EHHzürich

Black Hole Binary Dynamics from Scattering Amplitudes

Mao Zeng, Institute for Theoretical Physics, ETH Zürich Seminar at University of Zürich, 03 Dec 2019
arXiv: 1901.04424 (PRL), arXiv:1908.01493 (JHEP),
Zvi Bern, Clifford Cheung, Radu Roiban, Chia-Hsien Shan, Mikhail P. Solon, MZ Work in progress, Herald Ita, Michael Ruff, MZ

OUTLINE

1. Introduction
2. Scattering amplitudes - double copy \& unitarity cuts
3. Potential from non-relativistic EFT
4. Relativistic integration - importing techniques from precision QCD

BIRTH OF AN ERA

- LIGO / VIRGO detected gravitational waves: BH-BH (2015), BH-NS (2017), NS-NS (2019?)

- Next-gen. experiments (LISA, CE, ET...): high S-N ratio, dominated by theory uncertainty.
- precision predictions necessary Testing GR, neutron star EOS, BSM effects...

ANATOMY OF GRAVITATIONAL WAVE SIGNAL

[Picture: Antelis, Moreno, 1610.03567]
Inspiral Post-Newtonian / Post-Minkowskian / EOB
Merger Numerical relativity / EOB resummation Ringdown Perturbative quasi-normal modes

POST-NEWTONIAN EXPANSION

Virial theorem $G \sim P^{2}$. Hamiltonian in c.o.m. frame:

$$
\begin{aligned}
& \frac{H}{\mu}= \begin{array}{r}
\frac{P^{2}}{2}-\frac{G m}{R} \text { Newton } \sim \mathcal{O}(G) \begin{array}{r}
m \\
m
\end{array} m_{A}+m_{B}, \quad \nu=\mu / M=P \cdot \hat{R} \\
\mu=m_{A} m_{B} / m
\end{array} \\
&+\frac{1}{c^{2}}\left\{-\frac{P^{4}}{8}+\frac{3 \nu P^{4}}{8}+\frac{G m}{R}\left(-\frac{P_{R}^{2} \nu}{2}-\frac{3 P^{2}}{2}-\frac{\nu P^{2}}{2}\right)+\frac{G^{2} m^{2}}{2 R^{2}}\right\} \\
& \text { Einstein, Infeld, Hoffman, 1PN } \sim \mathcal{O}\left(G^{2}\right)
\end{aligned}
$$

1PN [Einstein, Infeld, Hoffman '38]. 2PN [Ohta et al., '73]. 3PN [Jaranowski, Schaefer, '97; Damour, Jaranowski, Schaefer, '97; Blanchet, Faye, '00; Damour, Jaranowski, Schaefer, '01] 4PN [Damour, Jaranowski, Schäfer, Bernard, Blanchet, Bohe, Faye, Marsat, Marchand, Foffa, Sturani, Mastrolia, Sturm, Porto, Rothstein...] 5PN static [Foffa, Mastrolia, Sturani, Sturm, Bodabilla, '19; Blümlein, Maier, Marquard, '19] 5PN approximate [Bini, Damour, Geralico, '19]

POST-MINKOWSKIAN EXPANSION

Bound orbit: $G M / r \sim v^{2}$. Hyperbolic orbit / scattering: expand with $G M / r \leq v^{2} \sim 1$. [Bertotti, Kerr, Plebanski, Portilla, Westpfahl, Goller, Bel, Damour, Deruelle, Ibanez, Martin, Ledvinka, Schaefer, Bicak...]

	OPN		1PN		2PN		3PN		4PN	5PN	6PN			7PN		
1PM	(1	+	v^{2}	$+$	v^{4}	+	v^{6}	+	v^{8}	$+v^{10}$	+	v^{12}	+	v^{14}	+ ...)	G^{1}
2PM			(1	+	v^{2}	+	v^{4}	+	v^{6}	$+v^{8}$	$+$	v^{10}	$+$	v^{12}	+ ...)	G^{2}
3PM					1	+	v^{2}	+	v^{4}	$+v^{6}$	+	v^{8}	+	v^{10}	+ ...)	G^{3}
4PM							(1	+	v^{2}		+		+		+ ...)	G^{4}
5PM									(1	$+v^{2}$	$+$		+	v^{6}	+ ...)	G^{5}
6PM										$(1$		v^{2}	$+$	v^{4}	+ ...)	G^{6}

Our new 3PM result: [Bern, Cheung, Roiban, Shen, Solon, MZ, arXiv: 1901.04424 (PRL), arXiv:1908.01493 (JHEP)]

HOW QFT HELPS

Hierarchy of scales in bound state systems: $R_{s} \leq r \leq \lambda$
effective field theory: [NRGR: Goldberger, Rothstein, '04; Porto, '06; relativistic formulation: Damgaard, Haddad, Helset, '19]

[picture: LIGO]
Manifest gauge invariance through scattering amplitudes, with carefully defined classical limit [Iwasaki '71; Gupta, Radford, '79; Donoghue, '94; Holstein, Donoghue, '04; Neill, Rothstein, '13; Vaidya, '14; Kosower, Maybee, O'Connell, '18; Cheung, Rothstein, Porto, '18; Kälin, Porto, '19...]

WHICH DIAGRAMS CONTRIBUTE CLASSICALLY?

Rule 1: each loop must have a matter propagator.

Inspiration from NRGR [Goldberger, Rothstein, '04]: Einstein-Hilbert action coupled to worldline sources

$$
S=S_{E H}+S_{p p}, \quad S_{p p}=-\sum_{a} m_{a} \int d \tau_{a}+\sum_{a} c_{R}^{(a)} \int d \tau_{a} R\left(x_{a}\right)+\ldots
$$

Rule 2: no "mushrooms", i.e. graviton connecting same matter.

Rule 3: no contact integrals with matter lines touching.

PERTURBATIVE GRAVITY

Einstein-Hilbert action

$$
S_{\mathrm{EH}}=\frac{1}{2 \kappa^{2}} \int d^{d} x \sqrt{-g} R+S_{\text {matter }}
$$

Expand around flat space

$$
g_{\mu \nu}=\eta_{\mu \nu}+\kappa h_{\mu \nu}
$$

Schematic, index contractions omitted

$$
S_{\mathrm{EH}}=\int d^{d} x\left[h \partial^{2} h+\kappa h^{2} \partial^{2} h+\kappa^{2} h^{3} \partial^{2} h+\kappa^{3} h^{4} \partial^{2} h+\ldots\right]
$$

[e.g. Elvang, Huang, '13]

PERTURBATIVE GRAVITY

$$
\tau_{\alpha \beta, \gamma \delta}^{\mu \nu}(k, q)=-\frac{i \kappa}{2}\left\{P_{\alpha \beta, \gamma \delta}\left[k^{\mu} k^{\nu}+(k+q)^{\mu}(k+q)^{\nu}+q^{\mu} q^{\nu}-\frac{3}{2} \eta^{\mu \nu} q^{2}\right]\right.
$$

$$
\begin{aligned}
& +2 q_{\lambda} q_{\sigma}\left[I^{\lambda \sigma}{ }_{{ }_{\alpha \beta}} I^{\mu \nu}{ }_{\gamma \delta}+I^{\lambda \sigma}{ }_{\gamma \delta} I^{\mu \nu}{ }_{{ }_{\alpha \beta}}\right. \\
& \left.\quad-I^{\lambda \mu,}{ }_{\alpha \beta} I^{\sigma \nu}{ }_{\gamma \delta}-I^{\sigma \nu,}{ }_{\alpha \beta} I^{\lambda \mu}{ }_{\gamma \delta}\right] \\
& +\left[q_{\lambda} q^{\mu}\left(\eta_{\alpha \beta} I^{\lambda \nu}{ }_{\gamma \delta}+\eta_{\gamma \delta} I^{\lambda \nu}{ }_{\alpha \beta}\right)+q_{\lambda} q^{\nu}\left(\eta_{\alpha \beta} I^{\lambda \mu}{ }_{\gamma \delta}+\eta_{\gamma \delta} I^{\lambda \mu,}{ }_{\alpha \beta}\right)\right.
\end{aligned}
$$

About 100 terms in 3-graviton vertex!

Quickly grows out of control with more loops \& legs.

$$
\left.-q^{2}\left(\eta_{\alpha \beta} I^{\mu \nu}{ }_{\gamma \delta}+\eta_{\gamma \delta} I^{\mu \nu}{ }_{\alpha \beta}\right)-\eta^{\mu \nu} q^{\lambda} q^{\sigma}\left(\eta_{\alpha \beta} I_{\gamma \delta, \lambda \sigma}+\eta_{\gamma \delta} I_{\alpha \beta, \lambda \sigma}\right)\right]
$$

Double copy \& Generalized

$$
+\left[2 q ^ { \lambda } \left(I^{\sigma \nu}{ }_{\gamma \delta} I_{\alpha \beta, \lambda \sigma} k^{\mu}+I^{\sigma \mu}{ }_{\gamma \delta} I_{\alpha \beta, \lambda \sigma} k^{\nu}\right.\right.
$$ Unitarity to the rescue

$$
\left.-I^{\sigma \nu}{ }_{\alpha \beta} I_{\gamma \delta, \lambda \sigma}(k+q)^{\mu}-I^{\sigma \mu,}{ }_{\alpha \beta} I_{\gamma \delta, \lambda \sigma}(k+q)^{\nu}\right)
$$

$$
+q^{2}\left(I^{\sigma \mu}{ }_{\alpha \beta} I_{\gamma \delta, \sigma}{ }^{\nu}+I_{\alpha \beta, \sigma}{ }^{\nu} I^{\sigma \mu,}{ }_{\gamma \delta}\right)
$$

Double copy: gravity from YM

$$
\left.+\eta^{\mu \nu} q^{\lambda} q_{\sigma}\left(I_{\alpha \beta, \lambda \rho} I^{\rho \sigma,}{ }_{\gamma \delta}+I_{\gamma \delta, \lambda \rho} I^{\rho \sigma,}{ }_{\alpha \beta}\right)\right]
$$

$$
+\left[\left(k^{2}+(k+q)^{2}\right)\left(I^{\sigma \mu,}{ }_{\alpha \beta} I_{\gamma \delta, \sigma}{ }^{\nu}+I^{\sigma \nu}{ }_{\alpha \beta} I_{\gamma \delta, \sigma}{ }^{\mu}-\frac{1}{2} \eta^{\mu \nu} P_{\alpha \beta, \gamma \delta}\right)\right.
$$

Generalized Unitarity:

$$
\left.\left.-\left((k+q)^{2} \eta_{\alpha \beta} I^{\mu \nu}{ }_{\gamma \delta}+k^{2} \eta_{\gamma \delta} I^{\mu \nu,}{ }_{\alpha \beta}\right)\right]\right\}
$$ Loops from trees

GRAVITY $=(\text { YANG MILLS })^{2}$

On-shell 3-point amplitudes in Yang-Mills \& gravity:

$$
\mathcal{A}_{3}\left(1^{-} 2^{-} 3^{+}\right)=\frac{\langle 12\rangle^{3}}{\langle 23\rangle\langle 31\rangle}, \quad \mathcal{M}_{3}\left(1^{-} 2^{-} 3^{+}\right)=\frac{\langle 12\rangle^{6}}{\langle 23\rangle^{2}\langle 31\rangle^{2}}
$$

[Johansson, Ochirov, '14; Luna, Nicholson, O'Connel, White, '17]

Kawai-Lewellen-Tye (KLT) relations from string theory:

$$
\begin{aligned}
& M_{4}^{\text {tree }}(1,2,3,4)=-i s_{12} A_{4}^{\text {tree }}(1,2,3,4) A_{4}^{\text {tree }}(1,2,4,3) \\
& \mathcal{A}_{4}^{\text {tree }} \equiv g^{2} \sum_{\sigma \in S_{4} / Z_{4}} A_{4}^{\text {tree }}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right) \operatorname{tr}\left(T^{a_{\sigma_{1}}} T^{a_{\sigma_{2}}} T^{a_{\sigma_{3}}} T^{a_{\sigma_{4}}}\right)
\end{aligned}
$$

$$
M_{5}^{\text {tree }}(1,2,3,4,5)=i s_{12} s_{34} A_{5}^{\text {tree }}(1,2,3,4,5) A_{5}^{\text {tree }}(2,1,4,3,5)
$$

$$
+i s_{13} s_{24} A_{5}^{\text {tree }}(1,3,2,4,5) A_{5}^{\text {tree }}(3,1,4,2,5)
$$

COLOR KINEMATIC DUALITY

D dimensions: easier to get nice analytic integrands from color-kinematics duality, i.e. double copy construction. [Bern, Carrasco, Johansson, '08]

Let's look at the 4-gluon amplitude, with 4-point vertex "blown up" to 3-pt.

$$
C_{s}=f^{a b f} f^{c d f}, \quad C_{t}=f^{b c f} f^{d a f}, \quad C_{u}=f^{a f c} f^{d b f}
$$

Jacobi identity: $C_{s}+C_{t}+C_{u}=0$. Surprise: $n_{s}+n_{t}+n_{u}=0$.

COLOR KINEMATIC DUALITY

BCJ form of integrand: $A=\sum_{i \in \text { diags }} \frac{C_{i} n_{i}}{D_{i}}, \quad \begin{aligned} & \text { kinematics } \\ & \text { Propagators }\end{aligned}$ whenever $C_{i}+C_{j}+C_{k}=0$
Gravity integrand: $M=\sum_{i \in \text { diags }} \frac{n_{i} \tilde{n}_{i}}{D_{i}}$, both n_{i}, \tilde{n}_{i} in BCJ form
Generalized gauge transformation: $n_{l} \rightarrow n_{l}+\delta \cdot D_{l}, l=i, j, k$
A invariant M invariant

TWO-LOOP CUTS

[Bern, Cheung, Roiban, Shen, Solon, MZ, arXiv:1908.01493 (JHEP)]

From KLT: $M_{4}^{\text {tree }}(1,2,3,4)=-i s_{12} \mathcal{A}_{4}^{\text {tree }}(1,2,3,4) A_{4}^{\text {tree }}(1,2,4,3)$.

$$
C_{\mathrm{GR}}^{(c)}=-i\left\{2 t^{2} m_{1}^{4} m_{2}^{4}+\frac{1}{t^{6}}\left[\operatorname{Tr}\left[(7 \nsupseteq \not \phi \nmid \nmid \nmid)^{4}\right]+(7 \leftrightarrow 8)\right]\right\}\left(\frac{1}{\left(k_{5}-k_{8}\right)^{2}}+\frac{1}{\left(k_{6}+k_{8}\right)^{2}}\right)
$$

Very compact expression at 2 loops. Higher loops within reach!

TWO-LOOP INTEGRAND

Cuts merged into an integrand with diagrams \& numerators:

(5)

(2)

(6)

(3)

(7)

(4)

Diagram symmetries imposed. $\sim 90 \mathrm{~KB}$ file.
4 and D dimensional results agree, up to " μ " terms with no classical effects.

INTEGRATING THE AMPLITUDE

- $m_{1} \neq m_{2}$, even planar master integrals unknown!

$m_{1}=m_{2}$ Smirnov, '01; Lower topologies:
Henn \& Smirnov, '13; Duhr, Amplitudes '18;
Heller, von Manteuffel, Schabinger, '19

- Simplification 1: expand in small $q \sim \hbar / R \leq m_{i}, \sqrt{s}$.
- Simplification 2: Expand in $v \ll 1$ from potential region. ($\int d^{4} \ell$) localized on + ve energy matter poles.

NR INTEGRATION / VELOCITY EXPANSION

Plan: Series expansion around static limit, then resum by matching to simple functions. One-loop triangle toy example:
Step 1: determine integrand in potential region $\ell^{0}=\omega \leq|\boldsymbol{l}| \sim|\boldsymbol{q}|$

NR INTEGRATION / VELOCITY EXPANSION

Step 2: Energy integration, keeping only residues from + ve energy matter poles.

$$
\begin{aligned}
\frac{1}{2 \pi} \int d \omega_{1} \frac{1}{\omega_{1}-\omega_{P_{1}}+i 0} & =\frac{1}{2 \pi} \int d \omega_{1} \frac{1}{2}\left(\frac{1}{\omega_{1}-\omega_{P_{1}}+i 0}+\frac{1}{-\omega_{1}-\omega_{P_{1}}+i 0}\right) \\
& =\frac{1}{2 \pi} \int d \omega_{1} \frac{1}{2}(-2 \pi i) \delta\left(\omega_{1}\right)=-\frac{i}{2}
\end{aligned}
$$

Higher loops: symmetrize over $\omega_{1}, \omega_{2}, \ldots, \omega_{n}$.

Step 3: Spatial integration at small $|q|$.
$\int \frac{d^{3} l}{(2 \pi)^{3}}\left(-\frac{i}{2}\right) \frac{1}{2 m_{1} l^{2}(\boldsymbol{l}+\boldsymbol{q})^{2}}=-\frac{i}{32 m_{1}|\boldsymbol{q}|}$.
Only need 3D propagator integrals (known to at least 4 loops) + divergent integrals from box-type diagrams.

RESULT FOR AMPLITUDE (PN EXPANSION)

(1)

(2)

(3)

(4)

Sample result:

Unevaluated divergent integral; cancels in EFT matching

$$
\begin{aligned}
& 4= \frac{\left(2 \sigma^{2}-1\right)\left(4 \sigma^{2}-1\right) m_{1}^{4} m_{2}^{6}}{8 E_{2} E} \int \frac{d^{D-1} \ell}{(2 \pi)^{D-1}} \frac{1}{\ell^{2}|\ell+q|\left(\ell^{2}+2 p \ell\right)}\left[1+\frac{p^{2}}{2 E_{2}^{2}}+\frac{3 p^{4}}{8 E_{2}^{4}}+\frac{5 p^{6}}{16 E_{2}^{6}}+\cdots\right] \\
&+\frac{\sigma m_{1}^{3} m_{2}^{5}\left(4 \sigma^{2}-1\right)}{48 \pi^{2} E_{2}^{2}}\left[1+\frac{p^{2}}{E_{2}^{2}}+\frac{p^{4}}{E_{2}^{4}}+\frac{p^{6}}{E_{2}^{6}}+\frac{p^{8}}{E_{2}^{8}}+\frac{p^{8}}{E_{2}^{10}}+\cdots\right] \\
&-\frac{m_{1}^{4} m_{2}^{6}\left(2 \sigma^{2}-1\right)\left(4 \sigma^{2}-1\right)}{128 \pi^{2} E_{2}^{3} E}\left[1+\frac{5 p^{2}}{4 E_{2}^{2}}+\frac{11 p^{4}}{8 E_{2}^{4}}+\frac{93 p^{6}}{64 E_{2}^{6}}+\frac{193 p^{8}}{128 E_{2}^{8}}+\frac{793 p^{10}}{512 E_{2}^{10}}+\cdots\right]+\{1 \leftrightarrow 2\} \\
& \sigma \equiv\left(p_{1} \cdot p_{2}\right) /\left(m_{1} m_{2}\right)
\end{aligned}
$$

- Let's fit the series to simple functions... See next slide.
- Better still, can we do relativistic integration, and with ε dependence?

RESULT FOR AMPLITUDE (PM EXPANSION)

(5)

(2)

(6)

(3)

(7)

(4)

(8)

$$
1
$$

$m=m_{1}+m_{2}, \nu=\frac{m_{1} m_{2}}{m^{2}}, E=E_{1}+E_{2}, \xi=\frac{E_{1} E_{2}}{E^{2}}, \gamma=\frac{E}{m}, \sigma=\frac{p_{1} \cdot p_{2}}{m_{1} m_{2}}$

$$
\begin{aligned}
\mathcal{M}_{3}= & \frac{\pi G^{3} \nu^{2} m^{4} \stackrel{\left(\ln \boldsymbol{q}^{2}\right.}{6 \gamma^{2} \xi}\left[3-6 \nu+206 \nu \sigma-54 \sigma^{2}+108 \nu \sigma^{2}+4 \nu \sigma^{3}\right.}{} \begin{aligned}
1 & \text { potential after F.T. } \\
& \left.-\frac{48 \nu\left(3+12 \sigma^{2}-4 \sigma^{4}\right) \operatorname{arcsinh} \sqrt{\frac{\sigma-1}{2}}}{\sqrt{\sigma^{2}-1}}-\frac{18 \nu \gamma\left(1-2 \sigma^{2}\right)\left(1-5 \sigma^{2}\right)}{(1+\gamma)(1+\sigma)}\right]
\end{aligned}
\end{aligned}
$$

function, seen in relativistic integration of diagram 7.

$$
+\frac{8 \pi^{3} G^{3} \nu^{4} m^{6}}{\gamma^{4} \xi}\left[3 \gamma\left(1-2 \sigma^{2}\right)\left(1-5 \sigma^{2}\right) \int \frac{d^{D-1} \boldsymbol{\ell}}{(2 \pi)^{D-1}} \frac{1}{\boldsymbol{\ell}^{2}|\boldsymbol{\ell}+\boldsymbol{q}|\left(\boldsymbol{\ell}^{2}+2 \boldsymbol{p} \boldsymbol{\ell}\right)}\right.
$$

$$
\left.-32 m^{2} \nu^{2}\left(1-2 \sigma^{2}\right)^{3} \int \frac{d^{D-1} \boldsymbol{\ell}_{1}}{(2 \pi)^{D-1}} \frac{d^{D-1} \boldsymbol{\ell}_{2}}{(2 \pi)^{D-1}} \frac{1}{\boldsymbol{\ell}_{1}^{2}\left(\boldsymbol{\ell}_{2}-\boldsymbol{\ell}_{1}\right)^{2}\left(\boldsymbol{\ell}_{2}+\boldsymbol{q}\right)^{2}\left(\boldsymbol{\ell}_{1}^{2}+2 \boldsymbol{p} \boldsymbol{\ell}_{1}\right)\left(\boldsymbol{\ell}_{2}^{2}+2 \boldsymbol{p} \boldsymbol{\ell}_{2}\right)}\right]
$$

POTENTIAL FROM EFT

Lagrangian: two non-relativistic scalars

$$
\begin{aligned}
\mathcal{L}= & \sum_{i=1,2} \int_{\boldsymbol{k}} \phi_{i}^{\dagger}(-\boldsymbol{k})\left(i \partial_{t}-\sqrt{\boldsymbol{k}^{2}+m_{i}^{2}}\right) \phi_{i}(\boldsymbol{k}) \\
& -\int_{\boldsymbol{k}, \boldsymbol{k}^{\prime}} V\left(\boldsymbol{k}, \boldsymbol{k}^{\prime}\right) \phi_{1}^{\dagger}\left(\boldsymbol{k}^{\prime}\right) \phi_{1}(\boldsymbol{k}) \phi_{2}^{\dagger}\left(-\boldsymbol{k}^{\prime}\right) \phi_{2}(-\boldsymbol{k})
\end{aligned}
$$

Feynman rules:

$$
\xrightarrow{\left(k_{0}, \boldsymbol{k}\right)}=\frac{i}{k_{0}-\sqrt{\boldsymbol{k}^{2}+m_{A, B}^{2}}+i 0},
$$

$$
\overbrace{-\boldsymbol{k}}^{\boldsymbol{k}} \overbrace{-\boldsymbol{k}^{\prime}}^{\boldsymbol{k}^{\prime}}=-i V\left(\boldsymbol{k}, \boldsymbol{k}^{\prime}\right),
$$

Determines V from Matching: EFT amplitude = full theory amplitude.

simple 3D triangles

$+$

energy integration leaves 3D integrals

Alternative QM treatment: [Cristofoli, Bjerrum-Bohr, Damgaard, Vanhove, '19]

RESULT: 3PM CONSERVATIVE POTENTIAL

[Bern, Cheung, Roiban, Shen, Solon, MZ '19]

$$
\begin{aligned}
& H^{3 \mathrm{PM}}(\boldsymbol{p}, \boldsymbol{r})=\sqrt{\boldsymbol{p}^{2}+m_{1}^{2}}+\sqrt{\boldsymbol{p}^{2}+m_{2}^{2}}+V^{3 \mathrm{PM}}(\boldsymbol{p}, \boldsymbol{r}) \\
& V^{3 \mathrm{PM}}(\boldsymbol{p}, \boldsymbol{r})=c_{1}\left(\boldsymbol{p}^{2}\right)\left(\frac{G}{|\boldsymbol{r}|}\right)+c_{2}\left(\boldsymbol{p}^{2}\right)\left(\frac{G}{|\boldsymbol{r}|}\right)^{2}+c_{3}\left(\boldsymbol{p}^{2}\right)\left(\frac{G}{|\boldsymbol{r}|}\right)^{3} \\
& m=m_{1}+m_{2}, \nu=\frac{m_{1} m_{2}}{m^{2}}, E=E_{1}+E_{2}, \xi=\frac{E_{1} E_{2}}{E^{2}}, \gamma=\frac{E}{m}, \sigma=\frac{p_{1} \cdot p_{2}}{m_{1} m_{2}} \\
& \mathrm{c}_{1}=\frac{\nu^{2} m^{2}}{\gamma^{2} \xi}\left(1-2 \sigma^{2}\right), \quad \mathrm{c}_{2}=\frac{\nu^{2} m^{3}}{\gamma^{2} \xi}\left[\frac{3}{4}\left(1-5 \sigma^{2}\right)-\frac{4 \nu \sigma\left(1-2 \sigma^{2}\right)}{\gamma \xi}-\frac{\nu^{2}(1-\xi)\left(1-2 \sigma^{2}\right)^{2}}{2 \gamma^{3} \xi^{2}}\right], \\
& \mathrm{c}_{3}=\frac{\nu^{2} m^{4}}{\gamma^{2} \xi}\left[\frac{1}{12}\left(3-6 \nu+206 \nu \sigma-54 \sigma^{2}+108 \nu \sigma^{2}+4 \nu \sigma^{3}\right)-\frac{4 \nu\left(3+12 \sigma^{2}-4 \sigma^{4}\right) \operatorname{arcsinh} \sqrt{\frac{\sigma-1}{2}}}{\sqrt{\sigma^{2}-1}}\right. \\
& \quad-\frac{3 \nu \gamma\left(1-2 \sigma^{2}\right)\left(1-5 \sigma^{2}\right)}{2(1+\gamma)(1+\sigma)}-\frac{3 \nu \sigma\left(7-20 \sigma^{2}\right)}{2 \gamma \xi}+\frac{2 \nu^{3}(3-4 \xi) \sigma\left(1-2 \sigma^{2}\right)^{2}}{\gamma^{4} \xi^{3}} \\
& \left.\quad-\frac{\nu^{2}\left(3+8 \gamma-3 \xi-15 \sigma^{2}-80 \gamma \sigma^{2}+15 \xi \sigma^{2}\right)\left(1-2 \sigma^{2}\right)}{4 \gamma^{3} \xi^{2}}+\frac{\nu^{4}(1-2 \xi)\left(1-2 \sigma^{2}\right)^{3}}{2 \gamma^{6} \xi^{4}}\right] .
\end{aligned}
$$

Validation

Bern, Cheung, Roiban, Shen, Solon, MZ '19

Jaranowski, Schäfer,
1508.01016; Bini, Damour,

Geralico, 1909.02375
Overlap with 4PN, 5PN

Canonical transformation

$$
A=1-\frac{G m \nu}{2|\boldsymbol{r}|}+\cdots, \quad B=\frac{G(1-2 / \nu)}{4 m|\boldsymbol{r}|} \boldsymbol{p} \cdot \boldsymbol{r}+\cdots
$$

Gauge-invariant

quantities

- Scattering amplitude • Scattering angle • Binding energy of quas-circular orbit

REAL WORLD PREDICTION - BINDING ENERGY

Comparison with state-of-the-art numerical relativity ("truth"), PN, and EOB resummation predictions. [Antonelli, Buonanno, Steinhoff, Vines, '19]

- Clear improvement over lower PM orders.
- Not reaching accuracy of 4PN.
- Hyperbolic orbit comparison desirable to assess PM approxmation.
- Wish list: 4 PM / 3 loops!

RELATIVISTIC INTEGRATION

- Velocity resummation non-trivial! We can recover exact v dependence of amplitude, but not always every diagram.
- Desirable to perform relativistic integration. Powerful method: differential equations

Kotikov, '91; Bern, Dixon, Kosower, '94;
Remiddi, '97; Gehrmann, Remiddi, 99

$\underset{\text { PN expansion }}{t \ll(m v)^{2} \ll m^{2}} \longleftrightarrow \underset{\text { expansion }}{\text { asymptotic }} \longrightarrow \longrightarrow \begin{aligned} & \text { PM expansion } \\ & t \ll m^{2}, v \sim \mathcal{O}(1)\end{aligned}$

RELATIVISTIC INTEGRATION: EXPANSION

Perform soft expansion:
$\left|k_{1}\right| \sim\left|k_{2}\right| \sim|q| \ll m_{1}, m_{2}, \sqrt{s}$
Method of regions:
Beneke, Smirnov, '98
Heavy quark effective theory:
Georgi, Eichten, Hill, Isgur, Wise, Shifman...
Heavy BH effective theory:
Damgaard, Haddad, Helset, '19

Kinematics

$p_{1}^{2}=m_{1}^{2}+t / 4, p_{2}^{2}=m_{2}^{2}+t / 4$
$u_{1}^{2}=u_{2}^{2}=1, u_{1} \cdot u_{2}=\sigma, \quad u_{1} \cdot q=u_{2} \cdot q=0, q^{2}=t$

Expand matter propagators

$$
\begin{aligned}
& \left(k_{2}+p_{2}\right)^{2}-m_{2}^{2} \approx 2 m_{2} u_{2} \cdot k_{2}+i 0 \\
& \left(k_{1}+p_{1}\right)^{2}-m_{1}^{2} \approx 2 m_{1} u_{1} \cdot k_{1}+i 0
\end{aligned}
$$

only intrinsic scale of integral

Soft integrals are functions of the dimensionless parameter o

LOCALIZATION ON MATTER POLES

Classical picture arises from nontrivial crosstalk between planar and nonplanar diagrams.

$$
\xrightarrow[\longrightarrow]{p_{2}} \xrightarrow{p_{3}} \frac{1}{\longrightarrow} \frac{1}{\left.2 m_{2} u_{2} \cdot k_{2}\right)^{2}-m_{2}^{2} \approx-2 m_{2} u_{2} \cdot k_{2}+i 0}+\frac{1}{-2 m_{2} u_{2} \cdot k_{2}+i 0}=-2 \pi i \delta\left(2 m_{2} u_{2} \cdot k_{2}\right)
$$

Let's calculate the sum = cut integrals instead of individual ones!
cut integrals in other contexts: e.g. [Primo, Tancredi, '16, '17]

RELATIVISTIC INTEGRATION 1: CUT INTEGRALS

Ita, Ruf, MZ, in progress, simplified from
Bern, Cheung, Roiban, Shen, Solon, MZ, '19

$$
\begin{aligned}
& u_{1} \cdot q=u_{2} \cdot q=0 \\
& u_{1}^{2}=u_{2}^{2}=1, u_{1} \cdot u_{2}=\sigma, q^{2}=t
\end{aligned}
$$

nontrivial dependence on
this dimensionless variable
only intrinsic scale of integral

$$
F_{p_{1}, p_{2}, \ldots, p_{9}} \equiv \int d^{d} k_{1} d^{d} k_{2} \frac{\left(k_{1} \cdot u_{2}\right)^{p_{1}}\left(k_{2} \cdot u_{1}\right)^{p_{2}} \delta^{\left(p_{3}\right)}\left(2 u_{1} \cdot k_{1}\right) \delta^{\left(p_{4}\right)}\left(2 u_{2} \cdot k_{2}\right)}{\left(k_{1}^{2}\right)^{p_{5}}\left(\left(k_{1}+q\right)^{2}\right)^{p_{6}}\left(k_{2}^{2}\right)^{p_{7}}\left(\left(k_{2}-q\right)^{2}\right)^{p_{8}}\left(\left(k_{1}+k_{2}\right)^{2}\right)^{p_{9}}},
$$

$\sim|q|^{2 d+p_{1}+p_{2}-p 3-p 4-2 p_{5}-\cdots-2 p_{9}} \times$ Dimensionless function of σ
Even \& odd powers decouple
Integration by parts reduces an infinite number of such integrals to five master integrals, in the even sector. Timing: < 1 minute, FIRE 6 [Smirnov '19]

METHOD OF DIFFERENTIAL EQUATIONS

- Many methods for evaluating "master integrals":
- Parametric integration •Mellin-Barnes representation • Differential equations
- DEs especially powerful in canonical form [Henn, '13]

- Manifest logarithmic singularity \& uniform transcendentality, intimately related to dlog forms [Arkani-Hamed, Bourjaily, Cachazo, Trnka, 2010...]
- Solved iteratively order by order in ε, often as generalized polylogarithms. [Goncharov, Spradlin, Vergu, Volovich, 2010]

DIFFERENTIAL EQUATIONS WITH MATTER CUTS

$$
\begin{aligned}
& \text { [Ita, Ruf, MZ, in progress] } \\
& \qquad q^{2}=t=-1, u_{1}^{2}=u_{2}^{2}=1, u_{1} \cdot u_{2}=\sigma=\frac{1+x^{2}}{2 x}, \quad \stackrel{\text { static high-energy }}{1>x>0}
\end{aligned}
$$

$$
\frac{d}{d x}\left(\begin{array}{c}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right)=\epsilon\left[\frac{d \log (1-x)}{d x} \mathbb{M}_{1}+\frac{d \log x}{d x} \mathbb{M}_{2}+\frac{d \log (1+x)}{d x} \mathbb{M}_{3}\right] \cdot\left(\begin{array}{c}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right),
$$

Canonical form [Henn, '13] found by automated software epsilon [Prausa, '17]. See also Fuchsia [Gituliar, Magerya, '17], CANONICA [Meyer, '17].

DIFFERENTIAL EQUATIONS WITH MATTER CUTS

 [Ital, Ruff, MZ, in progress]$$
\begin{aligned}
& u_{1} \cdot u_{2}=\sigma=\frac{1+x^{2}}{2 x}, \quad \begin{array}{l}
\text { static } \\
1>x>0
\end{array} I_{1}=\sqrt{\sigma^{2}-1} \\
& \frac{d}{d x}\left(\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right)=\epsilon\left[\frac{d \log (1-x)}{d x} \mathbb{M}_{1}+\frac{d \log x}{d x} \mathbb{M}_{2}+\frac{d \log (1+x)}{d x} \mathbb{M}_{3}\right] \cdot\left(\begin{array}{c}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right) \\
& \mathbb{M}_{1}=M_{3}=\left(\begin{array}{ccc}
-6 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \mathbb{M}_{2}=\left(\begin{array}{ccc}
6 & 0 & -1 \\
0 & -2 & -2 \\
12 & 2 & 0
\end{array}\right) \quad \begin{array}{l}
\text { symbol alphabet: } \\
\text { harmonic polylogs } \\
\text { [Remiddi, Vermaseren' 99] }
\end{array}
\end{aligned}
$$

Physical input: PN expansion has no $\log (v) \sim \log (1-x)$ singularity

$$
\mathbb{M}_{1} \cdot\left(\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right)=\left.0 \Longrightarrow I_{1}\right|_{x=1}=\left.I_{2}\right|_{x=1}=0,\left.\quad I_{3}\right|_{x=1}=C t^{-2 \epsilon} / \epsilon^{2}
$$

$$
I_{1}=-\left(C t^{-2 \epsilon} / \epsilon\right) \log x+\mathcal{O}\left(\epsilon^{0}\right) \sim-4(\log t) \operatorname{arcsinh} \sqrt{\frac{\sigma-1}{2}}
$$

COMPARISON WITH UNEXPANDED INTEGRAL

$m_{1}=m_{2}$ results in [Bianchi, Leoni, 1612.05609], thanks to Loopedia.org.

$$
\begin{aligned}
s & =\left(p_{1}+p_{2}\right)^{2} \\
& =-\frac{(1-x)^{2}}{x}
\end{aligned}
$$

25 master integrals

$$
\begin{aligned}
\left.\left(I_{H}\right)\right|_{\epsilon^{0}} & =-\frac{4}{3} \log (-t) \frac{x}{1-x^{2}}\left(\pi^{2} \log x+\log ^{3} x\right)+(\text { non-singular in } t) \\
\left.\left(I_{X H}\right)\right|_{\epsilon^{0}} & =-\frac{4}{3} \log (-t) \frac{-x}{1-x^{2}}\left(\pi^{2} \log (-x)+\log ^{3}(-x)\right)+(\text { non-singular in } t) .
\end{aligned}
$$

$$
\log (x) \rightarrow \log (-x)+i \pi,\left.\quad\left(I_{H}+I_{X H}\right)\right|_{\epsilon^{0}}=4 \pi^{2} \log (-t) \log (-x)+\text { imaginary }
$$

FIRST GLIMPSE: 4PM / 3 LOOPS (Preliminary)

$$
p_{2}=m_{2} u_{2}
$$

$$
u_{1} \cdot u_{2}=\sigma=\frac{1+x^{2}}{2 x}, \quad 1>x>0
$$

- Simplest 3-loop topology; can work on max. cut. Obtain 4×4 system of DEs. Symbol alphabet: $x, 1 \pm x, 1 \pm i x$.
- Regularity at $x=1$ fixes boundary conditions up to overall factor.
- Scalar integral $\propto \frac{\sqrt{-t}}{\sigma}\left\{1+\epsilon\left[14\left(x^{2}-1\right)^{2}-32 x^{2} \log \sigma+\ldots\right]\right\}$.
- Also solved 2- \& 3-loop DEs without cuts. Matches FIESTA 4 [Smirnov] Status of other topologies: need to clean up ε-dependent denominators for running epsilon.

FUTURE OUTLOOK

- Higher orders within reach. Double copy + EFT methods expected to scale well.
- Relativistic integration to fully settle questions about velocity resummation; demonstrated feasibility at 3 loops.
- Scattering amplitudes begin to impact gravitational astronomy. Rich physics opportunities:

Spin, finite-size effects in PM expansion [Bini, Damour, '17; Vines, '17, Bini, Damour, '18; Guevera, Ochirov, Vines, '18; Vines, Steinhoff, Buonanno, '18; Chung, Huang, Kim, Lee, '18; Maybee O'Connell, Vines, '19; Guevara, Ochirov, Vines, '19]

Tail effect / nonlocal potential from ultrasoft modes
[Porto, Rothstein, '17]

