Higgs PO

Production and decay

beyond the kappa-framework

David Marzocca

Particle Theory Seminar, UZH, 13/10/2015

Outline

- Motivation and introduction. What are pseudo-observables (PO)?
- PO in Higgs Decay.
- PO in Electroweak Higgs Production.
- Linear EFT and Higgs PO.

Based on:

works with various subsets of
\{M. Bordone, A. Falkowski, M.Gonzalez-Alonso, A. Greljo, G. Isidori, J. Lindert, D.M., A. Pattori\}

```
Eur. Phys. J. C75 (2015) 3, 128 arXiv: 1412.6038
Eur. Phys. J. C75 (2015) 7, 341 arXiv: 1504.04018
Eur. Phys. J. C75 (2015) 8, 385 arxiv: 1507.02555
arXiv: 1508.00581
+ some work in progress
```


Introduction: LHC Run-1 in one slide

discovery of the Higgs and good measurement of many of its couplings. The Standard Model is complete.

Introduction: LHC Run-1 in one slide

discovery of the Higgs and good measurement of many of its couplings.
The Standard Model is complete.

So far, no compelling evidence of new physics from direct searches:

Scale of New Physics is high

$$
\Lambda_{N P} \gg m_{h}
$$

Questions we still have to find answers to:

Naturalness problem of the Higgs mass

WIMP Dark Matter
Flavour puzzle

Questions we still have to find answers to:

Questions we still have to find answers to:

How we are doing this

- Direct searches of new particles: LHC, DM, ...
- Precision SM measurements: Higgs, Electroweak, Flavour, Neutrinos, ...
- Cosmology: CMB, Large Scale Structures, BBN, ...

We do not know what the New Physics will be like. How to approach its search?

We do not know what the New Physics will be like. How to approach its search?

Top-down approach
Suitable for: LHC direct searches
Choose some well motivated explicit model and study its predictions.
Pro: very predictive
Cons: very model-dependent

We do not know what the New Physics will be like. How to approach its search?

Top-down approach Suitable for: LHC direct searches
Choose some well motivated explicit model and study its predictions.
Pro: very predictive
Cons: very model-dependent

Bottom-up approach Suitable for: Precision measurements

Work in a well-defined framework with the least possible number of assumptions, in order to cover as many new physics scenarios as possible.

Pro: model-independent
Cons: less predictive

We do not know what the New Physics will be like. How to approach its search?

Top-down approach Suitable for: LHC direct searches
Choose some well motivated explicit model and study its predictions.
Pro: very predictive
Cons: very model-dependent

Generality \times Predictivity \sim const.

Bottom-up approach
Suitable for: Precision measurements
Work in a well-defined framework with the least possible number of assumptions, in order to cover as many new physics scenarios as possible.

Pro: model-independent
Cons: less predictive

Generality \times Predictivity ~ const.

We want to be able to come back to LHC Higgs data in the future and still be able to reinterpret it in terms of any New Physics model which would have been discovered.

It will be extremely difficult to be able to repeat many experimental analysis.

Physical observables

Fiducial cross sections,
Number of events in a given bin, etc ...

Predictivity

Generality

How should the experiments present their result

Physical observables

Fiducial cross sections, Number of events in a given bin, etc ...

ALL the observables??
Difficult for theorists to control experimental effects.

Predictivity

Generality

 How should the experiments present their result

Physical observables

Fiducial cross sections, Number of events in a given bin, etc ...

ALL the observables??
Difficult for theorists to control experimental effects.

```
\mathcal{L}=-\frac{1}{4}\mp@subsup{F}{\mu\nu}{}\mp@subsup{F}{}{\mu\nu}
    +i\overline{\psi}\phi\psi+h.c
```



```
    + 市\phi|
```


Lagrangian parameters

Couplings, running masses, Wilson coefficients, etc ...

Predictivity

Generality

 How should the experiments present their result

Physical observables

Fiducial cross sections, Number of events in a given bin, etc ...

ALL the observables??
Difficult for theorists to control experimental effects.

```
\mathcal{L}=-\frac{1}{4}\mp@subsup{F}{\mu\nu}{}\mp@subsup{F}{}{\mu\nu}
    +i\overline{\psi}\phi\psi+h.c.
    +}\mp@subsup{\overline{\psi}}{i}{}\mp@subsup{y}{ij}{}\mp@subsup{\psi}{i}{\prime}\phi+h.c
    + 市\phi|
```

Lagrangian parameters
Couplings, running masses, Wilson coefficients, etc ...

Which model?
Which parameters?
Fit at LO, NLO..?

Generality

How should the experiments present their result

Physical observables

Fiducial cross sections,
Number of events in a given bin, etc ...
ALL the observables??
Difficult for theorists to control experimental effects.

Pseudo-observables

Pole masses, decay widths, kappas, form factors, etc ...

```
\mathcal{L}=-\frac{1}{4}\mp@subsup{F}{\mu\nu}{}\mp@subsup{F}{}{\mu\nu}
    +i\overline{\psi}\phi\psi+h.c.
    +
    + 市\phi|
```

Lagrangian parameters
Couplings, running masses, Wilson coefficients, etc ...

Which model?
Which parameters?
Fit at LO, NLO..?

Experimental data

Experiments

PO
idealized observables, well defined (in QFT) quantities.

Theorists

Unfolding of collider \& soft radiation effects

Matching to a given model at given order in pert. theory

Constraints/measurements on theories

LEP-1 Strategy: on-shell Z decays

[hep-ex/0509008; Bardin, Grunewald, Passarino '99]

The goal was to parametrise on-shell Z decays as much model-independently as possible.

1) Unfold QED (and/or QCD) soft radiation effect

$$
\sigma(s)=\int_{4 m_{\mathrm{f}}^{2} / s}^{1} d z H_{\mathrm{QED}}^{\mathrm{tot}}(z, s) \sigma_{\mathrm{ew}}(z s) .
$$

2) Parametrize the shape with some PO defined at amplitude level:

$$
m_{\mathrm{Z}}, \Gamma_{\mathrm{Z}}
$$

Lineshape

$$
\chi(s)=\frac{G_{\mathrm{F}} m_{\mathrm{Z}}^{2}}{8 \pi \sqrt{2}} \frac{s}{s-m_{\mathrm{Z}}^{2}+i s \Gamma_{\mathrm{Z}} / m_{\mathrm{Z}}}
$$

3) Fit the PO from data

LEP-1 Strategy: on-shell Z decays

[hep-ex/0509008; Bardin, Grunewald, Passarino '99]

The goal was to parametrise on-shell Z decays as much model-independently as possible.

Parametrise the on-shell $Z \bar{f} f$ vertex as $\gamma_{\mu}\left(\mathcal{G}_{V}^{f}+\mathcal{G}_{A}^{f} \gamma_{5}\right)$

The PO are defined as

$$
g_{V}^{f}=\operatorname{Re} \mathcal{G}_{V}^{f}, \quad g_{A}^{f}=\operatorname{Re} \mathcal{G}_{A}^{f}
$$

To be model-independent it is important to work with on-shell initial and final states.

$$
\Gamma_{\mathrm{ff}}=N_{c}^{\mathrm{f}} \frac{G_{\mathrm{F}} m_{\mathrm{Z}}^{3}}{6 \sqrt{2} \pi}\left(\left|\mathcal{G}_{\mathrm{Af}}\right|^{2} R_{\mathrm{Af}}+\left|\mathcal{G}_{\mathrm{Vf}}\right|^{2} R_{\mathrm{Vf}}\right)+\Delta_{\mathrm{ew} / \mathrm{QCD}}
$$

PO used at Run 1: the $\boldsymbol{\kappa}$-framework

At Run-1, measurements of Higgs properties were reported in the κ-framework:
Narrow width approximation (\& on-shell Higgs):

$$
\sigma(i i \rightarrow \mathrm{~h}+\mathrm{X}) \times \mathrm{BR}(\mathrm{~h} \rightarrow f f)=\sigma_{i i} \frac{\Gamma_{f f}}{\Gamma_{\mathrm{h}}}=\frac{\kappa_{i i}^{2} \kappa_{f f}^{2}}{\kappa_{\mathrm{h}}^{2}} \sigma_{\mathrm{SM}} \times \mathrm{BR}_{\mathrm{SM}}
$$

PO used at Run 1: the $\boldsymbol{\kappa}$-framework

At Run-1, measurements of Higgs properties were reported in the κ-framework:
Narrow width approximation (\& on-shell Higgs):

$$
\sigma(i i \rightarrow \mathrm{~h}+\mathrm{X}) \times \mathrm{BR}(\mathrm{~h} \rightarrow f f)=\sigma_{i i} \frac{\Gamma_{f f}}{\Gamma_{\mathrm{h}}}=\frac{\kappa_{i i}^{2} \kappa_{f f}^{2}}{\kappa_{\mathrm{h}}{ }^{2}} \sigma_{\mathrm{SM}} \times \mathrm{BR}_{\mathrm{SM}}
$$

Pros: \quad Clear SM limit $(\kappa \rightarrow 1)$, theoretically well defined, systematically improvable, model independent (on-shell Higgs is key), can be matched to any EFT in any basis.

PO used at Run 1: the $\boldsymbol{\kappa}$-framework

At Run-1, measurements of Higgs properties were reported in the κ-framework:
Narrow width approximation (\& on-shell Higgs):

$$
\sigma(i i \rightarrow \mathrm{~h}+\mathrm{X}) \times \mathrm{BR}(\mathrm{~h} \rightarrow f f)=\sigma_{i i} \frac{\Gamma_{f f}}{\Gamma_{\mathrm{h}}}=\frac{\kappa_{i i}^{2} \kappa_{f f}^{2}}{\kappa_{\mathrm{h}}^{2}} \sigma_{\mathrm{SM}} \times \mathrm{BR}_{\mathrm{SM}}
$$

Pros: \quad Clear SM limit $(\kappa \rightarrow 1)$, theoretically well defined, systematically improvable, model independent (on-shell Higgs is key), can be matched to any EFT in any basis.

Cons: Limited to total rates:
can't describe deviations in differential distributions, e.g. CPV or $h \rightarrow 4 f$

PO used at Run 1: the $\boldsymbol{\kappa}$-framework

At Run-1, measurements of Higgs properties were reported in the κ-framework:
Narrow width approximation (\& on-shell Higgs):

$$
\sigma(i i \rightarrow \mathrm{~h}+\mathrm{X}) \times \mathrm{BR}(\mathrm{~h} \rightarrow f f)=\sigma_{i i} \frac{\Gamma_{f f}}{\Gamma_{\mathrm{h}}}=\frac{\kappa_{i i}^{2} \kappa_{f f}^{2}}{\kappa_{\mathrm{h}}^{2}} \sigma_{\mathrm{SM}} \times \mathrm{BR}_{\mathrm{SM}}
$$

Pros: \quad Clear SM limit $(\kappa \rightarrow 1)$, theoretically well defined, systematically improvable, model independent (on-shell Higgs is key), can be matched to any EFT in any basis.

Cons: Limited to total rates:
can't describe deviations in differential distributions, e.g. CPV or h $\rightarrow 4 f$

Need to extend the κ-framework retaining all its good properties:

> Higgs pseudo-observables

Pseudo observables

in

Higgs Decays

Higgs decays to two fermions

The kinematic is fixed.
No polarisation information is retained. (maybe possible to measure in tt channel)
the total rate is all that can be extracted from data
"Effective coupling" PO:

$$
\mathcal{A}(h \rightarrow f \bar{f})=-i \frac{y_{\mathrm{eff}}^{f, \mathrm{SM}}}{\sqrt{2}} \bar{f}\left(\kappa_{f}+i \lambda_{f}^{\mathrm{CP}} \gamma_{5}\right) f
$$ In the SM $\kappa_{X} \rightarrow 1, \lambda_{X}^{\mathrm{CP}} \rightarrow 0$

"Physical" PO:

$$
\Gamma(h \rightarrow f \bar{f})_{(\mathrm{incl})}=\left[\kappa_{f}^{2}+\left(\lambda_{f}^{\mathrm{CP}}\right)^{2}\right] \Gamma(h \rightarrow f \bar{f})_{(\mathrm{incl})}^{(\mathrm{SM})}
$$

The kinematic is fixed.
No polarisation information is retained. (maybe possible to measure in tt channel)
the total rate is all that can be extracted from data
"Effective coupling" PO:

$$
\mathcal{A}(h \rightarrow f \bar{f})=-i \frac{y_{\mathrm{eff}}^{f, \mathrm{SM}}}{\sqrt{2}} \bar{f}\left(\kappa_{f}+i \lambda_{f}^{\mathrm{CP}} \gamma_{5}\right) f
$$ In the $\mathrm{SM} \quad \kappa_{X} \rightarrow 1, \lambda_{X}^{\mathrm{CP}} \rightarrow 0$

"Physical" PO:

$$
\Gamma(h \rightarrow f \bar{f})_{(\mathrm{incl})}=\left[\kappa_{f}^{2}+\left(\lambda_{f}^{\mathrm{CP}}\right)^{2}\right] \Gamma(h \rightarrow f \bar{f})_{(\mathrm{incl})}^{(\mathrm{SM})}
$$

$y_{\mathrm{eff}}^{f, \mathrm{SM}}$ from best SM prediction:

	$\bar{b} b$	$\bar{\tau} \tau$
$\operatorname{Br}(h \rightarrow \bar{f} f)$	5.77×10^{-1}	6.32×10^{-2}
$\left\|y_{\text {eff }}^{f, \text { SM }}\right\|$	1.77×10^{-2}	1.02×10^{-2}
	$\bar{c} c$	$\bar{\mu} \mu$
$\operatorname{Br}(h \rightarrow \bar{f} f)$	2.91×10^{-2}	2.19×10^{-4}
$\left\|y_{\text {eff }}^{f, \text { SM }}\right\|$	3.98×10^{-3}	5.99×10^{-4}

Higgs decays to $\mathrm{Y} Y$ and $\mathbf{Z y}$ (on-shell)

"Effective coupling" PO:

$$
\begin{aligned}
& \mathcal{A}\left[h \rightarrow \gamma(q, \epsilon) \gamma\left(q^{\prime}, \epsilon^{\prime}\right)\right]=i \frac{2 \epsilon_{\gamma \gamma}^{\mathrm{SM}, \mathrm{eff}}}{v_{F}} \epsilon_{\mu}^{\prime} \epsilon_{\nu}\left[\kappa_{\gamma \gamma}\left(g^{\mu \nu} q \cdot q^{\prime}-q^{\mu} q^{\prime \nu}\right)+\lambda_{\gamma \gamma}^{\mathrm{CP}} \varepsilon^{\mu \nu \rho \sigma} q_{\rho} q_{\sigma}^{\prime}\right] \\
& \mathcal{A}\left[h \rightarrow Z(q, \epsilon) \gamma\left(q^{\prime}, \epsilon^{\prime}\right)\right]=i \frac{2 \epsilon_{Z \gamma}^{\mathrm{SM}, \mathrm{eff}}}{v_{F}} \epsilon_{\mu}^{\prime} \epsilon_{\nu}\left[\kappa_{Z \gamma}\left(g^{\mu \nu} q \cdot q^{\prime}-q^{\mu} q^{\prime \nu}\right)+\lambda_{Z \gamma}^{\mathrm{CP}} \varepsilon^{\mu \nu \rho \sigma} q_{\rho} q_{\sigma}^{\prime}\right]
\end{aligned}
$$

$$
\text { In the } \mathrm{SM} \quad \kappa_{X} \rightarrow 1, \lambda_{X}^{\mathrm{CP}} \rightarrow 0
$$

"Physical" PO:

$$
\begin{aligned}
\Gamma(h \rightarrow \gamma \gamma) & =\left[\kappa_{\gamma \gamma}^{2}+\left(\lambda_{\gamma \gamma}^{\mathrm{CP}}\right)^{2}\right] \Gamma(h \rightarrow \gamma \gamma)^{(\mathrm{SM})} \\
\Gamma(h \rightarrow Z \gamma) & =\left[\kappa_{Z \gamma}^{2}+\left(\lambda_{Z \gamma}^{\mathrm{CP}}\right)^{2}\right] \Gamma(h \rightarrow Z \gamma)^{(\mathrm{SM})}
\end{aligned}
$$

Higgs decays to $\mathrm{Y} Y$ and $Z \mathbf{Y}$ (on-shell)

"Effective coupling" PO:

$$
\begin{aligned}
& \mathcal{A}\left[h \rightarrow \gamma(q, \epsilon) \gamma\left(q^{\prime}, \epsilon^{\prime}\right)\right]=i \frac{2 \epsilon_{\gamma \gamma}^{\mathrm{SM}, \mathrm{eff}}}{v_{F}} \epsilon_{\mu}^{\prime} \epsilon_{\nu}\left[\kappa_{\gamma \gamma}\left(g^{\mu \nu} q \cdot q^{\prime}-q^{\mu} q^{\prime \nu}\right)+\lambda_{\gamma \gamma}^{\mathrm{CP}} \varepsilon^{\mu \nu \rho \sigma} q_{\rho} q_{\sigma}^{\prime}\right] \\
& \mathcal{A}\left[h \rightarrow Z(q, \epsilon) \gamma\left(q^{\prime}, \epsilon^{\prime}\right)\right]=i \frac{2 \epsilon_{Z \gamma}^{\mathrm{SM}, \mathrm{eff}}}{v_{F}} \epsilon_{\mu}^{\prime} \epsilon_{\nu}\left[\kappa_{Z \gamma}\left(g^{\mu \nu} q \cdot q^{\prime}-q^{\mu} q^{\prime \nu}\right)+\lambda_{Z \gamma}^{\mathrm{CP}} \varepsilon^{\mu \nu \rho \sigma} q_{\rho} q_{\sigma}^{\prime}\right]
\end{aligned}
$$

$$
\text { In the } \mathrm{SM} \quad \kappa_{X} \rightarrow 1, \lambda_{X}^{\mathrm{CP}} \rightarrow 0
$$

"Physical" PO:

$$
\begin{aligned}
\Gamma(h \rightarrow \gamma \gamma) & =\left[\kappa_{\gamma \gamma}^{2}+\left(\lambda_{\gamma \gamma}^{\mathrm{CP}}\right)^{2}\right] \Gamma(h \rightarrow \gamma \gamma)^{(\mathrm{SM})} \\
\Gamma(h \rightarrow Z \gamma) & =\left[\kappa_{Z \gamma}^{2}+\left(\lambda_{Z \gamma}^{\mathrm{CP}}\right)^{2}\right] \Gamma(h \rightarrow Z \gamma)^{(\mathrm{SM})}
\end{aligned}
$$

$$
\epsilon_{X}^{\mathrm{SM}, \mathrm{eff}} \text { from best SM prediction: }
$$

$$
\begin{aligned}
& \Gamma(h \rightarrow \gamma \gamma)^{(\mathrm{SM})}=\frac{\left|\epsilon_{\gamma \gamma}^{\mathrm{SM}, \mathrm{eff}}\right|^{2}}{16 \pi} \frac{m_{H}^{3}}{v_{F}^{2}}, \\
& \Gamma(h \rightarrow Z \gamma)^{(\mathrm{SM})}=\frac{\left|\epsilon_{Z \gamma}^{\mathrm{SM}, \mathrm{eff}}\right|^{2}}{8 \pi} \frac{m_{H}^{3}}{v^{2}}\left(1-\frac{m_{Z}^{2}}{m_{H}^{2}}\right)^{3} \\
& \text { YR2 }
\end{aligned}
$$

Higgs to 4-fermion decays

Four-body decays

$$
h \rightarrow 4 f
$$

The kinematics is much richer: kinematical distributions.

Assumption: Neglect helicity-violating interactions, e.g.: naturally suppressed by m_{f} also in BSM. $\quad h \rightarrow e_{R} e_{L} \mu_{L} \mu_{R} \quad \propto y_{e} y_{\mu}$

The process is completely described by this Green function of ON-SHELL states:

$$
\langle 0| \mathcal{T}\left\{J_{f}^{\mu}(x), J_{f^{\prime}}^{\nu}(y), h(0)\right\}|0\rangle, \quad J_{f}^{\mu}(x)=\bar{f}(x) \gamma^{\mu} f(x)
$$

Higgs to 4-fermion decays

$$
\langle 0| \mathcal{T}\left\{J_{f}^{\mu}(x), J_{f^{\prime}}^{\nu}(y), h(0)\right\}|0\rangle
$$

Only 3 tensor structures allowed by Lorentz symmetry:
Example: $h \rightarrow e^{+} e^{-} \mu^{+} \mu^{-}$

$$
\begin{aligned}
\mathcal{A}= & i \frac{2 m_{Z}^{2}}{v_{F}}\left(\bar{e} \gamma_{\alpha} e\right)\left(\bar{\mu} \gamma_{\beta} \mu\right) \times \\
& {\left[F_{1}^{e \mu}\left(q_{1}^{2}, q_{2}^{2}\right) g^{\alpha \beta}+F_{3}^{e \mu}\left(q_{1}^{2}, q_{2}^{2}\right) \frac{q_{1} \cdot q_{2} g^{\alpha \beta}-q_{2}^{\alpha} q_{1}^{\beta}}{m_{Z}^{2}}+F_{4}^{e \mu}\left(q_{1}^{2}, q_{2}^{2}\right) \frac{\varepsilon^{\alpha \beta \rho \sigma} q_{2 \rho} q_{1 \sigma}}{m_{Z}^{2}}\right] } \\
& \text { Longitudinal } \quad \text { Transverse } \quad \text { CP-odd }
\end{aligned}
$$

General approach: measure the double differential distribution in $\left(q_{1}{ }^{2}, q_{2}{ }^{2}\right)$

Higgs to 4-fermion decays

Long-distance (non-local) modes (poles): propagation of EW gauge bosons.

Short-distance modes: contact terms, x and/or $y \rightarrow 0$

Higgs to 4-fermion decays

Long-distance (non-local) modes (poles): propagation of EW gauge bosons.

Short-distance modes: contact terms, x and/or $y \rightarrow 0$

We expand around the physical poles:

Higgs to 4-fermion decays

Assumption: \quad (To troncate the expansion)
No new light state can mediate this amplitude.
New Physics scale $>$ Higgs mass scale (poles):

We expand around the physical poles:

Higgs to 4-fermion decays

Assumption: \quad (To troncate the expansion)
No new light state can mediate this amplitude.
New Physics scale $>$ Higgs mass scale

We expand around the physical poles:

We neglect completely local terms, corresponding to operators with $d>6$: EFT assumption.

$$
\mathcal{O}(x)=h(x) \bar{e}(x) \gamma_{\mu} e(x) \bar{\mu}(x) \gamma^{\mu} \mu(x)
$$

The Higgs PO are defined from the residues on the physical poles.

$$
\begin{aligned}
e= & e_{L}, e_{R}, \quad \mu=\mu_{L}, \mu_{R} \\
\mathcal{A}= & i \frac{2 m_{Z}^{2}}{v_{F}}\left(\bar{e} \gamma_{\alpha} e\right)\left(\bar{\mu} \gamma_{\beta} \mu\right) \times \\
& {\left[\left(\kappa_{Z Z} \frac{g_{Z}^{e} g_{Z}^{\mu}}{P_{Z}\left(q_{1}^{2}\right) P_{Z}\left(q_{2}^{2}\right)}+\frac{\epsilon_{Z e}}{m_{Z}^{2}} \frac{g_{Z}^{\mu}}{P_{Z}\left(q_{2}^{2}\right)}+\frac{\epsilon_{Z \mu}}{m_{Z}^{2}} \frac{g_{Z}^{e}}{P_{Z}\left(q_{1}^{2}\right)}+\Delta_{1}^{\mathrm{SM}}\left(q_{1}^{2}, q_{2}^{2}\right)\right) g^{\alpha \beta}+\right.}
\end{aligned}
$$

$$
\begin{aligned}
\epsilon_{\gamma \gamma}^{\mathrm{SM}-1 \mathrm{~L}} & \simeq 3.8 \times 10^{-3}, \\
\epsilon_{Z \gamma}^{\text {SM- } 1 \mathrm{~L}} & \simeq 6.7 \times 10^{-3}
\end{aligned}
$$

The Higgs PO are defined from the residues on the physical poles.

$$
\begin{aligned}
& e=e_{L}, e_{R}, \quad \mu=\mu_{L}, \mu_{R} \\
& \mathcal{A}= i \frac{2 m_{Z}^{2}}{v_{F}}\left(\bar{e} \gamma_{\alpha} e\right)\left(\bar{\mu} \gamma_{\beta} \mu\right) \times \\
& {\left[\left(\kappa_{Z Z} \frac{g_{Z}^{e} g_{Z}^{\mu}}{P_{Z}\left(q_{1}^{2}\right) P_{Z}\left(q_{2}^{2}\right)}+\frac{\epsilon_{Z e}}{m_{Z}^{2}} \frac{g_{Z}^{\mu}}{P_{Z}\left(q_{2}^{2}\right)}+\frac{\epsilon_{Z \mu}}{m_{Z}^{2}} \frac{g_{Z}^{e}}{P_{Z}\left(q_{1}^{2}\right)}+\Delta_{1}^{\mathrm{SM}}\left(q_{1}^{2}, q_{2}^{2}\right)\right) g^{\alpha \beta}+\right.} \\
&+\left(\epsilon_{Z Z} \frac{g_{Z}^{e} g_{Z}^{\mu}}{P_{Z}\left(q_{1}^{2}\right) P_{Z}\left(q_{2}^{2}\right)}+\kappa_{Z \gamma} \epsilon_{Z \gamma}^{\mathrm{SM}-1 \mathrm{~L}}\left(\frac{e Q_{\mu} g_{Z}^{e}}{q_{2}^{2} P_{Z}\left(q_{1}^{2}\right)}+\frac{e Q_{e} g_{Z}^{\mu}}{q_{1}^{2} P_{Z}\left(q_{2}^{2}\right)}\right)+\kappa_{\gamma \gamma} \epsilon_{\gamma \gamma}^{\mathrm{SM}-1 \mathrm{~L}} \frac{e^{2} Q_{e} Q_{\mu}}{q_{1}^{2} q_{2}^{2}}+\Delta_{3}^{\mathrm{SM}}\left(q_{1}^{2}, q_{2}^{2}\right)\right) \times \\
& \times \frac{q_{1} \cdot q_{2} g^{\alpha \beta}-q_{2}^{\alpha} q_{1}^{\beta}}{m_{Z}^{2}}+
\end{aligned}
$$

In the $\mathrm{SM} \quad \kappa_{X} \rightarrow 1, \epsilon_{X} \rightarrow 0$

$$
P_{Z}\left(q^{2}\right)=q^{2}-m_{Z}^{2}+i m_{Z} \Gamma_{Z}
$$

$$
\begin{aligned}
\epsilon_{\gamma \gamma}^{\mathrm{SM}-1 \mathrm{~L}} & \simeq 3.8 \times 10^{-3} \\
\epsilon_{Z \gamma}^{\mathrm{SM}-1 \mathrm{~L}} & \simeq 6.7 \times 10^{-3}
\end{aligned}
$$

The Higgs PO are defined from the residues on the physical poles.

$$
e=e_{L}, e_{R}, \quad \mu=\mu_{L}, \mu_{R}
$$

$$
\mathcal{A}=i \frac{2 m_{Z}^{2}}{v_{F}}\left(\bar{e} \gamma_{\alpha} e\right)\left(\bar{\mu} \gamma_{\beta} \mu\right) \times
$$

$$
\left[\left(\kappa_{Z Z} \frac{g_{Z}^{e} g_{Z}^{\mu}}{P_{Z}\left(q_{1}^{2}\right) P_{Z}\left(q_{2}^{2}\right)}+\frac{\epsilon_{Z e}}{m_{Z}^{2}} \frac{g_{Z}^{\mu}}{P_{Z}\left(q_{2}^{2}\right)}+\frac{\epsilon_{Z \mu}}{m_{Z}^{2}} \frac{g_{Z}^{e}}{P_{Z}\left(q_{1}^{2}\right)}+\Delta_{1}^{\mathrm{SM}}\left(q_{1}^{2}, q_{2}^{2}\right)\right) g^{\alpha \beta}+\right.
$$

$$
+\left(\epsilon_{Z Z} \frac{g_{Z}^{e} g_{Z}^{\mu}}{P_{Z}\left(q_{1}^{2}\right) P_{Z}\left(q_{2}^{2}\right)}+\kappa_{Z \gamma} \epsilon_{Z \gamma}^{\mathrm{SM}-1 \mathrm{~L}}\left(\frac{e Q_{\mu} g_{Z}^{e}}{q_{2}^{2} P_{Z}\left(q_{1}^{2}\right)}+\frac{e Q_{e} g_{Z}^{\mu}}{q_{1}^{2} P_{Z}\left(q_{2}^{2}\right)}\right)+\kappa_{\gamma \gamma} \epsilon_{\gamma \gamma}^{\mathrm{SM}-1 \mathrm{~L}} \frac{e^{2} Q_{e} Q_{\mu}}{q_{1}^{2} q_{2}^{2}}+\Delta_{3}^{\mathrm{SM}}\left(q_{1}^{2}, q_{2}^{2}\right)\right) \times
$$

$$
\times \frac{q_{1} \cdot q_{2} g^{\alpha \beta}-q_{2}{ }^{\alpha} q_{1}^{\beta}}{m_{Z}^{2}}+
$$

$$
\left.+\left(\epsilon_{Z Z}^{\mathrm{CP}} \frac{g_{Z}^{e} g_{Z}^{\mu}}{P_{Z}\left(q_{1}^{2}\right) P_{Z}\left(q_{2}^{2}\right)}+\epsilon_{Z \gamma}^{\mathrm{CP}}\left(\frac{e Q_{\mu} g_{Z}^{e}}{q_{2}^{2} P_{Z}\left(q_{1}^{2}\right)}+\frac{e Q_{e} g_{Z}^{\mu}}{q_{1}^{2} P_{Z}\left(q_{2}^{2}\right)}\right)+\epsilon_{\gamma \gamma}^{\mathrm{CP}} \frac{e^{2} Q_{e} Q_{\mu}}{q_{1}^{2} q_{2}^{2}}\right) \frac{\varepsilon^{\alpha \beta \rho \sigma} q_{2 \rho} q_{1 \sigma}}{m_{Z}^{2}}\right]
$$

In the $\mathrm{SM} \quad \kappa_{X} \rightarrow 1, \epsilon_{X} \rightarrow 0$

$$
P_{Z}\left(q^{2}\right)=q^{2}-m_{Z}^{2}+i m_{Z} \Gamma_{Z}
$$

$$
\begin{aligned}
\epsilon_{\gamma \gamma}^{\mathrm{SM}-1 \mathrm{~L}} & \simeq 3.8 \times 10^{-3}, \\
\epsilon_{Z \gamma}^{\mathrm{SM}-1 \mathrm{~L}} & \simeq 6.7 \times 10^{-3}
\end{aligned}
$$

The Higgs PO are defined from the residues on the physical poles.

contact terms
only source of
flavor dependence

$$
\mathcal{A}=i \frac{2 m_{Z}^{2}}{v_{F}}\left(\bar{e} \gamma_{\alpha} e\right)\left(\bar{\mu} \gamma_{\beta} \mu\right) \times
$$

$$
\left[\left(\kappa_{Z Z} \frac{g_{Z}^{e} g_{Z}^{\mu}}{P_{Z}\left(q_{1}^{2}\right) P_{Z}\left(q_{2}^{2}\right)}+\frac{\epsilon_{Z e}}{m_{Z}^{2}} \frac{g_{Z}^{\mu}}{P_{Z}\left(q_{2}^{2}\right)}+\frac{\epsilon_{Z \mu}}{m_{Z}^{2}} \frac{g_{Z}^{e}}{P_{Z}\left(q_{1}^{2}\right)}+\Delta_{1}^{\mathrm{SM}}\left(q_{1}^{2}, q_{2}^{2}\right)\right) g^{\alpha \beta}+\right.
$$

$$
+\left(\epsilon_{Z Z} \frac{g_{Z}^{e} g_{Z}^{\mu}}{P_{Z}\left(q_{1}^{2}\right) P_{Z}\left(q_{2}^{2}\right)}+\kappa_{Z \gamma} \epsilon_{Z \gamma}^{\mathrm{SM}}-1 \mathrm{~L}\left(\frac{e Q_{\mu} g_{Z}^{e}}{q_{2}^{2} P_{Z}\left(q_{1}^{2}\right)}+\frac{e Q_{e} g_{Z}^{\mu}}{q_{1}^{2} P_{Z}\left(q_{2}^{2}\right)}\right)+\kappa_{\gamma \gamma} \epsilon_{\gamma \gamma}^{\mathrm{SM}-1 \mathrm{~L}} \frac{e^{2} Q_{e} Q_{\mu}}{q_{1}^{2} q_{2}^{2}}+\Delta_{3}^{\mathrm{SM}}\left(q_{1}^{2}, q_{2}^{2}\right)\right) \times
$$

$$
\times \frac{q_{1} \cdot q_{2} g^{\alpha \beta}-q_{2}{ }^{\alpha} q_{1}{ }^{\beta}}{m_{Z}^{2}}+
$$

$$
\left.+\left(\epsilon_{Z Z}^{\mathrm{CP}} \frac{g_{Z}^{e} g_{Z}^{\mu}}{P_{Z}\left(q_{1}^{2}\right) P_{Z}\left(q_{2}^{2}\right)}+\epsilon_{Z \gamma}^{\mathrm{CP}}\left(\frac{e Q_{\mu} g_{Z}^{e}}{q_{2}^{2} P_{Z}\left(q_{1}^{2}\right)}+\frac{e Q_{e} g_{Z}^{\mu}}{q_{1}^{2} P_{Z}\left(q_{2}^{2}\right)}\right)+\epsilon_{\gamma \gamma}^{\mathrm{CP}} \frac{e^{2} Q_{e} Q_{\mu}}{q_{1}^{2} q_{2}^{2}}\right) \frac{\varepsilon^{\alpha \beta \rho \sigma} q_{2 \rho} q_{1 \sigma}}{m_{Z}^{2}}\right]
$$

In the $\mathrm{SM} \quad \kappa_{X} \rightarrow 1, \epsilon_{X} \rightarrow 0$

$$
P_{Z}\left(q^{2}\right)=q^{2}-m_{Z}^{2}+i m_{Z} \Gamma_{Z}
$$

$$
\begin{aligned}
\epsilon_{\gamma \gamma}^{\mathrm{SM}-1 \mathrm{~L}} & \simeq 3.8 \times 10^{-3} \\
\epsilon_{Z \gamma}^{\mathrm{SN}-1 \mathrm{~L}} & \simeq 6.7 \times 10^{-3}
\end{aligned}
$$

The Higgs PO are defined from the residues on the physical poles.

$$
e=e_{L}, e_{R}, \quad \mu=\mu_{L}, \mu_{R} \quad \text { Z-pole PO }
$$

$$
\mathcal{A}=i \frac{2 m_{Z}^{2}}{v_{F}}\left(\bar{e} \gamma_{\alpha} e\right)\left(\bar{\mu} \gamma_{\beta} \mu\right) \times
$$

$$
\left[\left(\kappa_{Z Z} \frac{g_{Z}^{e} g_{Z}^{\mu}}{P_{Z}\left(q_{1}^{2}\right) P_{Z}\left(q_{2}^{2}\right)}+\frac{\epsilon_{Z e}}{m_{Z}^{2}} \frac{g_{Z}^{\mu}}{P_{Z}\left(q_{2}^{2}\right)}+\frac{\epsilon_{Z \mu}}{m_{Z}^{2}} \frac{g_{Z}^{e}}{P_{Z}\left(q_{1}^{2}\right)}+\Delta_{1}^{\mathrm{SM}}\left(q_{1}^{2}, q_{2}^{2}\right)\right) g^{\alpha \beta}+\right.
$$

$$
+\left(\epsilon_{Z Z} \frac{g_{Z}^{e} g_{Z}^{\mu}}{P_{Z}\left(q_{1}^{2}\right) P_{Z}\left(q_{2}^{2}\right)}+\kappa_{Z \gamma} \epsilon_{Z \gamma}^{\mathrm{SM}}-1 \mathrm{~L}\left(\frac{e Q_{\mu} g_{Z}^{e}}{q_{2}^{2} P_{Z}\left(q_{1}^{2}\right)}+\frac{e Q_{e} g_{Z}^{\mu}}{q_{1}^{2} P_{Z}\left(q_{2}^{2}\right)}\right)+\kappa_{\gamma \gamma} \epsilon_{\gamma \gamma}^{\mathrm{SM}-1 \mathrm{~L}} \frac{e^{2} Q_{e} Q_{\mu}}{q_{1}^{2} q_{2}^{2}}+\Delta_{3}^{\mathrm{SM}}\left(q_{1}^{2}, q_{2}^{2}\right)\right) \times
$$

$$
\times \frac{q_{1} \cdot q_{2} g^{\alpha \beta}-q_{2}^{\alpha} q_{1}^{\beta}}{m_{Z}^{2}}+
$$

$$
\left.+\left(\epsilon_{Z Z}^{\mathrm{CP}} \frac{g_{Z}^{e} g_{Z}^{\mu}}{P_{Z}\left(q_{1}^{2}\right) P_{Z}\left(q_{2}^{2}\right)}+\epsilon_{Z \gamma}^{\mathrm{CP}}\left(\frac{e Q_{\mu} g_{Z}^{e}}{q_{2}^{2} P_{Z}\left(q_{1}^{2}\right)}+\frac{e Q_{e} g_{Z}^{\mu}}{q_{1}^{2} P_{Z}\left(q_{2}^{2}\right)}\right)+\epsilon_{\gamma \gamma}^{\mathrm{CP}} \frac{e^{2} Q_{e} Q_{\mu}}{q_{1}^{2} q_{2}^{2}}\right) \frac{\varepsilon^{\alpha \beta \rho \sigma} q_{2 \rho} q_{1 \sigma}}{m_{Z}^{2}}\right]
$$

In the $\mathrm{SM} \quad \kappa_{X} \rightarrow 1, \epsilon_{X} \rightarrow 0$

$$
P_{Z}\left(q^{2}\right)=q^{2}-m_{Z}^{2}+i m_{Z} \Gamma_{Z}
$$

$$
\begin{aligned}
\epsilon_{\gamma \gamma}^{\mathrm{SM}-1 \mathrm{~L}} & \simeq 3.8 \times 10^{-3} \\
\epsilon_{Z \gamma}^{\mathrm{SM}-1 \mathrm{~L}} & \simeq 6.7 \times 10^{-3}
\end{aligned}
$$

Charged current decays

The same approach can be extended to charged current decays

$$
\text { Only c.c: } \quad h \rightarrow \bar{\nu}_{e} e \bar{\mu} \nu_{\mu}
$$

$$
\begin{array}{ll}
\text { Interference } & h \rightarrow e^{+} e^{-} \nu \bar{\nu} \\
\text { of c.c. and n.c.: } & h \rightarrow \mu^{+} \mu^{-} \nu \bar{\nu}
\end{array}
$$

$$
\begin{aligned}
\mathcal{A}= & i \frac{2 m_{W}^{2}}{v_{F}}\left(\bar{e}_{L} \gamma_{\alpha} \nu_{e}\right)\left(\bar{\nu}_{\mu} \gamma_{\beta} \mu_{L}\right) \times \\
& {\left[\left(\kappa_{W W} \frac{\left(g_{W}^{e}\right)^{*} g_{W}^{\mu}}{P_{W}\left(q_{1}^{2}\right) P_{W}\left(q_{2}^{2}\right)}+\frac{\left(\epsilon_{W e_{L}}\right)^{*}}{m_{W}^{2}} \frac{g_{W}^{\mu}}{P_{W}\left(q_{2}^{2}\right)}+\frac{\epsilon_{W \mu_{L}}}{m_{Z}^{2}} \frac{\left(g_{W}^{e}\right)^{*}}{P_{W}\left(q_{1}^{2}\right)}\right) g^{\alpha \beta}+\right.} \\
& \left.+\epsilon_{W W} \frac{\left(g_{W}^{e}\right)^{*} g_{W}^{\mu}}{P_{W}\left(q_{1}^{2}\right) P_{W}\left(q_{2}^{2}\right)} \times \frac{q_{1} \cdot q_{2} g^{\alpha \beta}-q_{2}{ }^{\alpha} q_{1}{ }^{\beta}}{m_{W}^{2}}+\epsilon_{W W}^{\mathrm{CP}} \frac{\left(g_{W}^{e}\right)^{*} g_{W}^{\mu}}{P_{W}\left(q_{1}^{2}\right) P_{W}\left(q_{2}^{2}\right)} \frac{\varepsilon^{\alpha \beta \rho \sigma} q_{2 \rho} q_{1 \sigma}}{m_{W}^{2}}\right]
\end{aligned}
$$

Parameter counting and symmetry assumptions

Neutral current
$h \rightarrow e^{+} e^{-} \mu^{+} \mu^{-}$
$h \rightarrow \mu^{+} \mu^{-} \mu^{+} \mu^{-} \quad \kappa_{Z Z}, \kappa_{Z \gamma}, \kappa_{\gamma \gamma}, \epsilon_{Z Z}$,
$h \rightarrow e^{+} e^{-} e^{+} e^{-}$
$\epsilon_{Z \gamma}^{C P}, \epsilon_{\gamma \gamma}^{C P}, \epsilon_{Z Z}^{C P}$,
$h \rightarrow \gamma e^{+} e^{-}$
$h \rightarrow \gamma \mu^{+} \mu^{-}$
$\epsilon_{Z e_{L}}, \epsilon_{Z e_{R}}, \epsilon_{Z \mu_{L}}, \epsilon_{Z \mu_{R}}$
$h \rightarrow \gamma Y$
11

Symmetries impose relations among these observables.

Parameter counting and symmetry assumptions

Neutral current
$h \rightarrow e^{+} e^{-} \mu^{+} \mu^{-}$
$h \rightarrow \mu^{+} \mu^{-} \mu^{+} \mu^{-} \quad \kappa_{Z Z}, \kappa_{Z \gamma}, \kappa_{\gamma \gamma}, \epsilon_{Z Z}$,
$h \rightarrow e^{+} e^{-} e^{+} e^{-}$
$\epsilon_{Z \gamma}^{C P}, \epsilon_{\gamma \gamma}^{C P}, \epsilon_{Z Z}^{C P}$,
$h \rightarrow \gamma e^{+} e^{-}$
$h \rightarrow \gamma \mu^{+} \mu^{-}$
$\epsilon_{Z e_{L}}, \epsilon_{Z e_{R}}, \epsilon_{Z \mu_{L}}, \epsilon_{Z \mu_{R}}$
$h \rightarrow \gamma Y$
11

$$
\begin{array}{lll}
\text { Charged } & h \rightarrow e^{+} \mu^{-} v \nu & \kappa_{W W}, \epsilon_{W W}, \epsilon_{W W}^{C P}, \\
\text { current } & h \rightarrow e^{-} \mu^{+} \nu v & \epsilon_{W e}, \epsilon_{W \mu}, \text { (complex) }
\end{array}
$$

Symmetries impose relations among these observables.

Flavor universality

$$
\begin{aligned}
\epsilon_{Z e_{L}} & =\epsilon_{Z \mu_{L}} \\
\epsilon_{Z e_{R}} & =\epsilon_{Z \mu_{R}} \\
\epsilon_{Z \nu_{e}} & =\epsilon_{Z \nu_{\mu}} \\
\epsilon_{W e_{L}} & =\epsilon_{W \mu_{L}}
\end{aligned}
$$

Parameter counting and symmetry assumptions

Neutral current

$h \rightarrow e^{+} e^{+} \mu^{+} \mu^{-}$	
$h \rightarrow \mu^{+} \mu^{+} \mu^{+}$	$\kappa_{Z Z}, \kappa_{Z \gamma}, \kappa_{\gamma \gamma}, \epsilon_{Z Z}$,
$h \rightarrow e^{+} e^{-e} e^{-}$	$\epsilon_{Z \gamma}^{C P}, \epsilon_{\gamma \gamma}^{C P}, \epsilon_{Z Z}^{G P}$,
$h \rightarrow \gamma e^{+}-$	$\epsilon_{Z e_{L}}, \epsilon_{Z e_{R}}, \epsilon_{Z \mu_{L}}, \epsilon_{Z \mu_{R}}$
$h \rightarrow \gamma \mu^{+} \mu^{-}$	$\mathbf{1 1}$
$h \rightarrow \gamma \gamma$	

$$
\begin{array}{lll}
\text { Charged } & h \rightarrow e^{+} \mu^{-} v \nu & \kappa_{W W}, \epsilon_{W W}, \epsilon_{W W}^{C P}, \\
\text { current } & h \rightarrow e^{-} \mu^{+} \nu v & \epsilon_{W e}, \epsilon_{W \mu}, \text { (complex) }
\end{array}
$$

Symmetries impose relations among these observables.

$$
\begin{aligned}
& \text { Flavor unive } \\
& \epsilon_{Z e_{L}}=\epsilon_{2} \quad \text { CP Invariance } \\
& \epsilon_{Z e_{R}}=\epsilon_{2} \quad \epsilon_{Z Z}^{C P}=\epsilon_{Z \gamma}^{C P}=\epsilon_{\gamma \gamma}^{C P}=\epsilon_{W W}^{C P}=\operatorname{Im} \epsilon_{W e_{L}}=\operatorname{Im} \epsilon_{W \mu_{L}}=0 \\
& \epsilon_{Z \nu_{e}}=\epsilon_{Z \nu_{\mu}} \\
& \epsilon_{W e_{L}}=\epsilon_{W \mu_{L}} .
\end{aligned}
$$

Parameter counting and symmetry assumptions

Neutral current

$h \rightarrow e^{+} e^{-} \mu^{+} \mu^{-}$	
$h \rightarrow \mu^{+} \mu^{-} \mu^{+} \mu^{-}$	$\kappa_{Z Z}, \kappa_{Z \gamma}, \kappa_{\gamma \gamma}, \epsilon_{Z Z}$,
$h \rightarrow e^{+} e^{-} e^{+} e^{-}$	$\epsilon_{Z \gamma}^{C P}, \epsilon_{\gamma \gamma}^{C P}, \epsilon_{Z Z}^{C P}$,
$h \rightarrow \gamma e^{+} e^{-}$	$\epsilon_{Z e_{L}}, \epsilon_{Z e_{R}}, \epsilon_{Z \mu_{L}}, \epsilon_{Z \mu_{R}}$
$h \rightarrow \gamma \mu^{+} \mu^{-}$	11
$h \rightarrow \gamma \gamma$	

$$
\begin{array}{lll}
\text { Charged } & h \rightarrow e^{+} \mu^{-} \nu v & \kappa_{W W}, \epsilon_{W W}, \epsilon_{W W}^{C P} \\
\text { current } & h \rightarrow e^{-} \mu^{+} \nu v & \epsilon_{W e}, \epsilon_{W \mu}, \text { (complex) }
\end{array}
$$

$$
\begin{array}{lll}
\text { N. \& C. } & h \rightarrow e^{+} e-v v & \text { others + } \\
\text { interference } & h \rightarrow \mu \mu^{+} \nu v & \epsilon_{Z \nu_{e}}, \epsilon_{Z \nu_{\mu}}
\end{array}
$$

Symmetries impose relations among these observables.

* Accidentally true also in the linear EFT.

Parameter counting and symmetry assumptions

Neutral current

$h \rightarrow e^{+} e^{-} \mu^{+} \mu^{-}$	
$h \rightarrow \mu^{+} \mu^{-} \mu^{+} \mu^{-}$	$\kappa_{Z Z}, \kappa_{Z \gamma}, \kappa_{\gamma \gamma}, \epsilon_{Z Z}$,
$h \rightarrow e^{+} e^{+} e^{+} e^{-}$	$\epsilon_{Z \gamma}^{C P}, \epsilon_{\gamma \gamma}^{C P}, \epsilon_{Z Z}^{C P}$,
$h \rightarrow \gamma e^{+} e^{-}$	$\epsilon_{Z e_{L}}, \epsilon_{Z e_{R}}, \epsilon_{Z \mu_{L}}, \epsilon_{Z \mu_{R}}$
$h \rightarrow \gamma \mu^{+} \mu^{-}$	11
$h \rightarrow \gamma \gamma$	

$$
\begin{array}{lll}
\text { Charged } & h \rightarrow e^{+} \mu^{-} v \nu & \kappa_{W W}, \epsilon_{W W}, \epsilon_{W W}^{C P}, \\
\text { current } & h \rightarrow e^{-} \mu^{+} \nu v & \epsilon_{W e}, \epsilon_{W \mu}, \text { (complex) }
\end{array}
$$

Symmetries 20 (general case)

$$
\begin{array}{llll}
\text { N. \& C. } & h \rightarrow e^{+} e^{-v v} & \text { others + } & 2 \\
\text { interference } & h \rightarrow \mu^{-} \mu^{+} \nu v & \epsilon_{Z \nu_{e}}, \epsilon_{Z \nu_{\mu}}
\end{array}
$$

7 (max symm.)

Custodial symmetry

\star Accidentally true also in the linear EFT.

Parameter counting and symmetry assumptions

Custodial symmetry

* Accidentally true also in the linear EFT.

Prospects in h $\rightarrow 4 \ell$

[Work in progress]

At HL-LHC (2037) we will have ~ 8000 events in $\mathrm{h} \rightarrow 4 \ell$
ATLAS Selected signal event rates

	ttH	ZH	WH	VBF	ggH
$300 \mathrm{fb}^{-1}$	35	5.7	67	97	3800

[From Aleandro Nisati's talk at LHCP 2015]
few \% precision in $\mathrm{h} \rightarrow \mathrm{Y} \mathrm{Y}$
$\sim 10 \%$ precision in $h \rightarrow Z \gamma$

They already
fix 4 PO to be really small.

A precise 11 parameter global fit is very reasonable.

Radiative Corrections

The most important radiative corrections are given by soft QED radiation effects since they distort the spectrum.

Effect described by simple and universal radiator functions.
~15\% effect!
Other NLO corrections are small: $\leq 1 \%$

Radiative Corrections

Taking this effect into account is necessary to extract the PO from data.

All these benchmark points give a SM-like total rate.

Showering algorithms (e.g. PHOTOS or PYTHIA) correctly describe these corrections.

Tools: HiggsPO

In collaboration with Admir Greljo and Gino Isidori
www.physik.uzh.ch/data/HiggsPO

A Universal FeynRules Output model for generating Higgs decays with MG5_aMC@NLO.

To be used to generate the on-shell Higgs decay amplitudes described before. (use tree-level Feynman rules to generate the amplitude we need)

Extensively validated by comparing to our analytic results and other codes (Higgs Characterization, MEKD).

To summarize. Higgs PO in decay

- Related to physical distributions, measurable experimentally.
- Defined from the residues of the Green function on its poles. (valid at all orders in perturbation theory)
- Can be used to test symmetries and/or dynamics of the NP sector.
- QED radiation corrections are easily implemented.
- Implemented a Montecarlo tool for event generation.

Pseudo observables

in
Electroweak Higgs Production

PO in EW Higgs Production

[Work in progress with Admir, Gino and Jonas]

$$
\langle 0| \mathcal{T}\left\{J_{f}^{\mu}(x), J_{f^{\prime}}^{\nu}(y), h(0)\right\}|0\rangle
$$

By crossing symmetry, the same correlation function (in a different kinematical region and with different fermionic currents) enters also in EW Higgs production.

Associate Zh production

The amplitude is the same as for the decays:

$$
\begin{aligned}
& \mathcal{A}\left(q_{i}\left(p_{1}\right) \bar{q}_{i}\left(p_{2}\right) \rightarrow h(p) Z(k)\right)=i \frac{2 m_{W}^{2}}{v} \bar{q}_{i}\left(p_{2}\right) \gamma_{\nu} q_{i}\left(p_{1}\right) \epsilon_{\mu}^{Z *}(k)\left[\left(\kappa_{Z Z} \frac{g_{Z q_{i}}}{P_{Z}\left(q^{2}\right)}+\frac{\epsilon_{Z q_{i}}}{m_{Z}^{2}}\right) g^{\mu \nu}+\right. \\
& \left.\left(\epsilon_{Z Z} \frac{g_{Z q_{i}}}{P_{Z}\left(q^{2}\right)}+\epsilon_{Z \gamma} \frac{e Q_{q}}{q^{2}}\right) \frac{-(q \cdot k) g^{\mu \nu}+q^{\mu} k^{\nu}}{m_{Z}^{2}}+\left(\tilde{\epsilon}_{Z Z} \frac{g_{Z q_{i}}}{P_{Z}\left(q^{2}\right)}+\tilde{\epsilon}_{Z \gamma} \frac{e Q_{q}}{q^{2}}\right) \frac{-\epsilon^{\mu \nu \alpha \beta} q_{\alpha} k_{\beta}}{m_{Z}^{2}}\right]
\end{aligned}
$$

Only quark contact terms are not probed in $\mathrm{h} \rightarrow 4 \ell$ decays.

Form factor,
mom. expansion validity

$$
\text { only } 1 \text { observable: } \quad q^{2}=\left(p_{h}+k_{Z}\right)^{2}
$$

VBF Higgs production

Again, same amplitude as decays.

Initial state quarks are not accessible, so is q^{2}. (unless Higgs is reconstructed)
p_{T} of the jets is a good proxy for the q^{2}.

VBF Higgs production

Again, same amplitude as decays.

Initial state quarks are not accessible, so is q^{2}. (unless Higgs is reconstructed)
p_{T} of the jets is a good proxy for the q^{2}.

VBF Higgs production

Again, same amplitude as decays.

${ }^{7.5 \times 10^{-3}}$ General approach: measure the double differential distribution in $\left(p_{\mathrm{T} 1}{ }^{2}, p_{\mathrm{T} 2}{ }^{2}\right)$

With $3000 \mathrm{fb}^{-1}: ~ \sim 2000$ events in VBF

precision physics!

2000 events in VBF Higgs production

Flavor-independent PO probed in $h \rightarrow 4 \ell$ decay. \rightarrow Focus on quark contact terms.
For simplicity let's assume Minimal Flavor Violation. Consider 7 PO:

$$
\kappa_{Z Z}, \quad \kappa_{W W}, \quad \epsilon_{Z u_{L}}, \quad \epsilon_{Z u_{R}}, \quad \epsilon_{Z d_{L}}, \quad \epsilon_{Z d_{R}}, \quad \epsilon_{W u_{L}}
$$

Do a fit of the 2D p_{T} distribution, up to 600 GeV .
Momentum expansion validity.

2000 events in VBF Higgs production

Flavor-independent PO probed in $h \rightarrow 4 \ell$ decay. \rightarrow Focus on quark contact terms.
For simplicity let's assume Minimal Flavor Violation. Consider 7 PO:

$$
\kappa_{Z Z}, \quad \kappa_{W W}, \quad \epsilon_{Z u_{L}}, \quad \epsilon_{Z u_{R}}, \quad \epsilon_{Z d_{L}}, \quad \epsilon_{Z d_{R}}, \quad \epsilon_{W u_{L}}
$$

Do a fit of the 2D p_{T} distribution, up to 600 GeV .
Momentum expansion validity.

Very preliminary result. Only at parton level:

$$
\left(\begin{array}{c}
\kappa_{Z Z} \\
\kappa_{W W} \\
\epsilon_{Z u_{L}} \\
\epsilon_{Z u_{R}} \\
\epsilon_{Z d_{L}} \\
\epsilon_{Z d_{R}} \\
\epsilon_{W} u_{L}
\end{array}\right): \quad \sigma=\left(\begin{array}{c}
0.46 \\
0.17 \\
0.015 \\
0.023 \\
0.021 \\
0.031 \\
0.004
\end{array}\right) \quad \text { Assuming expected } 2000 \text { events in the } S
$$

LHC will be able to measure all the contact terms with percent accuracy! Same conclusion also if no information on the total rate is retained.

Pseudo observables and
the SM Effective Theory

The Linear SM Effective Field Theory

Integrate out the heavy BSM dof. Low energy theory specified by Symmetries \& Field content

Assuming $\mathrm{h}(125)$ is a $\mathrm{SU}(2)\llcorner$ doublet (linear EFT)
$\varphi=\binom{\varphi^{+}}{\varphi^{0}}=\frac{1}{\sqrt{2}}\binom{0}{v+h(x)}$

Scale of New Physics is high
and
$\Lambda_{N P} \gg m_{h}$

The Linear SM Effective Field Theory

Integrate out the heavy BSM dof. Low energy theory specified by Symmetries \& Field content

Assuming $\mathrm{h}(125)$ is a $\mathrm{SU}(2)\llcorner$ doublet (linear EFT)
$\varphi=\binom{\varphi^{+}}{\varphi^{0}}=\frac{1}{\sqrt{2}}\binom{0}{v+h(x)}$
and
Scale of New Physics is high

$$
\Lambda_{N P} \gg m_{h}
$$

Assuming L and B conservation

Standard Model
Lagrangian ($\mathrm{d} \leq 4$)

Leading deformations of the SM

59 independent dim-6 operators if flavour universality. 2499 parameters for a generic flavour structure.

The power of the EFT: relating different observables

The same operator can contribute to different processes.
For example: $\quad O_{H f}=i\left(H^{\dagger} \stackrel{\leftrightarrow}{D_{\mu}} H\right) \bar{f} \gamma^{\mu} f=-\frac{1}{2} \sqrt{g^{2}+g^{\prime 2}} Z_{\mu}(v+h)^{2} \bar{f} \gamma^{\mu} f$

Z couplings $\delta g_{Z f}$

Higgs decay \& production

The power of the EFT: relating different observables

The same operator can contribute to different processes.
For example: $\quad O_{H f}=i\left(H^{\dagger} \stackrel{\leftrightarrow}{D_{\mu}} H\right) \bar{f} \gamma^{\mu} f=-\frac{1}{2} \sqrt{g^{2}+g^{\prime 2}} Z_{\mu}(v+h)^{2} \bar{f} \gamma^{\mu} f$

Higgs decay \& production

or

Z couplings $\delta g_{Z f}$
\&

Triple Gauge Couplings $\delta \kappa_{z}, \delta g_{l, z}, \lambda_{Z}$

The power of the EFT: relating different observables

The same operator can contribute to different processes.
For example: $\quad O_{H f}=i\left(H^{\dagger} \stackrel{\leftrightarrow}{D_{\mu}} H\right) \bar{f} \gamma^{\mu} f=-\frac{1}{2} \sqrt{g^{2}+g^{\prime 2}} Z_{\mu}(v+h)^{2} \bar{f} \gamma^{\mu} f$

Z couplings $\delta g_{Z f}$

Higgs decay \& production
or

\&

1Use LEP 1 and LEP 2 data to obtain bounds on some Higgs PO.

Combine LEP data with Higgs data to derive stronger constraints for the EFT.

The power of the EFT: relating different observables

Let us impose the strong LEP I constraints ($\leqslant 1 \%$).
[Pomarol Riva 2013; Efrati et al. 2015; Berthier, Trott 2015]

Assuming MFV, only 10 independent combinations of coefficients contribute at tree-level to Higgs and LEP II (WW) observables.
[Corbett et al. 2013; J. Elias-Miro et al. 2013;
Pomarol Riva 2013; Gupta et al 2014; Falkowski 2015]

The power of the EFT: relating different observables

Let us impose the strong LEP I constraints ($\approx 1 \%$).
[Pomarol Riva 2013; Efrati et al. 2015; Berthier, Trott 2015]

Assuming MFV, only 10 independent combinations of coefficients contribute at tree-level to Higgs and LEP II (WW) observables.
[Corbett et al. 2013; J. Elias-Miro et al. 2013;
Pomarol Riva 2013; Gupta et al 2014; Falkowski 2015]

Global fit in the 'Higgs basis’ [LHCHxswG 2015]
[Falkowski, Gonzalez-Alonso, Greljo, D.M. 1508.00581]
$\delta c_{z}, c_{\gamma \gamma}, c_{z \gamma}, c_{g g}, \delta y_{u}, \delta y_{d}, \delta y_{e}, \delta g_{1, z}, \delta \kappa_{\gamma}, \lambda_{z}$.
Higgs
TGC

The power of the EFT: relating different observables

Constraints on TGCs
All other coefficients have been marginalised.

LEP II data alone suffers from a flat direction in the TGC fit. [Falkowski, Riva 1411.0669]
$+$
Higgs data (mainly via VH and VBF production) is sensitive to a different direction.
[Falkowski 1505.00046]
$=$
Together they provide strong and robust constraints on the TGC.

Constraints on the Higgs PO in the linear EFT

We match the Higgs PO to the SM EFT at LO: relations with LEP observables.
e.g $\mathrm{h} \rightarrow 4 \ell$:

$$
\epsilon_{Z f}=\frac{2 m_{Z}}{v}\left(\delta g^{Z f}-\left(c_{\theta}^{2} T_{f}^{3}+s_{\theta}^{2} Y_{f}\right) \mathbf{1}_{3} \delta g_{1, z}+t_{\theta}^{2} Y_{f} \mathbf{1}_{3} \delta \kappa_{\gamma}\right)
$$

$$
\delta \epsilon_{Z Z}=\delta \epsilon_{\gamma \gamma}+\frac{2}{t_{2 \theta}} \delta \epsilon_{Z \gamma}-\frac{1}{c_{\theta}^{2}} \delta \kappa_{\gamma}
$$

$$
\text { LEP-I: } \quad \delta g^{Z \ell} \leq 10^{-2} \quad[\text { Efrati, Falkowski, Soreq 2015] }
$$

Naively $\sim 10^{-3}$ bounds, however the theoretical error is of $\sim 1 \%$.
[Berthier, Trott 2015]

From LHC:

$$
\begin{aligned}
& \delta \varepsilon_{\gamma \gamma} \leqslant 10^{-3} \\
& \delta \varepsilon_{Z \gamma} \leqslant 10^{-2}
\end{aligned}
$$

No qualitative influence for Higgs physics at present precision.

The less constrained coefficients are the TGC.

We use our combined LEP II + Higgs global fit to derive constraints on the Higgs PO.

Predictions for $h \rightarrow 4 \ell$ in the linear EFT

5 independent PO only, in the linear EFT.

$$
\begin{aligned}
\left(\begin{array}{c}
\kappa_{Z Z} \\
\epsilon_{Z \ell_{L}} \\
\epsilon_{Z \ell_{R}} \\
\kappa_{Z \gamma} \\
\kappa_{\gamma \gamma}
\end{array}\right) & =\left(\begin{array}{c}
0.85 \pm 0.17 \\
-0.0001 \pm 0.0078 \\
-0.025 \pm 0.015 \\
0.96 \pm 1.6 \\
0.88 \pm 0.19
\end{array}\right), \\
\rho & =\left(\begin{array}{ccccc}
1 & .72 & .60 & .19 & .83 \\
\cdot & 1 & .35 & -.16 & .62 \\
. & \cdot & 1 & .02 & .47 \\
\cdot & \cdot & . & 1 & .20 \\
\cdot & \cdot & \cdot & . & 1
\end{array}\right) .
\end{aligned}
$$

From these bounds we can extract precise predictions for Higgs data, such as di-lepton invariant mass spectra.

Small deviations allowed in the shape.

Predictions for $h \rightarrow 4 \ell$ in the linear EFT

5 independent PO only, in the linear EFT.

$$
\left(\begin{array}{c}
\kappa_{Z Z} \\
\epsilon_{Z \ell_{L}} \\
\epsilon_{Z \ell_{R}} \\
\kappa_{Z \gamma} \\
\kappa_{\gamma \gamma}
\end{array}\right)=\left(\begin{array}{c}
0.85 \pm 0.17 \\
-0.0001 \pm 0.0078 \\
-0.025 \pm 0.015 \\
0.96 \pm 1.6 \\
0.88 \pm 0.19
\end{array}\right)
$$

Crucial to test these predictions from data!
Any measured deviation would have deep physical consequences:
non-linear realization of EW symmetry, flavor non-universality, ...

From these bounds we can extract precise predictions for Higgs data, such as di-lepton invariant mass spectra.

Small deviations allowed in the shape.

Conclusions

Higgs PO

- general framework to describe on-shell Higgs properties: decay and production.
- defined from physical properties of the Green functions
- easy to match to specific scenarios: test hypotheses.
- clear implementation of QED soft radiation (leading NLO effect)

Implemented in FeynRules/UFO model:
www.physik.uzh.ch/data/HiggsPO/

The linear EFT provides relations among Higgs and non-Higgs processes:

- combine LEP and Higgs data to derive stronger constraints
- derive predictions for $\mathrm{h} \rightarrow 4 \ell$ processes

Testing these predictions: important test for the linear EFT.

Backup

"Physical" PO in h $\rightarrow 4 \ell$

Goal: provide a simple interpretation for the PO .

$$
\begin{aligned}
\mathcal{A}= & i \frac{2 m_{Z}^{2}}{v_{F}}\left(\bar{e} \gamma_{\alpha} e\right)\left(\bar{\mu} \gamma_{\beta} \mu\right) \times \\
& {\left[\left(\kappa_{Z Z} \frac{g_{Z}^{e} g_{Z}^{\mu}}{P_{Z}\left(q_{1}^{2}\right) P_{Z}\left(q_{2}^{2}\right)}+\frac{\epsilon_{Z e}}{m_{Z}^{2}} \frac{g_{Z}^{\mu}}{P_{Z}\left(q_{2}^{2}\right)}+\frac{\epsilon_{Z \mu}}{m_{Z}^{2}} \frac{g_{Z}^{e}}{P_{Z}\left(q_{1}^{2}\right)}\right) g^{\alpha \beta}+\right.} \\
& +\left(\epsilon_{Z Z} \frac{g_{Z}^{e} g_{Z}^{\mu}}{P_{Z}\left(q_{1}^{2}\right) P_{Z}\left(q_{2}^{2}\right)}+\kappa_{Z \gamma} \epsilon_{Z \gamma}^{\mathrm{SM}, \mathrm{eff}}\left(\frac{e Q_{\mu} g_{Z}^{e}}{q_{2}^{2} P_{Z}\left(q_{1}^{2}\right)}+\frac{e Q_{e} g_{Z}^{\mu}}{q_{1}^{2} P_{Z}\left(q_{2}^{2}\right)}\right)+\kappa_{\gamma \gamma} \epsilon_{\gamma \gamma}^{\mathrm{SM}, \mathrm{eff}} \frac{e^{2} Q_{e} Q_{\mu}}{q_{1}^{2} q_{2}^{2}}\right) \frac{q_{1} \cdot q_{2} g^{\alpha \beta}-q_{2}^{\alpha} q_{1}^{\beta}}{m_{Z}^{2}}+ \\
& +\left(\epsilon_{Z Z}^{\mathrm{CP}} \frac{g_{Z}^{e} g_{Z}^{\mu}}{P_{Z}\left(q_{1}^{2}\right) P_{Z}\left(q_{2}^{2}\right)}+\frac{\left.\left.\lambda_{Z \gamma}^{\mathrm{CP}} \epsilon_{Z \gamma}^{\mathrm{SM}, \mathrm{eff}}\left(\frac{e Q_{\mu} g_{Z}^{e}}{q_{2}^{2} P_{Z}\left(q_{1}^{2}\right)}+\frac{e Q_{e} g_{Z}^{\mu}}{q_{1}^{2} P_{Z}\left(q_{2}^{2}\right)}\right)+\lambda_{\gamma \gamma}^{\mathrm{CP}} \epsilon_{\gamma \gamma}^{\mathrm{SM}, \mathrm{eff}} \frac{e^{2} Q_{e} Q_{\mu}}{q_{1}^{2} q_{2}^{2}}\right) \frac{\varepsilon^{\alpha \beta \rho \sigma} q_{2 \rho} q_{1 \sigma}}{m_{Z}^{2}}\right]}{\hdashline \Gamma(h \longrightarrow \gamma \gamma)}\right.
\end{aligned}
$$

"Physical" PO in $h \rightarrow 4 \ell$

Goal: provide a simple interpretation for the PO.

$$
\begin{aligned}
\mathcal{A} & =i \frac{2 m_{Z}^{2}}{v_{F}}\left(\bar{e} \gamma_{\alpha} e\right)\left(\bar{\mu} \gamma_{\beta} \mu\right) \times \\
& {\left[\left(\kappa_{Z Z} \frac{g_{Z}^{e} g_{Z}^{\mu}}{P_{Z}\left(q_{1}^{2}\right) P_{Z}\left(q_{2}^{2}\right)} \frac{\epsilon_{Z e}}{m_{Z}^{2}} \frac{g_{Z}^{\mu}}{P_{Z}\left(q_{2}^{2}\right)}+\frac{\epsilon_{Z \mu}}{m_{Z}^{2}} \frac{g_{Z}^{e}}{P_{Z}\left(q_{1}^{2}\right)} g^{\alpha \beta}+\right.\right.} \\
& +\left(\epsilon_{Z Z} \frac{g_{Z}^{e} g_{Z}^{\mu}}{P_{Z}\left(q_{1}^{2}\right) P_{Z}\left(q_{2}^{2}\right)}+\kappa_{Z \gamma} \epsilon_{Z \gamma}^{\mathrm{SM}, \mathrm{eff}}\left(\frac{\bar{e} \bar{Q}_{\mu} g_{Z}^{e}}{q_{2}^{2} P_{Z}\left(q_{1}^{2}\right)}+\frac{e=Q_{e} g_{Z}^{\mu}}{q_{1}^{2} P_{Z}\left(q_{2}^{2}\right)}\right)+\kappa_{\gamma \gamma} \epsilon_{\gamma \gamma}^{\mathrm{SM}, \mathrm{eff}} \frac{e^{2} Q_{e} Q_{\mu}}{q_{1}^{2} q_{2}^{2}}\right) \frac{q_{1} \cdot q_{2} g^{\alpha \beta}-q_{2}^{\alpha} q_{1}^{\beta}}{m_{Z}^{2}}+ \\
& \left.+\left(\epsilon_{Z Z}^{\mathrm{CP}} \frac{g_{Z}^{e} g_{Z}^{\mu}}{P_{Z}\left(q_{1}^{2}\right) P_{Z}\left(q_{2}^{2}\right)}+\lambda_{Z \gamma}^{\mathrm{CP}} \epsilon_{Z \gamma}^{\mathrm{SM}, \mathrm{eff}}\left(\frac{e Q_{\mu} g_{Z}^{e}}{q_{2}^{2} P_{Z}\left(q_{1}^{2}\right)}+\frac{e Q_{e} g_{Z}^{\mu}}{q_{1}^{2} P_{Z}\left(q_{2}^{2}\right)}\right)+\lambda_{\gamma \gamma}^{\mathrm{CP}} \epsilon_{\gamma \gamma}^{\mathrm{SM}, \mathrm{eff}} \frac{e^{2} Q_{e} Q_{\mu}}{q_{1}^{2} q_{2}^{2}}\right) \frac{\varepsilon^{\alpha \beta \rho \sigma} q_{2 \rho} q_{1 \sigma}}{m_{Z}^{2}}\right]
\end{aligned}
$$

Single Z-pole.
Decay width if only the contact term is present:
$\Gamma\left(h \rightarrow Z \ell^{+} \ell^{-}\right)=0.0366\left|\epsilon_{Z \ell}\right|^{2} \mathrm{MeV}$

"Physical" PO in h $\rightarrow 4 \ell$

Goal: provide a simple interpretation for the PO .

$$
\begin{aligned}
\mathcal{A} & =i \frac{2 m_{Z}^{2}}{v_{F}}\left(\bar{e} \gamma_{\alpha} e\right)\left(\bar{\mu} \gamma_{\beta} \mu\right) \times \\
& {\left[\begin{array}{l}
\left(\kappa_{Z Z} \frac{g_{Z}^{e} g_{Z}^{\mu}}{P_{Z}\left(q_{1}^{2}\right) P_{Z}\left(q_{2}^{2}\right)}+\frac{\epsilon_{Z e}}{m_{Z}^{2}} \frac{g_{Z}^{\mu}}{P_{Z}\left(q_{2}^{2}\right)}+\frac{\epsilon_{Z \mu}}{m_{Z}^{2}} \frac{g_{Z}^{e}}{P_{Z}\left(q_{1}^{2}\right)}\right) g^{\alpha \beta}+ \\
\end{array}\right.} \\
& +\left(\begin{array}{l}
\left.\epsilon_{Z Z} \frac{g_{Z}^{e} g_{Z}^{\mu}}{P_{Z}^{\prime}\left(q_{1}^{2}\right) P_{Z}\left(q_{2}^{2}\right)}+\kappa_{Z \gamma} \epsilon_{Z \gamma}^{\mathrm{SM}, \mathrm{eff}}\left(\frac{e Q_{\mu} g_{Z}^{e}}{q_{2}^{2} P_{Z}\left(q_{1}^{2}\right)}+\frac{e Q_{e} g_{Z}^{\mu}}{q_{1}^{2} P_{Z}\left(q_{2}^{2}\right)}\right)+\kappa_{\gamma \gamma} \epsilon_{\gamma \gamma}^{\mathrm{SM}, \mathrm{eff}} \frac{e^{2} Q_{e} Q_{\mu}}{q_{1}^{2} q_{2}^{2}}\right) \frac{q_{1} \cdot q_{2} g^{\alpha \beta}-q_{2}^{\alpha} q_{1}^{\beta}}{m_{Z}^{2}}+ \\
\left.\left.\epsilon_{Z Z}^{\mathrm{CP}} \frac{g_{Z}^{e} g_{Z}^{\mu}}{P_{Z}^{2}\left(q_{1}^{2}\right) P_{Z}\left(q_{2}^{2}\right)}+\lambda_{Z \gamma}^{\mathrm{CP}} \epsilon_{Z \gamma}^{\mathrm{SM}, \mathrm{eff}}\left(\frac{e Q_{\mu} g_{Z}^{e}}{q_{2}^{2} P_{Z}\left(q_{1}^{2}\right)}+\frac{e Q_{e} g_{Z}^{\mu}}{q_{1}^{2} P_{Z}\left(q_{2}^{2}\right)}\right)+\lambda_{\gamma \gamma}^{\mathrm{CP}} \epsilon_{\gamma \gamma}^{\mathrm{SM}, \mathrm{eff}} \frac{e^{2} Q_{e} Q_{\mu}}{q_{1}^{2} q_{2}^{2}}\right) \frac{\varepsilon^{\alpha \beta \rho \sigma} q_{2 \rho} q_{1 \sigma}}{m_{Z}^{2}}\right]
\end{array}\right.
\end{aligned}
$$

Double Z-pole. $h \rightarrow Z Z$ not accessible kinematically.
We define the physical PO from $h \rightarrow 2 e 2 \mu$:

$$
\begin{aligned}
\Gamma\left(h \rightarrow Z_{L} Z_{L}\right) & \equiv \frac{\Gamma(h \rightarrow 2 e 2 \mu)\left[\kappa_{Z Z}\right]}{\mathcal{B}(Z \rightarrow 2 e) \mathcal{B}(Z \rightarrow 2 \mu)}=0.209\left|\kappa_{Z Z}\right|^{2} \mathrm{MeV} \\
\Gamma\left(h \rightarrow Z_{T} Z_{T}\right) & \equiv \frac{\Gamma(h \rightarrow 2 e 2 \mu)\left[\epsilon_{Z Z}\right]}{\mathcal{B}(Z \rightarrow 2 e) \mathcal{B}(Z \rightarrow 2 \mu)}=0.0189\left|\epsilon_{Z Z}\right|^{2} \mathrm{MeV} \\
\Gamma^{\mathrm{CPV}}\left(h \rightarrow Z_{T} Z_{T}\right) & \equiv \frac{\Gamma(h \rightarrow 2 e 2 \mu)\left[\epsilon_{Z Z}^{\mathrm{CP}}\right]}{\mathcal{B}(Z \rightarrow 2 e) \mathcal{B}(Z \rightarrow 2 \mu)}=0.00799\left|\epsilon_{Z Z}^{\mathrm{CP}}\right|^{2} \mathrm{MeV}
\end{aligned}
$$

NLO effects in production

QCD

As for the decay, the most important effect can be described by soft QCD radiation.
Complete NLO QCD corrections, for generic PO, can be implemented in automatic tools for event generation. Work in progress.
[see also Maltoni, Mawatari, Zaro 1311.1829]
[NNLO corrections also dominated by real radiation effects:
Cacciari, Dreyer, Karlberg, Salam, Zanderighi 1506.02660]

EW

Electroweak corrections can be divided in:

- Local contributions. Such terms are parametrised as SM contributions to the PO

$$
\text { (e.g. } \varepsilon^{S M_{Z \gamma, \gamma \gamma}} \text {) }
$$

- Non-local terms. Unlike decay, in VBF such terms could be relevant. Would need a dedicated study.

Slide from Aleandro Nisati's talk at LHCP 2015 Precision on signal strength

channel	Prec. (\%) $100 \mathrm{fb}^{-1}$	Prec. (\%) $300 \mathrm{fb}^{-1}$	Prec. (\%) $3000 \mathrm{fb}^{-1}$		
$\mathrm{ttH} \mathrm{H} \rightarrow \gamma \gamma$	~ 65	38	36	17	12
$\mathrm{ttH} \mathrm{H} \rightarrow \mathrm{ZZ}^{*} \rightarrow 41$	~ 85	49	48	20	16
$\mathrm{VBF} \mathrm{H} \rightarrow \gamma \gamma$	~ 80	47	43	22	15
$\mathrm{VBF} \mathrm{H} \rightarrow \mathrm{ZZ}^{*} \rightarrow 41$	~ 60	36	33	21	16
$\mathrm{H} \rightarrow \mu \mu$	~ 70	39	38	16	12
$\mathrm{H} \rightarrow \tau \tau$	~ 18	14	8	8	5
$\mathrm{H} \rightarrow \mathrm{bb}$	~ 20	14	11	7	5
$\mathrm{H} \rightarrow \gamma \gamma$	~ 15	12	6	8	4
$\mathrm{H} \rightarrow 41$	~ 15	11	7	9	4
$\mathrm{H} \rightarrow 41$	~ 15	11	7	7	4

ATLAS: experimental \& theory uncertianties; only exp. uncertainty CMS: current exp.l \& theory uncertianties; exp. uncertainty $\propto 1 / \sqrt{L}$ and $1 / 2$ theory unc. ATLAS assumed luminosity uncertainty: 3\%

