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Abstract

By combining the signals of all near future gravitational wave detectors one might detect the
gravitational wave background which would allow us to observe the universe at the Planck time.
This could help us to get constraints on cosmological models and may give hints on the nature of
quantum gravity. Its polarization content can serve as a test of general relativity. In this master
thesis we calculate the sensitivity of combined space and ground-based detectors to polarizations
of gravitational waves. We first investigate the sensitivity to a homogeneous gravitational wave
background, where we find that one can use the time dependence of the sensitivity of certain
detector pairs to distinguish between different modes. We then calculate the Fisher matrix for
the case of gravitational waves due to point sources.
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1 Introduction

Gravitational waves (GW) have just recently been measured for the first time by the LIGO collab-
oration [1]. So far one has seen 5 mergers of very massive black holes and one could simultaneously
observe a neutron star merger through gravitational waves and all accessible frequency bands of the
electromagnetic spectrum. [2, 3] 1. The results matched with Einstein’s theory of relativity up to
measurement precision.
Until now many tests of general relativity have been made (the perihelion precession of Mercury, the
geodetic precession and the Lense-Thirring effect by Gravity Probe B [4] or the weak equivalence
principle by MICROSCOPE [5] for example) and so far, they all agree with general relativity (GR).
Modifications to GR have been constrained by experiments, but there are still some possibilities
which cannot be excluded, see Will [6] to get an overview. As we will discuss in the next chapter one
could for example modify GR by adding a scalar or a vector field, which only couple to the metric
and therefore act as correction to Einsteins theory of gravity. These fields would allow additional
polarizations to the two tensor polarizations, plus (+) and cross (×), predicted by GR. The scalar
field would create the breathing (b) and the longitudinal (l) and the vector field the x and the y
polarizations.
The standard model of cosmology describes the creation of the universe as an exponentially fast
expansion of a quantum state. In quantum mechanics, no field or degree of freedom can be zero. If
one now expands the universe, the quantum fluctuations of the fields get macroscopic and create a
homogeneous and isotropic background where all polarizations are excited equally.
Using the electromagnetic spectrum we can only observe events as far back as the cosmic microwave
background (CMB). The neutrinos decouple a bit earlier and would allow us to see further back in
time, given we would figure out how to measure low energy particles, which almost never interact.
If we could however measure a gravitational wave background (GWB), then we could test cosmo-
logical models way further back in time. One expects that the gravitational waves decouple at the
Planck time due to the weak coupling of the metric to the other fields. This might allow us to get
information about quantum gravity and thus an energy scale which is far out of reach of modern
particle colliders.
Since one expects all polarizations to be excited in the GWB, one could check whether the addi-
tional polarizations predicted by GR modifications are there and thus get restrictions on alternative
theories of gravity.

The second-generation detectors advanced LIGO and advanced VIRGO can detect GWs from bi-
nary black holes (BBH) and binary neutron stars (BNS) [2]. A similar detector is being built in
Japan (KAGRA) [7] and another advanced LIGO is planned for India (IndIGO) [8]. With the
Einstein Telescope (ET) [9], a cluster of three detectors arranged in an equilateral triangle with an
arm length of 10 km, one plans to build a third-generation detector in Europe which is supposed to
be about 10 times more sensitive.
Space detectors are also on their way. LISA pathfinder was successful [10] and LISA [11] is planned
for ESA L3 launch. LISA will revolve around the Sun on Earth orbit. DECIGO was originally
planned to consist of 4 clusters distributed in Earth orbit around the Sun, each forming a 1000 km
equilateral triangle with three satellites [12, 13]. A recent paper [14] proposes a scaled down version
(100 km) B-DECIGO (basic) as a first generation of deci-Hz detectors. It is planned to revolve
around Earth on an altitude of 2000 km.

The ground-based detectors of the second generation are not capable of detecting the gravita-

1An overview of all detections can be found on the LIGO webpage: https://www.ligo.caltech.edu/page/

detection-companion-papers
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tional wave background on their own and it is unlikely that an improvement of about one order
of magnitude would suffice. But if we combine the signals of all the detectors which are built to
measure BBH and BNS anyway, then one could enhance the sensitivity by three to four orders of
magnitude and thus get more restrictive constraints on the GWB or detect it, if we are lucky.
With its high and low frequency interferometers, ET is designed to measure in a frequency range
from 1.5 Hz to 10 kHz. It therefore makes perfect sense to cross correlate its signals with the ones
of any second-generation detector or DECIGO. The correlation between ET and DECIGO has the
advantage that their noise is very different, since ET is Earth-based and DECIGO is in space and
therefore does not have any seismic noise for example. LISA however is designed to measure at
frequencies between 10−4 Hz and 1 Hz. Since its frequency range does not overlap with the ones of
ET and DECIGO, cross correlations with them do not make sense.
The advantage of testing GR by using the gravitational wave background is that it is constant
and isotropic. One does not have to extract complicated waveforms in a combination of all the 6
possible polarizations from the strain, which may differ, dependent on what modified theory we use.
And due to its isotropy, it does not make any sense to distinguish between plus and cross tensor
polarizations, and x and y vector polarizations. We can however still distinguish the three modes
(tensor T, vector V and scalar S), which can already tell us whether we have to modify GR and if
so, with what fields. In the case of point sources, we can determine the direction from which the
GW is coming from and the distinction between the polarizations is well defined. However, this
makes the calculation more complicated since we have to deal with 8 degrees of freedom instead of 3.

In section 2 we first give two representative examples of modifications to GR and their conse-
quences on gravitational waves. We summarize the derivation of the signal to noise ratio (SNR) for
a polarization mode of a combination of multiple detectors as it was done in Nishizawa et al. [15, 16].
Then we generalize the formula for the power spectral density and the overlap reduction functions
for detectors on Earth with 90◦ opening angle, to arbitrary opening angles. We apply this method
to ET in section 3 and find that one cannot distinguish the different modes due to the degeneracy
of its signals resulting from ET’s symmetry and propose a way around this by slightly breaking its
symmetry. We then include more detectors and investigate the impact on the sensitivity if certain
detectors would be offline. In section 4 we add DECIGO to our detector collection and investigate
how the time dependent sensitivity of a cross correlation between DECIGO and Earth detectors
can be used to distinguish the three polarization modes, as an alternative method to the maximum
likelihood method on all detector pairs. Finally, we derive the SNR for a single polarization and
the direction of the GW in the case of point sources in section 5.
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2 Theory and Methods

In this section we introduce the techniques we use to calculate the sensitivities to GW-polarizations
of various combinations of detectors. We first give a short overview of gravitational waves, how
the additional polarizations arise from two representative modifications of GR and their detection
using multiple interferometers and statistical tests. We continue with extracting the signal of a
correlation between two detectors. Then we take multiple detector pairs and combine their signals
in an optimal way to distinguish the polarizations and enhance the sensitivity.
The sensitivity is dependent on the noise power spectrum of the detector and geometry factors,
which in the case of a gravitational wave background are the overlap reduction functions. To
calculate the sensitivity for a collection of detectors including ET or DECIGO we need to generalize
the formula for the noise power spectral density to arbitrary opening angles and we can simplify the
expression for the overlap reduction functions for ground-based detectors which comes in handy,
since many of the detectors we consider here are ground based.

2.1 Polarizations of gravitational waves

The linearization of the Einstein field equations leads to a linear wave equation for perturbations in
the metric. Since the metric must be symmetric, the degrees of freedom of a 4-dimensional tensor of
rank 2 are reduced from 16 to 10. The Einstein equations are invariant under a change of reference
frame, while the linearized version is only invariant under an infinitesimal change of coordinates,
which reduces the degrees of freedom by 4 to 6. By choosing an orthonormal basis (m̂, n̂, Ω̂), where
Ω̂ ‖ ~k is the direction of travel [15], we can write a general solution as:

hij(t, ~x) =

h11 h12 h13

h12 h22 h23

h13 h23 h33

 e
2πif

(
t− Ω̂·~x

c

)
+ c.c. =

∑
A

hA(t, ~x)eAije
2πif

(
t− Ω̂·~xI

c

)
+ c.c., (1)

where the eA are the basis tensors of the polarizations we describe below and hA is the amplitude
of the GW in the polarization A.

Thus, we can have at most 6 polarizations. Since this is a vacuum equation in the case of unmodified
GR, the equation is invariant under a gauge transformation on the fields hµν 7→ h′µν = hµν−εµ,ν−εν,µ
with �εµ = 0. This further reduces the degrees of freedom to the 2 tensor polarizations. They are
purely transversal waves, which enlarge distances in one direction and squeeze space in the orthog-
onal direction. The basis tensors of the tensor mode are given by:

e+ = m̂⊗ m̂− n̂⊗ n̂, e× = m̂⊗ n̂+ n̂⊗ m̂. (2)

We will now look at two representative examples of modifications of GR and their consequences on
gravitational waves.
Adding a scalar field to the Lagrangian is one possibility to modify GR [6]. A general tensor scalar
action is:

S[g, φ] =
1

16πG

∫
[R− 2gµν∂µφ∂νφ− U(φ)]

√
−gd4x (3)

This leads to the two scalar polarizations called the breathing mode, since it stretches and squeezes
space simultaneously in all transversal directions, and the longitudinal mode, which is a purely
longitudinal wave. Their basis tensors are given by:

eb = m̂⊗ m̂+ n̂⊗ n̂, el =
√

2Ω̂⊗ Ω̂. (4)
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Another possibility would be, to add a vector field Lagrangian as follows:

S[g, V ] =
1

16πG

∫ [
(1 + ωVµV

µ)R−Kµν
ρσ∇µV ρ∇νV σ + λ(VµV

µ + 1)
]√
−gd4x (5)

with
Kµν
ρσ = c1g

µνgρσ + c2δ
µ
ρ δ

ν
σ + c3δ

µ
σδ

ν
ρ − c4V

µV νgρσ, (6)

where the ci are coefficients which would have to be determined by experiments.
This modification generates the two vector polarizations which oscillate in direction of travel and
in one orthogonal to it and can be written as:

ex = m̂⊗ Ω̂ + Ω̂⊗ m̂, ey = n̂⊗ Ω̂ + Ω̂⊗ n̂. (7)

These are 6 independent polarizations and we can therefore express a general solution in terms of
them:

hij(t, ~x) =

hb + h+ h× hx
h× hb − h+ hy
hx hy hl

 e
2πif

(
t− Ω̂·~x

c

)
+ c.c. (8)

When a gravitational wave stretches or squeezes an arm of a Michelson interferometer, then one
can observe a phase shift. This phase shift is larger if the amplitude of the wave is larger and if
the detector arms are optimally aligned given an incoming wave with a certain polarization. So the
signal in the detector can be written as:

hij(t, ~x) = Dij
∑
A

hA(t, ~x)eAije
2πif

(
t− Ω̂·~x

c

)
. (9)

The detector tensor D = 1
2(û⊗ û− v̂ ⊗ v̂) describes the orientations of the interferometer arms û,

v̂ and the polarization of the wave can be written as a linear combination of the basis tensors eA

described above. If we contract the two tensors, we get a scalar quantity which is called the angular
pattern function which describes the geometric dependence of the signal:

FA := DijeAij . (10)

So, a GW produces one scalar signal in each detector. Thus, we need to combine at least 6 detectors
to distinguish them. In the case of a gravitational background we expect a direction independent
signal. Therefore, one can only distinguish between the three modes: tensor, vector and scalar. So,
3 independent signals are enough, but more signals would of course improve the sensitivity.
By using the matched filtering method, one can calculate the signal to noise ratio of a certain signal.
Since the ET project has declared a signal to noise ratio of at least 8 as their condition to accept an
event as an actual signal, we set the SNR to 8 and calculate the minimal amplitude a gravitational
wave needs to have to be recognized as a true signal by a certain collection of detectors and use this
as a measure of their combined sensitivity.
The SNR is related to the false alarm rate α and detection rate γ by [17]:

SNR >

√
2

n

(
erfc−1(2α)− erfc−1(2γ)

)
(11)

Once one has chosen a minimal signal to noise ratio, one has to choose either a false alarm or a
detection rate. If we would split our observation time (T = 1 yr would be a realistic choice for a
GWB observation) into small time intervals of for example 4 s and do statistical tests on them, then
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one false alarm in 27 000 yr would be equivalent to a false alarm rate of α = 4 s
27 000 yr = 4.8 · 10−12.

This would give us about n = 7.8 · 106 time splits and result in a detection rate γ ≈ 1 under the
assumption of an SNR of 8. The detection rate is related to the false dismissal rate β by γ = 1−β
which gives us a false dismissal rate of β = 3.3 · 10−18.

We will now derive an expression for the SNR in terms of the GW signal and the detector noise.

2.2 Combined sensitivity of multiple detectors

The signal of a GW is smaller than the noise. To get rid of the noise one can use two tricks. First,
we can multiply the Fourier transform of the signal with a suitable filter function, which turns out
to be proportional to the signal, and integrate over all frequencies. This method is called matched
filtering. Secondly, we can cross correlate the strains sI,J = hI,J + nI,J of two detectors I and J .
Since the noise nI,J of the two detectors is not correlated and is also not correlated to the signal
hI,J , we can get rid of the noise by taking the expectation of the Fourier transform (FT) of the
complex conjugated strain s̃∗I of detector I multiplied with the FT of the strain s̃J of detector J :

E[s̃∗I s̃J ] = E[h̃∗I h̃J ] + E[h̃∗I ñJ ]︸ ︷︷ ︸
=0

+ E[ñ∗I h̃J ]︸ ︷︷ ︸
=0

+ E[ñ∗I ñJ ]︸ ︷︷ ︸
=0

. (12)

Nishizawa et al. [15] used the matched filtering method on a cross correlated signal and derived the
SNR for a detector pair (I, J).
The energy density parameter ΩGW of the GWB can be written as a sum over all modes M and
each mode has two polarizations M1 and M2 as discussed above:

ΩM
GW (f) =

∑
M

ΩM
GW =

∑
M

(
ΩM1
GW + ΩM2

GW

)
, M =

(
M1

M2

)
∈
{
T =

(
+
×

)
, V =

(
x
y

)
, S =

(
b
l

)}
.

The power spectral density SMi
h of the polarization Mi is related to its energy density parameter

by:

ΩMi
GW (f) =

2π2

3H2
0

f3SMi
h (f). (13)

By assuming that only one mode M is excited and using the ansatz SMi
h (f) = h2

0,Mi
δ(f ′−f), where

h0,Mi is the amplitude of the polarization Mi, we get the sensitivity of the detector pair to the
specific mode M :

(SNRMIJ)2 =
3H2

0

10π2

√
T

∫ ∞
−∞

(ΩM
GW (|f ′|)γMIJ(|f ′|))2

f6PI(|f ′|)PJ(|f ′|)
df ′

=
1

5

√
T

∫ ∞
−∞

(SMh (|f ′|)γMIJ(|f ′|))2

PI(|f ′|)PJ(|f ′|)
df ′

=
T

5

(h2
0,M1

+ h2
0,M2

)γMIJ(f)√
PI(f)PJ(f)

, (14)

where H0 is the Hubble constant, T the observation time, PI,J are the noise power spectral densities
of the detectors I and J and γMIJ is the overlap reduction function defined by:

γMIJ(f) :=
5

2

∫
S2

(FM1
I FM1

J + FM2
I FM2

J )e
2πif
c

Ω̂0·∆~xIJ dΩ̂

4π

= ρM1 (α)Dij
I D

J
ij + ρM2 (α)Di

I,kD
kj
J d̂id̂j + ρM3 (α)Dij

I D
kl
J d̂id̂j d̂kd̂l, (15)
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with α(f) := 2πf |∆~xIJ |
c and the ρMi are linear combinations of the zeroth, second and fourth spherical

Bessel functions.

We again require SNR
!
> 8 for a GW with mode M to be considered a true signal. We can

rewrite this to get the minimal amplitude a GW would need to be detected as such:

|hM0 (f)|min = 8

√
5
√
PI(f)PJ(f)

T |γMIJ(f)|
. (16)

If we have more than two detectors we can use the maximum likelihood method to distinguish the
polarizations. We then get an SNR with which we recognize a mode M as derived by Nishizawa
et al. [16]:

(SNRM )2 =
3H2

0

10π2

√∫ ∞
−∞

(ΩM
GW (f))2 detF(f)

f6FM (f)
df

=
1

5

√∫ ∞
−∞

SMh (f)2 detF(f)

FM (f)
df. (17)

Using the same ansatz as above, we get the minimal amplitude we require to not only detect a GW
with mode M but also distinguish its polarization with an SNR of at least 8:

|hM0 |min = 8
√

5 4

√
FM

Tobs detF
, (18)

where the Fisher matrix F is obtained by summing over the Fisher matrices of all detector pairs
(I, J)

FMM ′(f) =
∑
(I,J)

∫ Tobs

0

γMIJ(t, f)γM
′

IJ (t, f)

PI(f)PJ(f)
dt (19)

and FM is the determinant of the minor one gets by removing the M -th row and column.

2.3 Optical read-out noise

The quantum fluctuations of the laser cause a fundamental noise source in each detector which is
statistically independent from the other detectors. The fluctuation in the number density of photons
arriving at the detector causes a random fluctuation in the measured power and a fluctuation in the
light pressure on the mirror which causes the mirror to vibrate randomly. By increasing the laser
power, the fluctuation in the number density increase in total but is less compared to the average,
which causes the relative fluctuations in the measured laser power to decrease, but the pressure
and therefore the fluctuations in the position of the mirror increases. So, one has to balance one
effect against another which causes an uncertainty relation similar to the one arising from quantum
mechanics.

A Michelson interferometer with a Fabry-Perot cavity catches an additional term dependant on the
frequency f of the measured gravitational wave and on a pole frequency fp which is a characteristic
of the cavity. The power recycling C appears as a higher and the detector efficiency η as a lower
effective power: (P0 7→ ηCP0).
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The phase shift of a Fabry-Perot interferometer ∆φFP is related to the one of a Michelson interfer-
ometer without cavity ∆φMich by:

|∆φFP | =
2F
π

|∆φMich|√
1 +

(
f
fp

)2
, (20)

|∆φMich| := ∆φu −∆φv, (21)

where F is the finesse of the Fabry-Perot cavity, L the arm length of the detector, ∆φu and ∆φv
are the phase shifts in the arms u and v respectively, and fp the pole frequency of the cavity is
given by:

fp ≈
c

4FL
. (22)

To calculate the phase shift of a Michelson interferometer with opening angle θ we consider an
incoming GW with plus polarization:

h+
µν = h+


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 cos(ωGW t). (23)

The GW effectively stretches space in x-direction and squeezes it in y-direction, as depicted in
Figure 1, by a factor h+(t− L

c ), using the approximation ωGWL
c << 1.

x̂

ŷ

~v

θ

~v′

y

y′

x x′

Figure 1: The detector arm ~v of a detector with opening angle θ gets deformed to ~v′ under the
influence of a gravitational wave with plus polarization. The other detector arm ~u lies on the x-axis.

In this choice of reference frame we can write ~v as:

~v =

(
x
y

)
= L

(
cos θ
sin θ

)
, |~v| = L. (24)

Making the above approximation, we can write down the components of the deformed arm ~v′ and
express the change in the coordinates as:

x′ =
√
x2 + h+x2 ≈

[
1 +

1

2
h+

]
x ⇒ ∆x =

1

2
h+x, (25)

y′ =
√
y2 − h+y2 ≈

[
1− 1

2
h+

]
y ⇒ ∆y = −1

2
h+y, (26)
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where we abbreviated h+(t− L
c ) by h+ and expanded to first order.

The total change in the length of the detector arm is then given by:

∆v = |~v′| − |~v| =
√
x′2 + y′2 −

√
x2 + y2

=
1

2

2x√
x2 + y2

∆x+
1

2

2y√
x2 + y2

∆y +O(∆2)

≈ cos θL

L
∆x+

sin θL

L
∆y =

1

2
h+L(cos2 θ − sin2 θ) (27)

Since the light bounces back and forth, the phase shift catches a factor of two: ∆φu = 2kL∆u and
∆φv = 2kL∆v.

With that we can calculate the amplitude of the Michelson phase shift:

|∆φMich| = |∆φu −∆φv|

=

∣∣∣∣kLh+

(
t− L

c

)
L− kLh+

(
t− L

c

)
L(cos2 θ − sin2 θ)

∣∣∣∣
=

4π

λL
sin2 θLh+, (28)

with the wave number kL and wave length λL of the laser: kL = 2π
λL

.

The change in the pathlength of a photon due to the incoming GW is given by:

∆L = 2(∆u−∆v) = sin2 θLh+ (29)

Therefore the transfer function (change in pathlength per GW amplitude) is sin2 θL.

By inserting |∆φMich| and the transfer function for a general opening angle θ of the detector arms
into the equations (9.220), (9.234) and (9.122) of Maggiore [18] and neglecting the efficiency of the
photodetector η ≈ 1 we get:

the shot-noise: √
Sn(f)

∣∣∣
shot

=
1

4F sin2 θL

√
π~λLc
CP0

√
1 +

(
f

fp

)2

, (30)

radiation pressure:

√
Sn(f)

∣∣∣
rad

=
16F

M sin2 θL

√
~CP0

πλLc

1

(2πf)2

√
1 +

(
f
fp

)2
(31)

and the optical read-out noise is thus:

Sn(f)|opt = Sn(f)|shot + Sn(f)|rad. (32)

As an example, we calculate the noise power spectral density due to optical read-out noise for an
ET detector. Each ET detector consists of a high- (HF) and a low- (LF) frequency detector which
are then used as one to broaden the frequency range. The detector characteristics of these two
detectors are listed in Table 1.
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ET-HF ET-LF
Input power (after IMC) P0 500 W 3 W
Laser wavelength λL 1064 nm 1550 nm
Arm length L 10 km 10 km
Mirror mass M 200 kg 211 kg
Finesse F 880 880
Recycling gain C 21.6 21.6

Table 1: Detector characteristics of the high- (HF) and the low- (LF) frequency detectors, taken
from the Einstein Telescope proposal [9], section 5.1

We use the following values for the nature constants:

~ = 1.054 571 8× 10−34 kg·m2

s
c = 299 792 458 m

s ≈ 3× 108 m
s

With these values and the angle α = 60◦ we get the sensitivity curves for each detector type
in the Einstein Telescope and the resulting sensitivity if ET would be 10 times larger compared to
the original one, as shown in Figure 2.

Figure 2: Strain sensitivity due to optical read-out noise (shot and radiation pressure noise) of the
Einstein Telescope for the high- (HF) and low-frequency (LF) detector (left) and the comparison of
the same detector of length 10 km with length 100 km.

Without either the high- or the low-frequency detector, ET’s sensitivity to high or low frequencies
would be lower by about an order of magnitude. If one would build ET 10 times larger, it would
also be about 10 times more sensitive for frequencies lower than 30 Hz.

2.4 Overlap reduction functions γMI,J(f)

The angular dependence of the pattern functions FA(Ω̂) can be split into the relative orientation of
the detectors towards each other and the orientation of an incoming gravitational wave with respect
to the two-detector cluster. The overlap reduction functions account for the relative orientation of
the two detectors.
We consider a pair (I, J) of Michelson interferometers on Earth with opening angles φI and φJ . We
denote the direction vectors of the detector arms as ûI,J , v̂I,J such that (ûI,J , v̂I,J , ẑI,J), with ẑI,J
being the direction pointing to the sky, forms a positively oriented frame, as shown in Figure 3.
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The relative orientation of the detectors can be described by the angles σI,J between the detector
arms ûI,J and the separation vector ∆~x, which points from detector I to J .
The direction vectors of the detector arms in the cluster frame are given by:

ûI =

cosσI
sinσI

0

 , v̂I =

cos(σI + φI)
sin(σI + φI)

0

 , d̂ =
1√

2(1− cosβ)

 sinβ
0

cosβ − 1


ûJ =

 cosβ cosσJ
sinσJ

− sinβ cosσJ

 , v̂J =

 cosβ cos(σJ + φJ)
sin(σJ + φJ)

− sinβ cos(σJ + φJ)

 (33)

β

φI

σI

ûI

v̂I

φJ

σJ
ûJ

v̂J

Figure 3: Depiction of the unit vectors of the detector arms ûI , v̂I , ûJ , v̂J (red), the opening angles
φI , φJ (orange) and the angles σI , σJ between ûI,J and the great circle (blue) between the detectors
I and J

The contractions of the two detector tensors are then given by:

Dij
I D

J
ij =

1

2
(ûiI û

j
I − v̂

i
I v̂
j
I)

1

2
(ûJi û

J
j − v̂Ji v̂Jj )

=
1

4

[
(ûI · ûJ)2 − (v̂I · ûJ)2 − (ûI · v̂J)2 + (v̂I · v̂J)2

]
=

1

4

[
(sin2 σI − sin2(σI + φI))(sin

2 σJ − sin2(σI + φJ))

+ 2 cosβ(sinσI cosσI − sin(σI + φI) cos(σI + φI))

· (sinσJ cosσJ − sin(σJ + φJ) cos(σJ + φJ))

+ cos2 β(cos2 σI − cos2(σI + φI))(cos2 σJ − cos2(σJ + φJ))
]

=
1

4

[
(sin2 σ1+ − sin2 σ1−)(sin2 σ2+ − sin2 σ2−)

+
1

2
cosβ(sin(2σ1+)− sin(2σ1−))(sin(2σ2+)− sin(2σ2−))

+ cos2 β(cos2 σ1+ − cos2 σ1−)(cos2 σ1+ − cos2 σ1−)
]
, (34)
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Di
I,kD

kj
J d̂id̂j =

1

4

(
(ûI · d̂)ûI − (v̂I · d̂)v̂I

)
·
(

(ûJ · d̂)ûJ − (v̂J · d̂)v̂J

)
=

1 + cosβ

8

[
1

4
(sin(2σ1+)− sin(2σ1−))(sin(2σ2+)− sin(2σ2−))

+ cosβ(cos2 σ1+ − cos2 σ1−)(cos2 σ2+ − cos2 σ2−)
]
, (35)

Dij
I D

kl
J d̂id̂j d̂kd̂l =

1

4

(
(ûI · d̂)2 − (v̂I · d̂)2

)(
(ûJ · d̂)2 − (v̂J · d̂)2

)
=

(1 + cosβ)2

16
(cos2 σ1+ − cos2 σ1−)(cos2 σ2+ − cos2 σ2−), (36)

with σ1+ := σI + φI , σ1− := σI , σ2+ := σJ + φJ and σ2− := σJ .

Nishizawa et al. [15] have used a different definition of the angles σ1,2, which is related to ours

by: σ1+ = σ1 + φI
2 , σ1− = σ2 − φI

2 , σ2+ = σ2 + φJ
2 and σ2− = σ2 − φJ

2 .

Finally we get the following expression for the overlap reduction function γMIJ of the detectors I and
J for the polarization M :

γMIJ(f) = ρM1 (α)Dij
I D

J
ij + ρM2 (α)Di

I,kD
kj
J d̂id̂j + ρM3 (α)Dij

I D
kl
J d̂id̂j d̂kd̂l

=
1

16

{
4ρM1 (sin2 σ1+ − sin2 σ1−)(sin2 σ2+ − sin2 σ2−)

+

(
2ρM1 cosβ + ρM2

1 + cosβ

2

)
· (sin(2σ1+)− sin(2σ1−))(sin(2σ2+)− sin(2σ2−))

+
(
4ρM1 cos2 β + 2ρM2 (1 + cosβ) cosβ + ρM3 (1 + cosβ)2

)
· (cos2 σ1+ − cos2 σ1−)(cos2 σ2+ − cos2 σ2−)

}
, (37)

where we defined the argument α and the relation between the arclength β and the distance |~d| by:

α(f) :=
2πf |~d|
c

, |~d| = 2RE sin
β

2
. (38)
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3 The Symmetry of the Einstein Telescope (ET)

We now turn to calculating the sensitivities of various combinations of detectors to figure out how
changes could affect the overall sensitivity, which could help us in plans for future detectors. The
estimation of the maximal achievable sensitivity could help to find funds for further research if one
can show that one can constrain cosmological models and GR modifications significantly.
ET is going to be the largest ground-based detector ever built. It would be of great interest if
one could not only detect BBH’s and BNS’s but also measure the polarizations of the gravitational
background. We therefore investigate ET’s capability of measuring the GWB polarizations.

Since ET consists of three detectors, one can form three detector pairs which can be used to cross
correlate the signal. With the resulting three noise-free signals, one could in principle (as we will
see below, for ET those three signals are not independent) solve for the fraction of the power in
each polarization mode (tensor T , vector V , scalar S) by using the overlap reduction functions.

The fraction in Eq. (17) can be rewritten as:

detF

FT
=

∣∣∣∣∣∣
FTT FTV FTS
FV T FV V FV S
FST FSV FSS

∣∣∣∣∣∣∣∣∣∣FV V FV S
FSV FSS

∣∣∣∣ =
FTT (FV V FSS − FSV FV S) + 2FTV FV SFST − FV V F 2

TS − FSSF 2
V T

FV V FSS − FSV FV S

= FTT −
FV V F

2
TS − 2FV SFTSFTV + FSSF

2
TV

FV V FSS − F 2
V S

. (39)

This formula was derived via a maximum likelihood method for more than 3 detectors to find
3 modes and is therefore not well defined for 2 detectors, which can be seen by writing out the
expression for FT :

FT =
∑
(I,J)

∑
(I′,J ′)

∫ Tobs

0

γVIJ(t)2γSI′J ′(t
′)2 − γVIJ(t)γSIJ(t)γVI′J ′(t

′)γSI′J ′(t
′)

PIPJPI′PJ ′
dt′dt

=

∫ Tobs

0

γVIJ(t)2γSIJ(t′)2 − γVIJ(t)γSIJ(t)γVIJ(t′)γSIJ(t′)

P 2
I P

2
J

dt′dt = 0, (40)

where we used that in our case the overlap reduction functions are time independent: γMIJ(t) =
γMIJ(0).

Neglecting for the moment factors of Tobs
PIPJ

, we find:√
FV V FSS ∼

√∑
(I,J)

∑
(I′,J ′)

(γVIJ)2(γSI′J ′)
2 =

√
(γVIJγ

S
IJ)2 = γVIJγ

S
IJ ∼ FV S

⇒ detF

FT
= FTT −

(
√
FV V FTS −

√
FSSFTV )2

FV V FSS − F 2
V S

=
Tobs
PIPJ

[
(γTIJ)2 −

(γVIJγ
T
IJγ

S
IJ − γSIJγTIJγVIJ)2

(γVIJ)2(γSIJ)2 − (γVIJγ
S
IJ)2

]
. (41)

This expression is not well defined since the denominator is zero. In order to see whether the van-
ishing numerator helps, one has to carefully take the limit of a slightly non-degenerate case, which
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we will do below.

Even if one uses the formula for more than 3 detectors, one should be careful with this formula.
The fraction is ill defined as soon as the

∑
(I,J) γ

M
I,J commute, which happens for the 3 ET-detectors

due to the fact that they are three identical detectors and their symmetric arrangement leads to:

PI = PJ =: P ∀ Pairs (I, J);

γM12 = γM23 = γM31 ∀M ∈ {T, V, S} ⇒ FMM ′ = Tobs
γMγM ′

P 2
(42)

⇒
∑
(I,J)

(γMIJ)2
∑
(I,J)

(γM
′

IJ )2 = 9(γMIJ)2(γM
′

IJ )2 = (
∑
(I,J)

γMIJγ
M ′
IJ )2. (43)

To use the formula for the ET-detector we have to break the symmetry by changing the overlap
reduction function of one detector pair by a small amount ε(f) and then take the limit:

ε(f)→ 0 ∀f.

We do this without loss of generality for the example of M = T . We perturb one of the overlap
reduction functions:

γM12 = γM23 = γM31 − εM =: γM ∀M ∈ {T, V, S};

When we plug this into the denominator and numerator of the fraction in the right-hand side of
Eq. (39) we get:

FT = FV V FSS − F 2
V S =

(
Tobs
P 2

)2
∑

(I,J)

(γVIJ)2
∑
(I,J)

(γSIJ)2 − (
∑
(I,J)

γVIJγ
S
IJ)2


= 2

(
Tobs
P 2

)2

(εV γS − εSγV )2 (44)

and

FV V F
2
TS + FSSF

2
TV − 2FTV FV SFTS =

(
Tobs
P 2

)3 (
6γ2

T (γ2
Sε

2
V + γ2

V ε
2
S − 2γV γSεV εS)

+ γT (γ2
V ε

2
S + γ2

Sε
2
V − 8γV γSεV εS)εT − 3(γV γ

2
SεV + γ2

V γSεS)ε2T

− 2γT (γSε
2
V εS + γV εV ε

2
S)εT + 2(γ2

V ε
2
S + γ2

Sε
2
V − 4γV γSεV εS)ε2T

− 2γT εT ε
2
V ε

2
S − (γV εV ε

2
S + γSε

2
V εS)ε2T

)
. (45)
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Plugging this into the full expression of Eq. (39) and taking the limit we arrive at:

detF

FT
= FTT −

FV V F
2
TS − 2FV SFTSFTV + FSSF

2
TV

FV V FSS − F 2
V S

=
Tobs
P 2

(3γ2
T + 2γT εT + ε2T )− Tobs

P 2

1

2(γV εS − γSεV )2

(
6γ2

T (γV εS − γSεV )2

+ γT (γV εS − γSεV )2εT − 6γTγV γSεT εV εS − 3γV γS(γV εS + γSεV )ε2T

− 2γT (γV εS + γSεV )εT εV εS + 2(γV εS − γSεV )2ε2T − 4γV γSε
2
T εV εS

−2γT εT ε
2
V ε

2
S − (γV εS + γSεV )ε2T εV εS

)
=
Tobs
P 2

(
3γ2

T + 2γT εT + ε2T − 3γ2
T −

1

2
γT εT − ε2T

+
1

2
(3γV γSεT + 2γT εV εS + εT εV εS)εT

γV εS + γSεV
(γV εS − γSεV )2

+(3γTγV γS + 2γV γSεT + γT εV εS)
εT εV εS

(γV εS − γSεV )2

)
=
Tobs
P 2

(
3

2
γT εT +

3

2
γV γSεT

εT (γV εS + γSεV )

(γV εS − γSεV )2
+ 3γTγV γSεT

εV εS
(γV εS − γSεV )2

)
+O(ε2)

ε→0−→ 0. (46)

Due to the symmetry of the Einstein Telescope it is impossible to separate the modes out of
the signal. The overlap reduction functions of each detector pair are the same, since they only
depend on their relative orientation. Therefore, the detector correlation matrix Π has a vanishing
determinant and the relation between the cross-correlated signals and the modes of the gravitational
wave background cannot be inverted:

det Π =

∣∣∣∣∣∣
γT12 γV12 γS12

γT23 γV23 γS23

γT31 γV31 γS31

∣∣∣∣∣∣ =

∣∣∣∣∣∣
γT γV γS
γT γV γS
γT γV γS

∣∣∣∣∣∣ = 0. (47)

3.1 ET perturbations

We have seen in the previous section that one cannot distinguish between the three polarization
modes with the ET detectors although we have three signals, because of the symmetric arrangement
of those interferometers.
So, one has to break the symmetry in order to make the three rows in the detector correlation
matrix independent. We are going to consider two ways of doing that perturbatively and use the
framework of the previous section to determine their impact on the sensitivity, which will allow us
to compare both methods.

3.1.1 Irregular triangle

We make one angle smaller by a small angle εφ and make another angle bigger by the same amount,
which leaves the third angle unchanged. With that we have a completely irregular triangle with
three different angles and therefore the overlap reduction functions of all three detector pairs be-
come different and the detector correlation matrix becomes invertible.

Changing the angles will also change the arm lengths and therefore the distance between a de-
tector pair. We use the sine-law to determine the impact of a change in the angles on the change
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in the distance δ.
To estimate the order of magnitude of effect of the perturbation on the detector correlation matrix,
we calculate the change in the overlap reduction function of the detector pair (1, 2), when we shrink
the angle φ3 and enlarge φ1 by εφ, which leaves φ2 unchanged but shortens d12:

d− δ
sin(φ3)

=
d

sin(φ1)
, φ3 = φ− εφ , φ1 = φ+ εφ , φ =

π

3
. (48)

To first order we get:
δ ≈
√

3dεφ. (49)

With that expression, we can relate the effects of a change in the distance to the change in the
angles:

ρMi 7→ (ρMi )(0) −
√

3α(ρMi )′εφ, (50)

cosβ 7→ cosβ(0) +
√

3
d2

R2
E

εφ. (51)

The only coordinate angle that changes is σ1+. Therefore, we insert the values of the other angles:

σ1− = 0 , σ1+ 7→ σ
(0)
1+ + εφ , σ

(0)
1+ =

π

3
, σ2− =

2π

3
, σ2+ = π; (52)

γM12 =
1

16

{
−3ρM1 sin2 σ1+ +

√
3

2

[
2ρM1 cosβ + ρM2

1 + cosβ

2

]
sin(2σ1+)

+
3

4

[
4ρM1 cos2 β + 2ρM2 (1 + cosβ) cosβ + ρM3 (1 + cosβ)2

]
(cos2 σ1+ − 1)

}
7→ 1

16

{
−3
(

(ρM1 )(0) −
√

3α(ρM1 )′εφ

)(
sin2 σ

(0)
1+ + 2 sinσ

(0)
1+ cosσ

(0)
1+εφ

)
+

√
3

2

[
2
(

(ρM1 )(0) −
√

3α(ρM1 )′εφ

)(
cosβ(0) +

√
3
d2

R2
E

εφ

)
+

1

2

(
(ρM2 )(0) −

√
3α(ρM2 )′εφ

)(
1 + cosβ(0) +

√
3
d2

R2
E

εφ

)](
sin(2σ

(0)
1+) + 2 cos(2σ

(0)
1+)εφ

)
+

3

4

[
4
(

(ρM1 )(0) −
√

3α(ρM1 )′εφ

)(
cosβ(0) +

√
3
d2

R2
E

εφ

)2

+ 2
(

(ρM2 )(0) −
√

3α(ρM2 )′εφ

)(
1 + cosβ(0) +

√
3
d2

R2
E

εφ

)(
cosβ(0) +

√
3
d2

R2
E

εφ

)
+
(

(ρM3 )(0) −
√

3α(ρM3 )′εφ

)(
1 + cosβ(0) +

√
3
d2

R2
E

εφ

)2
](

cos2 σ
(0)
1+ − 2 cosσ

(0)
1+ sinσ

(0)
1+εφ − 1

)}
.

(53)

We can simplify this expression, by plugging in the values for σ
(0)
1+ and approximating cosβ(0), using

that d2

R2
E

= 2.5 · 10−6 � 1:

cosβ(0) = 1− d2

2R2
E

≈ 1. (54)
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With that we get to first order in εφ:

εM ≈
1

16

{
−3
√

3

2

[
(ρM1 )(0) − 3

2
α(ρM1 )′

]
−
√

3

2

[
2(ρM1 )(0) + 3α(ρM1 )′ + (ρM2 )(0) +

3

2
α(ρM2 )′

]

−3
√

3

4

[
2
(

(ρM1 )(0) + (ρM2 )(0) + (ρM3 )(0)
)
− 3α

(
(ρM1 )′ + (ρM2 )′ + (ρM3 )′

)]}
εφ

≈ −
√

3

32

{
8(ρM1 )(0) + 4(ρM2 )(0) + 3(ρM3 )(0) − 3α

(
2(ρM1 )′ + (ρM2 )′ +

3

2
(ρM3 )′

)}
εφ. (55)

In Figure 4 we plot the response factor, which multiplies to εφ to get the change in the overlap
reduction function εM .

Figure 4: The factor, with which the overlap reduction function responds to a small change in the
detector angles.

The response factor stays almost constant at a value of -0.87, since α� 1 until we get close to the
critical frequency fcrit = 3× 104 Hz, defined over fcritd

c
:= 1.

3.1.2 Tilted detector planes

We leave the angles and the arm-lengths of the three Michelson-interferometers invariant but tilt
the plane in which one of the three detectors lies.

We tilt the plane of detector 1, such that û1 gets tilted in negative z-direction. The other de-

tector arms stay unchanged (ûJ = û
(0)
J for J 6= 1 and v̂J = v̂

(0)
J for all J). We can write the

perturbation as:

û1 7→ û
(0)
1 + δû1 , δû1 =

 0
0
−δu

 . (56)

The angle α by which û1 is rotated can be approximated by:

α ≈ sinα ≈ δu. (57)
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We calculate the contractions of the perturbed detector tensors, analogue to (21), (22) and (23) to
first order in δu:

Dij
1 D

2
ij =

1

4

[
(û

(0)
1 · û2 + δû1 · û2)2 − (v̂1 · û2)2 − (û

(0)
1 · v̂2 + δû1 · v̂2)2 + (v̂1 · v̂2)2

]
≈ 1

4
(Dij

1 D
2
ij)

(0) +
1

2

[
(û

(0)
1 · û2)(δû1 · û2)− (û

(0)
1 · v̂2)(δû1 · v̂2)

]
.

Using the angles for ET as in Eq. (52) we get:

δ(Dij
1 D

2
ij) =

1

2
[(cosβ cosσ1− cosσ2− + sinσ1− sinσ2−)δu sinβ cosσ2−

− (cosβ cosσ1− cosσ2+ + sinσ1− sinσ2+)δu sinβ cosσ2+]

=
1

2
cosβ sinβ(cos2 σ2− − 1)δu = −3

8
cosβ sinβδu, (58)

Di
1,kD

kj
2 d̂id̂j =

1

4

(
(û

(0)
1 · d̂+ δû1 · d̂)(û

(0)
1 + δû1)− (v̂1 · d̂)v̂1

)
·
(

(û2 · d̂)û2 − (v̂2 · d̂)v̂2

)
≈ (Di

1,kD
kj
2 d̂id̂j)

(0) +
1

4

(
(δû1 · d̂)û

(0)
1 + (û

(0)
1 · d̂)δû1

)
·
(

(û2 · d̂)û2 − (v̂2 · d̂) · v̂2

)
,

δ(Di
1,kD

kj
2 d̂id̂j) =

1

8(1− cosβ)

(
δu(1− cosβ)û

(0)
1 + cosσ1− sinβδû1

)
· (sinβ cosσ2−û2 − sinβ cosσ2+v̂2)

=
sinβ

8

cosσ2−cosβ cosσ2−︸ ︷︷ ︸
û

(0)
1 ·û2

− cosβ︸ ︷︷ ︸
û

(0)
1 ·v̂2

 δu+
1 + cosβ

8

cosσ2−δu sinβ cosσ2−︸ ︷︷ ︸
δû1·û2

− δu sinβ︸ ︷︷ ︸
δû1·v̂2


=

sinβ

8

[
cosβ(cos2 σ2− − 1) + (1 + cosβ)(cos2 σ2− − 1)

]
δu

= −sinβ

8
(1 + 2 cosβ) sin2 σ2−δu = −3

4

sinβ

8
(1 + 2 cosβ)δu, (59)

Dij
1 D

kl
2 d̂id̂j d̂kd̂l =

1

4

(
(û

(0)
1 · d̂+ δû1 · d̂)2 − (v̂1 · d̂)2

)(
(û2 · d̂)2 − (v̂2 · d̂)2

)
= (Dij

1 D
kl
2 d̂id̂j d̂kd̂l)

(0) +
1

2

(
(û

(0)
1 · d̂)(δû1 · d̂)

)(
(û2 · d̂)2 − (v̂2 · d̂)2

)
,

δ(Dij
1 D

kl
2 d̂id̂j d̂kd̂l) =

1

8(1− cosβ)2
cosσ1− sinβδu(1− cosβ)

(
sin2 β cos2 σ2− − sin2 β cos2 σ2+

)
=

1 + cosβ

8
sinβ

(
cos2 σ2− − 1

)
δu = −3

4

1 + cosβ

8
sinβδu. (60)

Finally, we can patch all terms together, to calculate the perturbation εM :

εM = ρM1 δ(Dij
1 D

2
ij) + ρM2 δ(Di

1,kD
kj
2 d̂id̂j) + ρM3 δ(Dij

1 D
kl
2 d̂id̂j d̂kd̂l)

= −3

8
sinβ

{
ρM1 cosβ +

1

4
ρM2 (1 + 2 cosβ) +

1

4
ρM3 (1 + cosβ)

}
δu. (61)

18



Again, we find that εM is almost independent of f , but the effect is three orders of magnitude
smaller if we tilt one plane, instead of deforming the equilateral triangle.

εM = 1.2 · 10−3δu (62)
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Figure 5: Factor, with which the overlap reduction function responds to a small tilt of one of the
detector planes.

The response factor for the tilted plane, shown in Figure 5, stays at about -0.001 for frequencies far
below fcrit and oscillates ever closer around zero for increasing frequencies above 105 Hz. Since ET
is designed to measure in a frequency range from 1.5 Hz to 10 kHz the oscillations are not relevant.
We find that the response to the same small change in the tilt angle is three orders of magnitude
smaller than that of the change in the opening angle.

The effect of a perturbation is at best as small as the angle by which we change ETs geometry, in
the case of the irregular triangle. As we will argue in the next section, the problem is resolved if
one adds additional detectors, for example LIGO, which exists already anyway, and changing the
geometry of ET is therefore not worth the effort.

3.2 Cross correlation of Earth’s future detectors

We now turn our attention to combinations of ET with other detectors, which are already existing
(LIGO, Virgo) or under construction (KAGRA).
By adding two additional signals to the ET-cluster we break the symmetry and the problem above
is resolved. We add the two aLIGO-detectors in Livingston (LL) and Hanford (LH) to our set of
detectors, which results in 6 correlation signals out of which 4 (ET-ET, ET-LL, ET-LH, LL-LH)
are independent. This allows us to distinguish the polarization modes, even if one of the detectors
could not be used for some reason.

To calculate the noise power spectral density of an advanced-LIGO (aLIGO) detector we used
the following detector characteristics:
In Figure 6 we plot the combined sensitivity of ET and show the impact on the sensitivity if one of
the ET detectors would be offline.
All ET detectors lie in the same plane and are on the scale of Earth at the same place. If one
takes out one ET detector the directions in which its detector arms pointed are still covered by the
neighbouring detectors. That is why there is no visible change when one of the ET detectors is
missing.
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Input power (at PRM) P0 up to 125 W
Laser wavelength λL 1064 nm
Arm length L 4 km
Mirror mass M 40 kg
Finesse F 450
Recycling gain C 38

Table 2: Detector characteristics of the aLIGO-detectors, taken from [19], and C from [20]

Figure 6: Minimal amplitude necessary to be able to recognize a mode M ∈ {T, V, S} with SNR = 8
for a combination of all ET and LIGO detectors (left) and if one of the ET detectors is missing
(right).

Since we had 4 independent signals above, distinguishing the modes would still work if we would
switch off either the Livingston or the Hanford detector. The resulting sensitivities are shown in
Figure 7.

Figure 7: The minimal amplitude sensitivity of the combination of the ET-cluster, with the Liv-
ingston detector (left) and with the Hanford detector (right).

If we cross correlate ET with only one LIGO detector, we are less sensitive for the scalar mode
above frequencies of 100 Hz. Which LIGO detector we pick does not matter.
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Since advanced Virgo and KAGRA will be operating in the future, it only makes sense to add them
to our list of detectors and calculate what sensitivity all Earth detectors could reach. In Figure 8
we compare the noise power spectral densities of ET, aLIGO, aVirgo and KAGRA and plot their
combined sensitivity.

Figure 8: The noise power spectral densities of all involved detectors (left) and the sensitivity of all
existing and near future Earth detectors combined (ET, LIGO, Virgo and KAGRA).

When we also add Virgo and KAGRA to the collection we gain sensitivity for frequencies above
100 Hz.

3.3 Scenario: ET in the USA

After the LIGO project one could think of further GW-detectors one could build instead. Another
ET-detector in the USA for example would be an option. Maybe one could reuse some of the
infrastructure on one of the two LIGO-sites.
In Figure 9 we plot the expected sensitivity of two ET-detectors, one located in Europe and one in
the US, either at Livingston or Hanford.

Figure 9: The sensitivity of two ET-detectors. One placed in Europe and the other in Livingston
(left) or in Hanford (right).

The cross-correlations between two different ET-Detector clusters deliver enough independent data
such that the polarization modes can be separated, and we do not have to worry about the degen-
eracy of a single cluster. Another effect of the high degree of symmetry in these detector clusters is
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that their relative orientations do not matter. The effect of rotating the two detector clusters with
respect to each other is on the scale of a factor of about 1.5.
We find that the sensitivity is improved by almost an order of magnitude for frequencies below
100 Hz if we replace the LIGO project by another ET. As before, the choice between Livingston
and Hanford makes almost no difference.
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4 DECIGO and Correlation with Earth Detectors

After having investigated the combined sensitivity of the detectors on Earth we turn now our at-
tention to space and include projects which may be realized in the farther future. As we mentioned
in the introduction we focus on the DECIGO project, since LISA is sensitive in a lower frequency
range than the Earth detectors.

DECIGO is a space-based experiment, therefore there is no noise due to vibrations of the ground.
Since its sensitive region and the one of ET and LIGO overlap in the frequency range between 10 Hz
and 100 Hz, it makes sense to cross correlate their signal to get a higher precision and confidence
for the separation of the signal into the three different polarization modes.

The DECIGO experiment consists of four detector clusters. Each cluster is made up by three
satellites which form three independent identical Michelson interferometers. One can for example
arrange the four clusters in the C3 configuration, presented in [13] and [12], where two clusters are
at the same place near Earth and form a star shape and the remaining two form a triangle together
with the star-cluster, which has the Sun at its centre. In Figure 10 we compare the noise power
spectrum of DECIGO to the ones of ET and LIGO and plot the sensitivity of DECIGO in the C3
configuration.

Figure 10: Noise power spectra of a DECIGO, ET and advanced LIGO detector (left) and the
sensitivity of DECIGO in C3 configuration.

DECIGO is much more sensitive in the low frequencies than all detectors on Earth combined and is
even slightly more sensitive around 100 Hz, which comes in handy when we combine it with Earth
detectors.

If we add ET and then LIGO to the set of detectors and sum over all combinations of cross-
correlations, we get the plots shown in Figure 11.
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Figure 11: ET and all DECIGO detectors in C3 configuration (left) and together with both LIGO
detectors (right), averaged over a total measurement time of one year.

One can see that ET drags the curves down around 10 Hz and mostly above 100 Hz. Especially the
tensor and scalar modes are affected. They become about as sensitive as the vector mode.
Together with LIGO the sensitivity is enhanced by one order of magnitude at LIGO’s most sensitive
frequency range around 100 Hz.

4.1 Time-dependent Sensitivity

In the planned DECIGO-configuration C3 we used above, each cluster rotates around its own
axis perpendicular to the detector plane as it rotates around the Sun, such that it returns to its
original position after a year. A detector on Earth follows Earth rotation and therefore a relatively
quick oscillation of one day superposed to a slow oscillation of one year. This combined change
in the orientations of the detectors in a DECIGO-cluster relative to detectors on Earth leads to a
time varying sensitivity, which is different for each mode, as can be seen in Figure 12. The time
dependence of the sensitivity is independent of the frequency. We plot the sensitivities at 10 Hz,
where the DECIGO-Earth detector pairs are most sensitive.

Figure 12: Left: There are two DECIGO detectors in the star cluster, which show the same time
dependence when cross correlated with an Earth detector. We take all correlations between those
two and all ET and LIGO detectors. Right: In the square configuration (described below) there is
one detector in each of the three clusters which are far away from Earth, which have the same time
dependence when we correlate them with Earth detectors. We form all pairs of these three with
ET and LIGO.
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The variation of the sensitivity with time is different if we form the pair with a DECIGO detector
close to Earth or one far away from Earth. The location of the peaks is also different for DECIGO-
Earth pairs, formed with different DECIGO detectors. Changing the detector on Earth however
does not matter, since they are almost at the same place viewed on the solar system scale and
oscillate much faster, and therefore do not influence the trend on a monthly scale.
We can now try to optimise the sensitivity by combining all detector pairs with a similar time
dependence and average over an integration time of 5 days to not loose to much of the variation.
For this we can always form all pairs with the Earth detectors, but we have to be careful which
space detectors we pick.

If we want to be able, to clearly separate the vector mode from the other two then it makes sense to
pick the C3 configuration, because it has many detectors close to Earth. For two of the detectors in
the star cluster the correlation with any Earth detector has almost the same time dependence since
their orientation only differs by 30◦. In Figure13 we use all those pairs and integrate over 5 days
to increase the sensitivity. Due to the fact that the vector modes time dependence is phase-shifted
with respect to the other two modes, we can easily separate it from the other two in this case.

Figure 13: Combined sensitivity of the detector pairs with one of two neighbouring detectors in
the star cluster and all ground-based detectors with an integration time of 5 days at a frequency of
10 Hz for one year.

However, if we rather want to identify the scalar mode, then it makes more sense to move more clus-
ters further away from Earth and at best on the opposite side of the orbit around the Sun, because
for detectors which are far away from Earth the scalar mode has large peaks which correspond to
blind spots. In this case we could arrange the four DECIGO clusters in a square around the Sun,
such that only one cluster is close to Earth, and one is on the opposite side of Earth orbit. We can
then arrange the initial orientation of the clusters, such that the peaks for one detector of each of
the three clusters far from Earth coincide. Their combined time dependent sensitivity is shown in
Figure 14.
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Figure 14: Time dependent sensitivity of detector pairs with one of each of the three clusters far
from Earth in the square configuration with all Earth detectors, binned in time with steps of 5 days
at a frequency of 10 Hz for one year.

By using the same detectors as above and just combining the data differently, one gets an alternative
method to the maximum likelihood method for distinguishing the polarization modes. This can help
to check the results and gives a higher confidence on a test of GR, without having to build another
experiment.

4.2 B-DECIGO

If we replace DECIGO by the down scaled version B-DECIGO [14], we can see in Figure 15 that
we get a somewhat broader region where the sensitivity is better than 10−27 but we lose a lot of
sensitivity in the lower frequencies, as compared to DECIGO.
B-DECIGO orbits around the Earth on an altitude of 2000 km which is on the same order of
magnitude as the radius of the Earth (6371 km). It circles the Earth in a Sun-synchronous dusk-
dawn orbit with an angular frequency of about 8.2× 10−4 s−1 while Earth rotation corresponds
to 7.3× 10−5 s−1. This leads to rapidly varying distances and directions of the detector arms and
the irrational ratio between the two angular velocities leads to a chaotic behaviour, which makes
the use of the time dependent sensitivity very complicated. Additionally one can observe that the
sensitivities for the different modes get closer together as one moves a space detector closer to Earth.
If one would instead let B-DECIGO take the same type of orbit but on a higher altitude (35 867 km),
such that it would circle Earth in one day, one would get almost the same signal every day over a
period of about a week, because the change would now be on the time-scale of a year. The detectors
would also be far enough from Earth to get relevantly different sensitivity curves for the different
modes. The procedure would be more complicated than in the case of DECIGO, but one could still
use certain blind spots or other characteristics that only one mode shows. A large disadvantage to
DECIGO would also be that one would have to spot those characteristics in a model in advance,
since the sensitivities are not periodic.
We compare the time dependent sensitivities of both versions (original B-DECIGO and higher
altitude) for time-span of one day in Figure 16.
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Figure 15: Combined sensitivity of B-DECIGO, ET and both advanced LIGO detectors.

Figure 16: Time dependence of the sensitivity for B-DECIGO for one day (left) and for a higher
altitude of 35 867 km (right) for a frequency of 10 Hz.
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5 Gravitational waves from point-sources

Until now we have calculated the sensitivity of various combinations of GW-detectors to an isotropic
gravitational wave background. Now we attempt to do the same for point sources. Since the signal
of a point source is coming from a specific direction, we do not average over all solid angles and our
sensitivity becomes direction dependent.
The derivation of the expression for the signal to noise ratio works in analogy to what we have
done in section 2 and what was done in Nishizawa et al. [15]. The metric perturbation field at the
location of the detector ~xI can be described as the sum of all gravitational waves, incident on the
detector I, coming from all directions:

hij(t, ~xI) =
∑
A

∫
S2

hA(t, ~xI , Ω̂)eAij(Ω̂)dΩ̂

=
∑
A

∫ ∫
S2

h̃A(f, Ω̂)e
2πif

(
t− Ω̂·~xI

c

)
eAij(Ω̂)dΩ̂df. (63)

For a gravitational wave coming from a point source located at Ω̂0 in the sky, the frequency-space
amplitude takes the form:

h̃A(f, Ω̂) = ĥA(f)δ(Ω̂− Ω̂0). (64)

The response of the detector I to an incoming gravitational wave is described by the so called pattern
functions FAI , which are defined by contracting the basis tensors eA of the metric perturbations due
to GW’s for the polarizations A ∈ {+,×, x, y, b, l} with the detector tensor DI :

FAI (Ω̂) := eAij(Ω̂)Dij
I . (65)

Therefore, the Fourier transform of the signal is given by:

h̃I(f) =
∑
A

h̃A(f)e−2πif
Ω̂0·~xI
c FAI (Ω̂0). (66)

By cross correlating two strains of different detectors (sI , sJ) we get rid of the noise as seen in
Eq. (12). Thus, the expectation of the Fourier transform of the two strains is:

E[h̃∗I(f)h̃J(f ′)] = h̃∗A(f)h̃A′(f
′)e−

2πi
c

Ω̂0·(f~xI−f ′~xJ )FAI (Ω̂0)FA
′

J (Ω̂0). (67)

To maximize the signal to noise ratio, we filter this cross correlated strain with a filter function Q̃:

µ := E[Y ] =

∫
δT (f − f ′)E[h̃∗I(f)h̃J(f ′)]Q̃(f ′)df ′df

=

∫
h̃∗A(f)h̃A′(f)e−

2πif
c

Ω̂0·(~xI−~xJ )FAI (Ω̂0)FA
′

J (Ω̂0)Q̃(f)df, (68)

where Y is the cross correlated signal:

Y :=

∫ ∞
−∞

∫ ∞
−∞

δT (f − f ′)s̃∗I(f)s̃J(f ′)Q̃(f − f ′)df ′df. (69)

To find the optimal filter function Q̃ we define a scalar product on the space of smooth complex
valued functions C∞(C):

(A,B) :=

∫
A∗(f)B(f)PI(|f |)PJ(|f |)df. (70)
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Since the noise power spectra diverge algebraically at the origin and at infinity, we have to restrict
our functions A and B to the Schwartz-space S(C).

We can express the expectation of the correlated signal and its variance in terms of this scalar
product:

µ =

(
Q̃,

h̃∗Ah̃A′e
− 2πif

c
Ω̂0·∆~xFAI F

A′
J

PIPJ

)
, (71)

σ2 := V[Y ] = E[Y 2]− E[Y ]2 ≈ E[Y 2] =
T

4
(Q̃, Q̃), (72)

where ∆~x := ~xI − ~xJ is the distance vector between the detectors I and J .
The signal to noise ratio is therefore given by:

SNR =
µ

σ
=

(
Q̃,

h̃∗Ah̃A′e
− 2πif

c Ω̂0·∆~xFAI F
A′
J

PIPJ

)
√

T
4 (Q̃, Q̃)

. (73)

This can be maximized, by choosing the filter function Q̃ parallell to the correlated signal with
respect to our scalar product.

Q̃ ∝
h̃∗Ah̃A′e

− 2πif
c

Ω̂0·∆~xFAI F
A′
J

PIPJ
=: 〈hIhJ〉. (74)

With a proportionality constant K we get:

SNR =

√
4

T

(K〈hIhJ〉, 〈hIhJ〉)√
(K〈hIhJ〉,K〈hIhJ〉)

= 2
√
T (〈hIhJ〉, 〈hIhJ〉). (75)

Without loss of generality we can therefore choose Q̃ = 〈hIhJ〉. Finally, we can calculate the
maximal possible signal to noise ratio, with this choice of optimal filter function.

SNR = 2

√
1

T
(Q̃, Q̃)

= 2

√
1

T

∫
(h̃∗Ah̃A′F

A
I F

A′
J )2e

2πif
c

Ω̂0·∆~xe−
2πif
c

Ω̂0·∆~x

(PIPJ)2
PIPJdf

= 2

√
1

T

∫
(h̃A(f)h̃A′(f)FAI (Ω̂0)FA

′
J (Ω̂0))2

PI(|f |)PJ(|f |)
df. (76)

To extract the frequency dependence and the polarization we insert a harmonic wave with amplitude
h0, frequency f and polarization A.

h̃(f)
!

= h0δT (f − f0)δA′A; (77)

SNR = 2

√
T 2

(|h0|2FAI (Ω̂0)FAJ Ω̂0)2

PI(|f |)PJ(|f |)
= 2T

|h0|2FAI (Ω̂0)FAJ (Ω̂0)√
PI(|f |)PJ(|f |)

. (78)

So, we get the minimal amplitude required to detect a gravitational wave with polarization A and
at an SNR of at least 8.

|hA0 (f)|min =
√

32
4
√
PI(|f |)PJ(|f |)√

TFAI (Ω̂0)FAJ (Ω̂0)
(79)
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5.1 Determination of Location and Polarizations of Point Sources

If one has more than 8 detector pairs (I, J) (DECIGO would do for example), one can solve for the
direction Ω̂ ' (θ, φ) and all 6 possible polarizations A ∈ {+,×, x, y, b, l} of an incoming gravitational
wave from a point source. We determine the SNR for each quantity under the assumption that the
maximum likelihood method is used to calculate them from the at least 8 cross-correlated signals
µIJ . The derivation is analogue to the one given in Nishizawa et al. [16].

The true parameters are denoted by ~θtrue = (Y, sA, ω̂).

YIJ(f) = T
3
2

∣∣∣∣∣∑
A

s̃A(f)FAI (ω̂)
∑
A′

s̃A′(f)FA
′

J (ω̂)

∣∣∣∣∣ . (80)

The estimated values are µ = 〈Y 〉, hA = 〈sA〉, Ω̂ = 〈ω̂〉.

µIJ(f) = YIJ(f) + nIJ(f) = T
3
2

∣∣∣∣∣∑
A

h̃A(f)FAI (Ω̂)
∑
A′

h̃A′(f)FA
′

J (Ω̂)

∣∣∣∣∣ , (81)

where the noise nIJ(f) satisfies:

E[nIJ(f)] = 0 , V[nIJ(f)] =
T

4
PI(f)PJ(f) =: NIJ(f) (82)

Our likelihood function is given by:

L(µIJ |~θ) = exp

−∑
(I,J)

(YIJ − µIJ)2

2NIJ

 . (83)

With the parameters ~θ = (θ, φ,+,×, x, y, b, l).
The Fisher information matrix can then be calculated as follows:

Fij = E
[(
∂θi lnL(µIJ |~θ)

)(
∂θj lnL(µIJ |~θ)

)]
, (84)

F =

Fθθ Fθφ FθA′

Fφθ Fφφ FφA′

FAθ FAφ FAA′

 . (85)

To simplify the notation, we define: α′ := 2πf
c .

We calculate the θθ- and the θA-component for a GW with polarization A0:

Fθθ|h=hA0
= E

[
(∂θ lnL)2

]∣∣∣
h=hA0

= E

∑
(I,J)

1

NIJ
(YIJ − µIJ)T 3|h̃A0 |2∂θF

A0
I FA0

J

2
=
∑
(I,J)

1

N 2
IJ

E
[
(YIJ − µIJ)2

]︸ ︷︷ ︸
=NIJ

T 3
(
|h̃A0 |2∂θF

A0
I FA0

J

)2

+
∑

(I,J)6=(I′,J ′)

1

NIJNI′J ′
E [(YIJ − µIJ)(YI′J ′ − µI′J ′)]︸ ︷︷ ︸

=0

T 3
(
|h̃A0 |2∂θF

A0
I FA0

J

)(
|h̃A0 |2∂θF

A0
I′ F

A0
J ′

)
=
∑
(I,J)

T 3

NIJ

(
|h̃A0 |2∂θF

A0
I FA0

J

)2
, (86)
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FθA|h=hA0
= E

[
(∂θ lnL)

(
∂|h̃A|2 lnL

)]∣∣∣
h=hA0

= E


∑

(I,J)

1

NIJ
(YIJ − µIJ)T

3
2 |h̃A0 |2∂θF

A0
I FA0

J

 ∑
(I,J)

1

NIJ
(YIJ − µIJ)T

3
2∂|hA|2 |h̃I h̃J |

∣∣∣∣∣∣
h=hA0


=
∑
(I,J)

T 3

NIJ

(
FAI F

A
J + (1− δAA0)

1

2

[
(FAI )2FA0

J

FA0
I

+
(FAJ )2FIA0

FA0
J

])
|h̃A0 |2∂θF

A0
I FA0

J . (87)

A detailed calculation of the matrix elements for the more general case, where we have different
integration times for different detectors, can be found in Appendix B. We list here the rest of the
components again for an A0 polarization wave:

Fφφ =
∑
(I,J)

T 3

NIJ

(
|h̃A0 |2∂φF

A0
I FA0

J

)2
,

Fθφ =
∑
(I,J)

T 3

NIJ
(|h̃A0 |2)2

(
∂θF

A0
I FA0

J

)(
∂φF

A0
I FA0

J

)
,

FφA =
∑
(I,J)

T 3

NIJ

(
FAI F

A
J + (1− δAA0)

1

2

[
(FAI )2FA0

J

FA0
I

+
(FAJ )2FA0

I

FA0
J

])
|h̃A0 |2∂φF

A0
I FA0

J ,

FAA′ =
∑
(I,J)

T 3

NIJ

(
FAI F

A
J + (1− δAA0)

1

2

[
(FAI )2FA0

J

FA0
I

+
(FAJ )2FA0

I

FA0
J

])

·

(
FA

′
I FA

′
J + (1− δA′A0)

1

2

[
(FA

′
I )2FA0

J

FA0
I

+
(FA

′
J )2FA0

I

FA0
J

])
. (88)

The inverse of the Fisher matrix is the covariance matrix, which has the variance of θi in the i-th
diagonal entry. So, the square of the SNR for measuring polarization A is given by:

SNR2
A :=

(|h̃A|2)2

σ2
A

∣∣∣∣∣
h=hA

=
(|h̃A|2)2

(F−1)AA

∣∣∣∣∣
h=hA

=
(|h̃A|2)2 detF

FA

∣∣∣∣∣
h=hA

, (89)

where Fθi is the determinant of the minor one gets from removing the i-th row and column from
the Fisher matrix F.
The SNR of the cross correlation is related to the one of amplitude by:

SNR[µ] = SNR[h2] = SNR2[h]. (90)

Again, demanding an SNR[h] of at least 8 gives us the minimal amplitude. We can read off the
prefactors by comparing with the result for one detector pair above:

|h̃A|min =

√
32

T
4

√∣∣∣∣ FAdetF

∣∣∣∣
h=hA

. (91)

The variance of the position in the sky is given by:

V[θ] = (F−1)θθ =
Fθ

detF
, V[φ] = (F−1)φφ =

Fφ
detF

. (92)
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It turns out, that the angular pattern functions of the breathing and the longitudinal modes are
proportional to each other: F lI = −

√
2F bI .

Therefore it is impossible to distinguish these two. So, we focus on the distinction between the 4
tensor and vector polarizations and the scalar mode. From now on we use the polarization A as:

A ∈ {+,×, x, y, S}. (93)

Realizing the entire DECIGO-project is enormously expensive and therefore questionable whether
that is ever going to happen. We therefore do our calculations just for the one DECIGO cluster
close to earth (φ = −20◦ from Earths position on Earth orbit around the sun), which is the cheapest
version and add a plot for the Basic-DECIGO which is supposed to serve as a concept test and
will be realized sooner than DECIGO. We keep including ET, which as a ground-based detector is
cheaper than DECIGO, and the already existing LIGO detectors.

We use the HEALPix pixelization scheme, to evenly distribute n points on the sky and then average
over the hmin values for each f and obtain the frequency dependant behaviour of the combined
average sensitivity of ET, LIGO and DECIGO in Figure 17.

Figure 17: Frequency dependent sensitivity of ET, LIGO and DECIGO towards the polarizations
A ∈ {+,×, x, y, S}.

There are two aspects of the frequency dependent standard deviation of θ and φ. One is, that if one
measures a signal with a certain amplitude, then we can measure the position of the source preciser,
if it emits waves in frequencies in which we are more sensitive. We plot this in Figure 18, above for
an amlitude h = 10−25. As expected, the curves take the shape of the h(f) curve in Figure 17 and
have unreasonable values (on the scale of π or even larger than 2π) for frequencies where 10−25 is
below hmin. We cannot even measure those signals, so we should not expect, that we can locate
these sources.
The other aspect is, that the standard deviations vary with the frequency, relative to the sensitivity
at that frequency. This means, that if we for example take a wave which has twice the minimal
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amplitude for each frequency, we still get a frequency dependence. In Figure 18, below we take
h = 2|hS |min(f) because it is always higher than the other polarizations and we can therefore
detect it, no matter which polarization we choose and for any fixed frequency we have the same
amplitude for all polarizations. This allows us to compare the polarizations with each other.

Figure 18: Frequency dependent standard deviation of θ and φ for a GW with amplitude h = 10−25

in (a) and (b), and for twice the minimal amplituede of the scalar mode h = 2|hS |min, see Figure 17,
in (c) and (d).
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We plot the direction dependent sensitivities in Figure 19, using Eq. (91) along with the angular
resolution for waves with these polarizations by taking the square root of Eq.(92) at a frequency of
100 Hz, where our set of detectors is most sensitive.

Figure 19: Sensitivity of ET, LIGO and DECIGO towards the polarizations A ∈ {+,×, x, y, S}
in the left column. Standard deviation of the θ and φ angle for a GW with polarization A and
amplitude of hA = 2 · 10−26 in the middle and right column respectively.
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In Figure 20 we plot the frequency dependent sensitivity of B-DECIGO together with ET and
LIGO. The behaviour is very similar to the one with DECIGO, except that the plateau around 1 Hz
is missing. Since B-DECIGO is not as sensitive as DECIGO it can only increase the sensitivity
there a bit.

Figure 20: Frequency dependent sensitivity of ET, LIGO and B-DECIGO.
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6 Conclusions

The Einstein Telescope is alone not sensitive to polarization modes, but one only needs one addi-
tional detector to change that. Small changes in ET geometry lead to no difference in the case of
tilted planes and to a small sensitivity in case of a small change in the angles. So, it is questionable
whether it is reasonable to do that.

By combining aLIGO, aVIRGO, KAGRA and ET one can detect a GWB with a strain ampli-
tude below 10−27 and distinguish its polarization modes around a frequency of 100 Hz. One can
enhance the sensitivity for lower frequencies by cross correlating with all DECIGO detectors of the
C3 configuration. With this, one can measure strains of about 10−26 in a broad band from 0.1 Hz
to 1000 Hz.

It is possible to use an alternative method to distinguish the modes by using the time dependence of
the signals, with which one can clearly distinguish the scalar and vector modes by the blind spots,
using the right detector pairs. This however does not work for B-DECIGO. Its time dependence
is very chaotic since B-DECIGO angular frequency around Earth is an irrational fraction of Earth
rotation and the distance to Earth detectors is varying relevantly. The sensitivities of the different
modes are too close together, whenever the detectors are too close to Earth. This can be resolved
however if one chooses an orbit on a higher altitude such that it circles the Earth once a day. In
that case the method becomes more complicated than with the original DECIGO, but is still feasible.

With that we presented two methods with which we can use the already existing and planned
detectors to test GR by measuring the polarizations of the GWB.

In a future project, one could investigate the possibilities of detecting inhomogeneities in the gravi-
tational wave background analogue to the ones in the cosmic microwave background. Up to now we
only calculated the minimal strain of a GW to be detected. But to find out how large the deviation
from the mean would have to be to detect them, we would have to deal with the variance of the
parameter estimation. It would be interesting to find out what angular resolution one could get
with various detector combinations.
Gravitational waves should travel undisturbed since Planck time, which would make it possible to
measure properties of the early quantum gravitational universe directly. This could give us valuable
hints on the search of a unifying theory. This remarkable advantage of GW over the electromagnetic
ones also has its disadvantages. Due to the enormous density of the early universe many emissions of
GW would be expected from different epochs in the big bang. The difficulty would be to distinguish
a signal of an earlier epoch from a later one. One of the most exciting things to do in the far future
would be to create a complete gravitational map of the beginning of our universe.
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A Delta distribution Approximation

In this Appendix we give a detailed derivation of the signal to noise ratio for a merger by focusing
on the approximations of the Dirac delta distribution and the Fourier transforms. We first use a
scalar signal, measured by two detectors, to simplify the calculation and then generalize to a wave
with arbitrary polarizations measured by multiple detectors.
In future all GW detectors together could be sensitive enough to measure the in spiral of a binary
Black Hole or neutron star merger, months before the merger event happens. In this case detectors
with different distances from the source would have different observation times. This would help to
measure the position of the source in the sky:

c∆T = Ω̂ ·∆~xIJ , ∆T = TI − TJ , ∆~xIJ = ~xI − ~xJ , (94)

where TI and TJ are the observation times of the detectors I and J , ~xI and ~xJ their position vectors
and Ω̂ is the direction of travel of the GW.

We define the cross correlated and filtered strain amplitude of the detector pair (I, J) by:

Y :=

∫ TI/2

−TI/2

∫ TJ/2

−TJ/2
sI(t)sJ(t′)Q(t− t′)dt′dt, (95)

where Q is the filter function and sI , sJ are the strains measured by the detectors I,J , which are
the sum of the signal hI and the noise nI in detector I:

sI(t) = hI(t) + nI(t). (96)

By taking the ensemble average we get rid of the noise terms:

µ := E[Y ]

=

∫ TI/2

−TI/2

∫ TJ/2

−TJ/2

{
E[hI(t)hJ(t′)] + E[hI(t)nJ(t′)] + E[nI(t)hJ(t′)] + E[nI(t)nJ(t′)]

}
Q(t− t′)dt′dt

=

∫ TI/2

−TI/2

∫ TJ/2

−TJ/2

∫
h̃∗I(f)e

2πif

(
t− Ω̂·~xI

c

)
df

∫
h̃J(f ′)e

−2πif ′
(
t′− Ω̂·~xJ

c

)
df ′Q(t− t′)dt′dt

=

∫
h̃∗I(f)h̃J(f ′)e−

2πi
c

Ω̂·(f~xI−f ′~xJ )

∫ TI/2

−TI/2

∫ TJ/2

−TJ/2
Q(t− t′)e−2πi(f ′t′−ft)dt′dtdf ′df, (97)

where we replaced the signal by its Fourier transform: hI(t) =
∫
h̃I(f)e

−2πif

(
t− Ω̂·~xI

c

)
df .

We apply the following substitution to the integral over t′: τ = t− t′, dτ = dt,

µ =

∫
h̃∗I(f)h̃J(f ′)e−

2πi
c

Ω̂·(f~xI−f ′~xJ )

∫ TJ/2

−TJ/2

∫ TI/2−t′

−TI/2−t′
Q(τ)e2πifτdτe−2πi(f ′−f)t′dt′df ′df. (98)

Then we approximate the integral over τ with the Fourier transform of the filter function Q:∫ TI/2−t′

−TI/2−t′
Q(τ)e2πifτdτ ≈ Q̃(f). (99)

If we shift a wave packed in time, it is still composed of the same frequencies. Therefore, we can
ignore the time shift in the integration volume by −t.
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We pull this out of the t integral and get:∫ TJ/2

−TJ/2
e−2πi(f ′−f)t′dt′ = − 1

π∆f

1

2i

(
e−πi∆fTJ − eπi∆fTJ

)
=

sin(π∆fTJ)

π∆f
=: δTJ (f ′ − f). (100)

If ∆f = f ′ − f approaches zero, we get: lim
∆f→0

δTJ (∆f) = lim
∆f→0

1
π∆f (0 + πTJ∆f + O(∆f2)) = TJ

and for big ∆f , δTJ gets small: ∣∣∣∣sin(π∆fTJ)

π∆f

∣∣∣∣ 6 1

π∆f

∆f→∞−→ 0. (101)

By approximating δTJ (f ′ − f) ≈ δ(f ′ − f) with the Dirac delta distribution we can evaluate the
integral over f ′.

µ ≈
∫
h̃∗I(f)h̃J(f ′)e−

2πi
c

Ω̂·(f~xI−f ′~xJ )Q̃(f ′)δ(f ′−f)df ′df =

∫
h̃∗I(f)h̃J(f)Q̃(f)e−2πif

Ω̂·∆~xIJ
c df. (102)

We now have an expression for the signal. To calculate the signal to noise ratio we need to deal
with noise which is the square root of the variance in absence of a signal:

σ2 := V[Y ]|h=0 = E[Y 2]− E[Y ]2|h=0 = E[Y 2]|h=0

=

∫ TI/2

−TI/2

∫ TI/2

−TI/2

∫ TJ/2

−TJ/2

∫ TJ/2

−TJ/2
E[sI(t)sI(t

′)sJ(τ)sJ(τ ′)]Q(t− τ)Q(t′ − τ ′)dτ ′dτdt′dt|h=0

=

∫ TI/2

−TI/2

∫ TI/2

−TI/2

∫ TJ/2

−TJ/2

∫ TJ/2

−TJ/2
E[nI(t)nI(t

′)]E[nJ(τ)nJ(τ ′)]Q(t− τ)Q(t′ − τ ′)dτ ′dτdt′dt. (103)

Since the noises of the two detectors are independent of each other, we can take their expectation
separately. We then insert the Fourier transformation (FT) of the noise, in the time interval in
which the measurement is taken:

nI(t) =

∫
ñI(f)e−2πiftdf, (104)

And then swap the time and frequency integrals and approximate the FT of the filter function and
the delta distribution as before:

σ2 =

∫
E[ñ∗I(f)ñI(f

′)]E[ñJ(ν)ñ∗J(ν ′)]Q̃(ν)δ(ν − f)Q̃∗(ν ′)δ(ν ′ − f ′)dν ′dνdf ′df

=

∫
E[ñ∗I(f)ñI(f

′)]E[ñJ(f)ñ∗J(f ′)]Q̃(f)Q̃∗(f ′)df ′df. (105)

Now we use that different frequencies in the noise are not correlated to each other and the definition
of the two sided noise power spectral density:

E[ñ∗I(f)ñI(f
′)] =:

1

2
PI(|f ′|)δ(f ′ − f). (106)

If we would carelessly plug in this identity, we would get a multiplication of two delta distributions,
which is not definable. But we cannot take the expectation of the noise squared over an infinite

39



time integral anyway. So, the delta distribution is actually a δTI . This is a smooth function and
not a distribution and can therefore be multiplied with another δTJ .

σ2 =
1

4

∫
PI(|f ′|)PJ(|f ′|)Q̃(f)Q̃∗(f ′)

∫ TI/2

−TI/2
e−2πi(f ′−f)tdt

∫ TJ/2

−TJ/2
e2πi(f ′−f)t′dt′df ′df

=
1

4

∫
PI(|f ′|)PJ(|f ′|)Q̃(f)Q̃∗(f ′)

∫ TI/2

−TI/2

∫ TJ/2

−TJ/2
e2πi(f ′−f)(t′−t)dt′dtdf ′df. (107)

To evaluate the time integrals we have to split the integration domain into three regions as depicted
in Figure 21, since we need an integration region which is symmetric around t′ − t = 0, where we
can use Eq. (100). The rest can be evaluated separately.

t′

t

−TJ/2 TJ/2

−TI/2

TI/2

−TI/2 TI/2

Figure 21: The green region is symmetric around t′ − t = 0 (red line). The blue rectangle marks
the entire integration region.

Let TI < TJ , ∆T = TJ − TI and ∆f = f ′ − f , then the time integrals read:

δTI δTJ =

∫ TI/2

−TI/2

∫ −TI/2
−TJ/2

e−2πi∆f(t′−t)dt′ +

∫ TI/2

−TI/2
e−2πi∆f(t′−t)dt′ +

∫ TJ/2

TI/2
e−2πi∆f(t′−t)dt′dt. (108)

We substitute η = −t′ in the first inegral over t′, to bring it into the same form as the third one.

δTI δTJ =

∫ TI/2

−TI/2
−
∫ TI/2

TJ/2
e2πi∆f(η+t)dη +

∫ TJ/2

TI/2
e−2πi∆f(t′−t)dt′dt+

∫ TI/2

−TI/2

∫ TI/2

−TI/2
e−2πi∆f(t′−t)dt′dt

=

∫ TI/2

−TI/2
e2πi∆ft

∫ TJ/2

TI/2
e2πi∆ft′ + e−2πi∆ft′dt′dt+ δ2

TI
(∆f)

=

∫ TI/2

−TI/2
e2πi∆ftdt

∫ TJ/2

TI/2
2 cos(2π∆ft′)dt′ + δ2

TI
(∆f)

= δTI (∆f)

(
sin(π∆fTJ)− sin(π∆fTI)

π∆f
+ δTI (∆f)

)
≈ δ(f ′ − f)

(
sin(π∆fTI) + π∆f∆T +O((π∆f∆T )2)− sin(π∆fTI)

π∆f
+ δTI (∆f)

)
, (109)

where we assumed, that ∆T � TI .
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This approximated distribution acts on functions as follows:∫
g(f ′)δTI δTJ (∆f)df ′ ≈

∫
g(f ′)

(
∆T +O(f ′ − f) + δTI (f

′ − f)
)
δ(f ′ − f)df = g(f)(TI + ∆T ),

(110)
∀g ∈ C∞(C).

Inserting this into the variance and integrating over f ′ we get:

σ2 =
1

4

∫
PI(|f ′|)PJ(|f ′|)Q̃(f)Q̃∗(f ′)δTI δTJ (f ′ − f)df ′df

=
TI + ∆T

4

∫
PI(|f |)PJ(|f |)|Q̃(f)|2df. (111)

Using matched filtering with the scalar product: (Ã, B̃) :=
∫
Ã∗(f)B̃(f)PI(|f |)PJ(|f |)df ,

leads us to a filter function:

Q̃(f) =
h̃∗I(f)h̃J(f)e2πif

Ω̂·∆~xIJ
c

PI(|f |)PJ(|f |)
. (112)

We can write the signal and noise in terms of the filter function and arrive at the signal to noise
ratio:

SNR =
µ

σ
=

(Q̃, Q̃)√
TI+∆T

4 (Q̃, Q̃)
= 2

√
1

TI + ∆T

∫
|h̃I(f)h̃J(f)|2
PI(|f |)PJ(|f |)

df. (113)

We now model the merger as a periodic source, which stops radiating at the end of the merging
event at its time coordinate t0. Under the assumption that the detectors are far away from the
source, we can model the incoming wave as a plane wave with amplitude h0 and frequency f0,
traveling in direction Ω̂:

h(t) = h0e
2πif0(t− Ω̂·~x

c
)θ

(
t0 −

Ω̂ · ~x
c
− t

)
. (114)

The detector I will measure the signal over a time period TI and the Fourier transform of the
measured signal is therefore:

h̃I(f) =

∫ TI/2

−TI/2
h0e

2πif0(t− Ω̂·~x
c

)e−2πiftdt = h0e
−2πif0

Ω̂·~x
c

∫ TI/2

−TI/2
e−2πi(f−f0)tdt (115)

Again, we cannot approximate this with a delta distribution, otherwise we would get a δ4 for the
|h̃I h̃J |2 term.

|h̃I(f)h̃J(f)|2 = h4
0

∫ TI/2

−TI/2

∫ TI/2

−TI/2

∫ TJ/2

−TJ/2

∫ TJ/2

−TJ/2
e−2πi(f−f0)(t′−t+τ ′−τ)dτ ′dτdt′dt. (116)

We do the same splitting of the TJ interval as above, under the assumption TI < TJ and using the
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short hand ρ = t′ − t+ τ ′ − τ :

|h̃I h̃J |2 ∝ δ2
TI
δ2
TJ

=

∫ TI/2

−TI/2

∫ TJ/2

−TJ/2
e−2πi(f ′−f)(t′−t+τ ′−τ)dτ ′dτdt′dt

=

∫ TI/2

−TI/2

∫ −TI/2
−TJ/2

e−2πi∆fρdτ ′dτ +

∫ TI/2

−TI/2
e−2πi∆fρdτ ′dτ +

∫ TJ/2

TI/2
e−2πi∆fρdτ ′dτdt′dt

=

∫ TI/2

−TI/2
e−2πi∆f(t′−t)dt′dt

∫ TJ/2

TI/2
e2πi∆f(τ ′−τ) + e−2πi∆f(τ ′−τ)dτ ′dτ +

∫ TI/2

−TI/2
e−2πi∆fρdτ ′dτdt′dt

= δ2
TI

(∆f)

∫ TJ/2

TI/2
2 cos(2π∆f(τ ′ − τ))dτ ′dτ + δ4

TI
(∆f)

= δ2
TI

(∆f)

(
1

π∆f

∫ TJ/2

TI/2
sin(π∆f(TJ − 2τ))− sin(π∆f(TI − 2τ))dτ + δ2

TI
(∆f)

)

= δ2
TI

(∆f)

(
− 1

2(π∆f)2
{cos(π∆f(TJ − TJ))− cos(π∆f(TJ − TI))

− cos(π∆f(TI − TJ)) + cos(π∆f(TI − TI))}+ δ2
TI

(∆f)
)

= δ2
TI

(∆f)

(
1

(π∆f)2
{cos(π∆f∆T )− 1}+ δ2

TI
(∆f)

)
= δ(f ′ − f)δTI (∆f)

(
1

(π∆f)2

{
1− 1

2
(π∆f∆T )2 +O(∆f4)− 1

}
+ δ2

TI
(∆f)

)
. (117)

The action on a function g ∈ C∞(C) is:∫
g(f ′)δ2

TI
δ2
TJ

(f ′ − f)df ′ =

∫
g(f ′)δTI (∆f)

(
∆T 2

2
+O(∆f2) + δTI (∆f)2

)
δ(f ′ − f)df ′

= g(f)δTI (0)

(
∆T 2

2
+ δTI (0)2

)
= g(f)TI

(
∆T 2

2
+ T 2

I

)
. (118)

When we plug this into the SNR we get:

SNR = 2

√
TI

TI + ∆T

(
∆T 2

2
+ T 2

I

)
h4

0

PI(|f0|)PJ(|f0|)
≈ 2

(
TI +

Ω̂ ·∆~xIJ
2c

)
h2

0√
PI(f0)PJ(f0)

, (119)

where we used the identification of the integration time with the direction of the source in Eq. (94).

The minimal amplitude is then given by:

hmin =
√

32

(TI + ∆T )PI(f)PJ(f)

TI

(
∆T 2

2 + T 2
I

)
 1

4

≈
√

32

(
1√
TI

+
Ω̂ ·∆~xIJ
4c
√
TI

3

)
4
√
PI(f)PJ(f). (120)

Including polarizations, we have a gravitational wave hij(t), which induces the signal hI(t) in
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detector I:

hij(t) =
∑
A

hAe
2πif0(t− Ω̂·~x

c
)+ϕAθ

(
t0 −

Ω̂ · ~x
c
− t

)
eAij (121)

hI(t) =
∑
A

hAF
A
I (Ω̂)e2πif0(t− Ω̂·~xI

c
)+ϕAθ

(
t0 −

Ω̂ · ~xI
c
− t

)
, (122)

where hA is the amplitude of the wave in polarization A and ϕA accounts for the fact that the
polarizations could be phase shifted.
For the absolute value squared of the cross correlated signals of two detectors we get:

|h̃I(f)h̃J(f)|2 = |h̃I(f)|2|h̃J(f)|2

=

∣∣∣∣∣∑
A

hAF
A
I (Ω̂)e−

2πif0
c

Ω̂·~xI+iϕA

∣∣∣∣∣
2 ∣∣∣∣∣∑

A

hAF
A
J (Ω̂)e−

2πif0
c

Ω̂·~xJ+iϕA

∣∣∣∣∣
2 ∫ TI/2

−TI/2

∫ TJ/2

−TJ/2
e−2πi(f−f0)ρd4ρ

=

∣∣∣∣∣∑
A

hAF
A
I (Ω̂)eiϕA

∣∣∣∣∣
2 ∣∣∣∣∣∑

A

hAF
A
J (Ω̂)eiϕA

∣∣∣∣∣
2

δTI (f − f0)

(
∆T 2

2
+ δTI (f − f0)2

)
. (123)

We make the assumption, that the gravitational wave has only one of the polarizations h =∑
A′ hA′δA′A, to get the signal to noise ratio for that polarization.

SNRA :=
µ

σ

∣∣∣
h=hA

= 2

√
TI

TI + ∆T

(
∆T 2

2
+ T 2

I

)
(|hA|2FAI (Ω̂)FAJ (Ω̂))2

PI(|f0|)PJ(|f0|)

≈ 2

(
TI +

Ω̂ ·∆~xIJ
2c

)
|hA|2FAI (Ω̂)FAJ (Ω̂)√

PI(f0)PJ(f0)
, (124)

which we get by replacing h4
0 7→ (|hA|2FAI (Ω̂)FAJ (Ω̂))2 in Eq. (119).

For multiple detectors we use the maximum likelihood method and calculate the Fisher matrix.
The likelihood function is given by:

L(µIJ , ~θ) = e
−
∑

(I,J)
(YIJ−µIJ )2

2σ2
IJ , (125)

where µIJ = E[YIJ ] is the ensemble average of the correlated signals of the detectors I and J . Its
variance σ2

IJ = V[YIJ ] is given by Eq. (111) without the filtering. Multiplying the SNR Eq. (119)
with the noise we get:

µIJ =

√
TI

(
∆T 2

2
+ T 2

I

)
|h̃I h̃J |. (126)
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The matrix element FAA′ of the Fisher matrix is then given by:

FAA′ = E
[(
∂|hA|2 lnL

) (
∂|hA′ |2 lnL

)]
= E

∑
(I,J)

1

σ2
IJ

(YIJ − µIJ)

√
TI

(
∆T 2

2
+ T 2

I

)2 (
∂|hA|2 |h̃I h̃J |

)(
∂|hA′ |2 |h̃I h̃J |

)
=
∑
(I,J)

1

σ4
IJ

E[(YIJ − µIJ)2]︸ ︷︷ ︸
V[YIJ ]=σ2

IJ

TI

(
∆T 2

2
+ T 2

I

)(
∂|hA|2 |h̃I h̃J |

)(
∂|hA′ |2 |h̃I h̃J |

)

+
∑

(I,J)6=(I′,J ′)

1

σ2
IJσ

2
I′J ′

E[(YIJ − µIJ)(YI′J ′ − µI′J ′)]︸ ︷︷ ︸
Cov(YIJ ,YI′J′ )=0

TI

(
∆T 2

2
+ T 2

I

)(
∂|hA|2 |h̃I h̃J |

)(
∂|hA′ |2 |h̃I′ h̃J ′ |

)

=
∑
(I,J)

4TI
(TI + ∆T )PIPJ

(
∆T 2

2
+ T 2

I

)(
∂|hA|2 |h̃I h̃J |

)(
∂|hA′ |2 |h̃I h̃J |

)
(127)

The SNR squared of a specific polarization A is defined by dividing the square of the quantity we
are looking for |hA|2 by its variance σA, under the condition that the incoming wave has only that
polarization.

SNR2
A :=

(|hA|2)2

σ2
A

∣∣∣∣
h=hA

=
(|hA|2)2

(F−1)AA

∣∣∣∣
h=hA

=
(|hA|2)2 detF

FA

∣∣∣∣
h=hA

(128)

B Fisher matrix entries

As can be seen in Appendix A, the Fisher matrix can be written as a sum of Fisher matrices of
single detector pairs, which consist of a pre-factor and two derivative terms for row and column of
the entry. If θi,j are polarizations we have:

Fij ∝
(
∂θi |h̃I h̃J |

)(
∂θj |h̃I h̃J |

)
, (129)

where ~θ = (θ, φ,+,×, x, y, b, l) are the parameters we are looking for.

Here we calculate those derivative terms.
We start by writing out the absolute value squared of the correlation signal.

|h̃I h̃J |2 =

∣∣∣∣∣∑
A

hAF
A
I

∑
A′

hA′F
A′
J

∣∣∣∣∣
2

, (130)

where the phase ϕA of the polarization A is integrated in the complex valued amplitude hA ∈ C.
We split the multiplied signals up into sums over terms where the polarizations coincide and where
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they are different:

|h̃I h̃J |2 =

∣∣∣∣∣∣
∑
A
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AF

A
I F

A
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hAhA′F
A
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A
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B
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∑
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+
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A
I F
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J FBI F

B′
J . (131)

When we take the derivative after |hA|2 all sums which do not contain such a term vanish.

∂|hA|2 |h̃I h̃J | =
1

2
√
|h̃I h̃J |

2|hA|2(FAI F
A
J )2 + hAF

A
I F

A
J

∑
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h∗B(FAI F
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J + FBI F

A
J )
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J FA

′
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′
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+
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] . (132)

We add the condition, that we have an incoming wave with polarization A0 and therefore all terms
proportional to two different polarizations are zero.

∂|hA|2 |h̃I h̃J |
∣∣∣
h=hA0

=
1

2

√(
|hA0 |2F

A0
I FA0

J
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+ 0

{
2δAA0 |hA|2(FAI F
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J FA0
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1

2

[
(FAI )2FA0

J

FA0
I

+
(FAJ )2FA0

I

FA0
J

]
(133)
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If we calculate a matrix element in the θ or φ row or column, we cannot pull the term

√
TI

(
∆T 2

2 + T 2
I

)
out in front, so the general Fisher matrix element looks like:

Fij = E
[
(∂θi lnL)(∂θj lnL)

]
=
∑
(I,J)

1

σ2
IJ

(
∂θi

√
TI

(
∆T 2

2
+ T 2

I

)
|h̃I h̃J |

)(
∂θj

√
TI

(
∆T 2

2
+ T 2

I

)
|h̃I h̃J |

)
(134)

The variance of the true signal YIJ is dependent on the true time difference and we can treat it as
a parameter when we take the derivative after the estimated θ-value.

V[YIJ ] = σ2
IJ =

TI + ∆T

4
PIPJ , ∆T =

ω̂ ·∆~xIJ
c

, (135)

where ω̂ is the true direction of the source.

The derivative term for the angle θ for a wave with polarization A0 is given by:

∂θ

√
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∆T 2

2
+ T 2

I

)
|h̃I h̃J |
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2
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I FA0
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2
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I

)
|hA0 |2
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I,θF

A0
J + FA0

I FA0
J,θ

)
(136)

C Provisory Pictures
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Figure 22: Angular dependence of the sensitivity to polarizations and standard deviation of θ and
φ at 10 Hz.
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Figure 23: Angular dependence of the sensitivity to polarizations and standard deviation of θ and
φ at 1 Hz.
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