3, one

can make a Taylor expansion in the vicinity of λ = 0 and write

U(λ) ∼= U(λ = 0) +
dU

dλ

∣∣∣
λ=0
· λ =

dU

dλ

∣∣∣
λ=0
· λ = αλ (86)

where α = dU
dλ

∣∣∣
λ=0

. We can now insert equation (86) into equation (85) and then

into the expression φ = φ0exp(−iωu) and obtain

φ(λ) = φ0 · exp
[
iω

κ
ln(−αλ)

]
. (87)

Therefore, to our observer, the frequency of the solution appears to diverge as it

approaches λ = 0. This implies that, if we now propagate the solution φ0exp(−iωu)

backwards in time, we are allowed to use the ray approximation4 through the collaps-

ing body in the vicinity of the black hole horizon. Therefore, the solution behaves

inside the collapsing body as it would do outside, i.e. it will have the form φ0e
iS,

where the surfaces of constant phase S are null and are represented in the Penrose

diagram as straight lines at ±45◦. Hence, the pattern made by the wave near v = 0

at I − in the diagram can be obtained by continuing the null geodesic generators of

the surfaces of constant S back to I −.

We are now interested in determining the form of the solution φ at I −. To do this,

we consider the situation of Figure 7. Let x be a point on the black hole horizon and

let na be a future-directed null vector a x. Let us denote with λ the a�ne parameter

along a null geodesic parallel to na 5. For small values of λ (λ < 0), the vector

λna connects the point x with a nearby null surface of constant retarded time u

and therefore with a surface of constant phase of the solution φ. Because of the ray

approximation, if the vector na is parallely transported back in time along the black

hole horizon and along the null geodesic of constant advanced time v = 0, the vector

3This can be seen by noticing that limr∗→−∞ u(t, r∗) = limr∗→−∞(t− r∗) =∞, i.e. u goes to in�nity as one

approaches the horizon, and by using (11) to compute limu→∞ U(u) = limu→∞−exp(−κu) = 0, i.e. U goes to

0 as one approaches the horizon, where λ = 0.
4The ray approximation states that, for su�ciently high frequencies, the rays are straight lines when passing

through a medium.
5Let us emphasize here that relation (87) is also valid for this kind of geodesic.
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Figure 7: This diagram illustrates the behaviour of the solution φ as a function of λ. γ1 and

γ2 are null geodesics.

λna will always connect the event horizon and the geodesic of constant advanced

time v = 0 to the same surface of constant phase. Therefore, the behaviour of the

solution φ as a function of λ does not change when na is parallely transported. At

I −, na will be parallel to the null geodesic generator of I −. Since λ = 0 along the

geodesic of constant advanced time v = 0, we have at I − that

λ(v) = λ(v = 0) +
dλ

dv

∣∣∣
v=0
· v =

dλ

dv

∣∣∣
v=0
· v = β · v (88)

where β = dλ
dv

∣∣∣
v=0

. The behaviour of the solution φ as a function of v at I − is then

determined by inserting expression (88) into expression (87). One then obtains, for

v > 0,

φ(v) =φ0 · exp
[
iω

κ
ln(−αβv)

]
(89)

=φ0 · exp
[
iω

κ
(ln(−v) + ln(αβ))

]
(90)

=φ0 · exp
[
iω

κ
ln(−v)

]
· exp

[
iω

κ
ln(αβ)

]
(91)

=φ̃0 · exp
[
iω

κ
ln(−v)

]
(92)

where φ̃0 = φ0 · exp
[
iω
κ
ln(αβ)

]
. The �nal result is then

φ(v) =

{
0 v > 0

φ̃0 · exp
[
iω
κ
ln(−v)

]
v < 0.

(93)

We now consider propagating the wave packet associated to the state iλ
a backward

in time through the collapsing body and back to I −. One obtains the corresponding
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wave packet at I − by building wave packets of the solution (93). By denoting with

Zjnlm this wave packet at I −, we obtain the following result

Zjlnm(v) ∼

{
0, v > 0

exp(−iωJ/L)sin(J/2)/J v < 0,
(94)

where ω = (j+ 1
2
)L is the e�ective frequency of the original wave packet at I + and

the future horizon and where

J = 2πn+ (L/κ)ln(−v). (95)

If we compute the Fourier transform Ẑjnlm(Ω) of Zjnlm(v) (see [2], Appendix A), we

see that for Ω > 0 it satis�es following relation

Ẑjnlm(−Ω) = −exp(−πω/κ)Ẑjnlm(Ω). (96)

This implies that, although we started with a pure positive frequency wave packet

Figure 8: The relationship between iλ
a, iτ

a, Zjnlm and Z̃jnlm. This picture is taken from [2].

at I + and at the black hole horizon, the wave packet Zjnlm at I − contains also

negative frequency modes. As already seen in equation (36), the mixing of positive

and negative frequencies indicates particle production.

Since the wave packet Zjnlm is not of positive frequency at I −, we need some

manipulations before being able to determine the action of the operator E on the

one-particle states associated to it at I + and on the black hole horizon. First, de�ne

the "time inverted" wave packet Z̃jnlm at I − given by

Z̃jnlm(v) = Zjnlm(−v) ∼

{
exp(−iωJ̃/L)sin(J̃/2)/J̃ v > 0

0 v < 0,
(97)

where

J̃ = 2πn+ (L/κ)ln(v). (98)

Since the time inversion changes the sign of the Klein-Gordon scalar product, the

{Z̃jnlm} are orthonormal but with negative norm. Moreover, the scalar product

of Z̃jnlm with Zjnlm vanishes. Furthermore, because of time inversion, the Fourier

transform ˆ̃Zjnlm(Ω) satis�es

ˆ̃Zjnlm(−Ω) = Ẑjnlm(Ω). (99)
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Suppose now we propagate the wave packet Z̃jnlm from I − into the future. It

would reach the center of the collapsing body just after the formation of the black

hole horizon and therefore it would propagate entirely into the black hole. Let Jjnlm
denote the data for this wave packet at the black hole horizon. We will use our

freedom in de�ning positive frequency at the horizon to take the J̄jnlm as part of our

positive frequency basis {Ki}. Let us denote by iτ
a the element of Hout associated

with the wave packet J̄jnlm.

One further step is required before determining the action of the operator E. If we

insert equation (99) into equation (96), we obtain

Ẑjnlm(−Ω) + exp(−πω/κ) ˆ̃Zjnlm(−Ω) = 0, (100)

which can be rewritten as

( ̂Zjnlm(−Ω) + exp(−πω/κ)Z̃jnlm(−Ω)) = 0 (101)

because of linearity of the Fourier transform. Equation (101) implies that the

wavepacket Ẑjnlm(−Ω)+exp(−πω/κ) ˆ̃Zjnlm(−Ω) does not contain negative frequency

modes. If we now propagate the wave packet associated with the state (iλ
a +

exp(−πωi/κ) iτ̄a) backward into the past, we obtain precisely Ẑjnlm(−Ω)+exp(−πω/κ)·
ˆ̃Zjnlm(−Ω), which is a purely positive frequency wave packet at I −. This is precisely

the situation which allow us to determine the action of the operator E. Since the

state iλ
a is associated to a purely positive frequency wave packet, while the state iτ̄

a

is associated to a purely negative frequency wave packet, we deduce that

DC−1
iλ
a = Ē iλ

a = exp(−πωi/κ) iτ̄a. (102)

Similarly, if we propagate the wave packet corresponding to the state (iλ̄a+exp(+πωi/κ) iτ
a)

backward into the past, we also obtain a purely positive frequency wave packet at

I −. This implies

DC−1(exp(+πωi/κ) iτ
a) = Ē exp(+πωi/κ) iτ

a) =i λ̄a. (103)

It remains to consider wave packets associated to data at early advanced times on

I −.

• Wave packets with data at early advanced times on I −

Since we are interested in describing the black hole radiation at late times, i.e. when

the black hole has settled down, we are not particularly interested in the form of

these states. We simply denote with εab0 the two particle state associated to the

operator E which acts on these states and which is orthogonal to all late times basis

vectors (i.e. εab0 iλ̄a = 0, εab0 iγ̄a = 0 and εab0 iτ̄a = 0).

3. Determine the two-particle state εab

We have now determined how the operator Ē acts on the basis of Hout composed by the

states iγ
a, iλ̄a, (iλ

a + exp(−πωi/κ) iτ̄a) as well as states which reach I + at early times

(see equations (82), (102) and (103)). Therefore, we are now ready to determine the
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operator E and the two-particle state εab associated to it. One can easily see that the

state εab must be of the form

εab =
∑
i

exp(−πωi/κ)2 iλ
(a
iτ
b) + εab0 . (104)

Indeed, we have that

εab iγ̄a = 0, (105)

εab iλ̄a = exp(−πωi/κ) iτ
a, (106)

εab(exp(πωi/κ) iτ̄a) =i λ
a, (107)

because the states iλ
a, iλ̄a, iγ

a, iγ̄a, iτ
a and iτ̄a are orthogonal to each other and to εab0

are normalized to 1.

Equation (54), together with equation (104), gives the solution for the state vector Ψ which

results from particle creation starting from the vacuum during gravitational collapse. The task

that remains is to interpret our solution and derive its properties.

4.5 Interpreting the state vector Ψ

We �rst need to reduce the state vector Ψ(εab) to a form where it can be easily interpreted. To

do this, we use the following lemma.

Lemma. Let H1 and H2 be Hilbert spaces and let ψab ∈ (H1 ⊗ H1)s, η
ab ∈ (H2 ⊗ H2)s.

Consider the state φ(µab) ∈ F (H1 ⊕H2) de�ned by

φ(µab) = (1, 0, 2−1/2µab, 0, ((3 · 1)/(4 · 2))1/2µ(abµcd), 0, ...),

where µab = ψab + ηab. Then under the natural isomorphism discussed above between F (H1 ⊕
H2) and F (H1)⊗F (H2) the state ψ(µab) is mapped into the simple product state φ1(ψab)⊗
φ2(ηab) where

φ1(ψab) = (1, 0, 2−1/2ψab, 0, ((3 · 1)/(4 · 2))1/2ψ(abψcd), 0, ...),

φ2(ηab) = (1, 0, 2−1/2ηab, 0, ((3 · 1)/(4 · 2))1/2η(abηcd), 0, ...).

Proof. See [2], Appendix B.

We denote with H1 = span (
⋃
i{iλa, iτa} ), H2 = span (

⋃
k{ kγa} ) and we call H3 the space

spanned by one-particle states corresponding to early times emission. We notice that H1, H2

and H3 are orthogonal to each other, and therefore we can write Hout = H1⊕H2⊕H3. If we

denote by H1i = span ( {iλa, iτa} ), H2k = span ( { kγa} ), we notice that the spaces H1,i are

othogonal for di�erent indices i and that the spaces H2,k are orthogonal for di�erent indices

k. Therefore, we can rewrite Hout as Hout = (
⊕

i H1,i)⊕ (
⊕

k H2,k)⊕H3. By applying more

times the lemma on the state Ψ(εab) ∈ F (Hout) we obtain

Ψ(εab) =

(⊗
i

Ψi(exp(−πωi/κ)2iλ
(a
iτ
b))

)
⊗

(⊗
k

Ψk(0)

)
⊗Ψ(εab0 ) (108)

where Ψl(η
ab) = (1, 0, 2−1/2ηab, 0, ((3 · 1)/(4 · 2))1/2η(abηcd), 0, ...). Let us brie�y comment on the

three parts of expression (108).
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• Each state Ψi(exp(−πωi/κ)2iλ
(a
iτ
b)) describes multiple pair creation in the mode i at

late times (i.e. due to propagation of the solution of the classical Klein-Gordon equation

through the collapsing body), in which one particle (iτ
a) of each pair enters the black

hole while the other particle (iλ
a = ti iρ

a + ri i
a
σ) reaches in�nity (with amplitude ti) or

gets scattered back into the black hole (with amplitue ri).

• Each state Ψk(0) represents the vacuum state of F (H2,k). Indeed, since the wave packet

associated to the state iγ
a does not pick up any negative frequencies when propagating

from I − to I +, the image of the vacuum state under the S-matrix is again the vacuum

state.

• The state Ψ(εab0 ) represents pair creation at early times.

4.6 Determining 〈N 〉
In the following, we are interested in describing the emission in the i-th mode of particles that

reach in�nity at late times after propagating through the collapsing body. We are therefore

interested in the part of the state vector Ψi(exp(−πωi/κ)2iλ
(a
iτ
b)) ⊗ Ψi(0) that belongs to

F (Hout,∞). Let us calculate the probability PN for observing N particles at in�nity in this

mode in two cases.

(a) ti = 1 and ri = 0, i.e. iλ
a = iρ

a

In this case, since exactly half of the particles produced by the black hole are emitted

to in�nity, PN is simply proportional to the squared norm of the vector appearing in the

2N -particle entry in the expression

Ψi(exp(−πωi/κ)2iλ
(a
iτ
b)) =(1, 0, 2−1/2exp(−πωi/κ)2iλ

(a
iτ
b), 0,

((3 · 1)/(4 · 2))1/2exp(−2πωi/κ)4iλ
(a
iτ
b
iλ
c
iτ
d), 0, ...).

(109)

We obtain

PN ∝P̃N = ((2N − 1)(2N − 3)...1)/(2N)(2N − 2)...2)

· exp(−N2πω/κ)22N‖iρ(a
iτ
b...iρ

y
iτ
z)‖2

(1)
= ((2N − 1)(2N − 3)...1)/(2N)(2N − 2)...2)

· exp(−N2πω/κ)22N(N !)2/(2N)!

(2)
= exp(−N2πω/κ)

. (110)

Step (1) follows from the fact that

iρ
(a
iτ
b...iρ

y
iτ
z) =

√
1

(2N)!

∑
σ∈S2N

iρ
σ(a)

iτ
σ(b)...iρ

σ(y)
iτ
σ(z) (111)

where S2N is the permutation group of a set of 2N elements and

‖iρ(a
iτ
b...iρ

y
iτ
z)‖2 = (iρ

(a
iτ
b...iρ

y
iτ
z),i ρ

(a
iτ
b...iρ

y
iτ
z)) (112)

is the scalar product de�ned in (18). Since the iρ
a and the iτ

a are orthogonal to each other

and are normalized to 1 with respect to this scalar product, it follows that the only non
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zero contractions are those where the iρ
a are contracted to each other (N ! possibilities)

and the iτ
a are contracted to each other (N ! possibilities). Step (2) follows from the fact

that
(2N − 1)(2N − 3)...1)

(2N)(2N − 2)...2)
· 22N(N !)2

(2N)!
= 1. (113)

If we now normalize the result of expression (110), we have that PN = P̃N/(
∑∞

M=0 P̃M) and

if we compute the expectation value of this distribution (using the fact that
∑∞

n=0 exp(−an) =
exp(a)

exp(a)−1
and

∑∞
n=0 n · exp(−an) = exp(a)

(exp(a)−1)2
, where a = 2ωπ

κ
), we obtain

〈N 〉 =
∞∑
N=0

N · PN =
exp(−2πω/κ)

1− exp(−2πω/κ)
. (114)

(b) ti 6= 1, i.e. iλ
a = ti iρ

a + ri iσ
a

If ti 6= 1, it su�cies to multiply the expression for PN in the previous point by the

probability |ti|2 for a particle to reach in�nity. One �nally obtains

〈N 〉 = |ti|2
exp(−2πω/κ)

1− exp(−2πω/κ)
. (115)

5 Discussion

We will �rst discuss our result and then try to give an interpretation of the phenomenon of

particle creation.

Equation (115) gives the expected number of particles created in a given mode i = jnlm

and detected at the late retarded time u ∝ n. As we have seen, at late times (when the balck

hole appears to an observer at I + to have settled down), the particle creation is only due to

the scattering of the classical Klein-Gordon �eld through the collapsing body. Since the value

of 〈N 〉 does not depend on n, particles are emitted at a �nite steady rate for an in�nite time.

This will cause the black hole to lose mass. We also notice that equation (115) is precisely the

rate of the thermal emission of a perfect blackbody at temperature given by

kBT =
κ

2π
,

where kB is the Boltzmann constant. This can be interpreted as the temperature of the black

hole.

An interpretation of the phenomenon of particle creation is given in [7]. Since, as we have

shown, particles are created in pairs from the vacuum, we have

0 = P1 + P2, (116)

where P1 and P2 are time-like vectors representing the four-momenta of the two particles. Then

0 = KµP
µ
1 +KµP

µ
2 = E1 + E2 (117)

where K = ∂/∂t is the time traslation Killing vector and E1 and E2 represent the particles'

energy. Since the Killing �eld outside the horizon is time-like, the two particles cannot be

created outside the horizon, because then E1, E2 > 0, which would violate energy conservation.
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If they are created inside the horizon, where Killing vector is space-like, E1 and E2 may have

opposite signs, but they would never get outside. Therefore, one particle needs to be created

inside and the other outside the horizon. This would be the physical reason of what we have

mathematically shown above. Moreover, the particle of negative energy created inside the

horizon could be interpreted as an antiparticle and could be responsible of the loss of mass via

annihilation.
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