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The condensed matter theory group studies topological
phenomena in electronic systems. Numerical and analyt-
ical tools are used to model phases of matter and under-
stand their unique physical properties. The term topol-
ogy refers to a field of mathematics that is concerned
with the relations of objects to each other if one allows
for smooth deformations of these objects. Objects that can
be transformed into each other by smooth deformations
are said to be topologically equivalent. For example, one
can smoothly deform a donut into a coffeecup but not a
donut into a muffin. Thus a donut and a muffin are topo-
logically different. Applying the same concepts to phases
of quantum matter yields phenomena that are universal
and surprisingly robust to perturbations. They are often
related to measurable observables which are universally
quantized, such as the Hall conductivity in the integer
quantum Hall effect.

Topological systems can be strongly interacting, in
which case we are often interested in phenomena re-
lated to so-called topological orders. Topologically or-
dered phases of matter are best understood in quasi two-
dimensional systems with an energy gap at zero temper-
ature, and are characterized by emergent fractionalized
excitations. These so-called anyons could be used in fu-
ture quantum computing devices. Our research group is
interested in a conceptual understanding of topological
order and its generalization, for example to three dimen-
sions as well as in the question how such states can be
realized and manipulated. One of the projects completed
this year [1] is concerned with this latter problem: we pio-
neered the numerical study of heterostructures that com-
bine a fractional quantum Hall state with a superconduct-
ing state. We showed that topological degrees of freedom
emerge at the interface between the two. In another nu-
merical study [2] we investigate the nature of phase tran-
sitions between two-dimensional topologically ordered
states and trivial ones, relating them to accidental degen-
eracies in band structures.

The iconic model for strongly interacting phases of
matter (topological or not) is the Hubbard model. Over
the past year, we studied numerically its topological as-
pects [3]. In an experimental collaboration the effects of
spin-orbit coupling for excitations of a Mott insulating
state [4] were investigated.

We are also interested in weakly or non-interacting
systems, in which case interesting topological phenom-
ena result from the band theory of solids. Such topolog-
ical band characterizations were first discovered for in-

sulating systems. The classic example in this category is
the integer quantum Hall effect with its quantized topo-
logical Hall conductivity. It was recently joined by time-
reversal symmetric insulators with topological proper-
ties. All these systems are defined by the existence of
boundary modes which cannot be removed by bound-
ary perturbations that respect the symmetries protecting
the topological character, such as time-reversal symme-
try. Time-reversal symmetric topological insulators exist
in two and three spatial dimensions and are characterized
by a single Kramers pair of edge modes and a single, non-
degenerate Dirac surface state, respectively.

More recently, the notion of topological band struc-
tures was extended from insulators to metals and
semimetals. This direction of research characterizes
symmetry-protected degeneracies in momentum space
by topological numbers, showing that they are generic
and can be robust against a large class of perturbations.
The degeneracies give rise to so-called Weyl or Dirac
semimetals on which we have devoted a series of works
over the past years. We highlight below one paper in
which the annihilation of Weyl nodes is observed when
the material is exposed to a strong magnetic field [5].

Finally, our research group is always interested in pio-
neering new methods to study phases of matter theoreti-
cally. An emergent direction in condensed matter physics
is to employ machine learning algorithms in various con-
texts. We contributed to this effort with a study that uses
an artificial neural network for phase classification based
on numerical data [6], which we discuss in detail below.
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10.1 Simulation of parafermion heterostructures

While the fractional quantum Hall (FQH) effect remains of

tremendous interest for realizing myriad phases ranging in

complexity from Laughlin states all the way to states with

non-Abelian quasiparticles such as Majorana fermions and

Fibonacci anyons, experimental exploration of these systems

has remained limited. The challenges are two-fold in exper-

imentally confirming states with non-Abelian quasiparticles.

First, these states can only be accessed under extreme exper-

imental conditions, as they are protected by very small energy

gaps. Second, the topological information is encoded in de-

generate ground states or the state of quasiparticles, making

it intrinsically hard to measure and manipulate.

To address these challenges, we undertook extensive nu-

merical calculation of a FQH system that is coupled to a

superconductor using exact diagonalization. More explicitly,

we consider a bilayer FQH system, with magnetic field per-

pendicular to the layers, where the orientation of the field for

one layer is opposite to that for the other layer, a construction

that permits gapping out of the edge states with an interlayer

superconducting pairing.

Our calculations are performed on a cylinder geometry in

which the bilayer FQH droplet has two edges (Fig. 10.1). To

make numerics feasible, we restricted our study to the sub-

space of zero energy bulk and edge excitations of the Laughlin

ν = 1/3 state in each layer. We find a three-fold ground state

degeneracy of the gapped edge states, which can be under-

stood as follows: By introducing a gap, the superconduct-

ing coupling turns the bilayer quantum Hall state with edges

into a single-layer quantum Hall state on a manifold without

boundary. This manifold is topologically equivalent to a torus,

where the space between the two layers becomes the interior

of the torus (Fig. 10.1 c)). On the torus, a Laughlin state

at filling ν = 1/3 has a three-fold ground state degeneracy,

which is topologically equivalent to the three ground states

we observe in the superconducting bilayer system.

As we demonstrate in this work, charge pumping can

permute these ground states and provide evidence of their

topological nature. Suppose we start with a state |Ψ0〉 that

has charge 0 on both edges. As unit φ0 spin flux is adia-

batically inserted, charge is transferred from the left to the

right edge, so that the resulting state is |Ψ+〉. The other

ground states are expected to transform into one another

analogously: |Ψ+〉 → |Ψ−〉, |Ψ−〉 → |Ψ0〉. Thus, after in-

sertion of a quantum of spin flux, we expect to obtain a

permutation of the three ground states.

To further support our claim that the heterostructure real-

izes the desired topological superconducting edges, we calcu-

lated the spectral flow that corresponds to the 6π Josephson

effect. In the thermodynamic limit, in which the three ground

states of interest are degenerate, the ground state of the sys-

tem does not return to itself when ϕ is advanced by 2π.

Rather, it evolves into another degenerate ground state and

Fig. 10.1 – Schematics of the physical geometry and the
one used for the numerical investigation.
a) Fractional topological insulator heterostructure in which
carriers with spin up and down (red and blue) form a frac-
tional quantum Hall state with opposite chirality. Proximity
to superconducting reservoirs (yellow) induces a supercon-
ducting gap in their edge channels. To study the Josephson
effect, arelative phase ϕ between the left and right super-
conducting order parameter is included.
b) When imposing periodic boundary conditions along the
edges, resulting in a cylinder geometry, each edge carries
a topological degree of freedom. The boundary conditions
can be twisted by inserting a flux φ into the cylinder for spin
up electrons and −φ for spin down electrons. In the Lan-
dau gauge orbitals are localized along the cylinder, where
we consider Norb,n and Norb,sc normal and superconduct-
ing orbitals, respectively. The typical separation between
orbitals is 2πℓ2

B/Ly, where Ly is the cylinder perimeter.
The droplet is confined by a linear potential µm.
c) With the counter-propagating edges gapped out, the bi-
layer FQH state on the cylinder is topologically equivalent
to a single layer FQH state on a torus, where the fluxes φ

and ϕ run through its two noncontractible cycles and can
be used to explore its topological ground state degener-
acy. It is thus topologically equivalent to the ground state
degeneracy of the gapped edge modes.
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only after ϕ is advanced by 6π does the system return to its

initial state, because the elementary excitations of the super-

conducting edge are Cooper-paired quasiparticles of charge

2e/3, delocalized along the cylinder perimeter, which tunnel

across the bulk gap.

System sizes in this work were limited, but we were nev-

ertheless able to demonstrate four key features: (i) the edges

develop a spectral gap induced by the superconducting cou-

pling, (ii) the expected number of three nearly degenerate

ground states without any charge imbalance between the

two halves of the system, (iii) charge pumping can per-

mute the ground states, and (iv) the system exhibits a 6π-

periodic Josephson effect. For each signature, we discussed

the suitable parameter regime. Our work provides the first

quantitative study of fractional edge modes coupled to su-

perconducting leads in a fully microscopic model and should

serve as an important foundation for future work.

10.2 Annihilating Weyl fermions with a magnetic field

Weyl semimetals display the most elementary topological

band degeneracies [7]: two bands in a three-dimensional band

structure are degenerate in an isolated point in momentum

space. Away from this singular point, the bands generically

disperse linearly. Quasi-particle excitations near the degen-

eracy point (Weyl node) are described by the Weyl equa-

tion, hence the name. These quasiparticles have a number

of unique properties when it comes to their electromagnetic

response. In some precise sense, they can be regarded as mag-

netic monopoles in momentum space and are associated with

a topological charge ±1.

In the most widely studied class of Weyl semimetals,

the Weyl nodes arise from spin-orbit coupling which can be

thought of as a perturbation to a more symmetric band struc-

ture. As a result, Weyl nodes of opposite charge come in pairs

that in many cases are separated by a small distance ∆kW in

momentum space.

When the material is exposed to an strong external mag-

netic field, Weyl fermions generate a very distinct quasi-one-

dimensional band structure of dispersing Landau levels. Apart

from two sets of Landau levels above and below the Weyl

node, respectively, there is a single ‘chiral’ Landau level that

disperses linearly across the energy of the Weyl node. The sign

of the associated velocity is given by the topological charge

of the Weyl node. Because of this chiral Landau level, a single

Weyl fermion cannot become insulating when exposed to a

magnetic field.

Tantalum phosphide (TaP) is a Weyl semimetal [8]

with two relevant features: Its Weyl nodes are very close

to the Fermi level and their separation in momentum

∆kW is rather small as shown in Fig. 10.2 a). We stud-

ied the transport properties of TaP when exposed to a

strong magnetic field. The field orientation was chosen

such that the Weyl nodes are separated in momentum

space perpendicular to the magnetic field B, this corre-

Fig. 10.2 – Magnetic field induced annihilation of Weyl
fermions in the band structure of TaP.
a) Angle-resolved photoemission spectroscopy image of a
Weyl node in TaP, visible as a linear band crossing near the
Fermi level.
b) Schematic of how a strong magnetic field hybridizes two
Weyl nodes in the Landau level band structure in TaP:
The two Weyl nodes are at the same momentum kz and
have opposite chirality. Thus they come with linearly and
oppositely dispersing Landau levels which cross each other
at small fields. As the inverse magnetic length becomes of
the same scale as the transverse Weyl node separation in
momentum space, the linear Landau levels hybridize. The
transport properties of the material change drastically.
c) Hall conductivity as a function of magnetic field. The
critical field where the Weyl node Landau levels annihilate
is manifest via a drastic jump and sign reversal of the Hall
conductivity (0◦ trace).

sponds to 0◦ in Fig. 10.2 c). In this configuration, the chiral

Landau levels of the two Weyl nodes with opposite velocity

cross as shown in Fig. 10.2 b). For small fields, this crossing

is only hybridizing by an exponentially small amount in the

ratio of ∆k−1
W and the magnetic length ℓ ∝ 1/

√
B. The mag-

netic length is the typical length scale on which the magnetic

field breaks the translational symmetry of the system. As the

field is increased, a noticeable hybridization appears as soon

as ℓ−1 ∼ ∆kW and the system turns into an insulator.

In the transport measurement, this change in the elec-

tronic structure manifests itself in a dramatic change and

sign reversal in the Hall conductivity at around B = 30 T as

shown in Fig. 10.2 c). This field scale is in very good agree-

ment with the expectation from our theoretical calculations.
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The residual conductivity for B > 30 T comes from other

Fermi pockets in the Brillouin zone that are unrelated to the

Weyl node.
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10.3 Machine learning for detecting phase transitions

Artificial intelligence is widely employed in science and in-

formation technology whenever large amounts of data need

to be analyzed or classified. Machine learning techniques

and neural networks in particular are becoming a more and

more widespread tool also in statistical and condensed mat-

ter physics. A typical class of tasks for neural networks are

classification problems, for instance to identify whether im-

ages show cats or dogs. Classification, for instance that of

phases of (quantum) matter based on various observables, is

a prominent task in condensed matter physics.

In this project, which is our first venture into the field of

machine learning, we used a neural network for exactly that

task – a binary phase classification – based on numerically

obtained data [9]. The two phases to be distinguished are a

thermalizing and a localized phase of a Heisenberg spin chain

in a random field. The Hamiltonian is strongly interacting and

the phase with strong random field is called many-body lo-

calized. Many-body localization means that a system keeps

a memory of its initial condition for arbitrary long times for

states at high energies/temperatures [10]. The quantum en-

tanglement is not scrambled as in a conventional, thermaliz-

ing system. As a consequence, many-body localized states do

not follow the conventional rules of quantum statistical me-

chanics and in particular violate ergodicity. These properties

and their potential for quantum information storage make

them an important current research field.

However, there are many open questions about the prop-

erties of the many-body localized phase and the associated

phase transition. It is not clear, which observable is best

suited to detect the phase transition from numerical data

on finite-size systems. This is where neural networks become

useful. We taught a neural network and entanglement fin-

gerprint of typical states well in the localized and well in

the thermalizing phase of the spin chain and then asked

it to classify the same entanglement fingerprint for states

in the transition region to determine the phase boundary.

The fingerprint we used is the so-called entanglement spec-

trum [11] (defined as the spectrum of the reduced density

matrix when one half of the spin chain is traced over). The

entanglement spectrum was shown to contain a lot of uni-

versal information about quantum phases via its level statis-

tics, gaps between levels, degeneracies of levels and more.

Fig. 10.3 – Phase diagram of a spin-1/2 Heisenberg chain
in a random field obtained using a neural network. The hor-
izontal axis is the strength of the disorder field, the vertical
axis is energy density (the classification is valid for arbitrary
excited states). The blue region is thermalizing, while the
red region is in a many-body localized phase.

We did not teach the neural network which features in the

entanglement spectrum of the spin chain are relevant for the

classification. Rather, we later used the technique of hallu-

cinogenic dreaming to determine what properties the network

had learned. (This was the first time the technique was ap-

plied to condensed matter physics.) It turned out that the

network had correctly learned a known power-law feature of

the entanglement spectrum.

Most importantly, however, the neural network was able

to pin down the phase transition very sharply, even by only

looking at individual eigenstates of the spin-chain Hamilto-

nian. The phase boundary shown in Fig. 10.3 is in quantitative

agreement with previous results, but needs much less numer-

ical input to be computed. Our neural network approach is

a combination of a so-called supervised and an unsupervised

technique in that we do not a priori know where the phase

transition is. To enhance the performance, we invented an al-

gorithm called confidence optimization, which incentives the

confident classification of the states near the phase transi-

tion. This work was an interesting first venture into the field

of machine learning, on which we will follow up with diverse

further projects.
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