The Structure of the Proton at approximate N3LO: MSHTaN3LO PDFs

Lucian Harland-Lang, University College London
UZH Theoretical Particle Physics Seminar, 11 October 2022

On behalf of Tom Cridge, LHL, Jamie McGowan,
Robert Thorne

Outline

- What are PDFs and why are they important?
- How we do fit them?
- A PDF fit at approximate N3LO order: MSHT20aN3LO.

What are PDFs and how do we extract them?

The LHC: a proton-proton collider

- The LHC works by colliding proton beams head on at high energy.
- We examine the debris of these interactions in order to probe the Higgs sector, look for physics beyond the Standard Model (SM) and to understand the SM better.
- Before doing any of that that: we need to understand what we are colliding: the proton.

An LHC collision

- How do we model an LHC collision? Proton is composite - collision involves quarks/gluons:

- The `parton model’ - proton-proton cross section is convolution of parton-level cross section and Parton Distribution Functions (PDFs)

$$
\sigma(p p \rightarrow h+X) \sim \sigma(g g \rightarrow h) \otimes g\left(x_{1}, Q^{2}\right) \otimes g\left(x_{2}, Q^{2}\right)
$$

Parton Distribution Functions

$$
\sigma(p p \rightarrow h+X) \sim \sigma(g g \rightarrow h) \otimes g\left(x_{1}, Q^{2}\right) \otimes g\left(x_{2}, Q^{2}\right)
$$

- Cross section given in terms of:

$\sigma(g g \rightarrow h):$ parton-level cross section. $\alpha_{S}\left(m_{h}\right) \ll 1 \Rightarrow$ perturbative expansion in α_{S} :

$$
\sigma(g g \rightarrow h)=\alpha_{S}\left(m_{h}\right)^{2}\left(\sigma_{0}+\alpha_{S}\left(m_{h}\right) \sigma_{1}+\cdots\right)
$$

$g\left(x, Q^{2}\right):$ PDF for gluon x - proton longitudinal momentum fraction.
Q - factorization scale ~ energy of quark/gluon collision \sim inverse of resolution length.

- At lowest order PDF is probability of finding gluon in the proton carrying momentum fraction x.

DGLAP

- Quark/gluons like to radiate \Rightarrow PDFs depend on resolution scale. Formally, factorization in QCD requires introduction of a scale μ_{F}
$\sigma^{l p} \sim \sigma^{l q}\left(\mu_{F}\right) \otimes q\left(x, \mu_{F}\right)$

$\hat{q}\left(x, \mu_{F}^{2}\right)$

- Requiring that cross section is independent of this to calculated order in α_{S} gives DGLAP evolution equation, e.g.

$$
\begin{array}{r}
\frac{\mathrm{d} \sigma^{l p}}{\mathrm{~d} \mu_{F}}=0+\text { higher orders } \rightarrow \frac{\partial q(x, \mu)}{\partial \mu}=P_{q q} \otimes q(x, \mu)+P_{q g} \otimes g(x, \mu) \\
\text { Similarly for gluon: } \frac{\partial g(x, \mu)}{\partial \mu}=P_{g q} \otimes q(x, \mu)+P_{g g} \otimes g(x, \mu)
\end{array}
$$

- Splitting functions $P_{i j}$ encode $j \rightarrow i$ QCD splitting
 probability. Can calculate order by order in pQCD.

- Basic impact of DGLAP simple: higher $Q^{2} \Rightarrow$ more q, \bar{q}, g at low x, less at high x, due to radiation ($q \rightarrow q g, g \rightarrow q \bar{q}, g \rightarrow g g \ldots$).

- DGLAP \Rightarrow PDF at ${ }^{x}$ lower scale determine PDF at higher scales. Thus fits parameterise at low scale Q_{0} and fit to a range of energies.

Extracting PDFs

- Binding of quark/gluons in proton due to lowenergy $\mathrm{QCD} \Rightarrow$ cannot use perturbation theory.

- However PDFs are universal: same quark (antiquark) PDFs enter DIS and Drell-Yan cross sections.

DIS:

$$
\text { Factorization } \Rightarrow q_{D I S}\left(x, Q^{2}\right) \equiv q_{D Y}\left(x, Q^{2}\right)
$$

\longrightarrow Fit PDFs to one dataset (e.g. DIS) and use to make prediction for another (e.g. DY).

PDF Fits

- For LHC (and elsewhere) aim to constrain PDFs to high precision for all flavours ($q, \bar{q}, g \ldots$) over a wide x region.
- Only so much can be done with DIS \Rightarrow MSHT collaboration performs global PDF fits to wide range of data.
- One of three major global fitters (CT, MSHT, NNPDF).

PDF Fits: Work Flow

In detail...
Parameterise PDFs at low scale Q_{0}

Select data \& theory

Perform fit

$f_{i}\left(x, Q_{0}\right): A_{f} x^{a_{f}}(1-x)^{b_{f}} \times \longrightarrow \sum_{i=1}^{n} \alpha_{f, i} P_{i}(y(x))$, CT, MSHT...
$\mathrm{NN}_{i}(x) \quad$ NNPDF
Perturbative QCD for parton-level theory

Minimise $\chi^{2}(\{a\},\{\lambda\})=\sum_{k=1}^{N_{p t}} \frac{1}{s_{k}^{2}}\left(D_{k}-T_{k}-\sum_{\alpha=1}^{N_{\lambda}} \beta_{k, \alpha} \lambda_{\alpha}\right)^{2}+\sum_{\alpha=1}^{N_{\lambda}} \lambda_{\alpha}^{2}$,
DGLAP: $\quad f\left(x, Q_{0}\right) \rightarrow f\left(x, \mu_{\text {data }}\right)$

Output PDFs

$$
f(x, \mu) \pm \Delta(x, \mu)
$$

Global Fits: Datasets

	Process	Subprocess	Partons	x range
Fixed Target	$\ell^{ \pm}\{p, n\} \rightarrow \ell^{ \pm}+X$	$\gamma^{*} q \rightarrow q$	q, \bar{q}, g	$x \gtrsim 0.01$
	$\ell^{ \pm} n / p \rightarrow \ell^{ \pm}+X$	$\gamma^{*} d / u \rightarrow d / u$	d / u	$x \gtrsim 0.01$
	$p p \rightarrow \mu^{+} \mu^{-}+X$	$u \bar{u}, d \bar{d} \rightarrow \gamma^{*}$	\bar{q}	$0.015 \lesssim x \lesssim 0.35$
	$p n / p p \rightarrow \mu^{+} \mu^{-}+X$	$(u \bar{d}) /(u \bar{u}) \rightarrow \gamma^{*}$	\bar{d} / \bar{u}	$0.015 \lesssim x \lesssim 0.35$
	$v(\bar{v}) N \rightarrow \mu^{-}\left(\mu^{+}\right)+X$	$W^{*} q \rightarrow q^{\prime}$	q, \bar{q}	$0.01 \lesssim x \lesssim 0.5$
	$\nu N \rightarrow \mu^{-} \mu^{+}+X$	$W^{*} s \rightarrow c$	s	$0.01 \lesssim<x \lesssim 0.2$
	$\bar{v} N \rightarrow \mu^{+} \mu^{-}+X$	$W^{*} \bar{s} \rightarrow \bar{c}$	\bar{s}	$0.01 \lesssim x \lesssim 0.2$
Collider DIS	$e^{ \pm} p \rightarrow e^{ \pm}+X$	$\gamma^{*} q \rightarrow q$	g, q, \bar{q}	$0.0001 \lesssim x \lesssim 0.1$
	$e^{+} p \rightarrow \bar{v}+X$	$W^{+}\{d, s\} \rightarrow\{u, c\}$	d, s	$x \gtrsim 0.01$
	$e^{ \pm} p \rightarrow e^{ \pm} c \bar{c}+X$	$\gamma^{*} c \rightarrow c, \gamma^{*} g \rightarrow c \bar{c}$	c, g	$10^{-4} \lesssim x \lesssim 0.01$
	$e^{ \pm} p \rightarrow e^{ \pm} b \bar{b}+X$	$\gamma^{*} b \rightarrow b, \gamma^{*} g \rightarrow b \bar{b}$	b, g	$10^{-4} \lesssim x \lesssim 0.01$
	$e^{ \pm} p \rightarrow$ jet $+X$	$\gamma^{*} g \rightarrow q \bar{q}$	g	$0.01 \lesssim x \lesssim 0.1$
Tevatron	$p \bar{p} \rightarrow$ jet $+X$	$g g, q g, q q \rightarrow 2 j$	g,q	$0.01 \lesssim<x \lesssim 0.5$
	$p \bar{p} \rightarrow\left(W^{ \pm} \rightarrow \ell^{ \pm} v\right)+X$	$u d \rightarrow W^{+}, \bar{u} \bar{d} \rightarrow W^{-}$	u, d, \bar{u}, \bar{d}	$x \gtrsim 0.05$
	$p \bar{p} \rightarrow\left(Z \rightarrow \ell^{+} \ell^{-}\right)+X$	$u u, d d \rightarrow Z$	u, d	$x \gtrsim 0.05$
	$p \bar{p} \rightarrow t \bar{t}+X$	$q q \rightarrow t \bar{t}$	q	$x \gtrsim 0.1$
LHC	$p p \rightarrow$ jet $+X$	$g g, q g, q \bar{q} \rightarrow 2 j$	g,q	$0.001 \lesssim x \lesssim 0.5$
	$p p \rightarrow\left(W^{ \pm} \rightarrow \ell^{ \pm} v\right)+X$	$u \bar{d} \rightarrow W^{+}, d \bar{u} \rightarrow W^{-}$	$u, d, \bar{u}, \bar{d}, g$	$x \gtrsim 10^{-3}$
	$p p \rightarrow\left(Z \rightarrow \ell^{+} \ell^{-}\right)+X$	$q \bar{q} \rightarrow Z$	q, \bar{q}, g	$x \gtrsim 10^{-3}$
	$p p \rightarrow\left(Z \rightarrow \ell^{+} \ell^{-}\right)+X, p_{\perp}$	$g q(\bar{q}) \rightarrow Z q(\bar{q})$	g, q, \bar{q}	$x \gtrsim 0.01$
	$p p \rightarrow\left(\gamma^{*} \rightarrow \ell^{+} \ell^{-}\right)+X$, Low mass	$q \bar{q} \rightarrow \gamma^{*}$	q, \bar{q}, g	$x \gtrsim 10^{-4}$
	$p p \rightarrow\left(\gamma^{*} \rightarrow \ell^{+} \ell^{-}\right)+X$, High mass	$q \bar{q} \rightarrow \gamma^{*}$	\bar{q}	$x \gtrsim 0.1$
	$p p \rightarrow W^{+} \bar{c}, W^{-} c$	$s g \rightarrow W^{+} c, \bar{s} g \rightarrow W^{-} \bar{c}$	s, \bar{s}	$x \sim 0.01$
	$p p \rightarrow t \bar{t}+X$	$g g \rightarrow \bar{t}$	g	$x \gtrsim 0.01$
	$p p \rightarrow D, B+X$	$g g \rightarrow c \bar{c}, b \bar{b}$	g	$x \gtrsim 10^{-6}, 10^{-5}$
	$p p \rightarrow J / \psi, \Upsilon+p p$	$\gamma^{*}(g g) \rightarrow c \bar{c}, b \bar{b}$	g	$x \gtrsim 10^{-6}, 10^{-5}$
	$p p \rightarrow \gamma+X$	$g q(\bar{q}) \rightarrow \gamma q(\bar{q})$	g	$x \gtrsim 0.005$

Global Fits: Kinematic Coverage

- Global fits achieve broad coverage from low to high x, and over many orders of magnitude in Q^{2}.

Fit Quality

- Fits to wide range of data from different colliders/experiments. Is a good/ reliable fit possible from this? Yes!

$\chi^{2} /$ dof ~ 1
\Rightarrow Non-trivial check of QCD.

Data set	NLO	NNLO
BCDMS $\mu p F_{2}$ [49]	169.4/163	180.2/163
BCDMS $\mu d F_{2}[49]$	135.0/151	146.0/151
NMC $\mu p F_{2}[50]$	142.9/123	124.1/123
NMC $\mu d F_{2}[50]$	128.2/123	112.4/123
NMC $\mu n / \mu p$ [51]	127.8/148	130.8/148
E665 $\mu p F_{2}$ [52]	59.5/53	64.7/53
E665 $\mu d F_{2}[52]$	50.3/53	59.7/53
SLAC ep $F_{2}[53,54]$	29.4/37	32.0/37
SLAC ed $F_{2}[53,54]$	37.4/38	23.0/38
NMC/BCDMS/SLAC/HERA F_{L} [49, 50, 54, 146-148]	79.4/57	68.4/57
E866/NuSea pp DY [149]	216.2/184	225.1/184
E866/NuSea pd/pp DY [150]	10.6/15	10.4/15
$\mathrm{NuTeV} \nu N F_{2}[55]$	43.7/53	38.3/53
CHORUS $\nu N F_{2}[56]$	27.8/42	30.2/42
NuTeV $\nu N \times F_{3}$ [55]	37.8/42	30.7/42
CHORUS $\nu N \times F_{3}[56]$	22.0/28	18.4/28
CCFR $\nu N \rightarrow \mu \mu X$ [57]	73.2/86	67.7/86
$\mathrm{NuTeV} \nu N \rightarrow \mu \mu X$ [57]	41.0/84	58.4/84
HERA $e^{+} p$ CC [84]	54.3/39	52.0/39
HERA $e^{-} p$ CC [84]	80.4/42	70.2/42
HERA $e^{+} p$ NC 820 GeV [84]	91.6/75	89.8/75
HERA $e^{+} p$ NC 920 GeV [84]	553.9/402	512.7/402
HERA $e^{-} p$ NC 460 GeV [84]	253.3/209	248.3/209
HERA $e^{-} p$ NC 575 GeV [84]	268.1/259	263.0/259
HERA $e^{-} p$ NC 920 GeV [84]	252.3/159	244.4/159
HERA ep $F_{2}^{\text {charm }}$ [26]	125.6/79	132.3/79
DØ II $p \bar{p}$ incl. jets [125]	117.2/110	120.2/110
CDF II $p \bar{p}$ incl. jets [124]	70.4/76	60.4/76
CDF II W asym. [90]	19.1/13	19.0/13
DØ II $W \rightarrow \nu$ e asym. [151]	44.4/12	33.9/12
DØ II $W \rightarrow \nu \mu$ asym. [152]	13.9/10	17.3/10
DØ II Z rap. [153]	15.9/28	16.4/28
CDF II Z rap. [154]	36.9/28	37.1/28
$\mathrm{D} \emptyset W$ asym. [21]	13.1/14	12.0/14

| Total, LHC data in MSHT20 | $\overline{1.79}$ | 1.33
 Total, non-LHC data in MSHT20
 Total, all data | 1.13
 1.33 |
| :---: | :--- | :--- | :--- | | 1.10 |
| :--- |

Why do we care about them at the LHC?

Higgs

- Major (ongoing) aim of LHC: pin down the Higgs sector as precisely as we can.

\star PDF uncertainty important limiting factor in this.

\star Not just gg fusion: significant for VBF, associated production...

BSM

- High mass searches for new resonances/contact interactions PDFs in high x region.

LHC 13 TeV , NNLO, $\alpha_{\mathrm{s}}=0.118$

- PDF uncertainties larger here (less constraints). Though see later for more on that.

SM Precision

- W mass: fit to lepton ($W \rightarrow l \nu$) kinematics.

- Both approaching level of indirect EW determination, but strongly sensitive to PDF uncertainties.
- Not to forget recent CDF W mass measurement!

The MSHT20aN3LO fit

MSHT20 (in a slide)

- The 'Post-Run I' set from the MSTW, MMHT... group: MSHT20
- Focus on including significant amount of new data, higher precision theory and on methodological improvements.
* New data: Updated data from HERA and LHC, including much high precision and multi-differential data. LHC data (DY, jets, top quark, V + jets...) playing increasing role.
\star Precision theory: NNLO theory input standard, and essential describing high precision data. EW/ QED corrections also included where relevant.

* Methodological improvements: Flexible parameterisation in terms of Chebyshev polynomials (sub 1\% level precision).

$$
x f\left(x, Q_{0}^{2}\right)=A(1-x)^{\eta} x^{\delta}\left(1+\sum_{i=1}^{n} a_{i} T_{i}^{\operatorname{ch}}(y(x))\right)
$$

How well do know PDFs?

- All previous major PDF releases: uncertainty given by propagating experimental uncertainty on data through to PDFs.

$$
f(x, \mu) \pm \Delta(x, \mu)
$$

- Result depends on x, Q^{2} and PDF type but can be as low as $1-2 \%$.

- However this is not the only source of uncertainty!
- Dependence on α_{S}, heavy quark masses, parameterisation can be accounted for. But recall:

- σ in fit not known exactly: calculated in pQCD to given order.
- Compare e.g. gluon between NLO and NNLO fits. Can differ by more than PDF errors.

- Now NLO and NNLO fits not to be treated on equal footing. Precision increases with order in α_{S}.
- Indeed this is reflected in fit quality, e.g. NLO fails dramatically for higher precision LHC data.

Total, LHC data in MSHT20
Total, non-LHC data in MSHT20
Total, all data

$\frac{\text { NLO }}{}$	NNLO
$\frac{1.79}{1.13}$	$\frac{1.33}{1.10}$
$\underline{1.33}$	$\underline{1.17}$

- But question remains: what might happen if we go beyond NNLO?

Missing Higher Orders

- How to estimate uncertainty due to missing higher orders (MHOs)?

Standard approach is use scale variations:

$$
\sigma=\sigma_{0}\left(1+c_{1} \alpha_{S}+\cdots c_{n} \alpha_{S}^{n}\right) \quad \frac{\mathrm{d} \sigma}{\mathrm{~d} \mu}=O\left(\alpha_{S}^{n+1}\right) \quad \delta \sigma=\sigma\left(2 \mu_{0}\right)-\sigma\left(\mu_{0} / 2\right)
$$

- Can then propagate through to fit: NNPDF, Eur.Phys.J. C (2019) 79:838

- However this is just a rule of thumb:
\star Why 2? $\quad \star$ What value for μ_{0} ?
\star Does this really follow pert. series?
- Moreover for NNLO PDF fit: we actually know quite a bit already about the next (N3LO) order up. Should use this!

$$
n=3
$$

Basic Idea

- In general terms: parameterise higher order (\sim N3LO) corrections via nuisance parameters given by prior probability distribution.
- That is, starting with original fit probability:

$$
P(T \mid D) \propto \exp \left(-\frac{1}{2}(T-D)^{T} H_{0}(T-D)\right) \begin{aligned}
& \text { T: Theory (NNLO) } \\
& D: \text { Data } \\
& H_{0} \sim \frac{1}{\sigma_{\text {exp }}^{2}}
\end{aligned}
$$

- Then we model N3LO theory via:
- With shift given by prior probability:

$$
P\left(\theta^{\prime}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{\theta^{\prime}}} \exp \left(-\theta^{\prime 2} / 2 \sigma_{\theta^{\prime}}^{2}\right)
$$

- To give final result: $\quad P(T \mid D) \propto \exp \left(-\frac{1}{2} M^{-1}\left(\theta^{\prime}-\bar{\theta}^{\prime}\right)^{2}-\frac{1}{2}\left(T^{\prime}-D\right)^{T} H\left(T^{\prime}-D\right)\right)$
- Question: How do we determine prior?

Splitting Functions

- Start with QCD splitting functions:

$$
\frac{\partial f}{\partial \mu} \sim P \otimes f
$$

$$
\boldsymbol{P}\left(x, \alpha_{s}\right)=\alpha_{s} \boldsymbol{P}^{(0)}(x)+\alpha_{s}^{2} \boldsymbol{P}^{(1)}(x)+\alpha_{s}^{3} \boldsymbol{P}^{(2)}(x)+\alpha_{s}^{4} \boldsymbol{P}^{(3)}(x)+\ldots
$$

- While these are not known exactly at N3LO, we do know quite a lot already:
\star Form at low $x: \quad \boldsymbol{P}_{q g}^{(3)}(x) \rightarrow \frac{C_{A}^{3}}{3 \pi^{4}}\left(\frac{82}{81}+2 \zeta_{3}\right) \frac{1 \ln ^{2} 1 / x}{2}+\rho_{q g} \frac{\ln 1 / x}{x}$,
\star Even Mellin moments up to $N=8 \quad \int_{0}^{1} \mathrm{~d} x x^{N-1} P(x)$
\Rightarrow intermediate to high x constraints.
\star Intuition from lower orders about what to expect.

- Idea is to parameterise $P(x)$ using set of basis functions:

$$
P(x)=\sum_{i=1}^{N_{m}} A_{i} f_{i}(x)+f_{e}(x, \rho)
$$

with N_{m} known moments used to solve for A_{i}.

- $f_{e}(x, \rho)$ is given known leading low x term + next-to-leading with nuisance parameter ρ, e.g. for $\boldsymbol{P}_{q g}^{(3)}(x)$:

$$
\begin{gathered}
f_{e}\left(x, \rho_{q g}\right)=\frac{C_{A}^{3}}{3 \pi^{4}}\left(\frac{82}{81}+2 \zeta_{3}\right) \frac{1 \ln ^{2} 1 / x}{x}+\underset{\neq}{\rho_{q g}} \frac{\ln 1 / x}{x} . \\
\text { Coefficient known }
\end{gathered}
$$

- For $f_{i}(x)$ range of choices are made, guided by what appears at lower orders

$$
\begin{array}{rlll}
f_{1}(x)=\frac{1}{x} & \text { or } \ln ^{4} x & \text { or } \ln ^{3} x & \text { or } \ln ^{2} x, \\
f_{2}(x)=\ln x, & & \\
f_{2}(x)=1 & \text { or } x & \text { or } x^{2}, & \\
f_{3}(x)=\ln ^{4}(1-x) & \text { or } \ln ^{3}(1-x) & \text { or } \ln ^{2}(1-x) & \text { or } \ln (1-x),
\end{array}
$$

- For a given value of ρ and set of $f_{i}(x)$ splitting function predicted entirely. Varying these gives prior uncertainty band.

- More precisely, range of ρ set by requiring that 'reasonable' result:
\star Low $x<10^{-5}$: full function cannot be in large tension with leading term.

$$
\frac{C_{A}^{3}}{3 \pi^{4}}\left(\frac{82}{81}+2 \zeta_{3}\right) \frac{1 \ln ^{2} 1 / x}{2}
$$

\star High x : N3LO correction small, following general trend of NNLO.

- In the end choose one set of $f_{i}(x)$ and range of ρ to satisfy this.
- Some subjectivity here, but result does not depend sensitively on precise prior.
- A similar approach was used before the full NNLO was known, and found to match the exact NNLO result well!
W. L. van Neervan and A. Vogt,

Nucl.Phys.B 588 (2000) 345-373,

- Result for $P_{q g}$:
\star Largest deviations at low X - corrections here larger.
* But also differences at high x, driven by known moments.
\star Green curve: central result of prior. Not centred on NNLO \rightarrow known information from N3LO.
\star Dashed curve: result after fitting, i.e. agrees well with prior.

- Similar trends for other splitting functions

DIS Coefficient Functions

- Deep inelastic scattering (DIS) : backbone of PDF fits.
- DIS cross section given in terms of coefficient functions C_{i} :

$$
\sigma_{\mathrm{DIS}} \sim C_{i} \otimes f_{i}
$$

are known at N3LO for the light quarks $\left(m_{q}=0\right)$!

- Is this enough? Not quite - heavy quark contributions ($m_{c, b} \neq 0$) play important role. Here some information is known but not everything.
- In more detail: one could in principle just include heavy quarks in final state ('fixed flavour scheme'):

as non-zero quark mass regulates collinear $(g \rightarrow H)$ divergence.
- However if we do this then for larger photon Q^{2} cross section develops large logs in Q^{2} / m_{H}^{2} and perturbation theory breaks down.
- At large $Q^{2} \gg m_{H}^{2}$ essential to instead include heavy quark PDFs, with DGLAP evolution resumming these ('zero mass flavour scheme').

FFS

- The heavy quark PDFs are completely predicted in pQCD via socalled 'transition matrix elements’:

$$
f_{H}^{n_{f}+1}\left(x, Q^{2}\right)=\left[A_{H q}\left(Q^{2} / m_{h}^{2}\right) \otimes f_{q}^{n_{f}}\left(Q^{2}\right)+A_{H g}\left(Q^{2} / m_{h}^{2}\right) \otimes f_{g}^{n_{f}}\left(Q^{2}\right)\right](x)
$$

- Better still is to interpolate between $Q^{2} \sim m_{H}^{2}$ and $Q^{2} \gg m_{H}^{2}$ regions. Keep exact m_{H} dependence in former and $\ln Q^{2} / m_{H}^{2}$ resummation in latter - 'general mass variable flavour number scheme' (GM-VFNS).
- For e.g. gluon-initiated heavy flavour production at NLO:

$$
\begin{aligned}
& C_{H, g}^{V F}=C_{n, g}^{F F,(1)}-C_{n, n}^{v F,(0)} \otimes A_{n g}^{(1)} \\
& \text { F } \\
& \binom{\}_{2}{\underset{\imath}{2}}}{m_{n}=0}
\end{aligned}
$$

- Beyond this order, can build up contributions systematically.
- So we need at N3LO:
\star Transition matrix elements.
\star DIS coefficient functions with $m_{H} \neq 0$.

Transition Matrix Elements

- Situation in some cases similar to splitting functions, e.g. for $A_{H g}^{(3)}$ we know:
\star Form at low $x: \quad\left(224 \zeta_{3}-\frac{41984}{27}-160 \frac{\pi^{2}}{6}\right) \frac{\ln 1 / x}{x}+a_{H g} \frac{1}{x}$
\star Even Mellin moments up to $N=10$
\Rightarrow high x constraints.

$$
\int_{0}^{1} \mathrm{~d} x x^{N-1} A_{H g}^{(3)}
$$

- We therefore follow a similar procedure as before for this...

$$
\begin{array}{rlrlll}
f_{1,2}(x) & =\ln ^{5}(1-x) & & \text { or } \ln ^{4}(1-x) & \text { or } \ln ^{3}(1-x) & \text { or } \ln ^{2}(1-x) \\
f_{3,4}(x) & =2-x & & \text { or } \ln (1-x), & & \\
f_{5}(x) & =\ln x & & \text { or } 1 & \text { or } x & \text { or } x^{2}, \\
f_{e}\left(x, a_{H g}\right) & =\left(224 \zeta_{3}-\frac{41984}{27}-160\right. & \left.\frac{\pi^{2}}{6}\right) \frac{\ln 1 / x}{x}+a_{H g} \frac{1}{x} & &
\end{array}
$$

- For other cases $\left(A_{g q, H}^{(3)}, A_{H q}^{\mathrm{PS},(3)}\right)$ exact results are known - simply use these.
- A similar picture to before builds up.

Coefficient Functions

- Massless $\left(Q^{2} \rightarrow \infty\right)$ case known as well as approximations for massive close to threshold ($Q^{2} \leq m_{H}^{2}$). Use this to build up approximate GMVFNS prediction.

Hadronic Collisions

- So far have only consider DIS. What about hadron-hadron collisions as in e.g. the LHC?
- Here much less is known about cross sections at N3LO:
\star Higgs - does not go in PDF fit!
\star Drell-Yan - not yet for relevant fiducial cross sections.
- So for now we assume nothing is known about this, and instead include a MHO uncertainty (= approx. N3LO K-factor) on cross sections.
- Do not use scale variations, rather base on known NLO and NNLO:

$$
\begin{array}{r}
\sigma_{N 3 L O}=K(y) \cdot \sigma_{L O} \\
K(y)=1+\frac{\alpha_{s}}{\pi} D(y)+\left(\frac{\alpha_{s}}{\pi}\right)^{2} \underset{\nearrow}{E} E(y)+\left(\frac{\alpha_{s}}{\pi}\right)^{3} \underset{\nearrow}{F}(y)+\mathcal{O}\left(\alpha_{s}^{4}\right) \\
\text { NLO } \\
\text { (known) } \\
\end{array}
$$

$$
\begin{array}{ccc}
K(y)=1+\frac{\alpha_{s}}{\pi} D(y)+\left(\frac{\alpha_{s}}{\pi}\right)^{2} \underset{\boldsymbol{\lambda}}{E}(y)+\left(\frac{\alpha_{s}}{\pi}\right)^{3} & \underset{\nearrow}{\boldsymbol{\lambda}}(y)+\mathcal{O}\left(\alpha_{s}^{4}\right) . \\
\text { NLO } & \text { NNLO } & \text { N3LO } \\
\text { (known) } & \text { (known) } & \text { (unknown) }
\end{array}
$$

- Take: $\quad K^{\mathrm{N}^{3} \mathrm{LO} / \mathrm{LO}}=K^{\mathrm{NNLO} / \mathrm{LO}}\left(1+\alpha_{s}^{3} \hat{a}_{1} \frac{\mathcal{N}^{2}}{\pi} D+\alpha_{s}^{3} \hat{a}_{2} \frac{\mathcal{N}}{\pi^{2}} E\right)$.
with $a_{1,2}$ free nuisance parameters.
- Can show that if $\mathcal{N}=3$ is taken then have $a_{1,2} \sim O(1)$ in order to match expected trend with increasing orders.
\Rightarrow Prior distribution is $a_{1,2}^{\mathrm{cent}}=0$ with $\sigma_{1,2}=1$.
- As expect K-factors to behave \sim similarly between similar processes, correlate these between 5 classes of process:
\star Jets $\quad \star t \bar{t}$
* Drell Yan
$\star Z p_{\perp}$ and V + jets
\star Neutrinoinduced ‘dimuon’ DIS
* Resulting K-factors: Drell Yan.

- Fit prefers a $\sim 1 \%$ decrease from NNLO to aN3LO.
- This is in nice agreement with expectations from exact N3LO calculations!
- Implies improved perturbative convergence with aN3LO PDFs.

\star Resulting K-factors: $t \bar{t}$.

- Fit prefers overall increase in magnitude from NNLO to N3LO.
- Consistent with approximation N3LO calculation.

\star Resulting K-factors: jets.

- Fairly mild shift from NNLO to N3LO, as one might expect/hope for.
\star Resulting K-factors: $Z p_{\perp}$

- Somewhat larger shift here. Arguably consistent with rather larger lower order corrections.
- Note: here (and elsewhere) K-factor is one preferred by fit \Rightarrow may be tendency for this to lie towards 'all orders' result. Important when interpreting wrt perturbative stability.

Results

Fit Quality

- Using the results above, perform aN3LO fit to exactly same dataset as MSHT20 NNLO global fit.
- Start with total χ^{2} per point. General trend for improvement at aN3LO, as we would expect from pQCD. Corresponds to $\sim 1-2 \sigma$ from NNLO.

	LO	NLO	NNLO	N^{3} LO
$\chi_{N_{\text {pts }}}^{2}$	2.57	1.33	1.17	1.14

- Some of this improvement comes from additional freedom in LHC K-factors. However:
\star Over half remains if we turn these off.
\star We have seen for $\mathrm{DY}+t \bar{t}$ that these follow what we could expect from pQCD calculations.
- Key point: much of theory changes are not centred on NNLO. Can depart quite strongly from this due to known information about N3LO. The fit is preferring this!
- Breaking things down more:

Dataset	N_{pts}	χ^{2}	$\Delta \chi^{2}$ from
DY data Total	864	1069.4	-18.5
Top data Total	71	75.1	-4.2
Jets data Total	739	963.6	+21.5
p_{T} Jets data Total	144	138.0	-77.2
Dimuon data Total	170	125.0	-1.2
DIS data Total	2375	2580.9	-90.8
Total	4363	4961.2	-160.1

- Significant improvement in DIS - driven by N3LO input.
- Also large improvement in ` p_{\perp} Jets’ - driven by ATLAS $8 \mathrm{TeV} Z p_{\perp}$ data: from 1.81 to 1.04 per point (104 points).
- $Z p_{\perp}$ constrains high x gluon, and similar level of improvement found if we exclude HERA DIS from NNLO fit, i.e. aN3LO is alleviating tension between low and high x regions.
- Milder improvement in $t \bar{t}$ and DY. Interestingly inclusive jet data actually gets worse - issues with fitting inclusive jet data?

Nuisance parameters

Low- Q^{2} Coefficient			
$c_{q}^{\text {NLL }}=-3.868$	0.004	$c_{g}^{\mathrm{NLL}}=-5.837$	0.844
Transition Matrix Elements			
$\begin{aligned} a_{H g} & =12214.000 \\ a_{g g, H} & =-1951.600 \end{aligned}$	$\begin{aligned} & 0.601 \\ & 0.857 \end{aligned}$	$a_{q q, H}^{\mathrm{NS}}=-64.411$	0.001
Splitting Functions			
$\begin{gathered} \rho_{q q}^{N S}=0.007 \\ \rho_{q q}^{P S}=-0.501 \\ \rho_{q g}=-1.754 \\ \hline \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0.186 \\ & 0.015 \end{aligned}$	$\begin{gathered} \rho_{g q}=-1.784 \\ \rho_{g g}=19.245 \end{gathered}$	$\begin{aligned} & 0.802 \\ & 3.419 \end{aligned}$
K-factors			
DY ${ }_{\text {NLO }}=-0.307$	0.094	$\mathrm{DY}_{\mathrm{NNLO}}=-0.230$	0.053
$\mathrm{Top}_{\mathrm{NLO}}=0.041$	0.002	$\mathrm{Top}_{\text {NNLO }}=0.651$	0.424
$\mathrm{Jet}_{\mathrm{NLO}}=-0.300$	0.090	$\mathrm{Jet}_{\text {NNLO }}=-0.691$	0.478
$p_{T} \mathrm{Jets}_{\mathrm{NLO}}=0.583$	0.339	$p_{T} \mathrm{Jets}_{\mathrm{NNLO}}=-0.080$	0.006
Dimuon $_{\text {NLO }}=-0.444$	0.197	Dimuon $_{\text {NNLO }}=0.922$	0.850
N ${ }^{3}$ LO Penalty Total	9.262 / 20	Average Penalty	0.463
		Total $\Delta \chi^{2}$ from NNLO	$\begin{gathered} 4961.2 / 4363 \\ -160.1 \end{gathered}$

- Average penalty for 20 aN 3 LO parameters is 0.46 , i.e. on average fit prefers values well within prior.

PDFs

- Broad picture:

- Most noticeable difference: gluons and quarks larger at low x.
- In more detail...
- Gluon enhanced at low x due to large logs in splitting functions.
- But also reduced at $x \sim 10^{-2}$ due to reduction in $P_{q g}$ and compensation for increased gluon at low x.
- Charm (generated perturbatively) increased due to increase in gluon at low x and change in $A_{H g}$.

- Some enhancement in light quarks at high x.

- Strange quark enhanced at high x.
- Follows the NNLO (no HERA) rather closely reduced tensions.

- Other PDFs...

PDFs - theoretical uncertainty

- Recall we have added in additional freedom via aN3LO nuisance parameters:

- This will also impact on PDF uncertainties - an additional uncertainty due to unknown higher order corrections:

$$
P\left(T^{\prime} \mid D\right) \propto \int d \theta^{\prime} \exp \left(-\frac{1}{2} M^{-1}\left(\theta^{\prime}-\bar{\theta}^{\prime}\right)^{2}-\frac{1}{2}\left(T^{\prime}-D\right)^{T}\left(H_{0}^{-1}+u u^{T}\right)^{-1}\left(T^{\prime}-D\right)\right) .
$$

Additional uncertainty

- In principle uncertainty from these is correlated with other (experimental) PDF uncertainties.
- However for K-factors find these largely separate out: can provide separately with little loss in accuracy.
- Gluon uncertainty most affected - increased at low x due to larger uncertainty in splitting functions.
- Some increase in light quarks at low x.
- But at high x impact tiny - much more known here and uncertainty lower.
- Correlated and decorrelated errors very similar.

Strong Coupling

- Can also allow α_{S} to be free in fit. Find for best fit: $\alpha_{S}\left(M_{Z}^{2}\right)^{\mathrm{bf}}=0.117$
- Consistent with world average.

MSHT20 NNLO: $\alpha_{S}\left(M_{Z}^{2}\right)=0.1174 \pm$ 0.0013 .

MSHT20 NLO: $\alpha_{S}\left(M_{Z}^{2}\right)=0.120 \pm$ 0.0015 .

Implications for the Higgs

- Higgs via gg fusion: reasonable shift down induced due to change in gluon.
- Perturbative convergence improved once aN3LO PDFs used. This cancellation not guaranteed (not driven by e.g. change in $P_{g g}$).

- Higgs via VBF: less cancellation although here variation between orders is smaller.

Dijet Data

Preliminary

- Try fitting (2D and 3D) dijet data rather than inclusive jets.
- Recall fit quality to inclusive jets worse from NNLO at aN3LO.
- For dijets this is no longer the case! Improvement in going to aN3LO and also in overall fit to other data.

	$N_{\text {pts }}$	$\chi^{2} / N_{\text {pts }}$	
		NNLO	$\mathrm{aN}^{3} \mathrm{LO}$
ATLAS 7 TeV jets	140	1.58	1.54
CMS 7 TeV jets	158	1.11	1.18
CMS 8 TeV jets	174	1.50	1.56
Total	472	1.39	1.43

	$N_{\text {pts }}$	$\chi^{2} / N_{\text {pts }}$	
		NNLO	$\mathrm{aN}^{3} \mathrm{LO}$
ATLAS 7 TeV dijets	90	1.05	1.12
CMS 7 TeV dijets	54	1.43	1.39
CMS 8 TeV dijets	122	1.04	0.83
Total	266	1.12	1.04

- Impact on PDFs similar (not identical). Closer at aN3LO.

Low x and resummation

- Interesting to observe that impact on gluon and improvement in fit quality to HERA DIS data rather similar to earlier fits including low x resummation.
aN3LO

DIS Dataset	χ^{2}	$\Delta \chi^{2}$ from NNLO

Resummation

xFitter, Eur.Phys.J.C 78 (2018) 8, 621

Interpretation/Usage

- We assume for now that dominant MHO uncertainty is from missing N3LO. However fit can pick up corrections beyond this.
- Can update in future to account for more N3LO information as it comes in. At some point as this becomes more constrained can update procedure to include uncertainty from N4LO (in principle!).
- Recommendation for usage:
\star If N3LO cross sections are known, use aN3LO PDF + their theoretical uncertainties.
\star For DIS processes advised to use aN3LO PDF with aN3LO coefficient functions.
\star For any processes included in fit we provide full details of fitted Kfactors.
\star For processes not included in fit, the change between using NNLO and N3LO can be taken as a corresponding uncertainty.

Summary and Outlook

\star As precision of data continues to improve and we continue to stress test the SM as precisely as possible essential to account for all sources of uncertainty in PDFs.
\star Have presented first aN3LO PDF set release: MSHT20aN3LO. Can be used where N3LO is known or where it is not to evaluate uncertainty due to missing higher orders in fit.
« Provides intuitive and controllable way to include theoretical uncertainties in PDF fit but also use all available information about higher order.
\star PDFs as LHAPDF grids are available here:
www.hep.ucl.ac.uk/msht/
\star Stay tuned for further studies!

