In search of the Higgs trilinear coupling: double and single Higgs processes

Pier Paolo Giardino

Universität Zürich 30/10/2018

Based mainly on R. Bonciani, G. Degrassi, PPG, R. Gröber; arXiv:1806.1156 G. Degrassi, P.P.G, F. Maltoni, D. Pagani; arXiv:1607.0425 G. Degrassi, M. Fedele, P.P.G; arXiv:1702.01737

Discovery of the Higgs Boson!

THANKS for the

BOS

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: July 2018

	Model	ί, γ	Jets†	E ^{miss} T	∫£ dt[fb	¹] Limit		Reference
EXITE OIMERSIONS	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ \hline \\ \geq 1 \ e, \mu \\ \hline \\ 2 \ \gamma \\ \\ multi-channe \\ 1 \ e, \mu \\ \hline \\ 1 \ e, \mu \end{array}$	1-4j - 2j $\ge 2j$ $\ge 3j$ - 4j $\ge 1b, \ge 1J/2$ $\ge 2b, \ge 3j$	Yes - 2j Yes i Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 36.1 36.1	Mp 7.7 TeV Ms 8.6 TeV Mdi 8.9 TeV Mdi 8.2 TeV Mdi 9.55 TeV GRK mass 4.1 TeV GRK mass 2.3 TeV KK mass 3.8 TeV	n = 2 n = 3 HLZ NLO n = 6 $n = 6, M_D = 3 \text{ TeV, rot BH}$ $n = 6, M_D = 3 \text{ TeV, rot BH}$ $k/\overline{M}_{PT} = 0.1$ $k/\overline{M}_{PT} = 1.0$ $\Gamma/m = 15\%$ Tiar (1,1), $\Re(A^{(1,1)} \rightarrow tt) = 1$	1711.03301 1707.04147 1703.09217 1696.02265 1512.02586 1707.04147 CERN-EP-2018-173 1804.10023 1803.09678
00000 000000	$\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Leptophobic} Z' \to bb \\ \operatorname{Leptophobic} Z' \to tt \\ \operatorname{SSM} W' \to tr \\ \operatorname{SSM} W' \to \tau\nu \\ \operatorname{HVT} V' \to WV \to qqqq \ \mathrm{mod} \\ \operatorname{HVT} V' \to WH/2H \ \mathrm{model} \ \mathrm{B} \\ \operatorname{LRSM} W'_R \to tb \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 1 \ e, \mu \end{array} \vdots \\ 1 \ e, \mu \\ 1 \ \tau \\ \text{fel B} 0 \ e, \mu \\ \text{multi-channe} \\ \text{multi-channe} \end{array}$	- 2b ≥1b,≥1J/2 - 2J 81	- 2j Yes Yes Yes -	36.1 36.1 36.1 79.8 36.1 79.8 36.1 36.1 36.1	Z' mass 4.5 TeV Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 3.0 TeV W' mass 5.6 TeV W' mass 3.7 TeV V' mass 4.15 TeV V' mass 2.93 TeV W' mass 3.25 TeV	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$	1707.02424 1709.07242 1805.09299 1804.10823 ATLAS-CONF-2018-017 1801.08992 ATLAS-CONF-2018-016 1712.05518 CERN-EP-2018-142
3	Clappor Cléfaq Clétte	_ 2 e,μ ≥1 e,μ	2 j ≥1 b, ≥1 j	– – Yes	37.0 36.1 36.1	Λ Λ Λ 2.57 TeV	21.8 TeV η _{LL} 40.0 TeV η _{LL} (C _{et}) = 4π	1703.09217 1707.02424 CERN-EP-2016-174
Ma	Axial-vector mediator (Dirac D Colored scalar mediator (Dirac $VV_{\chi\chi}$ EFT (Dirac DM)	M) 0 e,μ cDM) 0 e,μ 0 e,μ	1 – 4 j 1 – 4 j 1 J, ≤ 1 j	Yas Yas Yas	36.1 36.1 3.2	m _{red} 1.55 TeV m _{red} 1.67 TeV M, 700 GeV	$\begin{split} g_{q}{=}0.25, g_{\chi}{=}1.0, m(\chi) &= 1 \text{ GeV} \\ g{=}1.0, m(\chi) &= 1 \text{ GeV} \\ m(\chi) &< 150 \text{ GeV} \end{split}$	1711.03901 1711.03901 1608.02372
3	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e,μ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	– – Yes	3.2 3.2 20.3	LO mass 1.1 TeV LO mass 1.05 TeV LO mass 640 GeV	$\beta = 1$ $\beta = 1$ $\beta = 0$	1605.06035 1605.06035 1508.04735
querks	$ \begin{array}{l} VLQ \ \mathcal{TT} \rightarrow Ht/Zt/Wb + X \\ VLQ \ \mathcal{BB} \rightarrow Wt/Zb + X \\ VLQ \ \mathcal{T}_{5/3} \mathcal{T}_{5/3} \mathcal{T}_{5/3} \rightarrow Wt + X \\ VLQ \ \mathbf{Y} \rightarrow Wb + X \\ VLQ \ \mathcal{B} \rightarrow Hb + X \\ VLQ \ \mathcal{QQ} \rightarrow WqWq \end{array} $	multi-channe multi-channe X $2(SS)/\geq 3 e_{\psi}$ 1 e, μ 0 $e, \mu, 2 \gamma$ 1 e, μ	el d ≥ 1 b, ≥1 j ≥ 1 b, ≥ 1j ≥ 1 b, ≥ 1j ≥ 4 j	Yes Yes Yes Yes	36.1 36.1 3.2 79.8 20.3	T mass 1.37 TeV B mass 1.34 TeV T _{SVI} mass 1.64 TeV Y mass 1.44 TeV B mass 1.21 TeV Q mass 690 GeV	SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/5} \rightarrow Wt) = 1, c(T_{5/5}Wt) = 1$ $\mathcal{B}(Y \rightarrow Wt) = 1, c(YWb) = 1/\sqrt{2}$ $z_R = 0.5$	ATLAS-CONF-2018-XXX ATLAS-CONF-2018-XXX CERN-EP-2018-171 ATLAS-CONF-2016-072 ATLAS-CONF-2018-XXX 1509.04251
fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e,μ 3 e,μ,τ	2j 1j 1b,1j -		37.0 36.7 36.1 20.3 20.3	q' mass 6.0 TeV q' mass 5.3 TeV b' mass 2.6 TeV t' mass 3.0 TeV v' mass 1.6 TeV	only u^* and a^* , $\Lambda = m(q^*)$ only u^* and a^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1703.09127 1709.10440 1805.09299 1411.2921 1411.2921
Outer	Type III Seesaw LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	1 e, μ 2 e, μ 2,3,4 e, μ (SS 3 e, μ, τ 1 e, μ - -	≥ 2 j 2 j 5) - - 1 b - -	Yes - - Yes -	79.8 20.3 36.1 20.3 20.3 20.3 7.0	Nº mass 560 GeV Nº mass 2.0 TeV H** mass 870 GeV H** mass 400 GeV spin-1 invisible particle mass 657 GeV multi-charged particle mass 785 GeV monopole mass 1.34 TeV	$m(W_R) = 2.4$ TeV, no mbdng DY production DY production, $\mathcal{B}(H_L^{\pm\pm} \rightarrow \ell \tau) = 1$ $s_{\rm number} = 0.2$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	ATLAS-CONF-2018-020 1506.08020 1710.09748 1411.2921 1410.5404 1504.04188 1509.08059
		√s = 8 TeV	√s = 13	TeV		10 ⁻¹ 1 1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown.

\$Small-radius (large-radius) jets are denoted by the letter J (J).

ATLAS Preliminary

 $\int \mathcal{L} dt = (3.2 - 79.8) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$

Introduction

The Higgs appears to be quite standard (?)

 $\mathscr{L}_{\phi} = (y\bar{\psi}\psi\phi + h.c.) + |D_{\mu}\phi|^2 + V(\phi)$

Introduction

$$\mathcal{L}_{\phi} = (y\bar{\psi}\psi\phi + h.c.) + |D_{\mu}\phi|^2 + V(\phi)$$

Introduction

$$\mathcal{L}_{\phi} = \left(y \bar{\psi} \psi \phi + h \, . \, c . \right) + \left| D_{\mu} \phi \right|^2 + V(\phi)$$

Introduction

 $\mathcal{L}_{\phi} = (y \bar{\psi} \psi \phi + h \cdot c.) + |D_{\mu} \phi|^2 + V(\phi)$

Proces	8	Combination	Theory	$\mathbf{Experimental}$	
	ggF	0.07	0.05	0.05	
	VBF	0.22	0.16	0.15	
$H ightarrow \gamma \gamma$	$t \overline{t} H$	0.17	0.12	0.12	
	WH	0.19	0.08	0.17	
	ZH	0.28	0.07	0.27	
	ggF	0.06	0.05	0.04	
	VBF	0.17	0.10	0.14	
$H \to Z Z$	$t\bar{t}H$	0.20	0.12	0.16	
	WH	0.16	0.06	0.15	
	ZH	0.21	0.08	0.20	
$H \rightarrow WW$	ggF	0.07	0.05	0.05	
$m \rightarrow w w$	VBF	0.15	0.12	0.09	
$H \rightarrow Z\gamma$	incl.	0.30	0.13	0.27	
$H \rightarrow b\overline{b}$	WH	0.37	0.09	0.36	
$n \rightarrow bb$	ZH	0.14	0.05	0.13	
$H \to \tau^+ \tau^-$	VBF	0.19	0.12	0.15	

Estimated precisions at HL-LHC

JHEP 1709 (2017) 069

Measuring the Higgs potential

 $\mathcal{L}_{\phi} = (y \bar{\psi} \psi \phi + h \cdot c.) + |D_{\mu} \phi|^2 + V(\phi)$

 $\mathscr{L}_{\phi} = (y\bar{\psi}\psi\phi + h.c.) + |D_{\mu}\phi|^2 + V(\phi)$

 $V(\phi) = -\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$

 $V(H) = \frac{1}{2}M_H^2 H^2 + \frac{M_H^2}{2\nu}H^3 + \frac{M_H^2}{8\nu^2}H^4$

Measuring the Higgs potential

 $\mathscr{L}_{\phi} = (y\bar{\psi}\psi\phi + h.c.) + |D_{\mu}\phi|^2 + |V\phi|^2$ (ϕ)

 H^4

Measuring the Higgs potential

 $\mathscr{L}_{\phi} = (y\bar{\psi}\psi\phi + h.c.) + |D_{\mu}\phi|^2 + |V|$ (ϕ)

Measuring the Higgs potential

 $\mathscr{L}_{\phi} = (y\bar{\psi}\psi\phi + h.c.) + |D_{\mu}\phi|^2 + V(\phi)$

 $V(H) = \frac{1}{2}M_{H}^{2}H^{2} + \left(\frac{M_{H}^{2}}{2m}\right)H^{3} + \frac{M_{H}^{2}}{8m^{2}}H^{4}$

From double Higgs production

From double Higgs production $\sigma(gg \rightarrow HH) \sim 35 \,\text{fb}$

From double Higgs production $\sigma(gg \rightarrow HH) \sim 35 \text{ fb}$ From triple Higgs production $\sigma(gg \rightarrow HHH) \sim 0.1 \text{ fb}$

In search of the Higgs trilinear coupling

 $13\,{\rm TeV}$

Very small cross section:

- Heavier final state.
- Additional weak coupling.
- Destructive interference

 $gg \rightarrow H \sim 40000 \,\mathrm{fb}$ $gg \rightarrow HH \sim 30 \,\mathrm{fb}$

In search of the Higgs trilinear coupling

$$13\,{\rm TeV}$$

Very small cross section:

- Heavier final state.
- Additional weak coupling.
- Destructive interference

$$gg \rightarrow H \sim 40000 \,\mathrm{fb}$$

 $gg \rightarrow HH \sim 30 \,\mathrm{fb}$

$$V_{H^3} = \lambda_3 v H^3 \equiv \kappa_\lambda \lambda_3^{\rm SM} v H^3$$

In search of the Higgs trilinear coupling

Very small cross section:

- Heavier final state.
- Additional weak coupling.
- Destructive interference

Current limits on Double Higgs production

Best channels

$$HH \rightarrow bb\gamma\gamma$$

Clean, small BR

 $HH \rightarrow bb\tau\tau$ Less clean, larger BR

 $HH \rightarrow bbbb$ Very difficult, largest BR

Current limits on Double Higgs production

Exact analytical result

Glover, van der Bij (88)

Exact analytical result

Glover, van der Bij (88)

(QCD) NLO fully known only numerically

Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert and Zirke, (16)

- Total cross section including the full top-quark dependence.
- One phase-space point ~ 2 hours per node
- I6 dual NVIDIA Tesla K20X GPGPU nodes.

Exact analytical result

Glover, van der Bij (88)

(QCD) NLO fully known only numerically

Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert and Zirke, (16)

- Total cross section including the full top-quark dependence.
- One phase-space point ~ 2 hours per node
- I6 dual NVIDIA Tesla K20X GPGPU nodes.

Approaches to an analytical approximation of NLO

HEFT
$$(m_t \to \infty)$$

Dawson, Dittmaier, Spira (98)

$$\sqrt{\hat{s}} \lesssim 350 \,\mathrm{GeV}$$

Large Top Mass expansion

Grigo, Hoff, Melnikov, Steinhauser (13)

Degrassi, Giardino, Groeber (16)

Improves the HEFT

High Energy expansion (1

Davies, Mishima, Steinhauser, Wellmann (18)

Region 350 GeV $\leq \sqrt{\hat{s}} \leq 750$ GeV not covered!!

Region 350 GeV $\leq \sqrt{\hat{s}} \leq 750$ GeV not covered!!

~95% of hadronic cross section (13 TeV LHC)

Three scales:

$$\frac{m_t^2}{\hat{s}}, \frac{p_T^2}{\hat{s}}, \frac{m_H^2}{\hat{s}}$$

Three scales:

Three scales:

$\ll 1$ always true

We can try to keep m_t^2/\hat{s} arbitrary and expand on p_T^2 and m_H^2

We can try to keep m_t^2/\hat{s} arbitrary and expand on p_T^2 and m_H^2

Problem: amplitudes do not depend directly on p_T^2

Higgs pair production at NLO

$$\hat{s} = (p_1 + p_2)^2$$
 $\hat{t} = (p_1 + p_3)^2$
 $\hat{u} = (p_2 + p_3)^2$

We can use

$$\hat{t} \sim 0 \Rightarrow p_T^2 \sim 0$$

Higgs pair production at NLO

We can use

$$\hat{s} = (p_1 + p_2)^2 \qquad \hat{t} = (p_1 + p_3)^2$$
$$\hat{u} = (p_2 + p_3)^2$$
$$\hat{t}\hat{u} - m_H^4$$

$$\hat{t} \sim 0 \Rightarrow p_T^2 \sim 0$$

N.B.
$$p_T^2 \sim 0 \Rightarrow \hat{t} \sim 0$$
 $p_T^2 \sim 0$ $p_T^2 \sim 0$ $\hat{t} \sim 0, \hat{u} \sim -\hat{s}$
 $\hat{u} \sim 0, \hat{t} \sim -\hat{s}$

Higgs pair production at NLO

We can use

$$\hat{s} = (p_1 + p_2)^2 \qquad \hat{t} = (p_1 + p_3)^2$$
$$\hat{u} = (p_2 + p_3)^2$$
$$\hat{t}\hat{u} - m_H^4$$

$$\hat{t} \sim 0 \Rightarrow p_T^2 \sim 0$$

N.B.
$$p_T^2 \sim 0 \Rightarrow \hat{t} \sim 0$$
 $p_T^2 \sim 0$ $p_T^2 \sim 0$ $\hat{t} \sim 0, \hat{u} \sim -\hat{s}$
 $\hat{u} \sim 0, \hat{t} \sim -\hat{s}$
Higgs pair production at NLO

 $\hat{s} = (p_1 + p_2)^2 \qquad \hat{t} = (p_1 + p_3)^2$ $\hat{u} = (p_2 + p_3)^2$ $\hat{t} \sim 0 \Rightarrow p_T^2 \sim 0 \qquad p_T^2 = \frac{\hat{t}\hat{u} - m_H^4}{\hat{s}}$

N.B.
$$p_T^2 \sim 0 \Rightarrow \hat{t} \sim 0$$
 $p_T^2 \sim 0$ $p_T^2 \sim 0$ $\hat{t} \sim 0, \hat{u} \sim -\hat{s}$
 $\hat{u} \sim 0, \hat{t} \sim -\hat{s}$

$$\sigma \propto \int_{\hat{t}_{-}}^{\hat{t}_{+}} d\hat{t} \mathscr{G}(\hat{t}) \sim \int_{\hat{t}_{-}}^{\hat{t}_{m}} d\hat{t} \mathscr{G}(\hat{t} \sim 0) + \int_{\hat{t}_{m}}^{\hat{t}_{+}} d\hat{t} \mathscr{G}(\hat{t} \sim -\hat{s}) = \int_{\hat{t}_{-}}^{\hat{t}_{+}} d\hat{t} \mathscr{G}(\hat{t} \sim 0)$$

Higgs pair production at NLO

 $p_T^2 = \frac{\hat{t}\hat{u} - m_H^4}{\hat{s}}$

N.B.
$$p_T^2 \sim 0 \Rightarrow \hat{t} \sim 0$$

$$p_T^2 \sim 0 \Rightarrow \hat{t} \sim 0$$

$$p_T^2 \sim 0 \Rightarrow \hat{t} \sim 0, \hat{u} \sim -\hat{s}$$

$$\hat{u} \sim 0, \hat{t} \sim -\hat{s}$$

$$\sigma \propto \int_{\hat{t}_-}^{\hat{t}_+} d\hat{t} \mathscr{G}(\hat{t}) \sim \int_{\hat{t}_-}^{\hat{t}_m} d\hat{t} \mathscr{G}(\hat{t} \sim 0) + \int_{\hat{t}_m}^{\hat{t}_+} d\hat{t} \mathscr{G}(\hat{t} \sim -\hat{s}) \bigoplus \int_{\hat{t}_-}^{\hat{t}_+} d\hat{t} \mathscr{G}(\hat{t} \sim -\hat{s})$$

Let's define

$$r^{\mu} = p_1^{\mu} + p_3^{\mu}$$

Let's define

$$r^{\mu} = p_1^{\mu} + p_3^{\mu}$$

Let's define

$$r^{\mu} = p_1^{\mu} + p_3^{\mu}$$

$$r^{\mu} = \frac{\hat{t} - m_{H}^{2}}{\hat{s}} (p_{2} - p_{1})^{\mu} + r_{\perp}^{\mu}$$

t

$$\frac{p_T^2}{\hat{s}}, \frac{m_H^2}{\hat{s}}$$

Higgs pair production at NLO

$$\frac{p_T^2}{\hat{s}}, \frac{m_H^2}{\hat{s}}, \frac{m_H^2}{\hat{s}} \ll 1 \text{ always true}$$

$$\frac{p_T^2}{m_t^2}, \frac{m_H^2}{m_t^2}$$

Higgs pair production at NLO

$\Delta \sigma - \hat{s}$	$4m_t^2$	$6m_t^2$	$8m_t^2$	$12m_t^2$	$16m_t^2$	$32m_t^2$
$p_T^0 \times 10^{-1}$	6.2	4.4	3.2	1.8	1.0	0.3
$p_T^2 \times 10^{-2}$	8.5	4.4	1.1	2.4	5.1	33.2
$p_T^4 \times 10^{-2}$	1.3	0.1	0.4	0.2	0.9	2.8
$p_T^6 \times 10^{-3}$	2.3	0.9	1.0	0.1	3.5	450

$\Delta \sigma - \hat{s}$	$ 4m_t^2 $	$6m_t^2$	$8m_t^2$	$12m_t^2$	$16m_t^2$	$32m_t^2$
$p_T^0 \times 10^{-1}$	6.2	4.4	3.2	1.8	1.0	0.3
$p_T^2 \times 10^{-2}$	8.5	4.4	1.1	2.4	5.1	33.2
$p_T^4 \times 10^{-2}$	1.3	0.1	0.4	0.2	0.9	2.8
$p_T^6 \times 10^{-3}$	2.3	0.9	1.0	0.1	3.5	450

It starts diverging around $\sqrt{\hat{s}} \lesssim 500 - 600 \, GeV$ $\hat{t}_m \lesssim 4m_T^2$

$\Delta \sigma - \hat{s}$	$ 4m_t^2$	$6m_t^2$	$8m_t^2$	$12m_t^2$	$16m_t^2$	$32m_t^2$
$p_T^0 \times 10^{-1}$	6.2	4.4	3.2	1.8	1.0	0.3
$p_T^2 \times 10^{-2}$	8.5	4.4	1.1	2.4	5.1	33.2
$p_T^4 \times 10^{-2}$	1.3	0.1	0.4	0.2	0.9	2.8
$p_T^6 \times 10^{-3}$	2.3	0.9	1.0	0.1	3.5	450

It starts diverging around $\sqrt{\hat{s}} \lesssim 500 - 600 \, GeV$ $\hat{t}_m \lesssim 4m_T^2$

Good approximation up to $\sqrt{\hat{s}} \leq 800 - 900 \, GeV!$

The middle region is perfectly covered!

We did the expansion at the amplitude level and then reduced

~50 MI known (recomputed in forward kinematics)

Nearly all expressed in terms of HPL

I phase-space point: ~4 seconds on a MacBook Air

Measuring the Higgs potential

In search of the Higgs trilinear coupling

Very small cross section:

- Heavier final state.
- Additional weak coupling.
- Destructive interference

The trilinear appears at NLO in Single Higgs processes.

$$V_{H^3} = \lambda_3 v H^3 \equiv \kappa_\lambda \lambda_3^{\rm SM} v H^3$$

The trilinear appears at NLO in Single Higgs processes.

$$V_{H^3} = \lambda_3 v H^3 \equiv \kappa_\lambda \lambda_3^{\rm SM} v H^3$$

For similar ideas: M. McCullough Phys. Rev. D90 (2014), no. 1 015001 M. Gorbahn and U. Haisch, arXiv:1607.03773 [hep-ph]; The trilinear appears at NLO in Single Higgs processes.

$$V_{H^3} = \lambda_3 v H^3 \equiv \kappa_\lambda \lambda_3^{\rm SM} v H^3$$

Working assumption: only the trilinear is modified

For similar ideas: M. McCullough Phys. Rev. D90 (2014), no. 1 015001 M. Gorbahn and U. Haisch, arXiv:1607.03773 [hep-ph];

$\Sigma_{NLO} = Z_H \Sigma_{LO} (1 + \kappa_\lambda C_1)$

Contains QCD corrections

 $\Sigma_{NLO} = Z_H \Sigma_{LO} (1 + \kappa_\lambda C_1)$

The range of validity of our calculation is $|\kappa_{\lambda}| \lesssim 20$

The range of validity of our calculation is $|\kappa_\lambda| \lesssim 20$

$$C_1 = \frac{\int 2\Re(\mathcal{M}^{0*}\mathcal{M}^1_{\lambda_3^{\mathrm{SM}}})}{\int |\mathcal{M}^0|^2}$$

The range of validity of our calculation is $|\kappa_{\lambda}| \lesssim 20$

$$V^{\text{SM}}(\varphi) \rightarrow V^{\text{NP}} = \sum_{n=1}^{N} c_{2n} (\varphi^{\dagger} \varphi)^n$$

$$V^{\text{SM}}(\varphi) \to V^{\text{NP}} = \sum_{n=1}^{N} c_{2n}(\varphi^{\dagger}\varphi)^{n}$$

$$V_{4\varphi}^{NP} = \frac{m_H^2}{2\nu^2} \xi^2 + \left(\frac{m_H^2}{2\nu^2} + d\lambda_4\right) \frac{1}{4} H^4 + \left(\frac{m_H^2}{2\nu^2} + 3 d\lambda_3\right) \xi H^2 + \left(\frac{m_H^2}{2\nu} + d\lambda_3\right) H^3 + \frac{m_H^2}{\nu} \xi H + \frac{1}{2} m_H^2 H^2$$

$$V^{\text{SM}}(\varphi) \to V^{\text{NP}} = \sum_{n=1}^{N} c_{2n}(\varphi^{\dagger}\varphi)^n$$

$$\boldsymbol{\xi} = \boldsymbol{\varphi}^{+}\boldsymbol{\varphi}^{-} + \frac{1}{2}\boldsymbol{\varphi}_{0}^{2}$$

$$V^{\text{SM}}(\varphi) \to V^{\text{NP}} = \sum_{n=1}^{N} c_{2n}(\varphi^{\dagger}\varphi)^n$$

Correlation between modifications

$$V^{\text{SM}}(\varphi) \to V^{\text{NP}} = \sum_{n=1}^{N} c_{2n}(\varphi^{\dagger}\varphi)^n$$

$$V_{4\varphi}^{NP} = \frac{m_{H}^{2}}{2\nu^{2}}\xi^{2} + \left(\frac{m_{H}^{2}}{2\nu^{2}} + d\lambda_{4}\right)\frac{1}{4}H^{4} + \left(\frac{m_{H}^{2}}{2\nu^{2}} + 3 d\lambda_{3}\right)\xi H^{2}$$
$$+ \left(\frac{m_{H}^{2}}{2\nu} + d\lambda_{3}\right)H^{3} + \frac{m_{H}^{2}}{\nu}\xi H + \frac{1}{2}m_{H}^{2}H^{2}$$

$$\frac{m_H^2}{2\nu}k_\lambda$$

$$V^{\text{SM}}(\varphi) \to V^{\text{NP}} = \sum_{n=1}^{N} c_{2n}(\varphi^{\dagger}\varphi)^n$$

$$V_{4\varphi}^{NP} = \frac{m_H^2}{2v^2} \xi^2 + \left(\frac{m_H^2}{2v^2} + d\lambda_4\right) \frac{1}{4} H^4 + \left(\frac{m_H^2}{2v^2} + 3 d\lambda_3\right) \xi H^2 + \left(\frac{m_H^2}{2v} + d\lambda_3\right) H^3 + \frac{m_H^2}{v} \xi H + \frac{1}{2} m_H^2 H^2$$

Quartic does not contribute. K-framework equivalent to EFT

(For the calculations presented here)

What kind of physics are we looking for?

In search of the Higgs trilinear coupling

 $t\bar{t}H$ receives sizeable positive corrections.

All the other receive very small positive corrections

In search of the Higgs trilinear coupling

$t\bar{t}H$ receives sizeable positive corrections.

All the other receive very small positive corrections

In search of the Higgs trilinear coupling

$t\bar{t}H$ receives sizeable positive corrections.

All the other receive very small positive corrections

Quadratic dependence on K cancels in the ratio.

In the range close to the SM, the decays are more sensitive to K than the production processes

Further information can be extracted from differential distribution

F. Maltoni, D. Pagani, A.Shivaji, X. Zhao (17)

Large effects at the threshold

Another source of information: P.O.

$$m_W^2 = \frac{\hat{\rho} \, m_Z^2}{2} \left\{ 1 + \left[1 - \frac{4\hat{A}^2}{m_Z^2 \hat{\rho}} (1 + \Delta \hat{r}_W) \right]^{1/2} \right\}$$

Another source of information: P.O.

Another source of information: P.O.

- Run I (7-8 TeV):
 - ATLAS and CMS: $\mathcal{O}(\pm(15-20))$
 - Our constraint using ggF+VBF: $\kappa_{\lambda} > -14.3$
 - Our constraint using ggF+VBF+EW: $-13.3 < \kappa_{\lambda} < 20.0$
- Future capabilities (3000 fb⁻¹):
 - ATLAS constraint: $-1.3 < \kappa_{\lambda} < 8.7$
 - Our result: $-2.8 < \kappa_{\lambda} < 7.9$

Higgs Pair Production

- Run I (7-8 TeV):
 - ATLAS and CMS: $\mathcal{O}(\pm(15-20))$
 - Our constraint using ggF+VBF: $\kappa_{\lambda} > -14.3$
 - Our constraint using ggF+VBF+EW: $-13.3 < \kappa_{\lambda} < 20.0$
- Future capabilities (3000 fb⁻¹):
 - ATLAS constraint: $-1.3 < \kappa_{\lambda} < 8.7$ –
 - Our result: $-2.8 < \kappa_{\lambda} < 7.9$

- Run I (7-8 TeV):
 - ATLAS and CMS: $\mathcal{O}(\pm(15-20))$
 - Our constraint using ggF+VBF: $\kappa_{\lambda} > -14.3$
 - Our constraint using ggF+VBF+EW: $-13.3 < \kappa_{\lambda} < 20.0$
- Future capabilities (3000 fb⁻¹):
 - ATLAS constraint: $-1.3 < \kappa_{\lambda} < 8.7$
 - Our result: $-2.8 < \kappa_{\lambda} < 7.9$

Data from JHEP 1608 (2016) 045

- Run I (7-8 TeV);
 - ATLAS and CMS: $\mathcal{O}(\pm(15-20))$
 - Our constraint using ggF+VBF: $\kappa_{\lambda} > -14.3$
 - Our constraint using ggF+VBF+EW: $-13.3 < \kappa_{\lambda} < 20.0$
- Future capabilities (3000 fb⁻¹):
 - ATLAS constraint: $-1.3 < \kappa_{\lambda} < 8.7$
 - Our result: $-2.8 < \kappa_{\lambda} < 7.9$

PDG2016

Constraints on trilinear coupling

Data from JHEP 1608 (2016) 045

- Run I (7-8 TeV):
 - ATLAS and CMS: $\mathcal{O}(\pm(15-20))$
 - Our constraint using ggF+VBF: $\kappa_{\lambda} > -14.3$
 - Our constraint using ggF+VBF)EW; $-13.3 < \kappa_{\lambda} < 20.0$
- Future capabilities (3000 fb⁻¹):
 - ATLAS constraint: $-1.3 < \kappa_{\lambda} < 8.7$
 - Our result: $-2.8 < \kappa_{\lambda} < 7.9$

- Run I (7-8 TeV):
 - ATLAS and CMS: $\mathcal{O}(\pm(15-20))$
 - Our constraint using ggF+VBF: $\kappa_{\lambda} > -14.3$
 - Our constraint using ggF+VBF+EW: $-13.3 < \kappa_{\lambda} < 20.0$
- Future capabilities (3000 fb⁻¹):
 - ATLAS constraint: $-1.3 < \kappa_{\lambda} < 8.7$
 - Our result: $-2.8 < \kappa_{\lambda} < 7.9$

Using arXiv:1312.4974

- Run I (7-8 TeV):
 - ATLAS and CMS: $\mathcal{O}(\pm(15-20))$
 - Our constraint using ggF+VBF: $\kappa_{\lambda} > -14.3$
 - Our constraint using ggF+VBF+EW $-13.3 < \kappa_{\lambda} < 20.0$
- Future capabilities (3000 fb⁻¹):
 - ATLAS constraint: $-1.3 < \kappa_{\lambda} < 8.7$
 - Our result: $-2.8 < \kappa_{\lambda} < 7.9$

- Run I (7-8 TeV):
 - ATLAS and CMS: $\mathcal{O}(\pm(15-20))$
 - Our constraint using ggF+VBF: $\kappa_{\lambda} > -14.3$
 - Our constraint using ggF+VBF+EW: $-13.3 < \kappa_{\lambda} < 20.0$
- Future capabilities (3000 fb⁻¹):
 - ATLAS constraint: $-1.3 < \kappa_{\lambda} < 8.7$
 - Our result: $-2.8 < \kappa_{\lambda} < 7.9$

At higher luminosities we can relax our assumptions

JHEP 1709 (2017) 069

At higher luminosities we can relax our assumptions

JHEP 1709 (2017) 069

At higher luminosities we can relax our assumptions

JHEP 1709 (2017) 069

- We proposed a new way to approach the calculation of Higgs pair production through gluon fusion at NLO.
- The method is based on the expansion for small transverse momentum.
- Possibility to apply the method to other 2to2 processes.
- The Higgs trilinear coupling can be investigated from single Higgs processes.
- Compared to Higgs pair production, the bounds obtained are competitive and complementary.
- This approach is model dependent,
 - however the condition for the other couplings to be SM can be lifted.

Olena Shmahalo/Quanta Magazine

1

52

h

• •

Se