
h

J
µ
f ′

J
µ
f

h

q2

q1

J
µ
f ′

J
µ
f

David Marzocca

Particle Theory Seminar, UZH,  13/10/2015
1

h

J
µ
f ′

J
µ
f

h

J
µ
f ′

J
µ
f

h

q2

q1

J
µ
f ′

J
µ
f

Higgs PO
Production and decay

beyond the kappa-framework



works with various subsets of
{M. Bordone, A. Falkowski, M.Gonzalez-Alonso, A. Greljo, G. Isidori, J. Lindert, D.M., A. Pattori}

Eur. Phys. J. C75 (2015) 3, 128   arXiv: 1412.6038 
Eur. Phys. J. C75 (2015) 7, 341   arXiv: 1504.04018 
Eur. Phys. J. C75 (2015) 8, 385   arXiv: 1507.02555 
arXiv: 1508.00581 
+ some  work in progress

Outline

2

h

q2

q1

J
µ
f ′

J
µ
f

h

J
µ
f ′

J
µ
f

h

J
µ
f ′

J
µ
f

h

q2

q1

J
µ
f ′

J
µ
f

Based on:

• Motivation and introduction. What are pseudo-observables (PO)?

• PO in Higgs Decay. 

• PO in Electroweak Higgs Production.

• Linear EFT and Higgs PO.
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Figure 27: Fit results for the combination of ATLAS and CMS in the case of the parameterisation with reduced
coupling modifiers yV , i =
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for the fermions, as a function of the particle mass. The dashed line indicates the predicted dependence on the
particle mass for the SM Higgs boson. The bottom panel shows the ratios of the reduced coupling modifiers to the
SM predictions with their total uncertainties as a function of the particle mass.
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3

discovery of the Higgs and
good measurement of many of its couplings. 
The Standard Model is complete.

So far, no compelling evidence of 
new physics from direct searches:
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Naturalness problem
of the Higgs mass WIMP Dark Matter Flavour puzzle

Questions we still have to find answers to:

Understand the physics at the TeV scale.

Pragmatic goal:

How we are doing this
• Direct searches of new particles: LHC, DM, …

• Precision SM measurements: Higgs, Electroweak, Flavour, Neutrinos, …

• Cosmology: CMB, Large Scale Structures, BBN, …
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Generality × Predictivity ~ const.

How to collect all available information on a the Higgs,
in the most general and theoretically unbiased way?

We want to be able to come back to LHC Higgs data in the future and still be able to 
reinterpret it in terms of any New Physics model which would have been discovered.

It will be extremely difficult to be able to repeat many experimental analysis.

LHC - Higgs Legacy

Generality

Predictivity
CMSSM

MSSM

Simplified Models

SILH
SMEFT

SM

In “Theory space”:
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Fiducial cross sections,
Number of events in a given bin, etc …

Physical observables

Predictivity

Generality

Lagrangian parameters

Couplings, running masses,
Wilson coefficients, etc …

General comments about Pseudo Observables

Experimental data Lagrangian parametersPseudo Observables

raw data,
fiducial cross-sections,
...

masses, widths,
slopes, ...

Wilson coefficients,
renormalization scale,
running masses, ...

G. Isidori –  PO in Higgs decays                                               CERN, March 2015

Pseudo-observables
Pole masses, decay widths,
kappas, form factors, etc …

How should the experiments present their result

Which model?
Which parameters?
Fit at LO, NLO..?

ALL the observables??
Difficult for theorists to control experimental effects.



8

PO idealized observables,
well defined (in QFT) quantities.

Experimental data

Unfolding of collider &
soft radiation effects

Matching to a given model
at given order in pert. theory

Constraints/measurements on theories

Experiments

Theorists

General comments about Pseudo Observables

Experimental data Lagrangian parametersPseudo Observables

raw data,
fiducial cross-sections,
...

masses, widths,
slopes, ...

Wilson coefficients,
renormalization scale,
running masses, ...

G. Isidori –  PO in Higgs decays                                               CERN, March 2015
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Figure 1.12: Average over measurements of the hadronic cross-sections (top) and of the muon
forward-backward asymmetry (bottom) by the four experiments, as a function of centre-of-mass
energy. The full line represents the results of model-independent fits to the measurements, as
outlined in Section 1.5. Correcting for QED photonic effects yields the dashed curves, which
define the Z parameters described in the text.
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from ∆rw implicitly through sin2 θW, as can be seen in Equation 1.26. Here the implicit
correction is of opposite sign, and in fact dominates the direct correction, so that the mt and
mH dependences of sin2 θlept

eff are opposite in sign from the dependences of ∆κse described in
Equation 1.20.

The discussion of radiative corrections given here is leading order only. The actual calcu-
lations used in fits (e.g., Chapters 7 and 8) are performed to higher order, using the programs
TOPAZ0 [30] and ZFITTER [31]. The interested reader is encouraged to consult the authori-
tative discussion in Reference 32.

1.5 The Process e+e− → ff

The differential cross-sections for fermion pair production (see Figure 1.1) around the Z res-
onance can be cast into a Born-type structure using the complex-valued effective coupling
constants given in the previous section. Effects from photon vacuum polarisation are taken
into account by the running electromagnetic coupling constant (Equation 1.30), which also ac-
quires a small imaginary piece. Neglecting initial and final state photon radiation, final state
gluon radiation and fermion masses, the electroweak kernel cross-section for unpolarised beams
can thus be written as the sum of three contributions, from s-channel γ and Z exchange and
from their interference [32],

2s

π

1

N f
c

dσew

dcos θ
(e+e− → ff) =

|α(s)Qf |2 (1 + cos2 θ)
︸ ︷︷ ︸

σγ

−8ℜ
{

α∗(s)Qfχ(s)
[

GVeGVf(1 + cos2 θ) + 2GAeGAfcos θ
]}

︸ ︷︷ ︸

γ–Z interference

+16|χ(s)|2 [(|GVe|2 + |GAe|2)(|GVf |2 + |GAf |2)(1 + cos2 θ)
+8ℜ {GVeGAe

∗}ℜ {GVfGAf
∗} cos θ]

︸ ︷︷ ︸

σZ

(1.34)

with:

χ(s) =
GFm2

Z

8π
√

2

s

s − m2
Z + isΓZ/mZ

, (1.35)

where θ is the scattering angle of the out-going fermion with respect to the direction of the e−.
The colour factor N f

c is one for leptons (f=νe, νµ, ντ , e, µ, τ) and three for quarks (f=d, u, s,
c, b), and χ(s) is the propagator term with a Breit-Wigner denominator with an s-dependent
width.

If the couplings are left free to depart from their SM values, the above expression allows
the resonance properties of the Z to be parametrised in a very model-independent manner.
Essentially the only assumptions imposed by Equation 1.34 are that the Z possesses vector
and axial-vector couplings to fermions, has spin 1, and interferes with the photon. Certain SM
assumptions are nevertheless employed when extracting and interpreting the couplings; these
are discussed in Sections 1.5.4 and 2.5.3.
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The 1 + cos2 θ terms in the above formula contribute to the total cross-section, whereas the
terms multiplying cos θ contribute only to the forward-backward asymmetries for an experi-
mental acceptance symmetric in cos θ. In the region of the Z peak, the total cross-section is
completely dominated by Z exchange. The γ–Z interference determines the energy dependence
of the forward-backward asymmetries and dominates them at off-peak energies, but its leading
contribution, from the real parts of the couplings, vanishes at

√
s = mZ.

In Bhabha scattering, e+e− → e+e−, the t-channel diagrams also contribute to the cross-
sections, with a very dominant photon contribution at large cos θ, i.e., in the forward direction.
This contribution, and its interference with the s-channel, add to the pure s-channel cross-
section for e+e− → e+e− (see Section 2.4.2 for details).

The definition of the mass and width with an s-dependent width term in the Breit-Wigner
denominator is suggested [33] by phase-space and the structure of the electroweak radiative
corrections within the SM. It is different from another commonly used definition, the real part
of the complex pole [34], where the propagator term takes the form χ(s) ∝ s/(s−mZ

2+imZΓZ).

However, under the transformations mZ = mZ/
√

1 + Γ2
Z/m

2
Z and ΓZ = ΓZ/

√

1 + Γ2
Z/m2

Z, and
adjusting the scales of Z exchange and γ/Z interference, the two formulations lead to exactly
equivalent resonance shapes, σ(s).

Photon radiation (Figure 1.11) from the initial and final states, and their interference, are
conveniently treated by convoluting the electroweak kernel cross-section, σew(s), with a QED
radiator, Htot

QED,

σ(s) =
∫ 1

4m2
f
/s

dz Htot
QED(z, s)σew(zs). (1.36)

The difference between the forward and backward cross-sections entering into the determination
of the forward-backward asymmetries, σF − σB, is treated in the same way using a radiator
function HFB

QED. These QED corrections are calculated to third order, and their effects on the
cross-sections and asymmetries are shown in Figure 1.12. At the peak the QED deconvoluted
cross-section is 36% larger than the measured one, and the peak position is shifted downwards
by about 100 MeV. At and below the peak Aµ

FB and Aτ
FB are offset by an amount about equal

to their deconvoluted value of 0.017. The estimated precision of these important corrections is
discussed in Section 2.4.4. It is important to realize that these QED corrections are essentially
independent of the electroweak corrections discussed in Section 1.4, and therefore allow the
parameters of Equation 1.34 to be extracted from the data in a model-independent manner.

1.5.1 Cross-Sections and Partial Widths

The partial Z decay widths are defined inclusively, i.e., they contain QED and QCD [35] final-
state corrections and contributions from the imaginary and non-factorisable parts [36] of the
effective couplings,

Γff = N f
c

GFm3
Z

6
√

2π

(

|GAf |2RAf + |GVf |2RVf

)

+ ∆ew/QCD. (1.37)

The primary reason to define the partial widths including final state corrections and the con-
tribution of the complex non-factorisable terms of the couplings is that the partial widths
defined in this way add up straightforwardly to yield the total width of the Z boson. The
radiator factors RVf and RAf take into account final state QED and QCD corrections as well
as non-zero fermion masses; ∆ew/QCD accounts for small contributions from non-factorisable
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Unfold QED (and/or QCD) soft radiation effect

Parametrize the shape with some PO
defined at amplitude level:

mZ, ΓZ

Fit the PO from data

1)

2)

3)

LEP-1 Strategy: on-shell Z decays
[hep-ex/0509008; Bardin, Grunewald, Passarino ’99]

The goal was to parametrise on-shell Z decays as much model-independently as possible.

Lineshape



LEP-1 Strategy: on-shell Z decays

3 Pseudo-Observables

There remains to be investigated the systematic errors arising from theory and
possible ambiguities in the definition of the MI fit parameters, the POs.

3.1 Definition of Pseudo-Observables

Independent of the particular realization of the effective couplings they are
complex-valued functions, due to the imaginary parts of the diagrams. In the
past this fact had some relevance only for realistic observables while for pseudo-
observables they were conventionally defined to include only real parts. This
convention has changed lately with the introduction of next-to-leading correc-
tions: imaginary parts, although not next-to-leading in a strict sense, are size-
able two-loop effects. These are enhanced by factors π2 and sometimes also
by a factor Nf , with Nf being the total number of fermions (flavour⊗ colour)
in the SM. Once we include the best of the two-loop terms then imaginary
parts should also come in. The latest versions of TOPAZ0 and ZFITTER therefore
include imaginary parts of the Z-resonance form factors.

The explicit formulae for the Zff vertex are always written starting from a
Born-like form of a pre-factor × fermionic current, where the Born parameters
are promoted to effective, scale-dependent parameters,

ρf
Z
γµ

[(

I(3)
f + i aL

)

γ+ − 2 Qfκf
Z
s2 + i aQ

]

= γµ

(

Gf
V

+ Gf
A

γ5

)

, (6)

where γ+ = 1 + γ5 and aQ,L are the SM imaginary parts. Note that imaginary
parts are always factorized in ZFITTER and added linearly in TOPAZ0.

By definition, the total and partial widths of the Z boson include all cor-
rections, also QED and QCD corrections. The partial decay width is therefore
described by the following expression:

Γf ≡ Γ
(

Z → ff
)

= 4 cf Γ0

(

|Gf
V
|2 Rf

V + |Gf
A
|2 Rf

A

)

+ ∆
EW/QCD

, (7)

where cf = 1 or 3 for leptons or quarks (f = l, q), and the radiator factors

Rf
V and Rf

A describe the final state QED and QCD corrections and take into
account the fermion mass mf .

There is a large body of contributions to the radiator factors in particular for
the decay Z → qq; both TOPAZ0 and ZFITTER implement the results that have
been either derived or, in few cases, confirmed in some more general setting by
the Karlsruhe group, see for instance [15]. The splitting between radiators and
effective couplings follows well defined recipes that can be found and referred to
in [4, 16]. In particular our choice has been that top-mass dependent QCD cor-
rections are to be considered as QCD corrections and included in the radiators
and not in the effective quark couplings.

The last term,

∆
EW/QCD

= Γ(2)
EW/QCD

−
αS

π
Γ(1)

EW
, (8)

10

Parametrise the on-shell Z f ̅f  vertex as

Radiators: final state radiation

non-factorizable SM corrections,
very small.

The PO are defined as

accounts for the non-factorizable corrections. The standard partial width, Γ0,
is

Γ0 =
GF M3

Z

24
√

2 π
= 82.945(7) MeV. (9)

The hadronic and leptonic pole cross-sections are defined by

σ0
h = 12π

ΓeΓh

M2
Z
Γ2

Z

σ0
ℓ = 12π

ΓeΓl

M2
Z
Γ2

Z

, (10)

where ΓZ is the total decay width of the Z boson, i.e, the sum of all partial
decay widths. Note that the mass and total width of the Z boson are defined
based on a propagator term χ with an s-dependent width:

χ−1(s) = s − M2
Z

+ isΓZ /MZ . (11)

The effective electroweak mixing angles (effective sinuses) are always defined by

4 |Qf | sin2 θf
eff = 1 −

Re Gf
V

Re Gf
A

= 1 −
gf

V

gf
A

, (12)

where we define
gf

V
= Re Gf

V
, gf

A
= Re Gf

A
. (13)

The forward-backward asymmetry A
FB

is defined via

A
FB

=
σ

F
− σ

B

σ
F

+ σ
B

, σ
T

= σ
F

+ σ
B

, (14)

where σ
F

and σ
B

are the cross sections for forward and backward scattering,
respectively. Before analysing the forward-backward asymmetries we have to
describe the inclusion of imaginary parts. A

FB
is calculated as

A
FB

=
3

4

σ
VA

σ
T

, (15)

where

σ
VA

=
GF M2

Z√
2

√
ρeρf QeQfRe

[

α∗(M2
Z
)Ge

V
Gf

A
χ(s)

]

+
G2

F M4
Z

8 π
ρeρfRe

[

Ge
V

(

Ge
A

)∗
]

Re
[

Gf
V

(

Gf
A

)∗
]

s |χ(s)|2. (16)

In case of quark-pair production, an additional radiator factor multiplies σ
VA

,
see also Eq.(53).

This result is valid in the realization where ρf is a real quantity, i.e., the
imaginary parts are not re-summed in ρf . In this case

Gf
V

= Re
(

Gf
V

)

+ i Im
(

Gf
V

)

= gf
V

+ i Im
(

Gf
V

)

, Gf
A

= I(3)
f + i Im

(

Gf
A

)

. (17)
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To be model-independent it is important to work with on-shell initial and final states.

M. González-Alonso /10EFT analyses of  NP

Pseudo-observables in Higgs decays (linear EFT)

Exampl
e:

What’s the room for NP in 
Higgs decays taking into 

account LEP results?

Z

[MGA, Greljo, Isidori & Marzocca, arXiv:1504.xxxx]
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sections, with a very dominant photon contribution at large cos θ, i.e., in the forward direction.
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2
Z and ΓZ = ΓZ/

√

1 + Γ2
Z/m2

Z, and
adjusting the scales of Z exchange and γ/Z interference, the two formulations lead to exactly
equivalent resonance shapes, σ(s).

Photon radiation (Figure 1.11) from the initial and final states, and their interference, are
conveniently treated by convoluting the electroweak kernel cross-section, σew(s), with a QED
radiator, Htot

QED,

σ(s) =
∫ 1

4m2
f
/s

dz Htot
QED(z, s)σew(zs). (1.36)

The difference between the forward and backward cross-sections entering into the determination
of the forward-backward asymmetries, σF − σB, is treated in the same way using a radiator
function HFB

QED. These QED corrections are calculated to third order, and their effects on the
cross-sections and asymmetries are shown in Figure 1.12. At the peak the QED deconvoluted
cross-section is 36% larger than the measured one, and the peak position is shifted downwards
by about 100 MeV. At and below the peak Aµ

FB and Aτ
FB are offset by an amount about equal

to their deconvoluted value of 0.017. The estimated precision of these important corrections is
discussed in Section 2.4.4. It is important to realize that these QED corrections are essentially
independent of the electroweak corrections discussed in Section 1.4, and therefore allow the
parameters of Equation 1.34 to be extracted from the data in a model-independent manner.

1.5.1 Cross-Sections and Partial Widths

The partial Z decay widths are defined inclusively, i.e., they contain QED and QCD [35] final-
state corrections and contributions from the imaginary and non-factorisable parts [36] of the
effective couplings,

Γff = N f
c

GFm3
Z

6
√

2π

(

|GAf |2RAf + |GVf |2RVf

)

+ ∆ew/QCD. (1.37)

The primary reason to define the partial widths including final state corrections and the con-
tribution of the complex non-factorisable terms of the couplings is that the partial widths
defined in this way add up straightforwardly to yield the total width of the Z boson. The
radiator factors RVf and RAf take into account final state QED and QCD corrections as well
as non-zero fermion masses; ∆ew/QCD accounts for small contributions from non-factorisable
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The goal was to parametrise on-shell Z decays as much model-independently as possible.
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Higgs decays to two fermions h

f ̅

f

13

The kinematic is fixed.
No polarisation information is retained. the total rate is all that can be 

extracted from data(maybe possible to measure in ττ channel)

“Effective coupling” PO:

“Physical” PO:

A(h ! ff̄) = �i

y

f,SM
e↵p
2

f̄

�
f + i�

CP
f �5

�
f (1)

�(h ! ff̄)(incl) =
⇥


2
f + (�CP

f )2
⇤
�(h ! ff̄)(SM)

(incl) , (2)

�(h ! ff̄)(SM)
(incl) = N

f
c

|yf,SM
e↵ |2

16⇡
mH , (3)

A
⇥
h ! �(q, ✏)�(q0, ✏0)

⇤
= i

2 ✏

SM,e↵
��

vF
✏

0
µ✏⌫

⇥
��(g

µ⌫
q·q0 � q

µ
q

0⌫) + �

CP
�� "

µ⌫⇢�
q⇢q

0
�

⇤
, (4)

A
⇥
h ! Z(q, ✏)�(q0, ✏0)

⇤
= i

2 ✏

SM,e↵
Z�

vF
✏

0
µ✏⌫

⇥
Z�(g

µ⌫
q·q0 � q

µ
q

0⌫) + �

CP
Z� "

µ⌫⇢�
q⇢q

0
�

⇤
, (5)

A =i

2m2
Z

vF
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in eq. (3):2

b̄b ⌧̄ ⌧
Br(h ! f̄f) 5.77⇥ 10�1 6.32⇥ 10�2

|yf,SM
e↵

| 1.77⇥ 10�2 1.02⇥ 10�2

,

c̄c µ̄µ
Br(h ! f̄f) 2.91⇥ 10�2 2.19⇥ 10�4

|yf,SM
e↵

| 3.98⇥ 10�3 5.99⇥ 10�4

.

In HiggsPO we implement the decays to b̄b, ⌧̄ ⌧ , c̄c and µ̄µ. Other channels might be
added in the future if needed. The external parameters, in the HPO2f block, describing
the f and �CP

f PO are:

kb, lb, ktau, ltau, kc, lc, kmu, lmu

and their interaction order is YUK=1. We also include as external parameters, in the
SMPARAM block, the e↵ective Yukawa couplings yf,SM

e↵

, fixed by default at the central values
given in the table above:

ybeff, ytaueff, yceff, ymueff .

2.2 Higgs to �� and to Z�
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is
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where ✏SM,e↵
�� and ✏SM,e↵

Z� describe the SM contribution to these processes, such that the
best SM prediction is recovered for ��, Z� ! 1 and �CP
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(6)

2Here and in the following we use the numerical values mH = 125.0 GeV, �tot

H = 4.07 ⇥ 10�3 GeV,
mZ = 91.1876 GeV and vF = 246.22 GeV.
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https://twiki.cern.ch/twiki/bin/view/
LHCPhysics/CERNYellowReportPageBR

from best SM prediction:
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Higgs decays to γγ and Zγ (on-shell) h
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Higgs decays to γγ and Zγ (on-shell) h
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In the SM
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From the best SM prediction of these branching ratios [8] and by inverting eq. (7) we get
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Note that these values are the same as those obtained from the 1-loop contribution in the
SM [2], which also fixes the signs of the ✏SM,e↵ parameters.
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2.3 Higgs to two leptons and a photon
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Z + imZ�Z and gfZ are the e↵ective PO describing on-shell Z ! ff̄
decays, see Sect. 2.6. The external parameters needed for these processes are the same
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(ē�↵e)(µ̄��µ)⇥

✓
ZZ

g

e
Zg

µ
Z

PZ(q21)PZ(q22)
+

✏Ze

m

2
Z

g

µ
Z

PZ(q22)
+

✏Zµ

m

2
Z

g

e
Z

PZ(q21)

◆
g

↵�+

+

✓
✏ZZ

g

e
Zg

µ
Z

PZ(q21)PZ(q22)
+ Z�✏

SM,eff
Z�

✓
eQµg

e
Z

q

2
2PZ(q21)

+
eQeg

µ
Z

q

2
1PZ(q22)

◆
+ ��✏

SM,eff
��

e

2
QeQµ

q

2
1q

2
2

◆
q1 · q2 g

↵� � q2
↵
q1

�

m

2
Z

+

+

✓
✏

CP
ZZ

g

e
Zg

µ
Z

PZ(q21)PZ(q22)
+ �

CP
Z� ✏

SM,eff
Z�

✓
eQµg

e
Z

q

2
2PZ(q21)

+
eQeg

µ
Z

q

2
1PZ(q22)

◆
+ �

CP
�� ✏

SM,eff
��

e

2
QeQµ

q

2
1q

2
2

◆
"

↵�⇢�
q2⇢q1�

m

2
Z

�

(8)

✏Zf =
2mZ

v

⇣
�g

Zf � (c2✓T
3
f + s

2
✓Yf )13�g1,z + t

2
✓Yf13��

⌘
(9)

�✏ZZ = �✏�� +
2

t2✓
�✏Z� �

1

c

2
✓

�� (10)

�✏X = ✏X � ✏

SM
X (11)

1

https://twiki.cern.ch/twiki/bin/view/
LHCPhysics/CERNYellowReportPageBR

PZ(q
2) = q

2 �m

2
Z + imZ�Z (20)

✏

CP
X = Im ✏W `L = 0 (21)

✏

SM,eff
X y

f,SM
eff (22)

X ! 1, ✏X ! 0, �

CP
X ! 0 (23)

X ! 1, �

CP
X ! 0 (24)

hZµZ
µ
, hZ

µ
@

⌫
Vµ⌫ hVµ⌫V

µ⌫
h"

µ⌫⇢�
Vµ⌫V⇢� hZµf̄�

µ
f, hZ

µ
@

⌫
Vµ⌫ (25)

V = Z, � (26)

ZZ ,Z� ,�� , ✏ZZ ,

✏

CP
Z� , ✏

CP
�� , ✏

CP
ZZ ,

✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR

(27)

WW , ✏WW , ✏

CP
WW ,

✏We, ✏Wµ, (complex)

(28)

✏

SM-1L
�� ' 3.8⇥ 10�3

,

✏

SM-1L
Z� ' 6.7⇥ 10�3

(29)

WW � ZZ = �2

g

⇣p
2✏WeL + 2cw✏ZeL

⌘
(30)

|yfS |
2 + |yfP |

2
(31)

|✏�� |2 + |✏CP
�� |2 (32)

�f ��� (33)

J

µ
f (x) = f̄(x)�µf(x) (34)

5

from best SM prediction:



The kinematics is much richer: 
kinematical distributions.

2.2 Pseudo-observables in h ! ff̄ decays

In analogy to the e↵ective couplings of Z and W bosons to fermions, for each fermion
species we can introduce two real e↵ective couplings (yfS,P ) defined by

A(h ! ff̄) = � ip
2

h
(yfS + iyfP )f̄LfR + (yfS � iyfP )f̄RfL

i
. (5)

The “dressing” of this amplitude with soft QED and QCD radiation is straightforward.
The measurement of �(h ! ff̄) determines the combination |yfS|2+ |yfP |2, while the yfP/yfS
ratio can be determined only if the lepton polarization is experimentally accessible. If CP
is conserved only one of the two e↵ective couplings is allowed: if h is a CP-even state,
then only yfS is allowed.

Within the SM, at the tree-level, one finds

yf,SMS =

p
2mf

vF
, yf,SMP = 0 , (6)

where vF = (
p
2GF )�1/2, and GF is the Fermi constant extracted from the muon decay.

The e↵ective couplings yfS,P provide an explicit breaking of the U(1)fL ⇥ U(1)fR flavor
symmetry, which is not assumed to hold in the case of third generation fermions.

3 Higgs decays mediated by electroweak gauge bosons

In this section we provide a unified decomposition of the Higgs decay amplitudes into four
fermions (h ! 4f), a fermion-anti fermion pair and one hard photon (h ! ff̄�), and two
photons (h ! ��). The h ! 4f amplitudes are particularly interesting since they allow us
to investigate the e↵ective hW+W� and hZZ interaction terms, which cannot be probed
on-shell. However, in order to extract such information in a model-independent way, it is
necessary to take into account also the possible additional contributions to h ! 4f due
to contact terms and the e↵ective couplings of the Higgs to photons.

The purpose of our approach is to characterise, as precisely as possible, the three point
function of the Higgs boson and two fermion currents,

h0|T �
Jµ
f (x), J

⌫
f 0(y), h(0)

 |0i , (7)

where all the states are on-shell. This correlation-function is probed by the experiments
in h ! 4f decays, but also in Higgs associated production (pp ! h + W,Z) and in
Higgs production via vector-boson fusion. Extracting the kinematical structure of Eq. (7)
from data will allow us both to determine the e↵ective coupling of h to all the SM gauge
bosons, and also to investigate possible couplings of h to new massive states. The former
are associated to a well-defined double-pole structure in Eq. (7), while the latter can lead
to local interactions with one or no poles.

7
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Four-body decays
h → 4f

Assumption:   Neglect helicity-violating interactions,
   naturally suppressed by mf also in BSM.

The process is completely described by this Green function of ON-SHELL states:
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,

To eq.(8) I added a (flavour universal) local interaction

F
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and keep also quadratic terms (the diagonal ones only, just for an example)
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See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,

where ZZ � 1, ✏X ⇠ m

2
Z/⇤

2
and �X ⇠ m

4
Z/⇤

4
, and therefore to neglect the quadratic

terms.

h ! eReLµLµR / yeyµ (3)

e = eL, eR, µ = µL, µR (4)
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e.g.:

Higgs to 4-fermion decays

h
Jf (q1)

Jf’ (q2)



Example:   h → e+e- μ+μ- 

Only 3 tensor structures allowed by Lorentz symmetry:

Higgs to 4-fermion decays
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2.2 Pseudo-observables in h ! ff̄ decays

In analogy to the e↵ective couplings of Z and W bosons to fermions, for each fermion
species we can introduce two real e↵ective couplings (yfS,P ) defined by

A(h ! ff̄) = � ip
2

h
(yfS + iyfP )f̄LfR + (yfS � iyfP )f̄RfL

i
. (5)

The “dressing” of this amplitude with soft QED and QCD radiation is straightforward.
The measurement of �(h ! ff̄) determines the combination |yfS|2+ |yfP |2, while the yfP/yfS
ratio can be determined only if the lepton polarization is experimentally accessible. If CP
is conserved only one of the two e↵ective couplings is allowed: if h is a CP-even state,
then only yfS is allowed.

Within the SM, at the tree-level, one finds

yf,SMS =

p
2mf

vF
, yf,SMP = 0 , (6)

where vF = (
p
2GF )�1/2, and GF is the Fermi constant extracted from the muon decay.

The e↵ective couplings yfS,P provide an explicit breaking of the U(1)fL ⇥ U(1)fR flavor
symmetry, which is not assumed to hold in the case of third generation fermions.

3 Higgs decays mediated by electroweak gauge bosons

In this section we provide a unified decomposition of the Higgs decay amplitudes into four
fermions (h ! 4f), a fermion-anti fermion pair and one hard photon (h ! ff̄�), and two
photons (h ! ��). The h ! 4f amplitudes are particularly interesting since they allow us
to investigate the e↵ective hW+W� and hZZ interaction terms, which cannot be probed
on-shell. However, in order to extract such information in a model-independent way, it is
necessary to take into account also the possible additional contributions to h ! 4f due
to contact terms and the e↵ective couplings of the Higgs to photons.

The purpose of our approach is to characterise, as precisely as possible, the three point
function of the Higgs boson and two fermion currents,

h0|T �
Jµ
f (x), J

⌫
f 0(y), h(0)

 |0i , (7)

where all the states are on-shell. This correlation-function is probed by the experiments
in h ! 4f decays, but also in Higgs associated production (pp ! h + W,Z) and in
Higgs production via vector-boson fusion. Extracting the kinematical structure of Eq. (7)
from data will allow us both to determine the e↵ective coupling of h to all the SM gauge
bosons, and also to investigate possible couplings of h to new massive states. The former
are associated to a well-defined double-pole structure in Eq. (7), while the latter can lead
to local interactions with one or no poles.

7

h

Jf (q1)

Jf’ (q2)

Longitudinal Transverse CP-odd

General approach: measure the double differential distribution in (q12, q22 )



Higgs to 4-fermion decays
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2.2 Pseudo-observables in h ! ff̄ decays
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The e↵ective couplings yfS,P provide an explicit breaking of the U(1)fL ⇥ U(1)fR flavor
symmetry, which is not assumed to hold in the case of third generation fermions.

3 Higgs decays mediated by electroweak gauge bosons

In this section we provide a unified decomposition of the Higgs decay amplitudes into four
fermions (h ! 4f), a fermion-anti fermion pair and one hard photon (h ! ff̄�), and two
photons (h ! ��). The h ! 4f amplitudes are particularly interesting since they allow us
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To eq.(8) I added a (flavour universal) local interaction

F ff 0
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�ff 0
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Z
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and keep also quadratic terms (the diagonal ones only, just for an example)
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+ 6.4
�
✏2ZeR + ✏2ZeL + ✏2ZµL

+ ✏2ZµR
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+ 8.4(�2`L`L + 2�2`L`R + �2`R`R)+

+ all the mixed terms

(2)

See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,

where ZZ � 1, ✏X ⇠ m2
Z/⇤

2
and �X ⇠ m4

Z/⇤
4
, and therefore to neglect the quadratic

terms.

e = eL, eR, µ = µL, µR (3)
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The Higgs PO are defined from the residues on the physical poles.
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To eq.(8) I added a (flavour universal) local interaction

F ff 0

1 �
�ff 0

m4
Z

(1)

and keep also quadratic terms (the diagonal ones only, just for an example)

�e+e�µ+µ�

�SM
e+e�µ+µ�

= 2ZZ + ZZ (�2.5✏ZeR + 2.9✏ZeL � 2.5✏ZµR + 2.9✏ZµL + 1.5�`L`L � 2.7�`L`R + 1.1�`R`R)+

+ 6.4
�
✏2ZeR + ✏2ZeL + ✏2ZµL

+ ✏2ZµR

�
+ 8.4(�2`L`L + 2�2`L`R + �2`R`R)+

+ all the mixed terms

(2)

See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,

where ZZ � 1, ✏X ⇠ m2
Z/⇤

2
and �X ⇠ m4

Z/⇤
4
, and therefore to neglect the quadratic

terms.

e = eL, eR, µ = µL, µR (3)

1
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Z-pole PO
As measured at LEP-I

non-local NLO
SM contribution

(very small)

The Higgs PO are defined from the residues on the physical poles.
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The same approach can be extended to charged current decays
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νµ

Note that the q2-dependent terms in Eq. (26) cancel one of the two propagators in
�SM

3 (q21, q
2
2). This implies that such terms can e↵ectively be seen as contact interactions

with a photon (of the type h�ff̄). However, contrary to the contact terms appearing
in F ff 0

1 , these contact terms receive contributions from EFT operators of D � 7 and
therefore can be fixed to their SM values.

To make contact with the -framework adopted by ATLAS and CMS [4, 5], we can
trade the ✏��,�Z parameters for ��,Z�, defined by

��(Z�) =
✏��(Z�)

✏SM�1L
��(Z�)

, (27)

such that SM
��,Z� = 1.

5 Parameter counting and symmetry limits

We are now ready to identify the number of independent pseudo-observables necessary
to describe various sets of Higgs decay amplitudes, under the main assumption that only
terms arising at D  6 in a generic EFT expansion are kept. We focus our attention on
leptonic channels, which are more interesting from the experimental point of view.

The neutral current processes h ! e+e�µ+µ�, h ! e+e�e+e� and h ! µ+µ�µ+µ�,
together with the photon channels h ! �� and h ! `+`��, can be described in terms of
11 real parameters:

ZZ ,Z�,��, ✏ZZ , ✏
CP
ZZ , ✏

CP
Z� , ✏

CP
�� , ✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR (28)

(of which only the subset {��,Z�, ✏CP
�� , ✏CP

Z� , } is necessary to describe h ! �� and
h ! `+`��). The charged-current process h ! ⌫̄eeµ̄⌫µ needs 7 further independent real
parameters to be completely specified:

WW , ✏WW , ✏CP
WW (real) + ✏WeL , ✏WµL (complex) . (29)

Finally, the mixed processes h ! e+e�⌫⌫̄ and h ! µ+µ�⌫⌫̄ can be described by a subset
of the coe�cients already introduced plus 2 further real contact interactions coe�cients:

✏Z⌫e , ✏Z⌫µ . (30)

This brings the total number of (real) parameters to 20. In the following subsections
we introduce symmetry arguments which allow to reduce the number of free parameters
while remaining, at the same time, as model-independent as possible.
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Only c.c: Interference
of c.c. and n.c.:

OHf = i(H† $
DµH)f̄�µf = �1

2

p
g2 + g02Zµ(v + h)2f̄�µf (1)

To eq.(8) I added a (flavour universal) local interaction

F ff 0

1 � �ff 0

m4
Z

(2)

and keep also quadratic terms (the diagonal ones only, just for an example)

�e+e�µ+µ�

�SM
e+e�µ+µ�

= 2ZZ + ZZ (�2.5✏ZeR + 2.9✏ZeL � 2.5✏ZµR + 2.9✏ZµL + 1.5�`L`L � 2.7�`L`R + 1.1�`R`R)+

+ 6.4
�
✏2ZeR + ✏2ZeL + ✏2ZµL

+ ✏2ZµR

�
+ 8.4(�2`L`L + 2�2`L`R + �2`R`R)+

+ all the mixed terms

(3)

See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,

where ZZ � 1, ✏X ⇠ m2
Z/⇤

2
and �X ⇠ m4

Z/⇤
4
, and therefore to neglect the quadratic

terms.

h ! eReLµLµR / yeyµ (4)

O(x) = h(x) ē(x)�µe(x) µ̄(x)�
µµ(x) (5)

e = eL, eR, µ = µL, µR (6)
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(ēL�↵⌫e)(⌫̄µ��µL)⇥

✓
WW

(geW )⇤gµW
PW (q21)PW (q22)

+
(✏WeL)

⇤

m2
W

gµW
PW (q22)

+
✏WµL

m2
Z

(geW )⇤

PW (q21)

◆
g↵�+

+ ✏WW
(geW )⇤gµW

PW (q21)PW (q22)
⇥ q1 · q2 g↵� � q2↵q1�

m2
W

+ ✏CP
WW

(geW )⇤gµW
PW (q21)PW (q22)

"↵�⇢�q2⇢q1�
m2

W

� (8)

1



20David Marzocca

Parameter counting and symmetry assumptions

h → e+e-μ+μ-
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(ē�µe)(µ̄�⌫µ)⇥


✓
ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+

✏Ze

m2
Z

gµZ
PZ(q22)

+
✏Zµ

m2
Z

geZ
PZ(q21)

◆
gµ⌫+

+

✓
✏ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+ ✏Z�

✓
eQµgeZ

q22PZ(q21)
+

eQeg
µ
Z

q21PZ(q22)

◆
+ ✏��

e2QeQµ

q21q
2
2

◆
q1 · q2 gµ⌫ � q2µq1⌫

m2
Z

+

+

✓
✏CP
ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+ ✏CP

Z�

✓
eQµgeZ

q22PZ(q21)
+

eQeg
µ
Z

q21PZ(q22)

◆
+ ✏CP

��
e2QeQµ

q21q
2
2

◆
"µ⌫⇢�q2⇢q1�

m2
Z

�

(1)

hZµZ
µ hVµ⌫V

µ⌫ h"µ⌫⇢�Vµ⌫V⇢� hZµf̄�
µf (2)

ZZ ,Z� ,�� , ✏ZZ ,

✏CP
Z� , ✏

CP
�� , ✏CP

ZZ ,

✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR

(3)

1

11

Neutral current

Symmetries impose relations among these observables.

3/4

Charged
current

h → e+μ-νν
h → e-μ+νν
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N. & C.
interference

others +

5 Parameter counting and symmetry limits

We are now ready to identify the number of independent pseudo-observables necessary
to describe various sets of Higgs decay amplitudes, under the main assumption that only
terms arising at D  6 in a generic EFT expansion are kept. We focus our attention on
leptonic channels, which are more interesting from the experimental point of view.

The neutral current processes h ! e+e�µ+µ�, h ! e+e�e+e� and h ! µ+µ�µ+µ�,
together with the photon channels h ! �� and h ! `+`��, can be described in terms of
11 real parameters:

ZZ ,Z�,��, ✏ZZ , ✏
CP
ZZ , ✏

CP
Z� , ✏

CP
�� , ✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR (27)

(of which only the subset {��,Z�, ✏CP
�� , ✏CP

Z� , } is necessary to describe h ! �� and
h ! `+`��). The charged-current process h ! ⌫̄eeµ̄⌫µ needs 7 further independent real
parameters to be completely specified:

WW , ✏WW , ✏CP
WW (real) + ✏WeL , ✏WµL (complex) . (28)

Finally, the mixed processes h ! e±µ⌥⌫⌫̄ can be described by a subset of the coe�cients
already introduced plus 2 further real contact interactions coe�cients:

✏Z⌫e , ✏Z⌫µ . (29)

This brings the total number of (real) parameters to 20. In the following subsections
we introduce symmetry arguments which allow to reduce the number of free parameters
while remaining, at the same time, as model-independent as possible.

5.1 Flavor universality

A first simple restriction in the number of parameters is obtained by assuming flavor
universality (i.e. enlarging the flavor symmetry to the full U(3)5 flavor group). In our setup
this simply means assuming that the contact interactions coe�cients are independent of
the generations:

✏ZeL = ✏ZµL , ✏ZeR = ✏ZµR , ✏Z⌫e = ✏Z⌫µ , ✏WeL = ✏WµL . (30)

Since the last coe�cients are complex in general, these are five relations which allow to
reduce the number of parameters to 15. This assumption can be tested directly from data
by comparing the extraction of the contact terms from h ! 2e2µ, h ! 4e and h ! 4µ
modes (see e.g. Sect. 6.3 and Fig. 3).
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5 Parameter counting and symmetry limits

We are now ready to identify the number of independent pseudo-observables necessary
to describe various sets of Higgs decay amplitudes, under the main assumption that only
terms arising at D  6 in a generic EFT expansion are kept. We focus our attention on
leptonic channels, which are more interesting from the experimental point of view.

The neutral current processes h ! e+e�µ+µ�, h ! e+e�e+e� and h ! µ+µ�µ+µ�,
together with the photon channels h ! �� and h ! `+`��, can be described in terms of
11 real parameters:

ZZ ,Z�,��, ✏ZZ , ✏
CP
ZZ , ✏

CP
Z� , ✏

CP
�� , ✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR (27)

(of which only the subset {��,Z�, ✏CP
�� , ✏CP

Z� , } is necessary to describe h ! �� and
h ! `+`��). The charged-current process h ! ⌫̄eeµ̄⌫µ needs 7 further independent real
parameters to be completely specified:

WW , ✏WW , ✏CP
WW (real) + ✏WeL , ✏WµL (complex) . (28)

Finally, the mixed processes h ! e±µ⌥⌫⌫̄ can be described by a subset of the coe�cients
already introduced plus 2 further real contact interactions coe�cients:

✏Z⌫e , ✏Z⌫µ . (29)

This brings the total number of (real) parameters to 20. In the following subsections
we introduce symmetry arguments which allow to reduce the number of free parameters
while remaining, at the same time, as model-independent as possible.

5.1 Flavor universality

A first simple restriction in the number of parameters is obtained by assuming flavor
universality (i.e. enlarging the flavor symmetry to the full U(3)5 flavor group). In our setup
this simply means assuming that the contact interactions coe�cients are independent of
the generations:

✏ZeL = ✏ZµL , ✏ZeR = ✏ZµR , ✏Z⌫e = ✏Z⌫µ , ✏WeL = ✏WµL . (30)

Since the last coe�cients are complex in general, these are five relations which allow to
reduce the number of parameters to 15. This assumption can be tested directly from data
by comparing the extraction of the contact terms from h ! 2e2µ, h ! 4e and h ! 4µ
modes (see e.g. Sect. 6.3 and Fig. 3).
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(ē�µe)(µ̄�⌫µ)⇥


✓
ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+

✏Ze

m2
Z

gµZ
PZ(q22)

+
✏Zµ

m2
Z

geZ
PZ(q21)

◆
gµ⌫+

+

✓
✏ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+ ✏Z�

✓
eQµgeZ

q22PZ(q21)
+

eQeg
µ
Z

q21PZ(q22)

◆
+ ✏��

e2QeQµ

q21q
2
2

◆
q1 · q2 gµ⌫ � q2µq1⌫

m2
Z

+

+

✓
✏CP
ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+ ✏CP

Z�

✓
eQµgeZ

q22PZ(q21)
+

eQeg
µ
Z

q21PZ(q22)

◆
+ ✏CP

��
e2QeQµ

q21q
2
2

◆
"µ⌫⇢�q2⇢q1�

m2
Z

�

(1)

hZµZ
µ hVµ⌫V

µ⌫ h"µ⌫⇢�Vµ⌫V⇢� hZµf̄�
µf (2)

ZZ ,Z� ,�� , ✏ZZ ,

✏CP
Z� , ✏

CP
�� , ✏CP

ZZ ,

✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR

(3)

1

11

Neutral current

Symmetries impose relations among these observables.

3/4

Charged
current

h → e+μ-νν
h → e-μ+νν

A =i
2m2

Z

vF

X

e=eL,eR

X

µ=µL,µR
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5 Parameter counting and symmetry limits

We are now ready to identify the number of independent pseudo-observables necessary
to describe various sets of Higgs decay amplitudes, under the main assumption that only
terms arising at D  6 in a generic EFT expansion are kept. We focus our attention on
leptonic channels, which are more interesting from the experimental point of view.

The neutral current processes h ! e+e�µ+µ�, h ! e+e�e+e� and h ! µ+µ�µ+µ�,
together with the photon channels h ! �� and h ! `+`��, can be described in terms of
11 real parameters:

ZZ ,Z�,��, ✏ZZ , ✏
CP
ZZ , ✏

CP
Z� , ✏

CP
�� , ✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR (27)

(of which only the subset {��,Z�, ✏CP
�� , ✏CP

Z� , } is necessary to describe h ! �� and
h ! `+`��). The charged-current process h ! ⌫̄eeµ̄⌫µ needs 7 further independent real
parameters to be completely specified:

WW , ✏WW , ✏CP
WW (real) + ✏WeL , ✏WµL (complex) . (28)

Finally, the mixed processes h ! e±µ⌥⌫⌫̄ can be described by a subset of the coe�cients
already introduced plus 2 further real contact interactions coe�cients:

✏Z⌫e , ✏Z⌫µ . (29)

This brings the total number of (real) parameters to 20. In the following subsections
we introduce symmetry arguments which allow to reduce the number of free parameters
while remaining, at the same time, as model-independent as possible.

5.1 Flavor universality

A first simple restriction in the number of parameters is obtained by assuming flavor
universality (i.e. enlarging the flavor symmetry to the full U(3)5 flavor group). In our setup
this simply means assuming that the contact interactions coe�cients are independent of
the generations:

✏ZeL = ✏ZµL , ✏ZeR = ✏ZµR , ✏Z⌫e = ✏Z⌫µ , ✏WeL = ✏WµL . (30)

Since the last coe�cients are complex in general, these are five relations which allow to
reduce the number of parameters to 15. This assumption can be tested directly from data
by comparing the extraction of the contact terms from h ! 2e2µ, h ! 4e and h ! 4µ
modes (see e.g. Sect. 6.3 and Fig. 3).
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5 Parameter counting and symmetry limits

We are now ready to identify the number of independent pseudo-observables necessary
to describe various sets of Higgs decay amplitudes, under the main assumption that only
terms arising at D  6 in a generic EFT expansion are kept. We focus our attention on
leptonic channels, which are more interesting from the experimental point of view.

The neutral current processes h ! e+e�µ+µ�, h ! e+e�e+e� and h ! µ+µ�µ+µ�,
together with the photon channels h ! �� and h ! `+`��, can be described in terms of
11 real parameters:

ZZ ,Z�,��, ✏ZZ , ✏
CP
ZZ , ✏

CP
Z� , ✏

CP
�� , ✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR (27)

(of which only the subset {��,Z�, ✏CP
�� , ✏CP

Z� , } is necessary to describe h ! �� and
h ! `+`��). The charged-current process h ! ⌫̄eeµ̄⌫µ needs 7 further independent real
parameters to be completely specified:

WW , ✏WW , ✏CP
WW (real) + ✏WeL , ✏WµL (complex) . (28)

Finally, the mixed processes h ! e±µ⌥⌫⌫̄ can be described by a subset of the coe�cients
already introduced plus 2 further real contact interactions coe�cients:

✏Z⌫e , ✏Z⌫µ . (29)

This brings the total number of (real) parameters to 20. In the following subsections
we introduce symmetry arguments which allow to reduce the number of free parameters
while remaining, at the same time, as model-independent as possible.

5.1 Flavor universality

A first simple restriction in the number of parameters is obtained by assuming flavor
universality (i.e. enlarging the flavor symmetry to the full U(3)5 flavor group). In our setup
this simply means assuming that the contact interactions coe�cients are independent of
the generations:

✏ZeL = ✏ZµL , ✏ZeR = ✏ZµR , ✏Z⌫e = ✏Z⌫µ , ✏WeL = ✏WµL . (30)

Since the last coe�cients are complex in general, these are five relations which allow to
reduce the number of parameters to 15. This assumption can be tested directly from data
by comparing the extraction of the contact terms from h ! 2e2µ, h ! 4e and h ! 4µ
modes (see e.g. Sect. 6.3 and Fig. 3).
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(ē�µe)(µ̄�⌫µ)⇥


✓
ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+

✏Ze

m2
Z

gµZ
PZ(q22)

+
✏Zµ

m2
Z

geZ
PZ(q21)

◆
gµ⌫+

+

✓
✏ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+ ✏Z�

✓
eQµgeZ

q22PZ(q21)
+

eQeg
µ
Z

q21PZ(q22)

◆
+ ✏��

e2QeQµ

q21q
2
2

◆
q1 · q2 gµ⌫ � q2µq1⌫

m2
Z

+

+

✓
✏CP
ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+ ✏CP

Z�

✓
eQµgeZ

q22PZ(q21)
+

eQeg
µ
Z

q21PZ(q22)

◆
+ ✏CP

��
e2QeQµ

q21q
2
2

◆
"µ⌫⇢�q2⇢q1�

m2
Z

�

(1)

hZµZ
µ hVµ⌫V

µ⌫ h"µ⌫⇢�Vµ⌫V⇢� hZµf̄�
µf (2)

ZZ ,Z� ,�� , ✏ZZ ,

✏CP
Z� , ✏

CP
�� , ✏CP

ZZ ,

✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR

(3)

1

11

Neutral current

Symmetries impose relations among these observables.

3/4

Charged
current

h → e+μ-νν
h → e-μ+νν

A =i
2m2

Z

vF

X

e=eL,eR

X

µ=µL,µR
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5 Parameter counting and symmetry limits

We are now ready to identify the number of independent pseudo-observables necessary
to describe various sets of Higgs decay amplitudes, under the main assumption that only
terms arising at D  6 in a generic EFT expansion are kept. We focus our attention on
leptonic channels, which are more interesting from the experimental point of view.

The neutral current processes h ! e+e�µ+µ�, h ! e+e�e+e� and h ! µ+µ�µ+µ�,
together with the photon channels h ! �� and h ! `+`��, can be described in terms of
11 real parameters:

ZZ ,Z�,��, ✏ZZ , ✏
CP
ZZ , ✏

CP
Z� , ✏

CP
�� , ✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR (27)

(of which only the subset {��,Z�, ✏CP
�� , ✏CP

Z� , } is necessary to describe h ! �� and
h ! `+`��). The charged-current process h ! ⌫̄eeµ̄⌫µ needs 7 further independent real
parameters to be completely specified:

WW , ✏WW , ✏CP
WW (real) + ✏WeL , ✏WµL (complex) . (28)

Finally, the mixed processes h ! e±µ⌥⌫⌫̄ can be described by a subset of the coe�cients
already introduced plus 2 further real contact interactions coe�cients:

✏Z⌫e , ✏Z⌫µ . (29)

This brings the total number of (real) parameters to 20. In the following subsections
we introduce symmetry arguments which allow to reduce the number of free parameters
while remaining, at the same time, as model-independent as possible.

5.1 Flavor universality

A first simple restriction in the number of parameters is obtained by assuming flavor
universality (i.e. enlarging the flavor symmetry to the full U(3)5 flavor group). In our setup
this simply means assuming that the contact interactions coe�cients are independent of
the generations:

✏ZeL = ✏ZµL , ✏ZeR = ✏ZµR , ✏Z⌫e = ✏Z⌫µ , ✏WeL = ✏WµL . (30)

Since the last coe�cients are complex in general, these are five relations which allow to
reduce the number of parameters to 15. This assumption can be tested directly from data
by comparing the extraction of the contact terms from h ! 2e2µ, h ! 4e and h ! 4µ
modes (see e.g. Sect. 6.3 and Fig. 3).
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5 Parameter counting and symmetry limits

We are now ready to identify the number of independent pseudo-observables necessary
to describe various sets of Higgs decay amplitudes, under the main assumption that only
terms arising at D  6 in a generic EFT expansion are kept. We focus our attention on
leptonic channels, which are more interesting from the experimental point of view.

The neutral current processes h ! e+e�µ+µ�, h ! e+e�e+e� and h ! µ+µ�µ+µ�,
together with the photon channels h ! �� and h ! `+`��, can be described in terms of
11 real parameters:

ZZ ,Z�,��, ✏ZZ , ✏
CP
ZZ , ✏

CP
Z� , ✏

CP
�� , ✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR (27)

(of which only the subset {��,Z�, ✏CP
�� , ✏CP

Z� , } is necessary to describe h ! �� and
h ! `+`��). The charged-current process h ! ⌫̄eeµ̄⌫µ needs 7 further independent real
parameters to be completely specified:

WW , ✏WW , ✏CP
WW (real) + ✏WeL , ✏WµL (complex) . (28)

Finally, the mixed processes h ! e±µ⌥⌫⌫̄ can be described by a subset of the coe�cients
already introduced plus 2 further real contact interactions coe�cients:

✏Z⌫e , ✏Z⌫µ . (29)

This brings the total number of (real) parameters to 20. In the following subsections
we introduce symmetry arguments which allow to reduce the number of free parameters
while remaining, at the same time, as model-independent as possible.

5.1 Flavor universality

A first simple restriction in the number of parameters is obtained by assuming flavor
universality (i.e. enlarging the flavor symmetry to the full U(3)5 flavor group). In our setup
this simply means assuming that the contact interactions coe�cients are independent of
the generations:

✏ZeL = ✏ZµL , ✏ZeR = ✏ZµR , ✏Z⌫e = ✏Z⌫µ , ✏WeL = ✏WµL . (30)

Since the last coe�cients are complex in general, these are five relations which allow to
reduce the number of parameters to 15. This assumption can be tested directly from data
by comparing the extraction of the contact terms from h ! 2e2µ, h ! 4e and h ! 4µ
modes (see e.g. Sect. 6.3 and Fig. 3).
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Possibility to test such hypotheses from Higgs data only.

Contact terms are extremely important for this goal.
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A precise 11 parameter global fit is very reasonable.

   slide 

H!ZZ*!4l 

•  Very high signal purity 
•  Separate into all 5 production modes 
•  WH, ZH use lepton tags KH*only*possible*at*HLBLHC*

ATLPPHYSPPUBP2013P014'

16 

ATLAS'

CMS [CERN-LHCC-2015-010] 

At HL-LHC (2037) we will have ~ 8000 events in h → 4ℓ

[From Aleandro Nisati's talk at LHCP 2015]

few % precision in h → γγ
~ 10% precision in h → Zγ

Prospects in h → 4ℓ
[Work in progress]

They already
fix 4 PO to be really small.

https://indico.cern.ch/event/389531/session/49/contribution/167/attachments/1148751/1650430/ProspectsAtHL-LHC.pdf
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The most important radiative corrections are 
given by soft QED radiation effects since they 
distort the spectrum.

h
m02

m2 < m02

γ

Effect described by simple and universal
radiator functions.

2
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Fig. 1 Dilepton invariant mass spectra in the SM for h ! 2e2µ decay.

blue bands for µ+µ� and e

+
e

� invariant mass spectra, re-
spectively. The important conclusion is that our procedure
gives an excellent approximation to full NLO EW correc-
tions at the level of one percent accuracy in this observable.
As expected, the corrections are larger for smaller recombi-
nation parameter m⇤. Moreover, the distributions in µ+µ�

and e

+
e

� invariant masses are the same within MC uncer-
tainty due to the fact that large fermion-mass logarithms can-
cel in sufficiently inclusive observables.

4 Conclusions

Acknowledgements This research was supported in part by the Swiss
National Science Foundation (SNF) under contract 200021-159720.

Appendix A: Appendix I

References

1. A. Bredenstein, A. Denner, S. Dittmaier and M. M. Weber, Phys.
Rev. D 74, 013004 (2006) [hep-ph/0604011].

2. S. Dittmaier, Nucl. Phys. B 565, 69 (2000) [hep-ph/9904440].
3. http://omnibus.uni-freiburg.de/⇠sd565/programs/prophecy4f/prophecy4f.html

~15% effect!

Other NLO corrections are small: ≲1%

NLO
 LO



Radiative Corrections

23

Taking this effect into account is 
necessary to extract the PO from data.
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Fig. 1 Left: Dilepton invariant mass spectrum in the SM for the h ! 2e2µ decay (full line: PO decomposition “dressed” with QED corrections;
red and blue bands: complete NLO result from Prophecy4f). Right: Dilepton invariant mass spectrum in the presence of new physics for various
benchmark scenarios (see text for details).

the treatment of soft and collinear divergences, and the so-
called “photon-recombination” is applied. In particular, if
the invariant mass of a lepton and a photon is smaller than
m⇤, the photon momentum is added to the lepton momen-
tum [10] . As a result, m⇤ coincides with the collinear cut-off
introduced in the previous section.

In Fig. 1 (left) we show the decay distribution as a func-
tion of the dilepton invariant mass normalized to the total
decay width for h ! 2e2µ in the SM (upper plot) and the ra-
tio between NLO and leading-order (LO) predictions (lower
plot). Shown in solid black is our improved prediction ob-
tained by convoluting the leading order distribution, shown
in dashed black, with the radiator function as described in the
previous section. The PO have been fixed to their SM tree-
level reference values (kZZ = 1, ei = 0 [1]). The Prophecy4f
predictions within MC uncertainty are shown with red and
blue bands for µ+µ� and e+e� invariant mass spectra, re-
spectively.

We list here a series of conclusions that can be derived
from this numerical comparison.

– The spectrum obtained with the PO decomposition of the
amplitude, “dressed” with leading QED corrections, pro-
vides an excellent approximation (within 1% accuracy)
to the spectrum obtained with full NLO EW corrections.2

– The effect of the leading QED corrections can be large,
exceeding 10% in specific regions of the phase space.
It therefore must be included, in view of a precise data-
theory comparison, also when fitting beyond-the-SM pa-
rameters.

– The PO “dressed” spectrum is obtained setting ei = 0
(i.e. to their LO SM values). The good agreement with
the complete NLO calculation confirms that the O(a/p)
redefinition of the ei is a small effect, with no observable
consequences for the h ! 2e2µ dilepton invariant mass
spectrum.

2The ⇠ 2% deviations at the border of the phase space are expected
due the breakdown of the approximation m`` � m⇤ employed in the
analytic evaluation of the radiation function.
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red and blue bands: complete NLO result from Prophecy4f). Right: Dilepton invariant mass spectrum in the presence of new physics for various
benchmark scenarios (see text for details).

the treatment of soft and collinear divergences, and the so-
called “photon-recombination” is applied. In particular, if
the invariant mass of a lepton and a photon is smaller than
m⇤, the photon momentum is added to the lepton momen-
tum [10] . As a result, m⇤ coincides with the collinear cut-off
introduced in the previous section.

In Fig. 1 (left) we show the decay distribution as a func-
tion of the dilepton invariant mass normalized to the total
decay width for h ! 2e2µ in the SM (upper plot) and the ra-
tio between NLO and leading-order (LO) predictions (lower
plot). Shown in solid black is our improved prediction ob-
tained by convoluting the leading order distribution, shown
in dashed black, with the radiator function as described in the
previous section. The PO have been fixed to their SM tree-
level reference values (kZZ = 1, ei = 0 [1]). The Prophecy4f
predictions within MC uncertainty are shown with red and
blue bands for µ+µ� and e+e� invariant mass spectra, re-
spectively.

We list here a series of conclusions that can be derived
from this numerical comparison.

– The spectrum obtained with the PO decomposition of the
amplitude, “dressed” with leading QED corrections, pro-
vides an excellent approximation (within 1% accuracy)
to the spectrum obtained with full NLO EW corrections.2

– The effect of the leading QED corrections can be large,
exceeding 10% in specific regions of the phase space.
It therefore must be included, in view of a precise data-
theory comparison, also when fitting beyond-the-SM pa-
rameters.

– The PO “dressed” spectrum is obtained setting ei = 0
(i.e. to their LO SM values). The good agreement with
the complete NLO calculation confirms that the O(a/p)
redefinition of the ei is a small effect, with no observable
consequences for the h ! 2e2µ dilepton invariant mass
spectrum.

2The ⇠ 2% deviations at the border of the phase space are expected
due the breakdown of the approximation m`` � m⇤ employed in the
analytic evaluation of the radiation function.

Showering algorithms
(e.g. PHOTOS or PYTHIA) 
correctly describe these 
corrections.

All these benchmark points give a SM-like total rate.
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Tools:   HiggsPO

A Universal FeynRules Output model for 
generating Higgs decays with MG5_aMC@NLO.

To be used to generate the on-shell Higgs decay amplitudes described before.

www.physik.uzh.ch/data/HiggsPO

(use tree-level Feynman rules to generate the amplitude we need)

In collaboration with Admir Greljo and Gino Isidori

Extensively validated by comparing to our analytic results and other codes
(Higgs Characterization, MEKD).

http://www.physik.uzh.ch/data/HiggsPO
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- Related to physical distributions, measurable experimentally.

- Defined from the residues of the Green function on its poles.
      (valid at all orders in perturbation theory)

- Can be used to test symmetries and/or dynamics of the NP sector.

- QED radiation corrections are easily implemented.

- Implemented a Montecarlo tool for event generation.
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To summarize.    Higgs PO in decay
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PO in EW Higgs Production
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By crossing symmetry, the same correlation function
(in a different kinematical region and with different fermionic currents)
enters also in EW Higgs production.

h

Jq

Jq'

VBF:

h
Jq

V/Jf

V h:

2.2 Pseudo-observables in h ! ff̄ decays

In analogy to the e↵ective couplings of Z and W bosons to fermions, for each fermion
species we can introduce two real e↵ective couplings (yfS,P ) defined by

A(h ! ff̄) = � ip
2

h
(yfS + iyfP )f̄LfR + (yfS � iyfP )f̄RfL

i
. (5)

The “dressing” of this amplitude with soft QED and QCD radiation is straightforward.
The measurement of �(h ! ff̄) determines the combination |yfS|2+ |yfP |2, while the yfP/yfS
ratio can be determined only if the lepton polarization is experimentally accessible. If CP
is conserved only one of the two e↵ective couplings is allowed: if h is a CP-even state,
then only yfS is allowed.

Within the SM, at the tree-level, one finds

yf,SMS =

p
2mf

vF
, yf,SMP = 0 , (6)

where vF = (
p
2GF )�1/2, and GF is the Fermi constant extracted from the muon decay.

The e↵ective couplings yfS,P provide an explicit breaking of the U(1)fL ⇥ U(1)fR flavor
symmetry, which is not assumed to hold in the case of third generation fermions.

3 Higgs decays mediated by electroweak gauge bosons

In this section we provide a unified decomposition of the Higgs decay amplitudes into four
fermions (h ! 4f), a fermion-anti fermion pair and one hard photon (h ! ff̄�), and two
photons (h ! ��). The h ! 4f amplitudes are particularly interesting since they allow us
to investigate the e↵ective hW+W� and hZZ interaction terms, which cannot be probed
on-shell. However, in order to extract such information in a model-independent way, it is
necessary to take into account also the possible additional contributions to h ! 4f due
to contact terms and the e↵ective couplings of the Higgs to photons.

The purpose of our approach is to characterise, as precisely as possible, the three point
function of the Higgs boson and two fermion currents,

h0|T �
Jµ
f (x), J

⌫
f 0(y), h(0)

 |0i , (7)

where all the states are on-shell. This correlation-function is probed by the experiments
in h ! 4f decays, but also in Higgs associated production (pp ! h + W,Z) and in
Higgs production via vector-boson fusion. Extracting the kinematical structure of Eq. (7)
from data will allow us both to determine the e↵ective coupling of h to all the SM gauge
bosons, and also to investigate possible couplings of h to new massive states. The former
are associated to a well-defined double-pole structure in Eq. (7), while the latter can lead
to local interactions with one or no poles.

7

[Work in progress with Admir, Gino and Jonas]

h → 4f
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The amplitude is the same as for the decays:
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Only quark contact terms are not probed in h → 4ℓ decays.

Form factor,
mom. expansion validity
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only 1 observable:
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Again, same amplitude as decays.

Jq2

h

Jq1
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Again, same amplitude as decays.

Jq2

h

Jq1

Figure 4: Parton level MadGraph simulation of the VBF in the SM. (Left) Scatter plot
in outgoing quark pT and momentum transfer q with the color connected initial state
quark. (Right) The same for the momentum transfer with the wrong pairing.

state quark q for correct (left plot) and wrong (right plot) color flow pairing. The plot
indicates the strong correlation of the jet pT with the momentum transfer associated with
the correct color pairing which is not the case for the wrong pairing. We have checked,
that the same is true even in the presence of new physics contributions to the contact
terms. Therefore, we encourage the experimental analysis to report a measurement of
the double di↵erential distributions in the two VBF tagged jet pT ’s. On one hand, this
observable is closely related to the form factor entering the amplitude decomposition. On
the other hand, the extraction of the PO from the form factor has to be done in such a
way to preserve the validity of the momentum expansion, which accounts for setting an
upper cut on the jet pT . As a reference for the future discussions, in Fig. 5, we show the
prediction for the normalized distribution in the SM.

To do:

• Do the fits, discuss the results.

6 Phenomenology of the VH production

6.1 Di↵erential cross sections

After defining the general amplitude for on-shell Higgs associated production with a gauge
boson, we derive a semi-analytic description of the full-process at the LHC by convoluting
the partonic cross section with the proton pdf. This can be used as a check for the
Montecarlo tool and for improving our analytic understanding of the process. From these
amplitudes we can obtain the partonic cross sections �̂(qiq̄i ! hZ) and �̂(uid̄j ! hW

+)

9

Initial state quarks are not accessible, so is q2.
(unless Higgs is reconstructed)

pT of the jets is a good proxy for the q2.
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General approach: measure the
double differential distribution in (pT12, pT22 )

With 3000 fb-1:  ~ 2000 events in VBF
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Figure 5: Double di↵erential distribution in the two VBF tagged jet pT ’s based on the
parton level MadGraph simulation in the SM. The distribution is normalized to the total
cross section.
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where qi = uL, uR, dL, dR, sL, sR, . . ., ⌧ = ŝ/s.
For any given ŝ (or given a binning in ŝ) this is a quadratic form of the PO. We could

provide explicitly such quadratic form for some cases (e.g. low-energy bin vs. high-energy
bin).
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Figure 4: Parton level MadGraph simulation of the VBF in the SM. (Left) Scatter plot
in outgoing quark pT and momentum transfer q with the color connected initial state
quark. (Right) The same for the momentum transfer with the wrong pairing.

state quark q for correct (left plot) and wrong (right plot) color flow pairing. The plot
indicates the strong correlation of the jet pT with the momentum transfer associated with
the correct color pairing which is not the case for the wrong pairing. We have checked,
that the same is true even in the presence of new physics contributions to the contact
terms. Therefore, we encourage the experimental analysis to report a measurement of
the double di↵erential distributions in the two VBF tagged jet pT ’s. On one hand, this
observable is closely related to the form factor entering the amplitude decomposition. On
the other hand, the extraction of the PO from the form factor has to be done in such a
way to preserve the validity of the momentum expansion, which accounts for setting an
upper cut on the jet pT . As a reference for the future discussions, in Fig. 5, we show the
prediction for the normalized distribution in the SM.

To do:

• Do the fits, discuss the results.

6 Phenomenology of the VH production

6.1 Di↵erential cross sections

After defining the general amplitude for on-shell Higgs associated production with a gauge
boson, we derive a semi-analytic description of the full-process at the LHC by convoluting
the partonic cross section with the proton pdf. This can be used as a check for the
Montecarlo tool and for improving our analytic understanding of the process. From these
amplitudes we can obtain the partonic cross sections �̂(qiq̄i ! hZ) and �̂(uid̄j ! hW
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Initial state quarks are not accessible, so is q2.
(unless Higgs is reconstructed)

pT of the jets is a good proxy for the q2.
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2000 events in VBF Higgs production

30

Flavor-independent PO probed in h→4ℓ decay. Focus on quark contact terms.

For simplicity let’s assume Minimal Flavor Violation. Consider 7 PO:

Do a fit of the 2D pT distribution, up to 600 GeV. Momentum expansion
validity.
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LHC will be able to measure all the contact terms with percent accuracy!
Same conclusion also if no information on the total rate is retained.

Very preliminary result. Only at parton level:

Assuming expected 2000 events in the SM.



Pseudo observables

and
the SM Effective Theory

31



The Linear SM Effective Field Theory

Assuming h(125)  is a SU(2)L doublet
(linear EFT)
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M. González-Alonso /10EFT analyses of  NP

Pseudo-observables in Higgs decays (linear EFT)

Exampl
e:

What’s the room for NP in 
Higgs decays taking into 

account LEP results?

Z

[MGA, Greljo, Isidori & Marzocca, arXiv:1504.xxxx]
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+ . . .
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⇤
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1

Assuming L and B conservation

59 independent dim-6 operators if flavour universality.
2499 parameters for a generic flavour structure.

[Grzadkowski et al. 1008.4884, Alonso et al. 1312.2014]
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Higgs decay & production

Z couplings  δgZf

The same operator can contribute to different processes.

For example: OHf = i(H† $
DµH)f̄�µf = �1

2

p
g2 + g02Zµ(v + h)2f̄�µf (1)

To eq.(8) I added a (flavour universal) local interaction

F ff 0

1 � �ff 0

m4
Z

(2)

and keep also quadratic terms (the diagonal ones only, just for an example)

�e+e�µ+µ�
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e+e�µ+µ�
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�
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+ ✏2ZµR

�
+ 8.4(�2`L`L + 2�2`L`R + �2`R`R)+

+ all the mixed terms

(3)

See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,

where ZZ � 1, ✏X ⇠ m2
Z/⇤

2
and �X ⇠ m4

Z/⇤
4
, and therefore to neglect the quadratic

terms.

h ! eReLµLµR / yeyµ (4)

O(x) = h(x) ē(x)�µe(x) µ̄(x)�
µµ(x) (5)
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3
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2

t2✓
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1

The power of the EFT: relating different observables
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Z couplings  δgZf

The same operator can contribute to different processes.

For example: OHf = i(H† $
DµH)f̄�µf = �1
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g2 + g02Zµ(v + h)2f̄�µf (1)

To eq.(8) I added a (flavour universal) local interaction
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See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,

where ZZ � 1, ✏X ⇠ m2
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and �X ⇠ m4
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, and therefore to neglect the quadratic

terms.

h ! eReLµLµR / yeyµ (4)
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The power of the EFT: relating different observables
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Higgs decay & production

Z couplings  δgZf

The same operator can contribute to different processes.

For example: OHf = i(H† $
DµH)f̄�µf = �1
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g2 + g02Zµ(v + h)2f̄�µf (1)

To eq.(8) I added a (flavour universal) local interaction
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1 � �ff 0
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Z
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and keep also quadratic terms (the diagonal ones only, just for an example)
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See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,

where ZZ � 1, ✏X ⇠ m2
Z/⇤

2
and �X ⇠ m4

Z/⇤
4
, and therefore to neglect the quadratic

terms.

h ! eReLµLµR / yeyµ (4)

O(x) = h(x) ē(x)�µe(x) µ̄(x)�
µµ(x) (5)
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The power of the EFT: relating different observables

Use LEP 1 and LEP 2 data
to obtain bounds on some Higgs PO.

Combine LEP data with Higgs data
to derive stronger constraints for the EFT.
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The power of the EFT: relating different observables

Let us impose the strong LEP I constraints (≲1%).

Assuming MFV, only 10 independent combinations of coefficients 
contribute at tree-level to Higgs and LEP II (WW) observables.

[Corbett et al. 2013; J. Elias-Miro et al. 2013;
Pomarol Riva 2013; Gupta et al 2014; Falkowski 2015]

[Pomarol Riva 2013; Efrati et al. 2015; Berthier, Trott 2015]



Global fit in the ‘Higgs basis’   [LHCHXSWG 2015]

Higgs TGC

PZ(q
2) = q

2 �m

2
Z + imZ�Z (15)

✏

CP
X = Im ✏W `L = 0 (16)

X ! 1, ✏X ! 0 (17)

hZµZ
µ
, hZ

µ
@

⌫
Vµ⌫ hVµ⌫V

µ⌫
h"

µ⌫⇢�
Vµ⌫V⇢� hZµf̄�

µ
f, hZ

µ
@

⌫
Vµ⌫ (18)

V = Z, � (19)

ZZ ,Z� ,�� , ✏ZZ ,

✏

CP
Z� , ✏

CP
�� , ✏

CP
ZZ ,

✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR

(20)

WW , ✏WW , ✏

CP
WW ,

✏We, ✏Wµ, (complex)

(21)

✏

SM-1L
�� ' 3.8⇥ 10�3

,

✏

SM-1L
Z� ' 6.7⇥ 10�3

(22)

WW � ZZ = �2

g

⇣p
2✏WeL + 2cw✏ZeL

⌘
(23)

|yfS |2 + |yfP |2 (24)

|✏�� |2 + |✏CP
�� |2 (25)

�f ��� (26)

J

µ
f (x) = f̄(x)�µf(x) (27)

�cz, c�� , cz� , cgg, �yu, �yd, �ye, �g1,z, �� , �z. (28)

4

[Falkowski, Gonzalez-Alonso, Greljo, D.M. 1508.00581]
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The power of the EFT: relating different observables

Let us impose the strong LEP I constraints (≲1%).

Assuming MFV, only 10 independent combinations of coefficients 
contribute at tree-level to Higgs and LEP II (WW) observables.

[Corbett et al. 2013; J. Elias-Miro et al. 2013;
Pomarol Riva 2013; Gupta et al 2014; Falkowski 2015]

[Pomarol Riva 2013; Efrati et al. 2015; Berthier, Trott 2015]
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The power of the EFT: relating different observables

LEP II (WW)
Higgs
LEP II + Higgs

!1.5 !1.0 !0.5 0.0
!1.0

!0.5

0.0

0.5

1.0

∆g1,z

∆ΚΓ

Constraints on TGCs

LEP II data alone suffers from a flat 
direction in the TGC fit.

Higgs data (mainly via VH and VBF production) 
is sensitive to a different direction.

+

=

Together they provide strong and robust
constraints on the TGC.

[Falkowski, Riva  1411.0669]

[Falkowski 1505.00046]

All other coefficients have been marginalised.
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Constraints on the Higgs PO in the linear EFT

e.g h→4ℓ:

To eq.(8) I added a (flavour universal) local interaction

F

ff 0

1 �
�ff 0

m

4
Z

(1)

and keep also quadratic terms (the diagonal ones only, just for an example)
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2
`R`R)+

+ all the mixed terms

(2)

See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,

where ZZ � 1, ✏X ⇠ m

2
Z/⇤

2
and �X ⇠ m

4
Z/⇤

4
, and therefore to neglect the quadratic

terms.
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To eq.(8) I added a (flavour universal) local interaction

F

ff 0
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4
Z
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and keep also quadratic terms (the diagonal ones only, just for an example)
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See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,

where ZZ � 1, ✏X ⇠ m
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, and therefore to neglect the quadratic

terms.
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δεγγ ≲ 10-3 

δεZγ ≲ 10-2 
From LHC:Naively ~10 -3 bounds, however the theoretical error is of ~1%.

No qualitative influence for Higgs physics at present precision.

LEP-I:     δgZℓ ≲ 10-2 [Efrati, Falkowski, Soreq 2015]

[Berthier, Trott 2015]

The less constrained coefficients are the TGC.

We use our combined LEP II + Higgs global fit to derive constraints on the Higgs PO.

[Gonzalez-Alonso, Greljo, Isidori, D.M. 1504.04018]

We match the Higgs PO to the SM EFT at LO:  relations with LEP observables.
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with the correlation matrix:

⇢ =

0

BBBBBBBBBBBB@

1 �.53 .20 �.49 .47 .15 �.41 .63 �.19 .22
· 1 .56 �.29 .31 �.13 .20 �.22 �.38 �.85
· · 1 �.91 .91 .00 �.13 .26 .35 �.79
· · · 1 �.999 �.06 .25 �.42 �.27 .59
· · · · 1 .06 �.24 .40 .27 �.06
· · · · · 1 �.88 .30 .06 .07
· · · · · · 1 �.22 .10 �.06
· · · · · · · 1 .30 .01
· · · · · · · · 1 �.38
· · · · · · · · · 1

1

CCCCCCCCCCCCA

.

(A.11)

h ! 4` pseudo-observables

Here we report the bounds on the Higgs pseudo-
observables relevant to h ! 4` decays, obtained via a
tree-level matching with the D=6 operators in the Higgs
basis [23]. At this level, only five pseudo-observables are
independent and the constraints we find are:
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Appendix B: Single Z and W Drell-Yan production

Using Madgraph 5 [44] we compute the leading order
(LO) contribution of the D=6 operators in the Higgs
basis to the Z- and W -boson Drell-Yan production cross-

section at 8 TeV in the flavor-general EFT finding:
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where �SM,LO(pp ! Z) ⇡ 23.9 nb and �SM,LO(pp !
W ) ⇡ 84.5 nb. From Ref. [17], we get the experimental
constraints from 8 TeV data:
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= 1.02± 0.05. (B.2)
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= 1.00± 0.04. (B.3)

As explained in the main text, we assume that the NLO
QCD corrections largely cancel in the BSM vs SM ratio
of Eq. (B.1), and that NLO EW corrections can be ne-
glected. Taking into account that NP e↵ects in leptonic Z
decays are negligible at this level of precision [10], we use
these experimental results to improve the bounds on the
�gV q

L,R coe�cients obtained from LEP1 data in Ref. [10].
These limits are used to constrain the extra contribu-
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Crucial to test these predictions from data!

Any measured deviation would have deep physical consequences:

non-linear realization of EW symmetry, flavor non-universality, …

5 independent PO only, in the linear EFT.
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Higgs PO 
• general framework to describe on-shell Higgs properties:

decay and production.

• defined from physical properties of the Green functions

• easy to match to specific scenarios: test hypotheses.

• clear implementation of QED soft radiation (leading NLO effect)

The linear EFT provides relations among Higgs and non-Higgs processes:

- combine LEP and Higgs data to derive stronger constraints

- derive predictions for h → 4ℓ processes 
Testing these predictions:  important test for the linear EFT.

Implemented in FeynRules/UFO model:
www.physik.uzh.ch/data/HiggsPO/

h

J
µ
f ′

J
µ
f

h

http://www.physik.uzh.ch/data/HiggsPO/
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To eq.(8) I added a (flavour universal) local interaction
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To eq.(8) I added a (flavour universal) local interaction
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“Physical” PO in h→4ℓ

Goal: provide a simple interpretation for the PO.
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Single Z-pole.
Decay width if only the contact term is present:



Double Z-pole.  h→ZZ not accessible kinematically.
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(ē�↵e)(µ̄��µ)⇥

✓
ZZ

g

e
Zg

µ
Z

PZ(q21)PZ(q22)
+

✏Ze

m

2
Z

g

µ
Z

PZ(q22)
+

✏Zµ

m

2
Z

g

e
Z

PZ(q21)

◆
g

↵�+

+

✓
✏ZZ

g

e
Zg

µ
Z

PZ(q21)PZ(q22)
+ Z�✏

SM,eff
Z�

✓
eQµg

e
Z

q

2
2PZ(q21)

+
eQeg

µ
Z

q

2
1PZ(q22)

◆
+ ��✏

SM,eff
��

e

2
QeQµ

q

2
1q

2
2

◆
q1 · q2 g

↵� � q2
↵
q1

�

m

2
Z

+

+

✓
✏

CP
ZZ

g

e
Zg

µ
Z

PZ(q21)PZ(q22)
+ �

CP
Z� ✏

SM,eff
Z�

✓
eQµg

e
Z

q

2
2PZ(q21)

+
eQeg

µ
Z

q

2
1PZ(q22)

◆
+ �

CP
�� ✏

SM,eff
��

e

2
QeQµ

q

2
1q

2
2

◆
"

↵�⇢�
q2⇢q1�

m

2
Z

�

(4)

✏Zf =
2mZ

v

⇣
�g

Zf � (c2✓T
3
f + s

2
✓Yf )13�g1,z + t

2
✓Yf13��

⌘
(5)

�✏ZZ = �✏�� +
2

t2✓
�✏Z� �

1

c

2
✓

�� (6)

�✏X = ✏X � ✏

SM
X (7)

1

“Physical” PO in h→4ℓ

Goal: provide a simple interpretation for the PO.
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As for the decay, the most important effect can be described by soft QCD radiation.

Complete NLO QCD corrections, for generic PO, can be implemented in automatic 
tools for event generation. Work in progress.

QCD

Electroweak corrections can be divided in:

- Local contributions. Such terms are parametrised as SM contributions to the PO
               (e.g. εSMZγ,γγ)

- Non-local terms. Unlike decay, in VBF such terms could be relevant. Would need 
a dedicated study.

EW

[see also Maltoni, Mawatari, Zaro 1311.1829]

[NNLO corrections also dominated by real radiation effects:
Cacciari, Dreyer, Karlberg, Salam, Zanderighi 1506.02660]
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   slide 

Precision on signal strength 
channel* Prec.*(%)*100*QB1* Prec.*(%)**300*QB1* Prec.*(%)**3000*QB1*

ttH H!γγ ~65$ 38' 36' 17' 12'

ttH H!ZZ*!4l ~85$ 49' 48' 20' 16'

VBF H!γγ ~80$ 47' 43' 22' 15'

VBF H!ZZ*!4l ~60$ 36' 33' 21' 16'

H!µµ ~70$ 39' 38' 16' 12'

H!ττ ~18$ 14' 8' 8' 5'

H!bb ~20$ 14' 11' 7' 5'

H!γγ ~15$ 12' 6' 8' 4'

H!4l ~15$ 11' 7' 9' 4'

H!4l ~15$ 11' 7' 7' 4'

ATLAS assumed luminosity uncertainty: 3% 

ATLAS:  experimental & theory uncertianties; only exp. uncertainty 
CMS:  current exp.l & theory uncertianties; exp. uncertainty  ∝ 1/√L and ½ theory unc. 
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