
University of Zurich, Physik-Institut, autumn semester 2020
Bachelor Thesis

Supervision: Dr. Rafael Silva Coutinho, Jonas Eschle, Dr. Patrick Owen, Prof. Nicola
Serra

Comparison of Prediction Uncertainties Using
Bayesian Neural Networks and Boosted Decision

Tree Ensembles with B Decays

Andreas Wiemeyer
April 5, 2023

Contents

1 The Standard Model and New Physics 1
1.1 Detector setup . 1

2 Machine Learning Methodology 3
2.1 Boosted Decision Trees . 4
2.2 Neural Networks . 5
2.3 Bayesian Neural Networks . 7
2.4 Evaluating the Performance of an Algorithm 9
2.5 Examining the Data . 10

2.5.1 The feature space and its transformation 11

3 Training the Classifiers 14
3.1 Implementation of the Boosted Decision Trees 14

3.1.1 Boosted Decision Tree Ensembles . 16
3.2 Implementation of a Neural Network . 17
3.3 Implementation of a Bayesian Neural Network 17

4 Evaluation of the Classifiers and Discussion 18
4.1 Frequentist Versus Bayesian Uncertainty . 19
4.2 Using Uncertainties for Classification . 22
4.3 Generalisation to other decay channels . 26
4.4 Usability for Further Analysis . 29

5 Conclusion 33

A BDT Hyperparameters 36

B Hyperparameters of the Neural Network 38

C Hyperparameters of the Bayesian Neural Network 38

D Training and Prediction times 38

Abstract

Bayesian Neural Networks and Boosted Decision Tree ensembles were trained for the
signal-background separation for B-meson decays measured at the LHCb. The two types
of classifiers were compared regarding the uncertainties on their predictions for signal,
background and a third class of unknown events. For both types the behaviour was found
to be similar, yielding a slight difference in the uncertainties for signal/background and
unknown events. Furthermore it was tested whether one of the classifier types is better
at generalising beyond the training data. No significant differences were found except for
cases where the training data had different cuts applied. In these cases the Bayesian Neural
Network was better than the Boosted Decision Tree ensembles at generalising to other
files.

1 The Standard Model and New Physics
The Standard Model of particle Physics (SM) is a theory that states the elementary
particles which all matter is made up of and describes how these particles interact with
one another. The SM has been extremely successful in providing experimental predictions.
Since the discovery of the Higgs boson in 2012, all elementary particles of the SM have
been found. Nevertheless, there are reasons to believe that a theory beyond the SM is
needed. The SM for instance does not explain gravity or other large scale phenomena. It
does also not explain some experimental observations such as the neutrino oscillation. To
test whether there are other experimental inaccuracies, the decay ratios of particles are
studied using particle accelerators. This search for deviating observations is often called the
search for new physics (NP). Research in these areas promises to give valuable insights for
new theories beyond the SM. An important research facility is the Large Hadron Collider
(LHC), the worlds largest and highest energy particle accelerator, built and operated by the
European Organization for Nuclear Research (CERN). It is mainly used as a proton-proton
synchrotron and reaches single-beam energies of up to 6.5 TeV. When these high energy
beams collide, the constituents of the protons create heavier particles that decay into
other particles along different decay channels. To investigate them, the LHC is equipped
with multiple detectors, the largest of which are called Atlas, CMS, Alice and LHCb. Some
detectors are designed to understand specific aspects of the decays, the behaviour of certain
decay products for instance. The LHCb experiment, from which the data for the thesis
project was taken, focuses on heavy flavour physics, such as decays of B-mesons. The
specific decays that have been used in this thesis are the following:

B0 −→ K∗e+e− (1.1)

B0 −→ K∗J/Ψ(−→ e+e−) (1.2)

B0 −→ K∗J/Ψ(−→ µ+µ−) (1.3)

B0 −→ K+π−µ+µ− (1.4)

B0 −→ K+π−e+e− (1.5)

1.1 Detector setup
The LHCb detector, which was used to gather data for these decays, is shown in figure 1.1.
It does not cover the full angle around the collision point because the relevant types of
hadrons do not scatter far from the beam at high energies. An array of different components
is used to gather information about the processes taking place in the detector. There are
multiple layers (Vertex Locator, TT, T1-T3) that track the movement of charged particles.
These are made of Kapton/Al straws or – where higher precision is needed – silicon-strips
sensors. The tracking of the particles near the interaction point is done by a component

1

called VELO, enabling a more precise location of the primary decay vertices. To retain
information about charge and mass of a particle, a large magnet with an integrated field
of 4 T m is set up to deflect the particles, such that charge and mass can be inferred from
a particles path. Finally, there are multiple modules responsible for the identification of
particle types. RICH1 and RICH2 are Ring Imaging Cherenkov counters, mainly responsible
for π-K separation by measuring the velocity of the particle. The electromagnetic (ECAL)
and hadronic (HCAL) calorimeters measure electrons, photons and hadrons position and
energy. The muon stations (M1-M5), which are composed of wire chambers and gas electron
multipliers interleaved with material to stop other particles, identify muons and determine
their locations.

Fig. 1.1: The LHCb detector at CERN that determines the properties of the decay
products [2, 2].

Without filtering, the detector would produce far too much data to store, since about 10
million proton collisions are registered every second. Because of this, there are multiple
trigger stages, that decide which events to store and which to discard. In the first part of the
selection the frequency of measured events is still too high to make elaborate computations.
The transverse energy serves as a first selector (among other things), because particles
with high transverse energy are easier to measure. This reduces the bandwidth enough to
be able to partially recreate tracks, make more elaborate selections and save what is left
to disk [2].

The offline analysis is done afterwords using the stored data. In short, the paths of
particles are reconstructed more accurately than during the trigger stage to find the vertices
at which decays happened. Using the information from the particle identification and the
reconstructed paths one can figure out which particles decayed into which. In this data
there is still a lot of background coming from noise in the electronics, random combination

2

of particle tracks or other physics processes, which is in a first step reduced by only selecting
events where certain measurements are within defined regions. Some kinds of background
are more difficult to filter out because they require multiple variables to be considered for a
clean separation. Therefore, a multivariate analysis (MVA) can be performed using machine
learning algorithms. This part of the selection is what the thesis project aims to improve
and will be returned to later. After the selection one can determine physical observables.
One can for instance compute the efficiency of the selection and with it compute the
branching ratios of different channels. These ratios can then in principle be used to test
the SM and guide the way to NP. However, results are only statistically significant, if the
selection is clean enough, which is why improvements is this area are very important.

The selection needs to deal with different kinds of background. One kind of background
is due to falsely reconstructed decay vertices. It can happen, that decay products, which
actually stem from different decays or other outside sources, have their paths reconstructed
in such a way, that they are taken to stem from the same decay. This kind of background
is called combinatorial background and it is the main target of the previously mentioned
MVA.

To get cleaner results an algorithm is needed that can differentiate combinatorial back-
ground from signal. Given a data set with background and signal examples (see section
2.5), such an algorithm can be obtained with machine learning methods, of which several
were used for the thesis project. Some algorithms that are commonly used in the field
are Boosted Decision Trees (BDTs, see Section 3.1), which serve as a baseline comparison.
They are compared to the more complex Neural Networks (NNs, see section 2.2) and finally
to Bayesian Neural Networks (BNNs, see section 2.3). These are an interesting variant
of NNs that can output a distribution of predictions from which a measure of certainty
can be deduced. It was tested whether this makes them more robust to misclassifications
of similar but different or even completely unknown events. One would expect that such
events receive a prediction with a large uncertainty. This way one could know that one
actually does not know well or even be able to tell that these are events of a different
kind. In contrast, simpler methods, such as BDTs, are expected to sometimes mark com-
pletely unknown events as signal, with no associated uncertainty such that they cannot be
distinguished from actual signal.

BNNs thus might enable researchers to identify odd events and find solutions to eliminate
them. In the end this would allow for cleaner signal yields and more significant tests of the
SM. The following chapter introduces the theory behind the above mentioned methods
in more detail. The third chapter documents their practical application and the fourth
chapter concerns the evaluation of the results.

2 Machine Learning Methodology
An algorithm can be said to learn, when it improves through experience. This is what
differentiates machine learning algorithms from ordinary algorithms. Ordinarily, once an
algorithm is written, it will keep performing its task in the same fashion resulting in equal

3

output for equal input. Machine learning algorithms on the other hand are set up such
that they can learn from the data they process and gradually become better at fulfilling
their task until their peak performance is reached and then the algorithm is frozen. This
definition encompasses a wide array of methods, not only the ones used for the thesis.

Since the right type of machine learning method depends largely on the type of task,
the problem first needs to be characterized. Multiple data sets (for details see section
2.5) will be used, of which some contain only background, some only signal and some are
mixed. The goal is to be able to separate the mixed data sets into background and signal: a
binary classification problem. The sets that are already separated can be used to train the
classifiers. The basic idea is to create a mixed data set from them, such that the correct
label is known. The classifier is then set up to do a classification and since the correct
solution is known, one can give feedback step by step to reduce the mistakes the algorithm
makes. This process is called supervised learning. Once it is finished and a classification
is learned, it can be applied to datasets where the true labels are not known (such as the
mixed sets).

The following sections give a more concrete and mathematical idea of how the feedback
loop works. Since this mechanism is different for all of the methods, the discussion is split
into three sections.

2.1 Boosted Decision Trees
As the name suggests, boosted decision trees (BDTs) are an adaption of ordinary decision
trees. A decision tree is a simple tool with which one can divide a set of items into subsets.
Following the metaphor of a tree, the decision tree is made up of nodes and branches (see
figure 2.1). At the start there is a single branch – the root or stem if you will – which
divides into more and more branches, corresponding to subsets, at each node. Each node
represents a decision with which the superset is subdivided. If items have a numerical value
x for instance, a node might split into three subsets with x > 4, x = 4 and x < 4. With a
clever choice of decisions at the nodes, a useful division into subsets can be obtained. One
could for instance end up with m subsets that contain only (or mostly) signal events and
n subsets that contain only (or mostly) background events.

4

Fig. 2.1: The structure of a decision tree visualised[3].

A single tree typically is not a very performant classifier since it is prone to not generalise
well to new data. There are several methods that are designed to overcome this problem
by automatically generating many trees and joining them together. BDTs are one of these
methods. They differ from other methods (like random forests), in that the tree generation
works iteratively, meaning that the generation of each new tree is informed by the trees
generated before it. The procedure works roughly as follows:

1. A first tree, a so called weak learner, is generated to obtain a baseline classification
on which to improve.

2. The difference between the true class and the predicted class is used to compute the
loss of each prediction.

3. A second tree is generated to predict the loss associated with the initial predictions.

4. By subtracting the predicted loss (usually multiplied with a learning rate l < 1) from
the initial prediction a modified classification is obtained, that is more accurate than
the initial one.

5. The modified prediction is used as new baseline and steps 2-5 are repeated n times.

There are many libraries which implement the BDT algorithm. The three libraries used
for the thesis project are Scikit-learn, XGBoost and LightGBM. For a comparison of these
libraries see section 3.1.

2.2 Neural Networks
Neural networks (NNs) are inspired by the structure of brains, where electrochemical pulses
are passed from neuron to neuron. In the artificial version, neurons are modelled as entries
of vectors and elecrochemical pulses are nonlinear functions, mapping from one set of vector
entries to another. The initial vector serving as argument for the functions encodes the
data one is working with, the so called input layer l0. To obtain an algorithm that can

5

learn, a mathematical operation with free parameters transforms it into a second vector (or
layer) l1. This in done in three steps with a weight matrix W , a bias vector b (these are the
free parameters, both initially random) and an activation function fa. First, l0 is multiplied
with the weight matrix, whose entries wij , are called weights and can be understood to
determine the importance of the j-th entry in l0 for the i-th entry in l1. Afterwords the bias
is added and the activation function is applied to get l1. The activation function and the
bias are used to introduce non-linearity, which is needed for the network to work. Usually
the described operation is performed multiple times consecutively, such that there are n
vectors (or layers) l1 . . . ln in the end. One can thus generalise the operation mapping from
one layer to the next as

li+1 = fai(Wili + bi). (2.1)

The final layer ln is called output layer. The goal of the consecutive operations is to obtain
a useful output layer from the input layer. For the thesis project, the purpose of the output
layer is to enable a classification into background and signal. To obtain this, the right
weights Wi and biases bi need to be found. To do so a measure called loss L is defined
and then minimised. Depending on the problem, different loss functions work best, for the
thesis project categorical cross-entropy was used. It can be defined as

L = − 1
N

N∑
i=1

~ytrue,i · log(~youtput,i) (2.2)

where the j-th entry of ~ytrue,i and ~youtput,i determine whether the i-th event belongs to
the j-th class. The entries of ~ytrue,i are binary and are given by the known classification of
the labelled training set. The output of the neural network ~youtput,i depends on the choice
of the output layer, for the thesis project it has entries ranging from 0 to 1. To minimise
the loss, one typically uses a modified or approximated version of gradient descent, like
stochastic gradient descent (SGD). The idea behind SGD is to approximate the gradient
of the loss with respect to Wi and bi by computing it for a random subset – called batch –
of the training data. One then subtracts the approximate gradient (scaled with a learning
rate 0 < l < 1) from Wi and bi. If the learning rate is aptly chosen one will move towards
a minimum of the loss. For each training epoch this is repeated until all of the training
data was selected for the batch exactly once. This way the algorithm learns a lot faster
and finds a more stable minimum than if one were to compute the gradient with the whole
data set.

Because it is difficult to choose the right amount of free parameters, NNs often have
too many degrees of freedom. This means that they can learn not just the true correlations
within the data, but also remember random statistical noise within the training set. This
effect is called overtraining or overfitting. When an algorithm is overfitting, its performance
on the training set continues to increase, but the performance on other data (called out-of-
sample data) decreases, because it does not share its random patterns. The more irrelevant
patterns are learned, the more the network will be mislead on out-of-sample data, resulting

6

in a worse performance. An illustrative analogy of this effect can be found in ordinary fits
(see figure 2.2).

Fig. 2.2: A distribution that is underfitted (left), fitted just right (middle) and
overfitted (right)[5].

One way to account for overfitting is to split the labelled data into a statistically independent
training and test set. The former is used for training and the latter is used to get a measure
of the out-of-sample performance. Because the test data is statistically independent, it will
not contain the same random patterns as the training data and give an unbiased measure
of the algorithms performance. By monitoring when the performance on the test data
starts to decrease, one can find the ideal amount of training epochs.

Another issue arises when the training data is not exactly the same as the data one
wants to classify. For the thesis project, it was only possible to obtain a labelled data set
that approximates the real data (see section 2.5). This gives rise to the question of whether
the classifier can generalise to the real out-of-sample data. There is no simple answer to
this question and because of this, the evaluation of an algorithms performance on such
data is difficult. A central motivation of the thesis project is to find ways in which an
algorithm could be evaluated when going beyond the training data. This is discussed in
more detail in section 2.4.

BDTs and NNs do not come with a good measure of how certain their classifications are.
Such a measure would be of special interest for the generalisation to real data, which might
contain previously unseen kinds of events. A possible solution is seen in BNNs, which are
introduced in the next section.

2.3 Bayesian Neural Networks
As the name suggests, BNNs are an implementation of Bayesian statistics in the NN
framework. The school owes its name to the famous statistician and philosopher Thomas
Bayes. His approach to statistics is the most influential one next to the so-called frequentist
approach. His ideas center around Bayesian inference, which relates different probability
quantities to another.

Consider an hypothesis H explaining the observation of some data D. The data is a set
of events, which have the combined probability P (D) to be measured. The Hypothesis H
can be given a probability P (H), called prior, which says how likely H is to be the correct
description of reality. Often the hypothesis is a function of a set of parameters θi, such
that the prior P (H(θi)) is a probability density function in the θi space. Next there is the
likelihood function P (D|H(θi)) which says how likely it is that the measurements D would
be taken, if H(θi) were the true description of reality.

7

For the frequentist approach the hypothesis is looked for, which maximizes the likelihood
function. The underlying assumption being that the θi must have a fixed value and the
goal of the scientist is to find this correct value. On the Bayesian approach one does not
settle on a fixed set of θi because one takes these values to be distributions by nature,
which are not reducible to a single value. Because of this one is interested in how likely an
hypothesis it to be true for the whole range of θi, given the data D. This is given by the
posterior P (H(θi)|D), which is obtained with Bayesian inference as follows:

P (H(θi)|D) = P (D|H(θi))P (H(θi))
P (D) (2.3)

In a neural network the training parameters (Wi, bi) can be understood to define an
hypothesis H(Wi, bi) explaining the observed training data (Xi, yi). Regular NNs are set
up to find the fixed set of parameters for which the likelihood P ((Xi, yi)|H(Wi, bi)) is
maximized, they thus implement a frequentist approach. For the Bayesian approach, the
parameters are understood to be distributions by nature. One thus wants to find the
probability that – given the data – the network correctly codifies the classification for
the whole parameter space. This is given by the posterior P (H(Wi, bi)|(Xi, yi)). With
the posterior one could classify other Xj and obtain the right probability distribution
yj for their classifification. In practice this is not possible because one cannot precisely
compute the posterior. However, one option is to use variational inference to approximate
the posterior.

For variational inference a distribution qφi
(Wi, bi) replaces the exact posterior. The

distribution has its own parameters φi and is a function of the weights and biases of
the network. During the training of the network, the parameters φi are fitted so that qφi

approximates the true posterior. To do so a different loss metric called ELBO is utilized.
The weights and biases are no longer single values, since the posterior is to be computed
for the whole parameter space. Thus, they are replaced by prior distributions with further
parameters, from which they are sampled each time a prediction is made. For cases where
it is hard to know the priors in advance, empirical Bayes can be and was used. With this
variant the parameters of the priors are trained along with the φi, such that one only
needs to choose the right parametrisation (for more information see [22-23, 1]). A normal
distribution is a common default choice.

Because of the stochastic weights and biases and the new loss function, BNN layers
converge less quickly and easily. To remedy this problem, one can rely mostly on normal
layers and have only the last few layers implement empirical Bayes. This lets the network
learn a lot faster and still gives decently satisfying results from a Bayesian point of view
[27, 1].

A BNN differs from ordinary NNs and BDTs in that it is not deterministic. This means,
that even after the training is completed, the algorithms output is not predetermined by
the input. Since weights and biases are sampled for each prediction from their prior, the
networks response function is different each time. Thus if a prediction is repeatedly made

8

for the same event, a random distribution of outputs will be obtained. From the shape of
this distribution one can read out how certain the network is about its prediction. The
standard deviation of the distribution serves as a simple measure of certainty, with the
prediction being given by the mean, the most likely value. The usefulness of this measure
of certainty will be discussed in section 4.

2.4 Evaluating the Performance of an Algorithm
When it comes to the labelled test set, there are some easy to compute quantitative
measures to tell whether the learned algorithm performs well. Firstly there is the accuracy,
the percentage of events that are classified correctly. This measure can be unreliable though,
since 1) it depends on the choice of the threshold for a prediction to count as signal and
2) imbalanced data sets can give misleading accuracies. In the labelled data used for the
thesis project, over 93% of the events are signal, such that a trivial algorithm, that classifies
everything as signal, would have an accuracy of over 93%. It is easy to see that further
measures are needed to identify useful algorithms. One can split the predictive success of
an algorithm into four categories:

1. True positive rate: TPR = amount of correct signal classifications
amount of signal events

2. False positive rate: FPR = amount of incorrect signal classifications
amount of signal events

3. True negative rate: TNR = amount of correct background classifications
amount of background events

4. False negative rate: FNR = amount of incorrect background classifications
amount of background events

An algorithm that classifies everything as signal only has a good TPR. By requiring also a
good FPR, one can make sure that the signal is pure. One can make use of the TPR and
the FPR to get a measure of the classifiers quality without having to choose a threshold for
the classification. To do so the two ratios are plotted for different choices of the threshold.
The resulting plot is called receiver operating characteristic curve or ROC-curve for short.
Conventionally, the TPR is chosen as y-axis and the FPR as x-axis. For any threshold
one wants the TPR to approach one and the FPR to approach zero. The curve for a
perfect algorithm, which assigns all signal events a higher predictions than any background
event, is shown in figure 2.3. For realistic data sets that are not neatly separable, the TPR
increases with the FPR. This makes sense, because as the threshold for signal classifications
is lowered, both more correct signal classifications and more false signal classifications are
allowed. For a simple quantification of classifiers quality we can integrate the ROC-curve,
obtaining the area under the ROC curve, called AUROC. This is the measure that was
focused on for the thesis project, leaving the problem specific question of how to choose
the classification threshold aside for later steps in the analysis. Sometimes the labelled
data set can be so small, that there are large fluctuations in the AUROC score depending
on which subset is used for testing. K-fold cross valdiation (CV) can be used solve this
problem. For this method multiple classifiers are trained by dividing the labelled data into
k subsets, training the classifiers on k − 1 subsets and using them to predict on the left

9

over subset. One then computes the AUROC score of the algorithms on the k different
test sets and takes the average.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate [au]

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
[a

u]

random classification
AUROC = 0.5
perfect classification
AUROC = 1.0
good classification
AUROC = 0.9165

Fig. 2.3: The ROC-curves of different algorithms and the area under them
(AUROC)

Since these measures cannot be computed for data sets other than the labelled data
(unlabelled data from now on), other measures need to be found for these sets. Three
criterions of quality were checked for. Firstly it was checked how well the algorithm handles
unknown events by classifying different types of modified or generated data (see section
4.2).

The second criterion of quality is how nicely the classification works for the fits, which
are made in later stages of the analysis. To evaluate this, the different classifiers are used to
cut out the background before fitting the data. If a result looks nicer, it does not necessarily
mean that it is more accurate. This will be discussed again when looking at the results in
section 4.4.

The third criterion of quality is how well the Classifier generalises to other decay channels.
It would be desirable to have a classifier that can be used on more decay channels than the
one it was trained on. One way to test whether a classifier generalises well is to compare the
predictions made for MC files of different decay paths. The difficulty in such a comparison
is that some channels might in fact look more less like typical signal than others. If this is
the case it would not be a weakness of the classifier to assign different predictions to such
channels. A more elaborate discussion is thus needed and can be found in section 4.3.

2.5 Examining the Data
A machine learning classification can only work if good data is available. The data that
is to be analysed and motivates the thesis was collected in 2016 with the LHCb experi-
ment described in section 1. Along with the real data, files generated using Monte-Carlo

10

simulation (MC) are used. These data sets are available for various decay channels listed
below:

B0 −→ K∗e+e− MC and real data

B0 −→ K∗J/Ψ(−→ e+e−) MC and real data

B0 −→ K∗J/Ψ(−→ µ+µ−) MC and real data

B0 −→ K+π−µ+µ− real data

B0 −→ K+π−e+e− real data

The real data sets are a mix of background and signal, on which a classification needs to be
performed. The MC files contain only simulated signal and can be used for training and for
the performance measures mentioned in section 2.4. For the labelled training data a set of
pure signal events and one of pure background events is needed. The signal is taken from
the MC simulation for the B0 −→ K∗e+e− decay. The background is taken from a real data
set by cutting off the region where the B0 mass, the signal region, is above 5450 MeV/c2.
Above this threshold the signal contribution should be diminishingly small, so that the cut
sample can be considered pure background. Granting this, there are still possible problems
with the training data.

Firstly, the signal is simulated, meaning that there might be differences to signal events
found in real data. Secondly, the background is cut out at a high energy region, but the
real data also contains lower energy background. The algorithm thus needs to be able to
generalise from higher to lower energy background. For future research it could be tried to
use background from higher and lower energy regions to remedy this problem. Lastly, the
signal set is much larger than the background set, containing 88’521 events, about 15 times
more than the background set with 5’785 events. A data set with such a large ratio in class
sizes is called an imbalanced data set and can be difficult to deal with. An algorithm might
get stuck assigning every event a prediction of one, since this will already give a decent
accuracy (over 93% would be classified correctly for the thesis project).

2.5.1 The feature space and its transformation

For the data used for thesis project, every event comes with thousands of features. Some
of these are direct measurements and some of these are deduced quantities. Many of
the features are redundant. Some have missing entries and some are not relevant for the
classification, meaning that the amount of features can be greatly reduced. This reduction
is important not only because it makes algorithms quicker to train but also because it
reduces the risk of overfitting. Thus only 14 features corresponding to the quantities shown
in table 2.1 were selected for the algorithm to work with.

The machine learning library XGBoost comes with a function to roughly estimate how
important these features are for the classifier. The following features were found to be most

11

Feature name Physical meaning
BDTF PV χ2 χ2 of the DecayTreeFitter fit of the primary vertex
BFD χ2 PV Flight distance significance of B-meson in units of χ2 w.r.t. the related

vertex
B SV χ2 χ2 of the B-meson decay vertex position
BDIRA PV Direction angle of B-meson w.r.t. the related Vertex
HMin IP χ2 PV χ2 of the impact parameter of the hadron
BPT Transverse momentum of the B-meson
LMin IP χ2 PV Minimal impact parameter of the lepton χ2 w.r.t. the related vertex
HMin PT Minimum transverse momentum of the hadron
LMax PT Maximal transverse momentum of the lepton
BIP χ2 PV Impact parameter of B-meson χ2 w.r.t. the related vertex
LMax IP χ2 PV Maximal impact parameter of the lepton χ2 w.r.t. the related vertex
LMin PT Minimal transverse momentum of the lepton
K∗ SV χ2 χ2 of the K∗-meson decay vertex position
J/Ψ SV χ2 χ2 of the J/Ψ-meson decay vertex position

Table 2.1: The 14 features that were used for the classification and the
corresponding physical quantities

important by XGBoosts feature_importances_:

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
feature importance [au]

J/ SV 2

K * SV 2

LMin PT

LMax IP 2 PV

BIP 2 PV

LMax PT

HMin PT

LMin IP 2 PV

BPT

HMin IP 2 PV

BDIRA PV

B SV 2

BFD 2 PV

BDTF PV 2

fe
at

ur
e

na
m

e

Fig. 2.4: The features found to be most relevant using XGBoosts
feature_importances_

To get a better understanding of how a separation can be obtained and how clean this separa-
tion can be, the 4 most important features (according to XGBoosts feature_importances_)
have been histogrammed for signal and background. The distributions for the different

12

kinds of white noise from section 2.4 are also shown:

0 500 1000 1500
Feature value [au]

0.00

0.01

0.02

0.03

0.04

P
ro

ba
bi

lit
y

[a
u]

BDTF PV 2

0 50000 100000 150000 200000
Feature value [au]

0.0000

0.0001

0.0002

0.0003

0.0004

P
ro

ba
bi

lit
y

[a
u]

BFD 2 PV

0 2000 4000 6000
Feature value [au]

0.000

0.002

0.004

0.006

0.008

0.010

P
ro

ba
bi

lit
y

[a
u]

HMin IP 2 PV

0 10000 20000 30000
Feature value [au]

0.00000

0.00005

0.00010

0.00015
P

ro
ba

bi
lit

y
[a

u]

BPT

background signal white noise flat in transform white noise

Fig. 2.5: The distribution of the 4 most important features (sorted from most to
least important) for signal and background events compared to two kinds of white
noise.

Many features follow an exponential-like distribution, such that a logarithmic transforma-
tion of the data can yield a better resolution as it makes it easier for neural networks to
pick up on the difference between background and signal. Following a standard procedure
in data preprocessing, the features were also shifted to have a mean of zero and scaled
to have a standard deviation of one. This ensures that all of the features have an equally
large effect on the network for the initial weights. After applying the transformations, the
distribution of the features looks as follows:

13

5.0 2.5 0.0 2.5 5.0 7.5 10.0
Feature value [au]

0.0

0.2

0.4

0.6

0.8

P
ro

ba
bi

lit
y

[a
u]

BDTF PV 2

2 1 0 1 2 3 4
Feature value [au]

0.00

0.25

0.50

0.75

1.00

1.25

P
ro

ba
bi

lit
y

[a
u]

BFD 2 PV

2 1 0 1 2 3
Feature value [au]

0.0

0.5

1.0

1.5

P
ro

ba
bi

lit
y

[a
u]

HMin IP 2 PV

10 8 6 4 2 0 2 4
Feature value [au]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

ba
bi

lit
y

[a
u]

BPT

background signal white noise flat in transform white noise

Fig. 2.6: The distribution of the 4 most important features (sorted from most to
least important) for signal and background events after taking the logarithm and
normalisation compared to two kinds of white noise.

Figure 2.6 illustrates nicely, why certain features were found to be most important by
XGBoost (see figure 2.4). For the most important features the overlap of signal and back-
ground is small, meaning that the region where events are similarly likely to be background
and signal is smaller.

3 Training the Classifiers
The methods described in sections 3.1, 2.2 and 2.3 were implemented using different machine
learning libraries. First the BDTs were trained to quickly obtain a baseline, followed by
ordinary NNs to have guidance for the geometry of the BNNs, which were trained last. The
primary interest for the thesis is whether the measure of uncertainty from BNNs provides
a significant advantage over BDTs and NNs. For a better comparison, BDT ensembles were
trained from which an uncertainty can be obtained as well (see section 3.1.1).

3.1 Implementation of the Boosted Decision Trees
Three libraries were used to train BDTs: scikit-learn, XGBoost and LightGBM. Scikit-learn
is the most accessible and comes with many useful functions and a lot of beginner friendly
documentation. XGBoost has become somewhat of a standard in the field for its solid

14

performance and relative ease of use. LightGBM is the newest of the three libraries and
is becoming increasingly popular because it is by far the fastest to train and competes
well with XGBoost performance wise. Because the implementation is similar for all of the
libraries, the details will not be gone over for each of them. For all of the libraries it was
quite easy to train an algorithm that performs decently well. The first step to improve the
performance of the algorithms was tuning the hyperparameters. The resulting parameter
values are shown in the appendix A.

When using a large proportion of the labelled data as training set, it was found that
the test set was too small to give a stable measure of the performance. For a more reliable
measure k-fold cross-validation (CV, see section 2.4), was used. Figure ?? shows how
much the tuning effected the performance as a function of k. The errors bars indicate the
standard deviation of the AUROC score across 20 different k-fold splits.

2 4 6 8 10 12 14 16
Amount of folds k [au]

0.9900

0.9905

0.9910

0.9915

0.9920

0.9925

0.9930

0.9935

A
ur

oc
 s

co
re

 [a
u]

library
LGBM XGB sklearn

variant
with tuning without tuning

Fig. 3.1: The AUROC score of the different BDTs with and without tuning of the
hyperparameters computed with k-fold CV and averaged across 20 different fold
seeds. The shaded areas fill the area between the first standard deviation of the
AUROC score for BDTs without hyperparameter tuning

More effort could have been invested into the tuning, but these results are good enough
for having a benchmark. The training and prediction times for the different classifiers can
be found in appendix D.

15

3.1.1 Boosted Decision Tree Ensembles

As a final improvement of the BDTs and to obtain a comparison for the BNNs measure of
uncertainty, an ensemble of BDTs was trained. What this means is that multiple BDTs are
trained to each make a prediction which are then joined into a single prediction. For the
thesis 20 different BDTs were taken from the k fold CV evaluation and their predictions were
joined by taking the average, with the standard deviation giving a predictions uncertainty.
The motivation behind this method is to avoid overfitting on patterns that only show up
in some training sets. If one takes the average, the random fluctuations caused by these
patterns should be diminished.

The method was applied for a range of values of k, giving the performance increases
shown in figure 3.2.

2 4 6 8 10 12 14 16
Amount of folds k [au]

0.9915

0.9920

0.9925

0.9930

0.9935

0.9940

A
U

R
O

C
 s

co
re

 [a
u]

library
LGBM XGB sklearn

variant
k-fold CV k-fold ensemble

Fig. 3.2: The AUROC score of the different BDT ensembles taken from k-fold CV
compared to simple k fold CV BDTs (all with tuned hyperparameters)

Across all values of k averaging yields a stable performance increase on the labelled data.
Because of this, the further analysis will focus on BDT ensembles as a benchmark for NNs
and BNNs. The previous performance measures seem to indicate that scikit-learn is not a
viable alternative to XGBoost and LightGBM. We will nevertheless continue to evaluate
the BDT ensembles for all Libraries because there might be significant differences when it
comes to the generalisation to other data types. The measure of uncertainty of the BDT
ensembles will be examined in more detail in section 4.1.

16

3.2 Implementation of a Neural Network
As expected, it was much harder to set up a working NN than a BDT. The first difficulty
is that there is far less guidance for choosing the initial hyperparameters, like the networks
geometry. Since this is crucial for the performance (a wrong choice can make the network
completely useless) a lot more trial an error was needed. The network was set up as
feedforward NN, using the Sequential model of tensorflow.keras. Four layers with 40 to 60
nodes were eventually settled on, details can be found in appendix B.

The tuning of the network was made a lot easier by transforming the data as shown
in figure 2.6. After the transformation it was possible to drastically reduce the amount
of layers and nodes per layer, making the network faster to train and making it easier to
tune other parameters or test new optimizations. The final hyperparameters are found in
appendix B.

In order to not overfit, a feature called early stopping was implemented. The early
stopping callback was set up to stop training when the AUROC score computed for an
independent test set has not increased over the last 5 epochs. In this case the network has
most likely started to overfit and the training can be stopped.

Since the training can be quite computationally expensive, something like a k-fold CV
averaged over 20 seeds to evaluate the performance was not tried. Instead, the labelled data
was split into a training set and a test set to compute the AUROC score. This was done for
20 random train/test splits, to obtain a measure of how reliable the score is. Furthermore
different split ratios were tried to check how much the network depends on the amount of
available data, the results are shown in table 3.1.

Train/Test split AUROC score
90%/%10 0.9942± 0.0007
80%/%20 0.9942± 0.0007
70%/%30 0.9942± 0.0008
60%/%40 0.9941± 0.0007
50%/%50 0.9941± 0.0007

Table 3.1: The AUROC score of the NN averaged over 20 random data splits for
different ratios of training and testing data and the time it took to train and predict

For the further evaluation, a classifier with a 70%/30% training/test split ratio was
used. For the BNN this split ratio will be motivated in section 3.3. For the main research
interest the NN only serves as a guidance to constructing the BNN, so these results are
satisfactory.

3.3 Implementation of a Bayesian Neural Network
The Bayesian neural network was even more difficult to set up. It has the same geometry
with some of the layers being DenseVariational layers from the TensorFlow Probability
library. Since these layers implement Empirical Bayes, they need to have more free parame-

17

ters to fit the distribution of the weights and biases and the posterior shape, three times as
many parameters were used for the thesis (see section 2.3). The fitting of these parameters
is much more error prone, which is why a wrong amount of variational layers or a wrong
ordering can prevent the network from learning. For the thesis project a single variational
layer was placed at the end of the network. A further difficulty is, that one needs to define
the shape from which weights and biases are sampled as well as the initial parametrisation
of the distribution. A wrong choice can again prevent the network from learning.

The hyperparameters that were eventually settled on can be found in appendix C. Again
early stopping and the same evaluation method was used to find the following AUROC
scores for different train/test splits:

Train/Test split AUROC
90/10 0.9925± 0.0006
80/20 0.9926± 0.0006
70/30 0.9927± 0.0006
60/40 0.9929± 0.0009
50/50 0.9926± 0.0006

Table 3.2: The AUROC score of the BNN averaged over 20 random data splits for
different ratios of training and testing data

The classifier that used for the evaluation was trained with a 70%/30% train/test
split, because the test set needs to be somewhat large for the training of a meta classifier
introduced in section 4.2.

4 Evaluation of the Classifiers and Discussion
For the performance on the labelled data set, the AUROC scores indicate, which classifiers
are best. A summary of the results is shown in table 4.1. The BDT ensembles lack a
confidence interval because they are only trained once due to computational intensity.
Figure 3.2 suggests that the scores are somewhat stable though.

Classifier AUROC
Neural Network 0.9948± 0.0008

XGBoost ensemble 0.9940
LightGBM ensemble 0.9939

given algorithm 0.9933
scikit-learn ensemble 0.9928

Bayesian Neural Network 0.9927± 0.0006

Table 4.1: The AUROC scores of the different classifiers sorted in descending order

The classifier called given algorithm is a benchmark MVA score that already came with the

18

data. It was obtained with an XGBoost classifier, that was optimized with a Grid Search
and randomly selected from one of 10 classifiers obtained with 10-fold CV. The training
data is almost the same as the one used for this theses, expect for the background cut
being at 5600 MeV/c2 rather than 5450 MeV/c2. The given algorithm has a significantly
worse AUROC score on the labelled data than some of the newly trained classifiers. These
results are not the primary interest of the thesis though. The evaluation will focus on the
performance on unlabelled data, since it is most important how the algorithms generalise
beyond the labelled data. As mentioned in section 2.4, evaluating the performance on
such data is a difficult task. The following sections show how well the different classifiers
fulfill the criteria of quality from section 2.4. Three research questions are central for this
evaluation.

1. Is the uncertainty supplied by the BNN different from the one of the BDT ensemble?

2. Are the uncertainties useful for the detection of unknown events?

3. How well do the classifiers perform applied to different channels?

4. How useful is the classifier for the further analysis?

4.1 Frequentist Versus Bayesian Uncertainty
As mentioned in section 2.4 several types of unknown events were generated to be predicted
on. These are events for which:

1. Every feature is sampled from a flat distribution in the feature space (white noise
flat)

2. Every feature is sampled from a distribution that is flat in the transformed feature
space (white noise flat in transform)

3. Gaussian noise proportional to the standard the deviation of the feature and scaled
by different factors is added to the features (noisy 10%, 30%, ...)

Since BDTs are easier to train, there would be no reason to use a BNN if it did not provide
another benefit. It was thus checked whether there is a significant difference between the
BDT ensembles and the BNN when it comes to predicting on these events. To do so, the
uncertainties assigned to different types of unknown events were visualised and compared.

Figures 4.1, 4.2, 4.3 and 4.4 show the predictions assigned to events within a given
percentile of their respective data sets. The width of the bars represent the uncertainties
of the predictions.

19

0 20 40 60 80 100
percentile of event prediction [%]

0.00

0.25

0.50

0.75

1.00

tfb
 p

re
di

ct
io

n
[a

u]

signal B0 K*0ee [MC]
background

signal B0 K*0ee [MC] unknown
background unknown

0 20 40 60 80 100
percentile of event prediction [%]

0.00

0.25

0.50

0.75

1.00

LG
B

M
 p

re
di

ct
io

n
[a

u]

Fig. 4.1: The prediction value and its uncertainty for events where gaussian noise
proportional to 10% of a features standard deviation is added compared to the
original labelled data

0 20 40 60 80 100
percentile of event prediction [%]

0.00

0.25

0.50

0.75

1.00

tfb
 p

re
di

ct
io

n
[a

u]

signal B0 K*0ee [MC]
background

signal B0 K*0ee [MC] unknown
background unknown

0 20 40 60 80 100
percentile of event prediction [%]

0.00

0.25

0.50

0.75

1.00

LG
B

M
 p

re
di

ct
io

n
[a

u]

Fig. 4.2: The prediction value and its uncertainty for events where gaussian noise
proportional to 30% of a features standard deviation is added compared to the
original labelled data

20

0 20 40 60 80 100
percentile of event prediction [%]

0.00

0.25

0.50

0.75

1.00

tfb
 p

re
di

ct
io

n
[a

u]

signal B0 K*0ee [MC] background white noise unknown

0 20 40 60 80 100
percentile of event prediction [%]

0.00

0.25

0.50

0.75

1.00

LG
B

M
 p

re
di

ct
io

n
[a

u]

Fig. 4.3: The prediction value and its uncertainty for white noise that is uniformly
distributed in the transformed feature space compared to the original labelled data

0 20 40 60 80 100
percentile of event prediction [%]

0.00

0.25

0.50

0.75

1.00

tfb
 p

re
di

ct
io

n
[a

u]

signal B0 K*0ee [MC] background white noise unknown

0 20 40 60 80 100
percentile of event prediction [%]

0.00

0.25

0.50

0.75

1.00

LG
B

M
 p

re
di

ct
io

n
[a

u]

Fig. 4.4: The prediction value and its uncertainty for white noise that is uniformly
distributed in the feature space compared to the original labelled data

The figures above are for the LightGBM ensemble, but similar results are obtained with
scikit-learn and XGBoost. While there are differences for white noise that is uniformly
distributed in the feature space (figure 4.4), the behavior is strikingly similar for all other
types of unknown events. The fact that this holds for all of the BDT ensembles suggests
that the similarity is not random. Rather it suggests that some types of unknown events
are actually more or less like signal and that all of the classifiers can pick up on this. White
noise that is uniformly distributed in the feature space might be an exception because it

21

is drastically different from real events, which are distributed exponentially (this can be
seen in figure 2.5).

There thus is no evidence so far that the BNNs uncertainty differs substantially from the
BDT ensembles. The fact that differences only become significant for completely different
types of data (white noise in figures 4.3, 4.4) indicates, that issues only come up when
one moves too far from what the networks were trained on. Within the realm of what
events realistically look like, all classifiers give similar predictions and uncertainties. The
differences seem to be only up to tuning. It is still possible that BNNs might be helpful
when completely different events are predicted on, but it is unclear what these use cases
would look like. As a consequence it is unclear how to evaluate whether BNNs would
actually perform better in these cases.

4.2 Using Uncertainties for Classification
A central motivation behind making predictions with uncertainties was to be able to
identify unknown events. For this to be the case, a classifiers output for unknown events
would need to be differently distributed in the prediction-uncertainty space. Figures 4.5,
4.6, 4.7 and 4.8 show how events of different types are scattered in this space.

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [au]

0.0

0.1

0.2

S
ta

nd
ar

d
de

vi
at

io
n

[a
u]

unknown labelled data

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [au]

10
2

10
1

10
0

10
1

P
ro

ba
bi

lit
y

de
ns

ity
 [a

u]

unknown labelled data

(a) for the LightGBM ensemble

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [au]

0.00

0.05

0.10

0.15

S
ta

nd
ar

d
de

vi
at

io
n

[a
u]

unknown labelled data

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [au]

10
2

10
1

10
0

10
1

P
ro

ba
bi

lit
y

de
ns

ity
 [a

u]

unknown labelled data

(b) for the BNN

Fig. 4.5: The predictions and uncertainties assigned to 10000 events from the
labelled data set and the data set where gaussian noise proportional to 10% of a
features standard deviation is added

22

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [au]

0.00

0.05

0.10

0.15

0.20

S
ta

nd
ar

d
de

vi
at

io
n

[a
u]

unknown labelled data

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [au]

10
2

10
1

10
0

10
1

P
ro

ba
bi

lit
y

de
ns

ity
 [a

u]

unknown labelled data

(a) for the LightGBM ensemble

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [au]

0.0

0.1

0.2

0.3

S
ta

nd
ar

d
de

vi
at

io
n

[a
u]

unknown labelled data

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [au]

10
2

10
1

10
0

10
1

P
ro

ba
bi

lit
y

de
ns

ity
 [a

u]

unknown labelled data

(b) for the BNN

Fig. 4.6: The predictions and uncertainties assigned to 10000 events from the
labelled data set and data set where gaussian noise proportional to 30% of a
features standard deviation is added

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [au]

0.0

0.1

0.2

S
ta

nd
ar

d
de

vi
at

io
n

[a
u]

unknown labelled data

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [au]

10
2

10
1

10
0

10
1

P
ro

ba
bi

lit
y

de
ns

ity
 [a

u]

unknown labelled data

(a) for the LightGBM ensemble

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [au]

0.00

0.05

0.10

0.15

0.20

S
ta

nd
ar

d
de

vi
at

io
n

[a
u]

unknown labelled data

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [au]

10
2

10
1

10
0

10
1

P
ro

ba
bi

lit
y

de
ns

ity
 [a

u]

unknown labelled data

(b) for the BNN

Fig. 4.7: The predictions and uncertainties assigned to 10000 events from the
labelled data set and the white noise that is uniformly distributed in the
transformed feature space

23

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [au]

0.00

0.05

0.10

0.15

0.20

S
ta

nd
ar

d
de

vi
at

io
n

[a
u]

unknown labelled data

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [au]

10
2

10
1

10
0

10
1

P
ro

ba
bi

lit
y

de
ns

ity
 [a

u]

unknown labelled data

(a) for the LightGBM ensemble

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [au]

0.00

0.05

0.10

0.15

0.20

S
ta

nd
ar

d
de

vi
at

io
n

[a
u]

unknown labelled data

0.0 0.2 0.4 0.6 0.8 1.0
Prediction [au]

10
2

10
1

10
0

10
1

P
ro

ba
bi

lit
y

de
ns

ity
 [a

u]

unknown labelled data

(b) for the BNN

Fig. 4.8: The predictions and uncertainties assigned to 10000 events from the
labelled data set and the white noise that is uniformly distributed in the feature
space

The figures again show that there are no obvious differences between the BDT ensembles
and the BNN. For none of the classifiers, the unknown events would be recognizable as a
different species in the scatter plots.

From these plots it is hard to get a more quantitative understanding of how neatly
unknown events can be separated. One could imagine a use case, where it is known that
events of some strange kind will show up in the data, i.e. a known unknown is present. For
this use case one could train a second order BDT, that classifies events into unknown data
and labelled data given their assigned predictions and uncertainties. This was done for
the events discussed above. The resulting AUROC scores in figure 4.9 give a quantitative
measure of how neatly the separation could be performed for the different classifiers outputs.
Figure 4.10 shows how much the AUROC score improves over the case where only a simple
cut in the prediction is made and the uncertainty is not considered.

24

0.5 0.6 0.7 0.8 0.9
AUROC score with meta-classifier [au]

noisy 0.1

noisy 0.2

noisy 0.3

noisy 0.5

white noise flat

white noise flat in transform

tfb XGB LGBM sklearn

Fig. 4.9: The AUROC score of the meta classifier separating unknown events from
the labelled data

0.0 0.1 0.2 0.3 0.4 0.5
AUROC score improvement using meta-classifier [au]

noisy 0.1

noisy 0.2

noisy 0.3

noisy 0.5

white noise flat

white noise flat in transform

tfb XGB LGBM sklearn

Fig. 4.10: The AUROC score improvement gained by using the meta classifier to
separate unknown events from the labelled data (instead of just using the
predictions)

Again the only significant differences are in the white noise. The BNN is clearly worse
at separating white noise from the labelled data. This is somewhat surprising because in
figures 4.3 and 4.4 it looks like there is a larger difference between signal and white noise for
the BNN. A possible explanation is that there is a slight difference between the prediction
plateau for white noise and for signal that can not be seen in the plots. For noisy data the
performance differences across classifiers are most likely dependent on the optimisation.

25

There are no apparent advantages to using a BNN.

4.3 Generalisation to other decay channels
It would be desirable to have a classifier, that works equally well for all decay channels.
Assuming that the background is the same for all data files, this is fulfilled if the recall of
the classifier behaves in the same way for all channels. This can be examined by studying
the predictions for MC files for the different paths. For a comparison that does not depend
on the cut, one can visualise the recall as a function of the cut. This comparison is shown
in figures 4.11d to ??.

0.0 0.2 0.4 0.6 0.8 1.0
Recall [au]

0.0

0.2

0.4

0.6

0.8

1.0

M
V

A
 c

ut
 [a

u]

K*0(J) K*0(J ee) K*0ee K*0ee (training)

(a) for the BNN

0.0 0.2 0.4 0.6 0.8 1.0
Recall [au]

0.0

0.2

0.4

0.6

0.8

1.0

M
V

A
 c

ut
 [a

u]

K*0ee K*0(J) K*0(J ee) K*0ee (training)

(b) for the LightGBM ensemble

0.0 0.2 0.4 0.6 0.8 1.0
Recall [au]

0.0

0.2

0.4

0.6

0.8

1.0

M
V

A
 c

ut
 [a

u]

K*0ee (training) K*0(J) K*0(J ee) K*0ee

(c) for the NN

0.0 0.2 0.4 0.6 0.8 1.0
Recall [au]

0.0

0.2

0.4

0.6

0.8

1.0

M
V

A
 c

ut
 [a

u]

K*0ee (training) K*0(J ee) K*0ee

(d) for the given algorithm

Fig. 4.11: The MVA cut required to obtain a given recall for different MC files
with classifiers trained on K∗e+e− MC

What these figures show is that some channels receive higher predictions than others for
all classifiers. Most clearly B0 −→ K∗J/Ψ(−→ e+e−) receives higher predictions on average
than the other channels. This behaviour could be due to events from this MC file actually
looking more like typical signal or due to the classifiers generalising poorly. To determine
what is causing the disparity, a cross check was performed by training the classifiers on
J/Ψ signal and redoing the plots.

26

0.0 0.2 0.4 0.6 0.8 1.0
Recall [au]

0.0

0.2

0.4

0.6

0.8

1.0

M
V

A
 c

ut
 [a

u]
K*0ee (training) K*0(J) K*0(J ee) K*0ee

(a) for the BNN

0.0 0.2 0.4 0.6 0.8 1.0
Recall [au]

0.0

0.2

0.4

0.6

0.8

1.0

M
V

A
 c

ut
 [a

u]

K*0ee K*0(J) K*0(J ee) K*0ee (training)

(b) for the LightGBM ensemble

Fig. 4.12: The MVA cut required to obtain a given recall for different MC files
with classifiers trained on K∗J/Ψ(−→ e+e−) MC

Again the classifiers assign higher predictions to the K∗J/Ψ(−→ e+e−) channel, thus
strengthening the conclusion that signal events from this MC file look more like typi-
cal signal. The difference observed in the K∗J/Ψ(−→ e+e−) MC file might very well be due
to cuts and not due to the channel being different. Information on this is still pending. The
fact that the K∗e+e− file used for training gives a different curve than another K∗e+e−

MC file suggest that cuts are indeed responsible.
Another disparity common to all classifiers is, that the J/Ψ(−→ e+e−) channel receives

higher predictions than the J/Ψ(−→ µ+µ−) channel. Since the algorithms are trained on
e+e− data, this is not especially surprising as we expect muons to have a different signature
than electrons. In order to make sure that this holds, it was also tested by training on
J/Ψ(−→ µ+µ−) files and redoing the plots.

27

0.0 0.2 0.4 0.6 0.8 1.0
Recall [au]

0.0

0.2

0.4

0.6

0.8

1.0

M
V

A
 c

ut
 [a

u]
K*0ee (training) K*0(J) K*0(J ee) K*0ee

(a) for the BNN

0.0 0.2 0.4 0.6 0.8 1.0
Recall [au]

0.0

0.2

0.4

0.6

0.8

1.0

M
V

A
 c

ut
 [a

u]

K*0ee (training) K*0ee K*0(J) K*0(J ee)

(b) for the LightGBM ensemble

0.0 0.2 0.4 0.6 0.8 1.0
Recall [au]

0.0

0.2

0.4

0.6

0.8

1.0

M
V

A
 c

ut
 [a

u]

K*0ee (training) K*0(J) K*0(J ee) K*0ee

(c) for the NN

0.0 0.2 0.4 0.6 0.8 1.0
Recall [au]

0.0

0.2

0.4

0.6

0.8

1.0

M
V

A
 c

ut
 [a

u]

K*0ee (training) K*0ee K*0(J) K*0(J ee)

(d) for the XGBoost ensemble

Fig. 4.13: The MVA cut required to obtain a given recall for different MC files
with classifiers trained on K∗J/Ψ(−→ µ+µ−) MC

The results for this cross-check are surprising. There is a significant difference between
the NN/BNN and the BDTs. For the BDTs there is a drastic difference between the
J/Ψ(−→ µ+µ−) channel and the J/Ψ(−→ e+e−) channel (the results for scikit-learn are
comparable to those for LGBM in figure ??). In comparison the NNs are way better at
generalising to the J/Ψ(−→ e+e−) channel. In fact, they still give higher predictions to this
channel. This suggests that NNs are less prone to overfitting on the J/Ψ(−→ µ+µ−) file.
Checking the feature distribution reveals that the MC has a different cut on the LMin PT

feature (see figure 4.14). Because this opens up an area where background events can be
neatly separated from signal events, the BDTs will most likely learn to make a decision
that classifies events below the cut-off in LMin PT as background. This decision does not
work that well for other channels, thus causing the poor generalisation. The NNs might be
less prone to this problem because they do not work with sharp cut-offs and will not place
as much of an emphasis on a single feature decision. The presented hypothesis is difficult
to prove because both types of classifiers are somewhat of a black box, but it seems highly
probable. When one is working with files that have different cuts applied, it thus might be
advisable to use NNs instead of BDTs.

28

0 5000 10000 15000 20000 25000 30000 35000
Feature value [au]

0.0000

0.0002

0.0004

0.0006

P
ro

ba
bi

lit
y

de
ns

ity
 [a

u]

LMin PT

2 1 0 1 2 3 4 5
Feature value (transformed) [au]

0.0

0.2

0.4

P
ro

ba
bi

lty
 d

en
si

ty
 [a

u]

background signal J + signal

Fig. 4.14: The distribution in the LMin PT feature of signal and background from
the labelled data set compared to the J/Ψ(−→ µ+µ−) MC file

4.4 Usability for Further Analysis
The mass fits from the analysis were redone using the prediction outputs from different
classifiers. For all of the plots, events with predictions lower than a certain threshold
(0.999) were cut out to obtain a cleaner signal peak. To make sure that the results are
comparable, the predictions of the classifiers were shifted, such that all classifiers have the
same recall on the K∗e+e− MC training file when cutting at 0.999. Since the mass fits are
for B0 −→ K+π−e+e−/µ+µ− it would have been better to match the cuts on a K+π−e+e−

MC file, but no file with the required features was available.
Fits for 4 different cases were plotted:

1. B0 −→ K+π−e+e− with lower energy hadrons 1000 < m(K+π−) < 1835 MeV/c2

2. B0 −→ K+π−e+e− with higher energy hadrons 1895 < m(K+π−) < 2600 MeV/c2

3. B0 −→ K+π−µ+µ− with lower energy hadrons 1000 < m(K+π−) < 1835 MeV/c2

4. B0 −→ K+π−µ+µ− with higher energy hadrons 1895 < m(K+π−) < 2600 MeV/c2

The results for K+π−e+e− with lower energy hadrons are shown in figure 4.15, those with
higher energy hadrons in figure 4.16. For the K+π−µ+µ− channel only a few selected
plots are shown in figure 4.17 because they do not provide many new insights. It is not
easy to interpret, what the mass fits tell us about the classifiers that were used to obtain
them. There are some straightforward measures of fit quality, such as having a more visible
peak, more reasonable residuals and lower uncertainties. These measures of quality however
do not guarantee that the classifier that were used perform better. A classifier might for
instance skew the results of the fits, which could not be seen in the plots. This must be
kept in mind when considering the plots and the conclusions drawn from them.

29

4600 4800 5000 5200 5400 5600 5800
m(K+π−e+e−) [MeV/c2]

0

200

400

600

800

1000

E
ve

nt
s/

(2
6.

00
M

eV
/c

2)

4600 4800 5000 5200 5400 5600 5800
−5

0

5

1000 < m(K+π−) < 1835 MeV/c2

(a) without MVA

4600 4800 5000 5200 5400 5600 5800
m(K+π−e+e−) [MeV/c2]

0

5

10

15

20

25

E
ve

nt
s/

(2
6.

00
M

eV
/c

2)

4600 4800 5000 5200 5400 5600 5800
−5

0

5

1000 < m(K+π−) < 1835 MeV/c2

(b) with given MVA

4600 4800 5000 5200 5400 5600 5800
m(K+π−e+e−) [MeV/c2]

0

10

20

30

40

E
ve

nt
s/

(2
6.

00
M

eV
/c

2)

4600 4800 5000 5200 5400 5600 5800
−5

0

5

1000 < m(K+π−) < 1835 MeV/c2

(c) with BNN MVA

4600 4800 5000 5200 5400 5600 5800
m(K+π−e+e−) [MeV/c2]

0

10

20

30

E
ve

nt
s/

(2
6.

00
M

eV
/c

2)

4600 4800 5000 5200 5400 5600 5800
−5

0

5

1000 < m(K+π−) < 1835 MeV/c2

(d) with LightGBM ensemble MVA

Fig. 4.15: Mass fit for the B0 −→ K+π−e+e− channel with
1000 < m(K+π−) < 1835 MeV/c2

30

4600 4800 5000 5200 5400 5600 5800
m(K+π−e+e−) [MeV/c2]

0

100

200

300

400

500
E

ve
nt

s/
(2

6.
00

M
eV

/c
2)

4600 4800 5000 5200 5400 5600 5800
−5

0

5

1895 < m(K+π−) < 2600 MeV/c2

(a) without MVA

4600 4800 5000 5200 5400 5600 5800
m(K+π−e+e−) [MeV/c2]

0.0

2.5

5.0

7.5

10.0

12.5

E
ve

nt
s/

(2
6.

00
M

eV
/c

2)

4600 4800 5000 5200 5400 5600 5800
−5

0

5

1895 < m(K+π−) < 2600 MeV/c2

(b) with given MVA

4600 4800 5000 5200 5400 5600 5800
m(K+π−e+e−) [MeV/c2]

0

5

10

15

E
ve

nt
s/

(2
6.

00
M

eV
/c

2)

4600 4800 5000 5200 5400 5600 5800
−5

0

5

1895 < m(K+π−) < 2600 MeV/c2

(c) with BNN MVA

4600 4800 5000 5200 5400 5600 5800
m(K+π−e+e−) [MeV/c2]

0

5

10

15

E
ve

nt
s/

(2
6.

00
M

eV
/c

2)

4600 4800 5000 5200 5400 5600 5800
−5

0

5

1895 < m(K+π−) < 2600 MeV/c2

(d) with LightGBM ensemble MVA

Fig. 4.16: Mass fit for the B0 −→ K+π−e+e− channel with
1895 < m(K+π−) < 2600 MeV/c2

Figure 4.15a illustrates how a classification into signal and combinatorial background is
absolutely necessary to get a meaningful fit. The fits for LightGBM are really similar to
the ones obtained with the given algorithm. It does not look like the performance increase
on the labelled data translates into a performance increase on real data.

The BNN tends do give slightly worse results (see for instance figure 4.15c) except
for the higher energy region (figure 4.16c). In this fit, the BNN as well as the NN give
a more visible peak, this is not seen for the µ+µ− channel though. Because of this and
since there are very little events, this can not be considered a meaningful results. Further
investigations would be needed to determine if NNs are advantageous in this energy region.

31

4600 4800 5000 5200 5400 5600 5800
m(K+π−e+e−) [MeV/c2]

0

10

20

30

40

50
E

ve
nt

s/
(2

6.
00

M
eV

/c
2)

4600 4800 5000 5200 5400 5600 5800
−5

0

5

1000 < m(K+π−) < 1835 MeV/c2

(a) with XGBoost ensemble MVA

4600 4800 5000 5200 5400 5600 5800
m(K+π−e+e−) [MeV/c2]

0

10

20

30

E
ve

nt
s/

(2
6.

00
M

eV
/c

2)

4600 4800 5000 5200 5400 5600 5800
−5

0

5

1000 < m(K+π−) < 1835 MeV/c2

(b) with scikit-learn ensemble MVA

5000 5100 5200 5300 5400 5500 5600
m(K+π−µ+µ−) [MeV/c2]

0

5

10

15

E
ve

nt
s/

(1
2.

00
M

eV
/c

2)

5000 5100 5200 5300 5400 5500 5600
−5

0

5

1895 < m(K+π−) < 2600 MeV/c2

(c) with XGBoost ensemble MVA

5000 5100 5200 5300 5400 5500 5600
m(K+π−µ+µ−) [MeV/c2]

0

2

4

6

8

10

E
ve

nt
s/

(1
2.

00
M

eV
/c

2)

5000 5100 5200 5300 5400 5500 5600
−5

0

5

1895 < m(K+π−) < 2600 MeV/c2

(d) with scikit-learn ensemble MVA

Fig. 4.17: Comparison of the mass fits obtained with the XGBoost ensemble and
the scikit-learn ensemble for the B0 −→ K+π−e+e− channel with
1000 < m(K+π−) < 1835 MeV/c2 (4.17a and 4.17b) and the B0 −→ K+π−µ+µ−

channel with 1895 < m(K+π−) < 2600 MeV/c2 (4.17c and 4.17d)

Quantitative measures for the goodness of the fits can be found in the signal/background
yields and their respective uncertainties. They have been compared in figure 4.18 and
roughly match the observations made so far.

32

0 200 400
events under fit [au]

signal

background

B0 K + e + e lower

0 100 200
events under fit [au]

signal

background

B0 K + e + e higher

0 50 100 150 200
events under fit [au]

signal

background

B0 K + + lower

0 50 100 150 200
events under fit [au]

signal

background

B0 K + + higher

LGBM sklearn tfb tf XGB given

Fig. 4.18: The signal and background yields for fits of data that was cut with
MVA scores from different classifiers.

5 Conclusion
It was found that BDT ensembles and BNNs give comparable uncertainties and predictions.
Larger differences only showed up for types of unknown events, that are drastically different
from what one would measure. Both for the BDT ensembles and the BNN, the outputs
do make some unknown events identifiable from their distributions in the prediction-
uncertainty space. They can however be separated somewhat cleanly if the type of unknown
events are known and can be trained on. This separation works about as well for the BDT
ensembles and the BNN, with advantages on the BDTs side for white noise.

All classifiers were found to give higher predictions to certain datasets, suggesting that
events in these files are actually easier to differentiate from background, which might just
be due to different cuts though. Training on J/Ψ(−→ µ+µ−) gave weak evidence that NNs
are better at generalising onto data sets with different cuts. For future research a mix of
different MC signal files for the training data to improve the generalisation power of the
algorithms could be used. Similarly one could try to add events with noisy features (such as
the ones generated for this thesis) into the training data to try and improve generalisation
to real data.

When looking at the mass fits obtained with the different classifiers, the obtained results

33

look similar and for a good comparison, further studies would be required. There are some
areas where further investigations might shine light on possible use cases for BNNs, but
they did not prove to be beneficial so far. Because of the much more involved tuning that
is needed to obtain a working BNN, ensembles of BDTs seems to be the more reasonable
choice for this kind of analysis.

34

Acknowledgements
I want to thank the research group for their helpful comments during our weekly meetings.
In particular I want to thank Nathan Baudis of his cooperation in redoing the mass fits and
his patient explanation of his work. Finally I want to thank Jonas Eschle for his thorough
corrections on drafts of the thesis and for the thoughtful discussions.

35

Bibliography
[1] Laurent Valentin Jospin et al. “Hands-on Bayesian Neural Networks - a Tutorial for

Deep Learning Users”. In: ACM Computing Surveys 1.1 (2020), pp. 891–921.

[2] The LHCb Collaboration et al. “The LHCb Detector at the LHC”. In: Journal of
Instrumentation 3.08 (Aug. 2008), S08005–S08005. doi: 10.1088/1748-0221/3/08/
s08005. url: https://doi.org/10.1088/1748-0221/3/08/s08005.

[3] Jake Hoare. What is a Decision Tree? 2018. url: https://www.displayr.com/what-
is-a-decision-tree/ (visited on 11/26/2020).

[4] Aarshay Jain. Complete Machine Learning Guide to Parameter Tuning in Gradient
Boosting (GBM) in Python. 2016. url: https://www.analyticsvidhya.com/blog/
2016/02/complete-guide-parameter-tuning-gradient-boosting-gbm-python/
(visited on 01/10/2021).

[5] Jesse Johnson. General regression and over fitting. 2013. url: https://shapeofdata.
wordpress.com/2013/03/26/general-regression-and-over-fitting/ (visited
on 11/16/2020).

A BDT Hyperparameters

Hyperparameter Default Value Optimised Value
learning_rate 0.1 0.15
n_estimators 100 70
max_depth 3 9

min_samples_split 2 600
min_samples_leaf 1 150

max_features None 8

Table A.1: The hyperparameters that were tuned for the scikit-learn BDT and their
corresponding default values

For XGBoost and LightGBM the hyperparameter tuning was done quickly by hand, only
for scikit-learn a more methodological approach was tried. For scikit-learn a succession of
Grid Searches was performed to find the best values of the hyperparameters across different

36

https://doi.org/10.1088/1748-0221/3/08/s08005
https://doi.org/10.1088/1748-0221/3/08/s08005
https://doi.org/10.1088/1748-0221/3/08/s08005
https://www.displayr.com/what-is-a-decision-tree/
https://www.displayr.com/what-is-a-decision-tree/
https://www.analyticsvidhya.com/blog/2016/02/complete-guide-parameter-tuning-gradient-boosting-gbm-python/
https://www.analyticsvidhya.com/blog/2016/02/complete-guide-parameter-tuning-gradient-boosting-gbm-python/
https://shapeofdata.wordpress.com/2013/03/26/general-regression-and-over-fitting/
https://shapeofdata.wordpress.com/2013/03/26/general-regression-and-over-fitting/

Hyperparameter Default Value Optimised Value
learning_rate 0.3 0.1
n_estimators 100 1000
max_depth 6 5
subsample 1 0.8

colsample_bytree 1 0.8

Table A.2: The hyperparameters that were tuned for the XGBoost BDT and their
corresponding default values

Hyperparameter Default Value Optimised Value
num_leaves 31 28

min_data_in_leaf 20 300

Table A.3: The hyperparameters that were tuned for the LightGBM BDT and their
corresponding default values

Hyperparameter Default Value Optimised Value
nodes per layer – 14/40/60/60/1

optimizer – Adam
learning_rate 0.001 0.0001
training epochs – 400 (at most)
loss function – binary cross-entropy

activation function – leaky relu
output layer activation – sigmoid

batch size – 64

Table B.1: The hyperparameters of the TensorFlow NN and the corresponding
default value (if available)

37

intervals. The method is described in more detail in [4].

B Hyperparameters of the Neural Network

C Hyperparameters of the Bayesian Neural Network

Hyperparameter Default Value Optimised Value
nodes per layer – 14/40/60/60v/1

optimizer – Adam
learning_rate 0.001 0.0001
training epochs – 400 (at most)
loss function – binary cross-entropy

activation function – leaky relu
output layer activation – sigmoid

batch size – 64
prior shape – Normal

posterior shape – Normal

Table C.1: The hyperparameters of the TensorFlow Probability BNN and the
corresponding default values (if available). A v in the nodes per layer indicated that
a layer implements variational inference (see sec 2.3)

D Training and Prediction times
Because prediction times are basically constant across the amount k of folds and training
time is linear for high k, we can simply compare the times for 16-fold CV. As table D.1 shows,
LightGBM is in a league of its own when it comes to training time. XGBoost could also
easily outperform sklearn, but the tuning of the hyperparameters is really computationally
expensive.

Prediction Time [s] Training Time [s]
Library without tuning with tuning without tuning with tuning
sklearn 0.12 0.22 928 1061
XGBoost 0.18 1.09 123 703
LightGBM 0.16 0.38 10 23

Table D.1: The training and prediction times of the different BDTs for 16 fold CV
averaged across 20 seeds

The prediction time might seem irrelevant compared to the training time, but this is
somewhat misleading. For the table above only the labelled data was predicted on, which

38

makes up about 2% of the total data. For sklearn and XGBoost the total prediction
time still does not make a big difference, but for LightGBM it roughly doubles the total
computation time.

39

	The Standard Model and New Physics
	Detector setup

	Machine Learning Methodology
	Boosted Decision Trees
	Neural Networks
	Bayesian Neural Networks
	Evaluating the Performance of an Algorithm
	Examining the Data
	The feature space and its transformation

	Training the Classifiers
	Implementation of the Boosted Decision Trees
	Boosted Decision Tree Ensembles

	Implementation of a Neural Network
	Implementation of a Bayesian Neural Network

	Evaluation of the Classifiers and Discussion
	Frequentist Versus Bayesian Uncertainty
	Using Uncertainties for Classification
	Generalisation to other decay channels
	Usability for Further Analysis

	Conclusion
	BDT Hyperparameters
	Hyperparameters of the Neural Network
	Hyperparameters of the Bayesian Neural Network
	Training and Prediction times

