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Abstract

Gravitational microlensing of quasars enables to probe its innermost region, i.e. a super-
massive black hole surrounded by an accretion disk, at very small scales inaccessible by other
methods. When a quasar is lensed by a galaxy, multiple images are produced by the galaxy
as a whole. These multiple images show brightness changes, which are associated with the
central engine of the quasar traversing a complicated network of caustics produced by the stars
in the lensing galaxy. In this work, it is investigated whether deep learning may be utilised
successfully for the recognition of the event horizon through these brightness variations. The
goal is to present a neural network model for the classification of brightness changes corre-
sponding to different sources given by simple geometric models. The silhouette of a black hole
over an accretion disk is represented by a crescent-shaped source. The neural network model
that yields the most accurate performance is a convolutional neural network model. With
this model, even when considering a more realistic lensing galaxy macromodel and number
of lensing stars and by including random Gaussian noise, a very high average accuracy is
achieved, i.e. (99.30 ± 0.18)%. Moreover, it is sensitive to the crescent parameters. These cres-
cent parameters provide an estimate for the size of the accretion disk and the gravitationally
magnified Schwarzschild radius.
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1 Introduction

1.1 Quasars and Active Galactic Nuclei

Quasars, for quasi-stellar radio sources, are active galactic nuclei (AGN for short) according to the
AGN unification model (e.g., Antonucci 1993; Urry & Padovani 1995). They contain a supermas-
sive black hole, i.e. a black hole with a mass above 106 solar masses, which is surrounded by an
accretion disk (e.g., Kembhavi & Narlikar 1999; D’Onofrio et al. 2012). The size of the accretion
disk is typically less than 0.01 pc (Morgan et al. 2010), making quasars compact objects.

AGNs are thought to be powered by the accretion of matter from the surrounding disk falling
into the supermassive black hole. The gravitational energy of the infalling material is radiated
away as electromagnetic radiation. In the work of Shakura & Sunyaev (1973), a simple thin-disk
model of the viscous material in the accretion disk was presented, which is inspiraling and radiates
the released energy. A particle in an accretion disk moving on a geodesic will lose energy due to
friction and move in a spiral into smaller and smaller radii. Approximately, the particle can be
thought of as slowly moving from one stable circular orbit to the next, eventually reaching the
ISCO (short for: innermost stable circular orbit) and falling into the supermassive black hole (e.g.,
Reall 2020). For this process, the fraction of rest mass that is converted into radiation is ηacc ≈ 0.06,
which is much higher than, for example, the fraction of rest mass energy released in nuclear fusion
η f usion ≈ 7 × 10−4 (e.g., Frank et al. 2002). Thus, AGNs, especially quasars, are one of the most
energetic phenomena in the universe.

As of August 2020, more than 750′000 quasars have been discovered, with the great majority
of them at redshifts z > 2 (Pâris et al. 2014; Lyke et al. 2020). Thanks to their high luminosity,
quasars can be detected despite the long distance. Quasars found at redshifts 6 < z < 7 are
powered by supermassive black holes up to 1010 solar masses (Wu et al. 2015).

1.2 Quasar Microlensing as a Way to probe the Structure of the Central Engine

Quasar microlensing enables the probe of supermassive black hole properties and surrounding
accretion disk structures in quasars. This would otherwise not be accessible due to their com-
pactness and the large distances (e.g., Schmidt & Wambsganss 2010). The theory of gravitational
microlensing relevant for the scope of the present thesis is summarised in chapter 2. Microlensing
considers the case of gravitational lensing where the separation of the resulting multiple images
is far below the limiting resolution given by observational constraints. Gravitational lensing of
quasars, discussed in section 2.4, occurs in two regimes. On the one hand, the galaxy acts as a
lens in strong lensing regime and produces multiple images. On the other hand, individual stars
inside the galaxy act as microlenses, which results in brightness changes of the multiple images
providing the quasar microlensing lightcurves (e.g., Wambsganss 1999; Courbin et al. 2002).

From the quasar lightcurves physical information can be extracted (e.g., Kochanek 2004). The
usual approach is as follows. Lightcurves are simulated for different parameters of the used
model and fitted to the data (e.g., Poindexter et al. 2008; Poindexter & Kochanek 2010). For the
simulation of lightcurves, a common technique is to use a magnification map. A magnification map
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represents caustic networks in the source plane (see section 2.3.2) given by the macromodel of
the lensing galaxy and the number of individual lensing stars. By using the code of Wambsganss
(1999) described in section 4.2, a magnification map can be generated.

Kamruddin & Dexter (2013) introduced a simple geometric crescent model and argued that the
crescent represents the silhouette of the event horizon. Considering a Schwarzschild blackhole with
a mass M, the event horizon, defined by its Schwarzschild radius: RS ≡ 2GMc−2, gives a boundary
in spacetime beyond which events cannot affect observers, i.e. a one-sided causal boundary from
which not even light can escape (Schwarzschild 1916). In the work of Tomozeiu et al. (2017), an
indirect method, which is related to Agol & Krolik (1999) and Mediavilla et al. (2015), was used to
examine the black hole shadow and its vicinity inside a quasar. They presented a model to probe
the event horizon structure in quasars from lightcurves obtained by considering a crescent-shaped
source.

1.3 Expanding the Possibilities thanks to Machine Learning and Deep Learning

With regard to possible methods for reconstructing parameters characteristic of the structure of
quasars from lightcurves of multiple microlensing events, big data will play an important role. By
analysing large amounts of data, new tools can be developed and new insights gained. Machine
learning and deep learning provide promising solutions when dealing with big data, in particular
for the classification of data. The basic concepts for classifications with machine learning and
deep learning are explained in chapter 3.

1.4 The Purpose of the present Work

The goal of this work is to present a neural network model for the recognition of quasar mi-
crolensing lightcurves representing the event horizon. For this purpose, a classification task is
defined where lightcurves, given by discrete time-dependent signals, are assigned to three dif-
ferent sources. For the three sources, simple geometric models with constant surface brightness
are considered. The three source shapes are a disk, a simple geometric crescent model from Kam-
ruddin & Dexter (2013), and a random source. The first two models are implemented in a similar
way as in the work of Tomozeiu et al. (2017). For the latter, four different subtypes of randomly
shaped sources, which have no physical meaning, are introduced. Since the training of a neural
network requires large amounts of data, an algorithm is developed to generate automatically a
large number of lightcurves for a given magnification map. Using this algorithm two datasets
for two different magnification maps are provided, where the lightcurves of one dataset addi-
tionally include random Gaussian noise representing observational noise. The simulation of the
lightcurves and the written algorithm are described in chapter 4. For each dataset, a classification
is performed with an Adaptive Boosting Classifier (see section 3.3.2) and with three different neural
network models. The approach for the classification of the lightcurves and a description of the
different neural network models are given in chapter 5. The results are presented in chapter 6 and
discussed in chapter 7. The conclusion can be found in chapter 8.
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2 Microlensing

According to the Einstein’s General Theory of Relativity, photons travel on the null geodesics of
the spacetime metric. All matter between an observer and a light source affects the path, size,
and cross section of a light bundle propagating through spacetime. Light emitted by a source
gets deflected in the neighbourhood of the lens. In Figure 1, the configuration for a gravitational
lensing event is illustrated. In the regime of gravitational strong lensing, multiple images of the
source or an Einstein ring (section 2.2) can be observed. Gravitational microlensing considers the
case of gravitational lensing where the image separation of the resulting multiple images is far
below the limiting resolution given by observational constraints. (e.g., Schneider et al. 2006)

Figure 1: Sketch of a gravitational lensing event, credits: German Aerospace Center, 2009.

In this chapter, the theory of gravitational lensing relevant for microlensing and required for
the present work is summarised using Wambsganss (1998), Schneider et al. (1999), Petters et al.
(2001), Mollerach & Roulet (2002), Wambsganss (2006), and Schneider et al. (2006).

2.1 The Gravitational Lens Equation

Assuming the thin lens approximation, i.e. that the lensing action is dominated by a single inho-
mogeneity of matter at a single distance between source and observer where the deflection effect
takes place, the light rays smoothly curved in the vicinity of the lens can be replaced by two
straight rays with a kink. The magnitude and the direction of the kink are determined by the
mass distribution of the deflector and the impact vector of the light ray and are described by the
deflection angle α̃. Figure 2 shows the geometry of gravitational lensing, where DL and DS are
the angular diameter distances to the lens and source, θ is the apparent sky position of the source,
and β is the true but unobservable position of the source. In figure 3 the source and lens plane in
a lensing geometry are illustrated.

In the case of deflection by a point mass, the deflection angle is

α̃ =
4GM
c2ξ

, (1)

where M is the mass of the lens, G is the gravitational constant, c is the speed of light, and ξ is the
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impact parameter. It is assumed that ξ is much larger than the Schwarzschild radius of the lens,
ξ � RS ≡ 2GMc−2. Under this condition the deflection angle is small, α̃ � 1. The validity of the

Figure 2: Sketch of gravitational lensing geom-
etry, adopted from Wambsganss (1998).

Figure 3: Source and lens plane in a gravitational
lensing geometry, from Courbin et al. (2002).

following relation can be seen directily from figure 2:

θ DS = β DS + α̃ DLS . (2)

This expression can be rewritten as:

β = θ −
DLS

DS
α̃(θ) . (3)

The reduced deflection angle can be defined as:

α =
DLS

DS
α̃ . (4)

Generalised to the case of an extended lense with a three-dimensional non-symmetric mass
distribution, the two-dimensional deflection angle ~α is given by considering the sum over all
mass elements in the lens plane:

~α =
DLSDL

DS

4G
c2

∫
Σ(~θ′)

~θ − ~θ′

|~θ − ~θ′|2
d2 ~θ′ , (5)

where the two-dimensional surface mass density distribution

Σ(~θ) =

∫ DS

0
ρ(~r) dz (6)

is given by the projected density ρ(~r) along the line of sight onto the lens plane. Then, the
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gravitational lens equation can be written as:

~β = ~θ − ~α(~θ) . (7)

2.2 Einstein Radius

For the special case that observer and source are in perfect alignment, i.e. |~β| = 0, a ring shaped
image results. The angular radius of this Einstein ring is called the Einstein radius:

θE =

√
4GM

c2
DLS

DLDS
, (8)

and defines the angular scale for a lensing event. In the regime of strong gravitational lensing, the
Einstein radius is of the order of arcsec and multiple images can be observed. For microlensing θE

is of the order of microarcsec, which is why multiple images cannot be resolved.

2.3 Magnification

2.3.1 Magnification Matrix

The distortion matrix is the derivative of the real source position with respect to the apparent source
position:

D(~θ) =

(
∂β

∂θ

)
, (9)

and can be written as

D = (1 − κ)

1 0
0 1

 − γ1 γ2

γ2 −γ1

 , (10)

where κ is the convergence and γ1 and γ2 are the components of the shear ~γ. Its inverse is the
magnification matrix:

M(~θ) = D−1 . (11)

Whether a point source will brighten or dim, i.e. the brightness amplification of its image, is
described by the determinant of the magnification matrix:

µ(~θ) = det |M(~θ)| =
1

(1 − κ)2 − γ2 , (12)

µ(~θ)

> 1 f or brightening

< 1 f or dimming
. (13)
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For multiple images ~θi of the same source at ~β that are not observationally resolved, there is a
total brightness amplification given by

µtotal =
∑

i

µ(~θi) . (14)

2.3.2 Critical Curves and Caustics

The set of positions on the ~θ-plane where

det |D(~θ)| = 0 , (15)

lead formally to an infinite magnification. These curves are called critical curves. By mapping the
critical curves onto the ~β-plane (source plane), using the lens equation (7), the caustics are obtained.
In gravitational lensing, caustics can be divided into two categories: cusp caustics (points) and
fold caustics (concave curves). Mathematically these are different orders of catastrophes. The
significance of caustics in gravitational lensing of quasars was first presented in Chang and
Refsdal (1979). For the simulation of light curves (2.3.4), caustic networks represented by a
magnification map (Wambsganss 1999) are used and will be discussed in section 4.2.

2.3.3 Magnification near a Caustic

An extensive presentation of the magnification near a caustic can be found in Blandford and
Narayan (1986), Schneider and Weiss (1992) , Gaudi and Petters (2001), and Gaudi and Petters
(2002). Considering a point source near a caustic, the magnification at distance r = | ~r | from a fold
causting is given by

µ(r) = µ0 + C0
1
√

r
Θ(r) , (16)

where µ0 is the magnification concerning other effects and can be assumed as locally constant, C0

is the proportionality constant depending on the constraints in the vicinity of the caustic, and Θ

is the Heaviside function. The second term in equation 16 varies inversely with the square root
of the distance of the source to the caustic.

2.3.4 Lightcurve of a Microlensing Event

Considering an arbitrary source shape whose centre is positioned at (ps, qs) in a two-dimensional
coordinate system (p, q), the source can be described by a brightness function S2D(p − ps, q − qs).
During a microlensing event, the coordinates of the source centre change in time due to the
motion of the source. The lightcurve, described by the flux F(t), is given by the convolution of the
brightness function describing the source and the magnification near a caustic (equation 16):

F(t) =

∫
∞

−∞

∫
∞

−∞

S2D(p − ps(t), q − qs(t)) µ(r(t)) dq dp , (17)
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where the caustic is assumed to be fixed. If the coordinate system is chosen such that:

~eq =
~r
r
, (18)

µ (equation 16) has no q-dependence. Defining the one-dimensional brightness function of the

Figure 4: Change in brightness of the star Gaia16aua during a microlensing event, Credit: ESA/Gaia/DPAC,
L. Wyrzykowski, OGLE team (Warsaw), Z. Kostrzewa-Rutkowska (SRON/RU).

source by integrating the two-dimensional brightness function over q:

S1D(p − ps(t)) =

∫
∞

−∞

S2D(p − ps(t), q − qs(t)) dq , (19)

equation 17 can be rewritten:

F(t) =

∫
∞

−∞

µt(p) S1D(p − ps(t)) dp . (20)

As an example of an observationally detected lightcurve, figure 4 shows the change in brightness
of the star Gaia16aua during a microlensing effect, detected by Gaia.

2.4 Quasar Lensing

Descriptions of the gravitational lensing of a quasar by a galaxy can be found in several texts,
e.g. Wambsganss (1999) and Courbin et al. (2002). When a quasar is lensed by a galaxy, lensing
occurs at two mass scales. Figure 5 shows an example of such a lens situation with two images of
a quasar. The galaxy as a whole acts as a lens, producing multiple images separated by the order
of arcsec. Inside the galaxy, the distribution of matter is ”granular”. Each star in the galaxy acts
as a gravitational lens with an Einstein radius of the order of microarcsec. As discussed in section
2.2, the multiple micro-images produced cannot be resolved. But microlensing also has an effect
on the measured brightness of a quasar image. These changes in brightness are due to the central
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engine of the quasar traversing a complicated network of caustics generated by the stars in the
lensing galaxy. When a quasar crosses a caustic, the brightness changes abruptly, whereas most
astrophysical sources straddle multiple caustics and their brightness therefore varies smoothly
with location. This is because the innermost region of a quasar, which is the only part of the quasar
whose light is affected by microlensing (e.g., Sluse et al. 2012), is smaller than the typical distance
between the caustics. Thus, we obtain an upper limit for the size of the central engine of quasars.
This effect can be used as well to study the mass distribution and kinematics of stars in the lensing
galaxy (e.g., Pooley et al. 2012). Due to the large length scales of the extragalactic regime, which
are only partially compensated by the larger velocity scales, the typical time scale on which quasar
microlensing occurs is about 10 times longer than for galactic microlensing events (e.g., Kochanek
2004). Therefore, quasar microlensing events have a duration of 1 − 10 yr rather than 0.1 − 1 yr.

Figure 5: Sketch of a quasar lensed by a galaxy. The galaxy as a whole producing two images of the quasar.
The stars inside the galaxy causing a microlensing effect of one of the images. From Courbin et al. (2002)
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3 Machine Learning and Deep Learning

This chapter covers a brief overview of the basic concepts of machine learning and deep learning
for classification that are relevant for this work. A more detailed presentation of the theoretical
background is given in several references, such as Hastie et al. (2009), Frochte (2019) and Moroney
(2020).

Figure 6: Traditional programming vs. machine learning, from Moroney (2020)

The idea of machine learning is to feed a machine with inputs and outputs, instead of writ-
ing a programme that returns an output for an input, such that it gives a programme (see figure
6). The goal is to learn a mathematical function

f : X → Y . (21)

For the purpose of this work, supervised learning is considered. This means, a sufficiently large
set of inputs and outputs is provided that already have the correct function value. Data sets
are then referred to as labelled datasets. The dataset is usually divided into training and test
examples.

3.1 Classification

For classification, the codomain Y from 21 is discrete. Given a number of characteristics, called
features, according to which the belonging to a class with the corresponding label is to be deter-
mined. Formally, this can be summarised as follows (Frochte 2019):

Let X be the space of feature vectors and C a set of classes. There is a usually unknown function

c : X → C , (22)

which does the error-free classification. We are generally only aware of a set of examples:

D = { (x1, c(x1)), (x2, c(x2)), ...(xn, c(xn)) } ⊆ X × C . (23)

The goal of the classification problem is to construct this function c.
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The classification problem can also be thought of as a set of datapoints in the space of feature
vectors that are to be subdivided into their respective classes by demarcation. Figure 7 shows a
simplified example of a set of datapoints with two classes with labels ”+” and ”∗” and two features
x1 and x2. In classical machine learning algorithms, this grouping is done by hyperplanes. Using
neural networks, more complex continuous functions can be approximated.

Figure 7: Example of a set of data points in two
dimensions, from Frochte (2019)

Figure 8: Example of a binary tree, from Frochte
(2019)

3.2 Decision Trees

Decision trees are classifiers based on the basic data structure of a tree, which is well known in
computer science. A tree consists of a root, which is the only node without parent node, several
internal nodes (also: branch nodes), and several leaf nodes, which are nodes without child nodes. A
tree can be built recursively as a collection of nodes, starting with the root node, by dividing the
nodes into a number of child nodes and constraining the formation of child nodes. Figure 8 shows
an example of a binary tree for which each node, except leaf nodes, has two children.

For a decision tree the process of evaluation begins at the root. A decision is made at the root
and at each internal node. At the leafs, which represent the labels, the classification is made. The
branches represent the conjunction of the features that lead to these labels. On the first level, the
algorithm divides all training examples into as many branches as labels are given. On the second
level, the respective branches are again divided and so on. The number of levels is indicated
by the maximal depth of the tree classifier. The result is an (n − 1)-dimensional hyperplane in
n-dimensional feature space. For a given data set there can be different splitting conditions. The
model has to learn to split the data optimally. At each level, it compares every possible split and
chooses the one that maximises the information gain (IG) by going through all possible features
and feature values to find the best feature and corresponding threshold. A way to measure
information contained in a node can be done by using the entropy:

H(node) =
∑
−pi log(pi) , (24)
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where pi is the probability of class i. The highest possible value of entropy is 1, which is the
entropy corresponding to the root node. The information gain corresponding to a split is defined
as:

IG = H(parent) −
∑

H(childi) . (25)

The advantage of decision trees is that they can split data that would not be separable by a single
linear function. However, they are highly sensitive to the training dataset and tend to overfit,
which means that the algorithm fits very well to the classification of the training data, but does
not generalise.

3.3 Ensemble Machine Learning Algorithms

3.3.1 Random Forests

A random forest (e.g., Ho 1995) is a collection of multiple random decision trees. The first step
in building a random forest is to generate new datasets by randomly selecting datapoints from
the original dataset. Each new dataset contains the same number of datapoints as the original
data set. This process is called bootstrapping and it makes the model less sensitive to the original
training dataset. In the next step a decision tree is trained on each of the bootstrapped datasets
independently. For each tree a subset of feature is randomly chosen for training, which reduces the
correlation between the trees. For the classification of a datapoint traversing the random forest,
the average decision of all classifications of the individual trees is selected. Combining the results
from several models is called aggregation. The combination of bootstrapping and aggregation is
called bagging.

3.3.2 Adaptive Boosting Classifier

The bagging method mentioned above combines the results of optimised individual classifiers to
achieve better generalisation. In contrast, the boosting method is used to train multiple different
weak classifiers, which are models that are slightly better than random guessing, to combine them
into a strong classifier. One of the most popular boosting algorithms is Adaptive Boosting (short:
AdaBoost). A detailed description of the algorithm is given in Freund and Schapire (1995). The
idea is to use a forest with shallow trees as weak classifiers. The procedure is iterative, adding
a random weak classifier in each iteration step. Misclassified training examples are weighted
higher and correctly classified ones are weighted lower. Unlike in a random forest, in a forest
made with AdaBoost the final classification is determined by a weighted sum of the component
classifications and the order of trees plays an important role.

3.4 Artificial Neural Networks

3.4.1 Introduction

The elementary component of a neural network is the artificial neuron. Figure 9 shows the schematic
of how a neuron operates as part of a neural network. The outputs of the previous neurons are
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multiplied by the weights and summed up, which is used as the argument of the activation function.
The value of the activation function is then the output of the neuron in question. Neural networks

Figure 9: Scheme of an artificial neuron, from
Frochte (2019)

Figure 10: Example of a neural network: fully
connected multilayer-perceptron with two hid-
den layers, from Frochte (2019)

consist of an input layer, an output layer and possibly one or more hidden layers. A layer contains a
certain number of neurons. If all neurons of one layer are connected to the neurons of the following
layer, this is called a fully connected neural network (or dense neural network). A neural network in
which one layer is only connected to the following layer is referred to as a feedforward network.
As an example of a feedforward-network, in figure 10 a fully connected multilayer-perceptron with
two hidden layers is illustrated. Networks with multiple hidden layers are so-called deep neural
networks. The number of layers, number of neurons per layer, which nodes are connected, which
weights are shared, the selected activation function in a respective layer, and whether a bias is
added in a layer specifies the architecture of the network.

3.4.2 Output

The output vector of a certain layer L ≥ 1, except the input layer L = 0, in a neural network can be
written as a matrix multiplication:

o(L) =


o(L)

1
...

o(L)
n

 = a(i(L)
·W(L)) , (26)

where n is the number of neurons in layer L, i(L) is the vector giving the input into layer L, and a is
the activation function. WL is the matrix containing the weights w(L)

jk of layer L, where j indicates
the considered neuron of layer L and k that one of layer L − 1. The input of a neural network is
given by the components of the feature vector x = i(0). The output of a neural network can be
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written as:

y =W(Lmax)
· a(W(Lmax−1)

· a(W(Lmax−2)
· a( ... a(W(2)

· a(W(1)
· x)) ... )) . (27)

3.4.3 One-Hot-Encoding

For a classification with neural networks, integers are only useful as target coding if there exists
an ordering in the classes and this ordering can be expressed in the transitions. Since this is the
exception, one proceeds to one-hot encoding, where the scalar target value is replaced by a vector
target value. The dimension of this output vector y, where y1,2,...C ∈ [0, 1], is given by the number
of classes C and constraints the number of output neurons. The belonging of an element to a class
with label l is characterised by the component representing this class being 1 and the remaining
components being 0:

yDi =

 1, i f i = l

0, otherwise
. (28)

3.4.4 Loss Function, Optimisation and Accuracy

In contrast to the network structure and the activation functions of the layers, which are fixed,
the weights are supposed to be optimally determined by training the network. Let D = {X,Y} be
the given training set and (xD, yD) its value pairs. The deviation of the obtained output y from
the given label yD is described by a loss function J(W) which depends only on the weights. The
goal is to minimise the loss function by adjusting the weights. Optimisation algorithms are used to
determine the weights. Most of them are based on the gradient descent method (e.g., Lemaréchal
2012), including Adam (short for Adaptive Moment Estimation) presented in Kingma and Ba (2015).
There are different loss functions, for example the mean square error:

J(W) =
1

Np

Np∑
p=1

∑
i

(
y(p)

Di − y(p)
i

)2
, (29)

where Np is the total number of sample datapoints and p indicates a certain datapoint. For
classification, the cross entropy error

J(W) = −
1

Np

Np∑
p=1

∑
i

y(p)
Di log(y(p)

i ) , (30)

is favourable. This requires a probability distribution among the classes, which means that the
values for the individual classes add up to 1. To ensure this, the softmax function is used as
activation function in the output layer. The softmax function is defined as:

σ j(z) =
ez j

ΣK
k=1ezk

f or j = 1, ...,n, (31)
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which assigns to each component of an n-dimensional vector z a probability.

3.5 Convolutional Neural Networks

Convolutional neural networks (short: CNN) in the modern sense have emerged from the work of
Lecun (1989). This particular type of feedforward network is applied to data that can be put
into a grid structure, such as images and time series. The schematic of a convolutional neural
network is illustrated in figure 11. A CNN consists of one or more convolutional layers (3.5.1) and
pooling layers (3.5.2) that are combined in an alternating sequence and connected to a dense neural
network (discussed in 3.4.1) by a flattening process (3.5.3).

Figure 11: Schematic of a convolutional neural
network, credit: Hiep and Joo (2018).

Figure 12: Example of a discrete convolution on
a time signal, credit: Frochte (2019).

As seen in section 3.4.2, the output of a layer in a neural network can be written as a matrix
multiplication. In a dense layer the matrix is usually fully populated. This means that theoretically
every input interacts with every output. This is not the case with a convolutional layer. Inputs
outside the domain of the kernel have no influence on the considered value of the convolution,
resulting in a sparse interaction. This leads to parameter sharing, which means that weights are
shared. The number of diagonals occupied in the matrix is limited to the number of degrees of
freedom that the kernel has.

3.5.1 Convolutional Layer

Considering a discrete time signal I(t), where the data is sampled uniformly along t at a sampling
rate ∆t, then each sampling point i is at ∆t · i and the discrete input is indicated as I [i]. Let K be a
convolution kernel with size k, then this operation can be written as:

s [i] =

(k−1)/2∑
j=−(k−1)/2

I [i + j] · K [ j] . (32)

An example of a discrete convolution on a time signal can be seen in figure 12. In a convolutional
layer, several convolutional kernels (or filters) are used in parallel. Each kernel emphasises
different properties of the original signal. Thus, the convolutional layer generates new features.
This means, for example, if eight kernels are used, about eight times as many features are obtained.
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Thus, a compression of the information is required, which will be explained in 3.5.2.

3.5.2 Pooling Layer

In a pooling layer, the information from the convolution layer is compressed. There are various
approaches for this, for example max-pooling or average-pooling. The output is divided into sections
of a certain width z. Using max-pooling, the maximum value is adopted from each section. In the
case of average pooling, the average value is taken from each section.

3.5.3 Flattening

In order for the output from the last pooling layer to be used as input for a dense neural network,
these values must be converted into a vector. This process is referred to as flattening.

3.5.4 Feature Extraction

The sequential process of convolution and pooling generates the features for the connected dense
neural network. Instead of specifying or elaborating the features in advance, this task can be
outsourced to the layers. Hence, the neural network learns the features by itself.
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4 Simulation of Lightcurves

4.1 Approach

A common technique for simulating lightcurves is to use a magnification map (e.g., Courbin et
al. 2002, Tomozeiu et al. 2017), i.e. a map representing caustic networks in the source plane
(see section 2.3.2). Each pixel in such a map is representative for the magnification that a source
would undergo at the corresponding pixel’s coordinates. A microlensing magnification map can
be generated by using the code of Wambsganss (1999) (section 4.2). By using this code, two
different magnification maps were generated for this work: magnification map A (figure 13) and
magnification map B (figure 14). The first one is a simplification representing an atypically simple
region of a realistic magnification map and the second one is a more realistic magnification map.

Lightcurves can be simulated by tracking a source within a magnification map as it moves
along a trajectory that crosses a caustic fold. The total brightness is the convolution of the source
brightness function and the magnification at the corresponding pixels of the magnification map
that the source traverses, as given in equation 17, where the integral becomes a sum of discrete
pixels. In this work three different source shapes with constant surface brightness distributions
were considered: disk (section 4.3.1), crescent (section 4.3.2) introduced by Kamruddin and Dexter
(2013), and random (section 4.3.3).

The training of a neural network requires large amounts of data. Therefore, an algorithm was
developed to automatically generate a large number of lightcurves for the three different source
types within a given magnification map (section 4.4). Using this algorithm, two different datasets
with two different magnification maps were generated (section 4.5).

Figure 13: Magnification map A, generated by
using the code of Wambsganss (1999).

Figure 14: Magnification map B, generated by
using the code of Wambsganss (1999).

4.2 Magnification Map

In order to generate the two magnification maps used in this work, the code created by Joachim
Wambsganss (Wambsganss 1999) was used. The code uses the technique of inverse ray shooting
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(Kayser et al. 1986; Schneider and Weiss 1987; Wambsganss 1990) (section 4.2.1) and a hierarchical
tree code (section 4.2.2) for the calculation of the deflection angles. The idea of a hierarchical tree
code was originally presented in the work of Barnes and Hut (1986) for the purpose of stellar
dynamical problems.

4.2.1 Inverse Ray Shooting

In the inverse ray shooting technique, light rays are shot from the observer to the lens plane,
where the individual stars act as microlenses and deflection occurs. When the deflected rays
hit the source plane, they are collected in small squares (pixels), resulting in a two-dimensional
density distribution of the light rays, the magnification map. In such a map, the magnification
a source would undergo at a certain pixel is directly proportional to the number of rays the
corresponding pixel contains.

By using the lens equation (7), a grid of rays from the ~θ-plane (lens plane) to the ~β-plane
(source plane) is mapped, considering the microlensing effect due to the individual lenses. The
deflection angle ~̃αi of a light ray i shot through a single-lens plane is given by the sum of the
deflection angles induced by all individual stars acting as microlenses. For N? point lenses, the
deflection angle is given by:

~̃αi =

N?∑
j=1

~̃α ji =
4G
c2

N?∑
j=1

M j
~ri j

|~ri j|2
, (33)

where ~ri j is the two-dimensional projected distance vector between light ray i and point lens j and
M j is the mass of point lens j. For the computation of the resulting deflection, the effect due to
continuously distributed matter, meaning a smoothed out surface mass density contributing as an
additional constant, and external shear, i.e. the tidal force caused by asymmetrically distributed
matter far away from the region under consideration, are also included. These are specified by
the macromodel of the gravitational lens.

The number of individual lensing stars N? is constrained by the mass model of the lensing
galaxy. To achieve a high resolution, a large number of pixels Npix is needed. For a realistic N?,
by assuming a high density of rays per pixel on average and considering a large Npix the direct
calculation causes a long computation time. This can be reduced by using a hierarchical tree
method.

4.2.2 Computation of the Deflection Angle with a Hierarchical Tree Code

From equation 1 it can be seen that the deflection angle has a r−1 dependence, meaning lenses that
are further away from the light ray play a less important role. Therefore, lenses can be treated
differently according to their distance to the light ray. In the hierarchical tree code, the lenses are
grouped into cells of different sizes. For a certain light ray, the deflection angles induced by nearby
lenses are computed directly by using equation 33. More distant lenses are bunched together in
groups and their net contribution is approximated by the first few terms of a multipole expansion.
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Figure 15: Example of the hierarchical group-
ing with a tree code for 31 randomly distributed
lenses, from Wambsganss (1999).

Figure 16: Example of the decision for compu-
tation of the deflection angle induced by 31 ran-
domly distributed lenses for a given position of a
light ray (circled dot), from Wambsganss (1999).

The tree code uses a hierarchical grouping of the individual lenses starting from the root node
containing the total field with N? lenses. Since the lens plane is two-dimensional, a quadtree is
applied. This means that each node, excluding the leaf nodes, is divided into four child nodes
with half the side length of the parent node. This subdivision takes place until there is maximally
one lens in each node, giving the leaf nodes. In figure 15 an example of the hierarchical grouping
for N? = 31 lenses is illustrated.

The decision whether to perform the calculation directly or with the multipole approximation
is made by comparing the distance of the position of the considered light ray to a group with the
size of the node containing this group. If the distance is much larger than the size of the node, the
multipole approximation is used. Otherwise the direct calculation occurs. This criterion can be
indicated by the opening angle of the node as seen from the position of the ray. Figure 16 shows
an example of the decision for the computation of the deflection angles for a lightray at a given
position induced by N? = 31 lenses.

4.3 Models for extended Sources with constant Surface Brightness Distribution

Using the existing models of a a constant brightness disk (section 4.3.1) and a crescent shaped
source (section 4.3.2), additionally four different models of randomly shaped sources, which have
no physical meaning, are developed, all under the label random (section 4.3.3).

The model of a crescent-shaped source was introduced by Kamruddin and Dexter (2013), where
the crescent represents the silhouette of a black hole over an accretion disk. The model of a constant
brightness disk is typically found earlier in the literature to describe the luminous parts of quasars.
These two models are implemented in a similar way as in the work of Tomozeiu et al. (2017).
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4.3.1 Disk Source

The brightness function of a disk source with radius Rp and constant surface brightness can be
written as (Tomozeiu et al. 2017):

SD
2D =

SD
0

πR2
p

Θ
(
R2

p − (p − psp)2
− (q − qsp)2

)
, (34)

where SD
0 is the total flux from the disk source, Θ is the Heaviside function, and (psp, qsp) are the

coordinates of the centre of the disk.

4.3.2 Crescent Source

A crescent source can be constructed by starting from a constant brightness disk with radius Rp

and cut a smaller non-concentric disk with radius Rn out of it. The distance from the centre of
the larger disk to the centre of the smaller disk is described by the parameter c. Figure 17 shows
the geometry of a crescent-shaped source. It’s surface brightness distribution is given by the

Figure 17: Geometry of a crescent-shaped source, from Tomozeiu et al. (2017)

superposition of the surface brightness distributions of the larger disk contributing positively to
the total flux and of the smaller disk contributing negatively. The brightness function of a crescent
source can be written as (Tomozeiu et al. 2017):

SC
2D =

SC
0

π
(
R2

p − R2
n

) [
Θ

(
R2

p − (p − psp)2
− (q − qsp)2

)
−Θ

(
R2

n − (p − psn)2
− (q − qsn)2

)]
, (35)

where SC
0 is the total flux from the crescent-shaped source, (psp, qsp) are the coordinates of the centre

of the larger disk and (psn, qsn) that of the smaller disk. Two constraints on the parameters must
be satisfied:

I) The two radii must obviously fulfil the relation:

Rp ≥ Rn . (36)
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II) The smaller disc must always be positioned inside the larger disc:

Rp ≥ Rn +
√

a2 + b2 , (37)

where a ≡ psn − psp, b ≡ qsn − qsp and
√

a2 + b2 ≡ c giving the distances between the centres
of the two disks.

4.3.3 Random Source

Random sources are constructed by starting from a bright disk with radius Rp and cut an area Ai

out of it. Ai is given by:

Ai =

"
Ad

Fi(p, q) dp dq , (38)

where Ad = R2
pπ is the area of the bright disk and Fi(p, q) is a function specified further below

for each subtype of random sources. Similar as for the crescent source, the surface brightness
distribution for a given subtype of random source results from the superposition of the surface
brightness distributions of the disk, which contributes positively to the total flux, and that of the
cut-out area, which contributes negatively. It’s brightness function can be written as:

SRi
2D =

SRi
0

π (Ad − Ai)

[
Θ

(
R2

p − (p − psp)2
− (q − qsp)2

)
−Θ

(
Fi(p − psp, q − qsp)

)]
, (39)

where SRi
0 is the total flux from the random source and (psp, qsp) are the coordinates of the centre of

the disk.
Four different subtypes of random sources were considered. They are defined by the function

Fi(p, q):

• Random-1
Fi(p, q) = F1(p, q) = p q π − ξ , (40)

where ξ is a parameter with dimension (length)2.

• Random-2
Fi(p, q) = F2(p, q) = (p −

√
ξ) (q −

√
ξ) − ξ . (41)

• Random-3
Fi(p, q) = F3(p, q) = (p + α) (q + β) π − ξ , (42)

where α and β are parameters with dimension length.
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• Random-4
Fi(p, q) = F4(p, q) = (p + α) q π − ξ . (43)

Examples of the subtypes of a random source can be found in the appendix (A).

4.4 Lightcurve Simulation Algorithm

In order to generate automatically a large number of lightcurves for a given magnification map,
an algorithm was developed that consists of four parts. Part I is a preprocessing work, which has
to be done once for a given magnification map. Parts II-IV are the main part of the algorithm.

• Part I: Finding appropriate Regions for Start and End Points around different Caustic
Folds
Let F be the set of all caustic fold pixels in a given magnification map, i.e. the set of all pixels
with discrete pixel coordinates (pF, qF) on which a source would undergo a magnification
µ(pF, qF) > µF↓ , where µF↓ defines the lower limit for the caustic fold pixels and depends on
the magnification map. Around each pixel (pG, qG) of a subset G ⊆ F a circle with radius RC

is generated and the number of pixels NCF providing a magnification µ(pi, qi) > µF, where
µF > µF↓ , are counted. If NCF = 2, the circle intersects exactly one caustic fold, and the
coordinates of the caustic fold pixel (pG j , qG j) and the radius of the circle RC j are saved.

For each circle C j, a square S j with the same centre as the circle and side length s j = 2 RC j

is constructed. S j is the set containing the pixel coordinates of all pixels located in this
square. When a source crosses a caustic fold, it crosses the boundary between two regions,
with the pixels of one region providing higher magnification than those of the other µF↓ >

µ(p↑, q↑) > µB > µ(p↓, q↓), where µB sets clearly the threshold and depends on the caustic
fold. In order to select the start and end points of the path on the opposite sides of the
caustic fold respectively, the pixels with coordinates in S j are divided into two subsets:
S j↑ B {(p, q) ∈ S j | µF↓ > µ(p, q) > µB} and S j↓ B {(p, q) ∈ S j | µ(p, q) < µB}. For each caustic
fold, the direction in which the source is to move is selected, either from S j↓ to S j↑ or from
S j↑ to S j↓.

• Part II: Generating a Path that crosses a Caustic Fold
Let K be the set containing the indices j of all appropriate circles C j found for a given
magnification map and let Y ⊆ K be a subset of it. First, an appropriate region j ∈ Y is
randomly selected. According to the direction in which the source is to move, the starting
point of the path is randomly chosen from the corresponding set:

(pSP, qSP) ∈

 S j↓, i f S j↓ to S j↑

S j↑, i f S j↑ to S j↓

. (44)

Around the chosen starting point (pSP, qSP) a circle CSP with radius RCSP = LPath is generated,
where LPath is the length of the path. According to the direction in which the source is to
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move, the set of possible end points is given by the intersection between CSP and S j↑ or CSP

and S j↓:

E =

 CSP ∩ S j↑, i f S j↓ to S j↑

CSP ∩ S j↓, i f S j↑ to S j↓

. (45)

The end point of the path is then chosen randomly: (pEP, qEP) ∈ E. (pSP, qSP) and (pEP, qEP)
uniquely define the path. P is the set of all pixel coordinates of the points on the path.

• Part III: Generating Sources
For each generated path, three sources are generated, i.e. one for each of the three source
labels: disk (section 4.3.1), crescent (section 4.3.2), and random (section 4.3.3). For the la-
bel random, one of the four subtypes, random-1, random-2, random-3, random-4, is selected
randomly. The values of the parameters corresponding to the respective source labels are
chosen randomly. Rp determines the size and is chosen the same for all three source types
for a given path.

The limits defining the minimum and maximum of the respective parameters were chosen
as follows:

For all three sourcetypes
20 ≥ Rp ≥ 35 . (46)

For crescent sources 

0.10 · Rp ≥ Rn ≥ 0.70 · Rp and Rn , 0 ,

−0.30 · Rp ≥ a ≥ 0.30 · Rp ,

−0.30 · Rp ≥ b ≥ 0.30 · Rp ,

(47)

by taking the condition given in equation 37 into account.

For random sources 

0.20 · Rp ≥ ξ ≥ 0.80 · Rp and Rn , 0 ,

0.20 · Rp ≥ α ≥ 0.80 · Rp ,

0.20 · Rp ≥ β ≥ 0.80 · Rp .

(48)

The threshold values are given in units of the length of one pixel.

• Part IV: Simulating Lightcurves by sending the Sources along the Path
The lightcurves are simulated by tracking the sources as they move along the generated

22



path. As given in equation 17, the total brightness is the convolution of the source brightness
function and the magnification at the corresponding pixel coordinates of the magnification
map that the source traverses, where the integrals are replaced by sums over the pixel
coordinates. Instead of the total brightness, the dimensionless amplification factor of the
brightness is computed. For simulations with a magnification map, it is the number of
pixels landing on the source if the lens is present, divided by the number of pixels landing
on the source if no lens is present. In other words, it is the sum of all magnifications µ(pi, qi)
contained in the pixels i covered by the source when it is located at a point of the path. For
a given point on the path, P = (pP, qP) ∈ P, the amplification factor of the brightness can be
written as:

m(pP, qP) =
∑

i

µ(pPi , qPi) , (49)

where (pPi , qPi) are the coordinates of the pixels i covered by the source when the source
is at point P. The amplification factor is calculated for a sample of the points on the path,
i.e. for a subset of P given by the number of timesteps chosen, NT. The source is then
moved along the path by the length of LPath/NT per timestep, with the amplification factor,
m(t) = m(pPt , qPt), being calculated for each timestep.

4.5 Simulated Lightcurves and Datasets

With the algorithm described in 4.4 two datasets were generated: dataset-A by using magnification
map A (figure 13) and dataset-B by using magnification map B (figure 14). For each magnification
map two different caustic folds were considered.

• Dataset-A
This dataset consists of 179′925 datapoints, with each label accounting for one third of the
datapoints. For the length of the path LPath, the length of 100 pixels was chosen, with
the sources being moved by one pixel per timestep. The number of timesteps was set
to NT = 100. This gives for each datapoint 100 magnification values, i.e. values for the
amplification factor of the brightness. Figures 18 and 19 show examples of lightcurves from
dataset-A.

• Dataset-B
For this dataset 311′010 datapoints were generated. Likewise, each label constitutes one
third of the datapoints. LPath was set to the length of 130 pixels in order to minimise
discretisation noise that occurs when using magnification map B. The sources were moved
by the length of 1.3 pixel per timestep with NT = 100, which also yields 100 magnification
values for each datapoint. Additionally, Gaussian noise was added with 4% of the current
magnification. Examples of lightcurves from dataset-B are illustrated in figures 20 and 21.
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Examples of Lightcurves from Dataset-A

(a) (b)

(c) (d)

(e) (f)

Figure 18: For each source label, an example of a source with Rp = 33 moving along a path crossing caustic
fold-I in magnification map A. (a) Crescent source with Rn = 0.45 · Rp, a = −0.15 · Rp and b = 0.15 · Rp. (b)
Resulting lighcurve for the crescent source. (c) Disk source. (d) Resulting lightcurve for the disk source.
(e) Random source with subtype random-2. (f) Resulting lightcurve for the random source.
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Examples of Lightcurves from Dataset-A

(a) (b)

(c) (d)

(e) (f)

Figure 19: For each source label, an example of a source with Rp = 31 moving along a path crossing caustic
fold-II in magnification map A. (a) Crescent source with Rn = 0.30 · Rp, a = −0.25 · Rp and b = 0. (b) Resulting
lighcurve for the crescent source. (c) Disk source. (d) Resulting lightcurve for the disk source. (e) Random
source with subtype random-3. (f) Resulting lightcurve for the random source.
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Examples of Lightcurves from Dataset-B

(a) (b)

(c) (d)

(e) (f)

Figure 20: For each source label, an example of a source with Rp = 25 moving along a path crossing caustic
fold-I in magnification map B. (a) Crescent source with Rn = 0.30 · Rp, a = −0.25 · Rp and b = −0.15 · Rp. (b)
Resulting lighcurve for the crescent source. (c) Disk source. (d) Resulting lightcurve for the disk source.
(e) Random source with subtype random-2. (f) Resulting lightcurve for the random source.
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Examples of Lightcurves from Dataset-B

(a) (b)

(c) (d)

(e) (f)

Figure 21: For each source label, an example of a source with Rp = 29 moving along a path crossing caustic
fold-II in magnification map B. (a) Crescent source with Rn = 0.35 · Rp, a = −0.30 · Rp and b = 0. (b) Resulting
lighcurve for the crescent source. (c) Disk source. (d) Resulting lightcurve for the disk source. (e) Random
source with subtype random-2. (f) Resulting lightcurve for the random source.
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5 Classification of Lightcurves

5.1 Approach

As discussed in section 3.1 the classification can be thought as a geometrical problem in N f

dimensions, with N f being the number of features. If N f > 3, this exceeds the human imagination,
which is why the preferred strategy for finding a neural network model is based on testing
different architectures. Theoretically, with a multilayer neural network, using enough neurons,
any continuous function can be approximated (Cybenkos 1989; Hornik et al. 1989). However, the
risk of overfitting increases when too many neurons are included. An Adaptive Boosting classifier
(see section 3.3.2) is able to perform better than a simple classifier and is less prone to overfitting
than a decision tree, but is not as difficult to train and optimise as a neural network. Classification
with AdaBoost as a preliminary step to classification with a neural network provides a baseline
performance. This can give a first indication of whether the use of machine learning can be a
helpful tool for a given problem.

The classification issue of the present work consists of 100 features, i. e. the 100 values for the
magnification, which are used to assign the lightcurves to 3 labels specified by the three source
types: crescent, disk and random. The goal is to find a neural network model.

As a first approach to extract information from the features, a Fast Fourier Transformation (FFT
for short) (e.g., Cooley & Tukey 1965) is performed for each datapoint in a dataset. Thus, for
each dataset, an additional dataset containing the Fourier-transformed lightcurves is provided.
Since the Fourier transform of a real signal is symmetric, the number of features for the dataset
consisting of the Fourier transforms is reduced to 50.

First, for each dataset and the corresponding dataset consisting of the Fourier-transformed
lightcurves, a classification is performed with AdaBoost for a subset. For this task, the AdaBoost
algorithm from scikit-learn (Pedregosa et al. 2011), the standard machine learning library for the
Python programming language, is used. Dataset-a consists of a subset of 7200 datapoints from
dataset-A and dataset-b consists of a subset of 10800 datapoints from dataset-B, with each label
constituting one third of the datapoints.

Subsequently, a dense neural network (see section 3.4) was trained for each dataset and for
its corresponding dataset of Fourier-transformed lightcurves. Finally, a convolutional neural
network (see section 3.5) was trained for the two datasets (without their Fourier-transformed
datasets). For these purposes, Keras (Chollet 2015), a library written in Python that provides an
interface to artificial neural networks, was used with the backend TensorFlow (Abadi et al. 2015).

5.2 Selection of Neural Network Models

For the neural network models one-hot encoding (see section 3.4.3) was used since there is no
ordering in the class labels. The cross entropy error (equation 30) is chosen as loss function, which
requires a probability distribution among the classes for the output. Therefore, the softmax function
(equation 31) is used as activation function in the output layer for each model.
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5.2.1 Dense Neural Network

To find an appropriate model, neural networks with various numbers of layers and combinations
of numbers of neurons in a layer are built and then trained and tested with a random split of the
data into 80% training data and 20% test data. The number of neurons in the input and output
layers are already determined by the number of features and the number of labels, respectively.
The number of layers is initially set to L = 3 (1 input layer, 1 hidden layer and one output layer)
with 100 neurons in the hidden layer. Afterwards, the number of layers is increased by +1,
and different combinations of the number of neurons in the hidden layers are tested, varying
the number of neurons in a layer from 50 to 150. This procedure is repeated, also using different
activation functions, as long as the accuracy increases with the number of layers. The combination
that provides the highest accuracy is finally selected as the model.

5.2.2 Convolutional Neural Network

As explained in section 3.5 a convolutional neural network is a dense neural network preceded
by one or more convolutional layers and pooling layers. The architectures of CNN-models can
be divided into two components:

• CNN-Component 1
Containing the alternating sequence of convolutional and pooling layers and at the end the
flattening layer.

• CNN-Component 2
Consisting of a dense neural network.

In order to find a convolutional neural network model, various combinations of a dense neural
network, considering different architectures, and different convolutional and pooling layers are
trained and tested. For the choice of the dense layers, the procedure is the same as described
above. Regarding the choice of convolutional layers and pooling layers, different combinations
of alternating convolutional layers, considering different activation functions, and pooling layers
are tested with a random split of the data into 80% training data and 20% test data. The number
of convolutional layers, which is the same as the number of pooling layers, is varied between 1
and 3, the size of the convolutional kernels between 2 and 12 and the number of convolutions in
a layer between 1 and 10. For the pooling-operation both max-pooling and average-pooling were
tested, with the width of the sections being varied between 2 and 8. Likewise the combination
that leads to the highest accuracy is chosen.

5.3 Neural Network Models

Tables 1 - 6 show the architectures of the neural network models used. A dense neural network is
built for each dataset (tables 1 and 4 ) and for the corresponding datasets obtained from the Fourier
transforms (tables 2 and 5). A convolutional neural network is constructed for each dataset (tables
3 and 6).
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5.3.1 Models for Dataset-A

Model-1A (table 1) is the dense neural network model for dataset-A and model-2A (table 2) that for
the Fourier transforms of the corresponding lightcurves. The CNN-model is model-3A (table 3).

Table 1: Model-1A: Dense Neural Network for Dataset-A

Layer Layer Type Number of Neurons Activation Function

0 Input 100 -

1 Dense 80 elu

2 Dense 50 elu

3 Dense 20 elu

4 Output 3 softmax

Table 2: Model-2A: Dense Neural Network for Dataset-A (FFT)

Layer Layer Type Number of Neurons Activation Function

0 Input 50 -

1 Dense 50 softplus

2 Dense 25 softplus

3 Output 3 softmax

Table 3: Model-3A: Convolutional Neural Network for Dataset-A
CNN-Component 1

Layer Layer Type Number of Convolutions Kernel Size Activation Function Pooling Pooling Size

0 Input - - - - -

1 Convolution 1D 8 10 relu - -

2 Pooling - - - Max-Pooling 4

3 Flattening - - - - -

CNN-Component 2
Layer Layer Type Number of Neurons Activation Function

4 Dense 120 elu
5 Dense 80 elu
6 Dense 50 elu
7 Dense 20 elu
8 Output 3 softmax

5.3.2 Models for Dataset-B

The dense neural network model for dataset-B is model-1B (table 4) and that for the Fourier
transforms of the corresponding lightcurves is model-2B (table 5). Model-3B (table 6) is the CNN-
model.
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Table 4: Model-1B: Dense Neural Network for Dataset-B

Layer Layer Type Number of Neurons Activation Function

0 Input 100 -

1 Dense 100 elu

2 Dense 80 elu

3 Dense 40 elu

4 Output 3 softmax

Table 5: Model-2B: Dense Neural Network for Dataset-B (FFT)

Layer Layer Type Number of Neurons Activation Function

0 Input 50 -

1 Dense 80 softplus

2 Dense 40 softplus

3 Output 3 softmax

Table 6: Model-3B: Convolutional Neural Network for Dataset-B
CNN-Component 1

Layer Layer Type Number of Convolutions Kernel Size Activation Function Pooling Pooling Size

0 Input - - - - -

1 Convolution 1D 8 10 relu - -

2 Pooling - - - Max-Pooling 4

3 Flattening - - - - -

CNN-Component 2
Layer Layer Type Number of Neurons Activation Function

4 Dense 150 elu
5 Dense 100 elu
6 Dense 50 elu
7 Dense 20 elu
8 Output 3 softmax

5.4 Evaluation of the Models

In order to evaluate the models stratified k-fold cross-validation with k = 5 is used. Each dataset
is randomly split into 5 partitions of equal sizes with each label constituting one third of the
datapoints. For a partition i ∈ {1, 2, 3, 4, 5}, the training set is given by the remaining partitions
j , i and the test set is the partition i. This provides the 5 folds. The expression fold used in this
context should not be confused with the expression caustic fold from gravitational microlensing
theory (see section 2.3.2). The accuracy of a model is determined by the mean of the accuracies
for each fold, with the error determined by the standard deviation.
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6 Results

In the following, the results of the classifications of the lightcurves are presented. A summary of
the accuracies achieved is given in section 6.1. The confusion matrices giving an illustration of
the predicted labels vs. true labels can be found in section 6.2. For model-3B, in section 6.3 the
percentage of misclassified lightcurves for a given label vs. properties of the true sources and
that of the predicted sources used for the simulation of the respective lightcurves are shown. The
results are discussed in chapter 7.

6.1 Summary

The accuracies of the classifications are summarised below: In tables 7-10 for the classifications of
dataset-a (subset of dataset-A) and dataset-b (subset of dataset-B) with AdaBoost (see section 3.3.2),
for the neural network models for dataset-A (see section 5.3.1) in tables 11-13 and for the neural
network models for dataset-B (see section 5.3.2) in tables 14-16.

Table 7: Accuracies AdaBoost for Dataset-a

Fold Accuracy

1 91.53%

2 91.04%

3 92.36%

4 92.64%

5 93.82%

Average (92.28 ± 1.07)%

Table 8: Accuracies AdaBoost for Dataset-a (FFT)

Fold Accuracy

1 96.67%

2 96.39%

3 96.94%

4 96.74%

5 97.36%

Average (96.82 ± 0.36)%

Table 9: Accuracies AdaBoost for Dataset-b

Fold Accuracy

1 89.31%

2 89.21%

3 89.17%

4 90.83%

5 89.77%

Average (89.66 ± 0.70)%

Table 10: Accuracies AdaBoost for Dataset-b (FFT)

Fold Accuracy

1 92.27%

2 92.27%

3 91.85%

4 91.30%

5 92.41%

Average (92.02 ± 0.45)%
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Table 11: Accuracies Model-1A

Fold Accuracy

1 97.23%

2 97.07%

3 91.99%

4 97.25%

5 97.36%

Average (96.18 ± 2.34)%

Table 12: Accuracies Model-2A

Fold Accuracy

1 95.47%

2 96.05%

3 96.82%

4 96.43%

5 94.77%

Average (95.91 ± 0.81)%

Table 13: Accuracies Model-3A

Fold Accuracy

1 99.82%

2 99.83%

3 99.69%

4 99.75%

5 99.89%

Average (99.80 ± 0.08)%

Table 14: Accuracies Model-1B

Fold Accuracy

1 93.28%

2 95.50%

3 94.95%

4 94.72%

5 92.61%

Average (94.21 ± 1.21)%

Table 15: Accuracies Model-2B

Fold Accuracy

1 93.46%

2 92.53%

3 87.25%

4 93.66%

5 85.92%

Average (90.56 ± 3.69)%

Table 16: Accuracies Model-3B

Fold Accuracy

1 99.27%

2 99.61%

3 99.27%

4 99.15%

5 99.21%

Average (99.30 ± 0.18)%

6.2 Confusion Matrices

A confusion matrix visualises how often a considered label was assigned to a certain label. The
x-axis represents the true labels and the y-axis the predicted labels.

Below, the confusion matrices of the different folds for the respective classifications are pre-
sented: In figures 22-25 for the classifications of dataset-a (subset of dataset-A) and dataset-b (subset
of dataset-B) with AdaBoost, for the neural network models for dataset-A in figures 26-28 and for
the neural network models for dataset-B in figures 29-31.
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Classification with Adaptive Boosting
Adaptive Boosting Classifier for Dataset-a

(a) (b)

(c) (d)

(e)

Figure 22: Confusion matrices and accuracies achieved for folds 1-5 for the classification of dataset-a with
AdaBoost. For each entry, the absolute value gives the number of lightcurves of a considered label (given on
the y-axis) that were classified as a certain label (given on the x-axis). The relative value is the percentage
of 480, the total number of lightcurves for each label in each test set.
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Adaptive Boosting Classifier for Dataset-a (FFT)

(a) (b)

(c) (d)

(e)

Figure 23: Confusion matrices and accuracies achieved for folds 1-5 for the classification of dataset-a (FFT)
with AdaBoost. For each entry, the absolute value gives the number of lightcurves of a considered label
(given on the y-axis) that were classified as a certain label (given on the x-axis). The relative value is the
percentage of 480, the total number of lightcurves for each label in each test set.
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Adaptive Boosting Classifier for Dataset-b

(a) (b)

(c) (d)

(e)

Figure 24: Confusion matrices and accuracies achieved for folds 1-5 for the classification of dataset-b with
AdaBoost. For each entry, the absolute value gives the number of lightcurves of a considered label (given on
the y-axis) that were classified as a certain label (given on the x-axis). The relative value is the percentage
of 720, the total number of lightcurves for each label in each test set.
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Adaptive Boosting Classifier for Dataset-b (FFT)

(a) (b)

(c) (d)

(e)

Figure 25: Confusion matrices and accuracies achieved for folds 1-5 for the classification of dataset-b (FFT)
with AdaBoost. For each entry, the absolute value gives the number of lightcurves of a considered label
(given on the y-axis) that were classified as a certain label (given on the x-axis). The relative value is the
percentage of 720, the total number of lightcurves for each label in each test set.
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Classification with Neural Networks
Model-1A: Dense Neural Network for Dataset-A

(a) (b)

(c) (d)

(e)

Figure 26: Confusion matrices and accuracies achieved for folds 1-5 for model-1A. For each entry, the
absolute value gives the number of lightcurves of a considered label (given on the y-axis) that were
classified as a certain label (given on the x-axis). The relative value is the percentage of 11995, the total
number of lightcurves for each label in each test set.
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Model-2A: Dense Neural Network for Dataset-A (FFT)

(a) (b)

(c) (d)

(e)

Figure 27: Confusion matrices and accuracies achieved for folds 1-5 for model-2A. For each entry, the
absolute value gives the number of lightcurves of a considered label (given on the y-axis) that were
classified as a certain label (given on the x-axis). The relative value is the percentage of 11995, the total
number of lightcurves for each label in each test set.
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Model-3A: Convolutional Neural Network for Dataset-A

(a) (b)

(c) (d)

(e)

Figure 28: Confusion matrices and accuracies achieved for folds 1-5 for model-3A. For each entry, the
absolute value gives the number of lightcurves of a considered label (given on the y-axis) that were
classified as a certain label (given on the x-axis). The relative value is the percentage of 11995, the total
number of lightcurves for each label in each test set.
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Model-1B: Dense Neural Network for Dataset-B

(a) (b)

(c) (d)

(e)

Figure 29: Confusion matrices and accuracies achieved for folds 1-5 for model-1B. For each entry, the absolute
value gives the number of lightcurves of a considered label (given on the y-axis) that were classified as
a certain label (given on the x-axis). The relative value is the percentage of 20734, the total number of
lightcurves for each label in each test set.
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Model-2B: Dense Neural Network for Dataset-B (FFT)

(a) (b)

(c) (d)

(e)

Figure 30: Confusion matrices and accuracies achieved for folds 1-5 for model-2B. For each entry, the absolute
value gives the number of lightcurves of a considered label (given on the y-axis) that were classified as
a certain label (given on the x-axis). The relative value is the percentage of 20734, the total number of
lightcurves for each label in each test set.
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Model-3B: Convolutional Neural Network for Dataset-B

(a) (b)

(c) (d)

(e)

Figure 31: Confusion matrices and accuracies achieved for folds 1-5 for model-3B. For each entry, the absolute
value gives the number of lightcurves of a considered label (given on the y-axis) that were classified as
a certain label (given on the x-axis). The relative value is the percentage of 20734, the total number of
lightcurves for each label in each test set.
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6.3 Misclassified Lightcurves of Model-3B with Regard to Source Properties

In the following, the misclassified lightcurves by model-3B vs. source properties are presented.
Figures 32 and 33 are histograms illustrating the percentage of the crescent lightcurves misclas-
sified as disk or random, respectively, vs. radii of the sources Rp and radii of the small disk Rn.
In figures 34 and 35, the percentage of the disk lightcurves or random lightcurves, respectively,
misclassified as crescent vs. Rp and random subtypes (for the misclassifications as random) are
visualised. Figures 36 and 37 show the confusions between disk source and random source vs.
source properties, i.e. disk lightcurves misclassified as random vs. Rp and random lightcurves
misclassified as disk vs. Rp and random subtypes. The distribution of the lightcurves of a given
label from dataset-B according to source properties can be found in the appendix A.
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Label: Crescent, Prediction: Disk

(a) (b)

Figure 32: Histogram showing the percentage of the crescent lightcurves misclassified as disk vs. (a) source
radius Rp (b) radius of the small disk Rn .

Label: Crescent, Prediction: Random

(a) (b)

Figure 33: Histogram showing the percentage of the crescent lightcurves misclassified as random vs. (a)
source radius Rp (b) radius of the small disk Rn .
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Label: Disk, Prediction: Crescent

Figure 34: Histogram showing the percentage of the disk lightcurves misclassified as crescent vs. source
radius Rp .

Label: Random, Prediction: Crescent

(a) (b)

Figure 35: Histogram showing the percentage of the random lightcurves misclassified as crescent vs. (a)
source radius Rp (b) random subtype.

46



Label: Disk, Prediction: Random

Figure 36: Histogram showing the percentage of the disk lightcurves misclassified as random vs. source
radius Rp .

Label: Random, Prediction: Disk

(a) (b)

Figure 37: Histogram showing the percentage of the random lightcurves misclassified as disk vs. (a) source
radius Rp (b) random subtype.
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7 Discussion

7.1 Classification with Adaptive Boosting

As discussed in section 5.1, a classification problem with more than three features exceeds the
human imagination. Therefore, a classification with AdaBoost (see section 3.3.2) is performed first,
providing a baseline performance to get an indication of whether the use of machine learning is
a helpful tool for our classification problem.

For the classification of dataset-a (subset of dataset-A) with AdaBoost, an average accuracy of
(92.28 ± 1.07)% is achieved (see table 7). For the corresponding dataset consisting of the Fourier-
transformed lightcurves, the average accuracy is (96.82 ± 0.36)% (see table 8). Thus, for the
classification of dataset-a with AdaBoost, the average accuracy can be increased with a smaller
standard devitation by using the Fourier-transforms as features instead of the magnification per
timestep. This means, by extraction of information and reduction of the number of features using
a Fourier transformation, two things could be achieved. On the one hand, better predictions and,
on the other hand, an improved stability of the algorithm for different training and test sets. For
the classification of dataset-b (subset of dataset-B) with AdaBoost this is also true, but the average
accuracies are lower and the improvement in average accuracy is also less than for dataset-a, from
(89.66± 0.70)% to (92.02± 0.45)% (see tables 9 and 10). This leads to the assumption that AdaBoost
performs less accurately when the data contains noise.

By looking at the confusion matrices (see figures 22 - 25), it can be seen that the disk label
was predicted most accurately and the random label least accurately. The highest number of
misclassifications is given by the datapoints with label random that were predicted to be disk,
with the exception of fold 1 of the classification of dataset-b (FFT) (figure 25(a)). The datapoints
with label disk classified as crescent yield the least misclassifications. Except for fold 2 of the
classification of dataset-a (figure 22(b)) where 1 datapoint with label disk was predicted as crescent,
the number of this misclassification is 0 everywhere. The classification of dataset-a (FFT) with
AdaBoost (figure 23) yields already a pretty good accuracy in distinguishing between the labels
crescent and disk. But the confusions in the distinctions between crescent and random and between
disk and random are noticeable. The distinction between the labels crescent and disk for dataset-b
(FFT) is slightly weaker but still good. However, the confusions between crescent and random and
between disk and random are considerably larger than for dataset-a (FFT).

All in all, it can be said that a classification with AdaBoost using the Fourier-transformed data
already leads to a high accuracy. The distinction between crescent and disk is performed in an
accurate way, whereas the distinctions between crescent and random and between disk and random
gives more misclassifications. From the former, it can be seen that using this classifier, a distinction
between the lightcurves of an asymmetric source and those of a symmetric source is quite accurate.
The latter suggests that the lightcurves of some subtypes of the random sources have more similar
features with crescent lightcurves, whereas the lightcurve features of some other random subtypes
have more similarities with those of disk sources. However, the accuracy is significantly lower for
data containing noise, which indicates the limitations of this classifier. Nevertheless, a reasonable
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baseline performance is obtained, which encourages the assumption that machine learning can
be a useful tool for the recognition of quasar lightcurves representing the event horizon.

7.2 Classification with Neural Networks

Classification with Dense Neural Networks

For the classification of dataset-A with the two dense neural network models, model-1A and
model-2A, the average accuracies are lower and have larger standard deviations than for the
classification with AdaBoost for dataset-a (FFT) (see tables 11 and 12). Unlike classification with
AdaBoost, using the Fourier-transformed data does not lead to an improvement in accuracy, but
only to an improved stability of the model for different training and test sets. Looking at the
accuracies for the different folds for model-1A (see table 11), it is immediately noticeable that only
fold 3, with an accuracy of 91.99%, has an accuracy of less than 97%. Reducing the number of
layers or the number of neurons per layer for model-1A decreases the accuracy. Increasing the
number of layers or the number of neurons results in an even more unstable model. If the model
is run several times with different random initialisations for fold 3, i.e. the same partitioning
of the training and test set as for fold 3, an accuracy of over 97% is achieved in most cases, but
an accuracy of less than 92% is obtained about 20% of the time. If this procedure is carried
out for the remaining four folds, the outcomes are similar. Most likely, the optimiser is unable
to find an optimal minimum and gets stuck in a local minimum. Looking at the confusion
matrices of the two dense neural network models (see figures 26 and 27), it can be seen that
compared to the classification with AdaBoost, these two models yield on average a significant
improvement in the recognition of crescent lightcurves, but a deterioration in the recognition of
disk lightcurves. Likewise the distinction between the labels crescent and disk is performed with
a high accuracy and the distinctions between crescent and random and between disk and random
gives more misclassifications. The random label was predicted least accurately. However, in fold
4 of model-1A (figure 26(d)) the label random is predicted very accurately and the label disk is
predicted significantly less accurately.

Comparing the average accuracies for the classification of dataset-B with the two dense neural
network models with that of the classification with AdaBoost two things are noticeable. Model-1B,
which uses the magnification values per timestep as features, provides an improvement in accu-
racy but is less stable (see table 14) compared to the respective classification with AdaBoost. For
the classification by using the Fourier-transformed lightcurves, model-2B performs significantly
less accurate and less stable (see table 15) than AdaBoost. From the comparison of the two dense
neural network models for dataset-A with that for dataset-B, it can be seen that the average accu-
racy is considerably lower for data containing noise. Especially using the Fourier-transformed
data, the difference is significant. This leads to the assumption that the Fourier modes where the
lightcurves of the different sources differ most from each other have an overlap with the Fourier
modes of the random noise. Looking at the confusion matrices of the two dense neural network
models for dataset-B (see figures 29 and 30), it can be seen that the crescent label was predicted
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most accurately. Comparing with the dense neural network models for dataset-A, a deterioration
in the recognition of disk lightcurves with a noticeably larger confusion between disk and random
can be recognised. This implies that with a dense neural network the distinction between disk and
random is performed with a considerably lower accuracy for data containing noise. However, the
distinction between crescent and disk is still quite accurate.

Classification with Convolutional Neural Networks

Performing a classification with a convolutional neural network results in a significantly high
average accuracy with a very small standard deviation for both datasets. The achieved average
accuracies are for model-3A: (99.80 ± 0.08)% (see table 13), and for model-3B: (99.30 ± 0.18)% (see
table 16). Thus, using convolutional neural networks for the classification of the lightcurves pro-
vides the most accurate predictions and yields the most stable models for different training and
test sets, even for data containing noise. This demonstrates the power of a convolutional neural
network. With the use of different filters and subsequent compression of the information and by
optimising the weights, the features are learned by itself. Thus, relevant features are extracted.
Hence, noise can be cancelled out.

A remarkable accuracy in the recognition of crescent lightcurves is noticeable when looking
at the confusion matrices (see figures 28 and 31). The labels disk and random were predicted also
with a high accuracy. In model-3A (figure 28), each label in each fold was predicted correctly with
an accuracy ≥ 99.42%, in particular the label crescent with an accuracy ≥ 99.82%. The datapoints
with label random that were predicted to be disk yield also for this model the highest number of
misclassifications. Though, at most only 0.55% of random lightcurves are classified as disk. In
model-3B (figure 31), in each fold crescent lightcurves were predicted correctly with an accuracy
≥ 99.79%. The confusion between disk and random is slightly larger than in model-3A but still small.
At most 1.63% of random lightcurves are classified as disk and at most 1.61% of disk lightcurves as
random. Hence, this leads to the assumption that when using the convolutional neural network
models, the lower accuracy for the classification of the dataset containing noise compared to that
for the classification of the dataset without noise is mostly due to the less accurate distinction
between disk and random.

Misclassified Lightcurves of Model-3B with Regard to Source Properties

Examining the properties of the sources that provide the misclassified lightcurves of model-3B
under consideration (see figures 32 - 37), the following observations can be noted.

First we look at crescent lightcurves that were not predicted to be crescent. Most of the crescent
lightcurves that have been misclassified as disk are of sources with small source radii, Rp, and their
dark disk radii as a fraction of source radii, Rn/Rp, are also small (see figure 32). The percentage of
crescent lightcurves misclassified as disk is about 35% for 20 ≤ Rp ≤ 23, given in units of the length
of one pixel. Larger source radius categories respectively account for not more than 18%. For 100%
of the crescent lightcurves misclassified as disk, Rn/Rp ≤ 0.2 can be noticed. Hence, this leads to
the suggestion that in the features used by the convolutional neural network of model-3B, crescent
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lightcurves have a greater correspondence with disk lightcurves when the crescent source has very
small Rp and exclusively very small Rn relative to Rp. For the crescent lightcurves predicted as
random, for both Rp and Rn/Rp, a peak can be seen for the smallest values and for the largest values
(see figure 33). More than 35% have source radii 20 ≤ Rp ≤ 23 and for more than 25% the source
radii are 32 ≤ Rp ≤ 35. For the small disk radii we find for the sources of significantly more than
40% of the lightcurves: Rn/Rp ≤ 0.2, and of more than 26% of the lightcurves: 0.6 < Rn/Rp < 0.7.
Thus, it can be assumed that crescent lightcurves bear a higher resemblance in the features to
random lightcurves for very small and very large crescent source radii and for very small and very
large relative dark disk radii.

We next take a look at lightcurves that do not have the label crescent, but have been classified
as crescent. Looking at the disk lightcurves misclassified as crescent, all source radius categories
account for a percentage of more than 18% respectively, except for source radii 29 ≤ Rp ≤ 32, which
constitute only slightly more than 5% (see figure 34). The latter indicates that for this source radius
category disk lightcurves have a smaller correspondence with crescent lightcurves in the features
used by the convolutional neural network. Regarding the random lightcurves predicted as crescent,
significantly more than 40% have source radii 32 ≤ Rp ≤ 35 and smaller source radius categories
respectively account for not more than 20% (see figure 35)). It can also be seen that about 90%
of the random lightcurves missclassified as crescent are of the random-3 subtype and about 10%
of the random-4 subtype. The subtypes random-1 and random-2 are not misclassified as crescent.
Therefore, it can be deduced that random-3 subtype lightcurves bear the most resemblance in the
features to crescent lightcurves, particularly for very large source radii.

Finally, we look at the confusions between the labels disk and random. For the disk lightcurves
misclassified as random we find that about 38% of the sources have source radii 20 ≤ Rp ≤ 23 and
larger source radius categories respectively constitute not more than 20% (see figure 36). This
leads to the supposition that disk lightcurves have a higher similarity in the features with random
lightcurves for very small source radii. Looking at the random lightcurves misclassified as disk, it
can be noticed that none of the source radius categories are particularly conspicuous as was the
case for the previous misclassifications (see figure 37). However, it can be seen that with over 70%
of the random lightcurves predicted as disk, the subtype random-1 was most often classified as disk.
Subtype random-4 accounts for more than 25% of the random lightcurves predicted as disk and
random-3 less than 2%. Subtype random-2 is not misclassified as disk. Hence, it can be assumed
that random-1 subtype lightcurves bear the most resemblance in the features and random-4 subtype
lightcurves a slight resemblance in the features to disk lightcurves.

Summary

Compared to AdaBoost, a dense neural doesn’t provide an improvement in average accuracy and
stability for the classification of the dataset without noise. For the classification of the dataset
including noise, a dense neural network perform more accurately compared to AdaBoost. Partic-
ularly, a significant improvement in the recognition of crescent lightcurves is achieved. However,
this is not the case when the Fourier-transforms are used as features.
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Using a convolutional neural network results in a very accurate classification and yields a
stable model for both datasets. A very high accuracy can be obtained even for the dataset
with noise, thanks to the convolution and pooling layer extracting relevant features and thus
cancelling out noise. The lower accuracy for the classification of dataset-B, the dataset containing
noise, compared to that for the classification of dataset-A, that one without noise, is mostly induced
by the confusion between disk and random lightcurves. Crescent lightcurves are predicted with a
very high accuracy. Hence, the convolutional neural network models used in the present work,
provide a very useful tool for the recognition of quasar lightcurves representing the event horizon
in this simple model, even for data containing noise. For the simulation of the lightcurves of
dataset-B, a more realistic magnification map was used than for dataset-A. This suggests that the
CNN model can perform accurately in the classification of lightcurves also when considering
more realistic lensing galaxy macromodels and number of individual lensing stars.

Model-3B, which is the CNN model used for the classification of the dataset generated using
the more realistic magnification map and including noise, appears to be sensitive to source radii
and dark disk radii. The majority of crescent lightcurves misclassifications are found for very small
source radii and for very small dark disk radii relative to source radii. However, a slightly high
percentage of misclassifications are also observed for very large source radii and for very large
relative dark disk radii. The largest proportion of random lightcurves missclassified as crescent can
be seen for very large source radii. Among the subtypes of random sources, almost exclusively
only random-3 lightcurves are predicted as crescent.
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8 Conclusion

Quasar microlensing lightcurves enable to probe the structure of the central engine, i.e. of the
supermassive black hole and the surrounding accretion disk. In the present work, we investi-
gate whether deep learning provides a possibility for event horizon recognition through quasar
microlensing lightcurves and if a neural network model can be found for its classification. For
this purpose, a classification is defined where the lightcurves of three different labels, given by
simple geometric models with constant surface brightness, are to be predicted. The considered
source models are a crescent source introduced by Kamruddin & Dexter (2013), a disk source,
and a random source. The crescent source represents the silhouette of the event horizon over an
accretion disk. The model of a constant brightness disk is commonly used in literature to describe
the luminous parts of quasars. Two different magnification maps, representing different lensing
galaxy macromodels and number of individual lensing stars, were used for the simulation of the
lightcurves, providing two different datasets for the classification. The first magnification map
is a simplification representing an atypically simple region of a realistic magnification map and
the second one is more realistic. The resulting lightcurves when using the more realistic magni-
fication map additionally include random Gaussian noise representing observational noise. The
classification of each dataset is performed with AdaBoost and with three different neural network
models.

The classification with AdaBoost already leads to a reasonable baseline performance and in-
dicates the usability of machine learning for the recognition of quasar lightcurves representing
the event horizon. But the limitations of this classifier become noticeable when the data contains
noise. Futhermore, the approach to extract information and reduce the number of features by
using the Fourier-transforms of the lightcurves as features turns out to be beneficial only with the
AdaBoost classifier for the dataset which doesn’t include noise. Thus, this approach is not effective
for applications with deep learning and is unusable for real conditions.

A dense neural network, by using the magnification per timestep as features, provides an
improvement in the performance for the classification of the dataset including noise compared
to AdaBoost. In particular an improvement in recognition of crescent lightcurves, and hence, in
event horizon recognition is noticeable. However, the accuracy achieved is significantly lower
than with the convolutional neural network model.

The two CNN models prove to be the most accurate and most stable for the respective dataset.
For the dataset without noise the achieved accuracy is (99.80±0.08)% and for the dataset generated
with the more realistic magnification map and including noise, (99.30 ± 0.18)%. Therefore, it can
be deduced that the classification of the lightcurves with a CNN model lead to high accuracies
even when considering a more realistic lensing galaxy macromodel and number of lensing stars
and by simulation of observational noise. The lower accuracy for the classification of the dataset
including noise is mostly due to the less accurate distinction between disk and random. The model
performs very accurately in distinguishing between crescent and non-crescent and thus, in the
recognition of the lightcurves representing the event horizon.

Moreover, the CNN model is sensitive to source radii, Rp, and dark disk radii, Rn. The
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recognition of crescent lightcurves is less accurate for very small and very large Rp and for very
small and very large Rn/Rp. In the work of Tomozeiu et al. (2017), these abstract crescent
parameters are related to physical quantities. They suggested that Rp gives an estimate of the size
of the accretion disk and Rn provides an estimate of the gravitationally magnified Schwarzschild
radius of the black hole. Since the gravitationally magnified Schwarzschild radius is a monotonic
function of the black hole’s mass, it can be used to estimate the latter, assuming a not rotating black
hole. The crescent sources, whose lightcurves are misclassified as disk lightcurves, have mostly
small Rp and have exclusively small Rn/Rp. This indicates that the lightcurves representing the
event horizon silhouette over an accretion disk bear a higher resemblance in the features used
by the model to lightcurves representing a luminous accretion disk, in the mentioned parameter
sizes. Hence, for a very small disk size or for a very small magnified Schwarzschild radius relative
to the disk radius, the event horizon is recognised less good, given our simple model.

Ultimately it can be concluded that the convolutional neural network models presented in this
work perform very accurately in the recognition of lightcurves representing the event horizon, in
our simplification. Even for a more realistic lensing galaxy macromodel and number of lensing
stars and when considering noise, a CNN model is found that achieves a very high accuracy.
Thus, deep learning provides a promising tool for the recognition of the event horizon through
quasar microlensing lightcurves.

Future efforts should be directed towards a classification for a dataset consisting of lightcurves
simulated with different magnification maps. This would allow us to determine whether a CNN
model can be used for the recognition of lightcurves representing the event horizon, regardless of
the different lensing galaxy macromodels and number of individual lensing stars.

For further investigations, it should be examined how sensitive the model is to the orientation
of the source to the caustic fold. The orientation is given by the components of the disk centres
displacement, c, perpendicular and parallel to the caustic fold. However, the value of the disk
centres displacement parallel to the caustic fold doesn’t have an effect on the lightcurve shape.
The relevant orientation parameter can be determined by the angle at which the path on which
the source is moving intersects the caustic fold in the magnification map. For this purpose, the
algorithm developed in this work would need to be extended. Since the caustic folds are not
straight lines but have a curvature, the calculation of the angle would have to be done using an
approximation. This angle can be also used to determine the component of the relative velocity
between the source and the caustic fold that is perpendicular to the caustic fold, vp. Hence, a
sensitivity to the orientation would represent a sensitivity to vp in our simple model. Furthermore,
the sensitivity of the CNN model to the crescent parameters in the classification of the lightcurves
provides a useful prerequisite with regard to finding a model for the prediction of the crescent
parameters from the lightcurves. The approach for the prediction of the crescent parameters from
the lightcurves with deep learning would then be a regression task and not a classification task,
as it has been in this work. As mentioned, the crescent parameters can be related to physical
quantities specific to the central engine of quasars. Thus, a model that predicts these quantities
from lightcurves would be a powerful tool for the investigation of quasars.
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Examples Random Subtypes

Example of a Random-1 Source from Dataset A

(a) (b)

Figure 38: (a) Example for random-1 source moving along a path in magnification map A. (b) The resulting
lightcurve.

Example of a Random-2 Source from Dataset A

(a) (b)

Figure 39: (a) Example for random-2 source moving along a path in magnification map A. (b) The resulting
lightcurve.
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Example of a Random-3 Source in Magnification Map A

(a) (b)

Figure 40: (a) Example for random-3 source moving along a path in magnification map A. (b) The resulting
lightcurve.

Example of a Random-4 Source from Dataset A

(a) (b)

Figure 41: (a) Example for random-4 source moving along a path in magnification map A. (b) The resulting
lightcurve.
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Example of a Random-1 Source from Dataset B

(a) (b)

Figure 42: (a) Example for random-1 source moving along a path in magnification map B. (b) The resulting
lightcurve with added noise.

Example of a Random-2 Source from Dataset B

(a) (b)

Figure 43: (a) Example for random-2 source moving along a path in magnification map B. (b) The resulting
lightcurve with added noise.
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Example of a Random-3 Source from Dataset B

(a) (b)

Figure 44: (a) Example for random-3 source moving along a path in magnification map B. (b) The resulting
lightcurve with added noise.

Example of a Random-4 Source from Dataset B

(a) (b)

Figure 45: (a) Example for random-4 source moving along a path in magnification map B. (b) The resulting
lightcurve with added noise.
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Lightcurves from Dataset-B by Source Properties

Lightcurves by Source Radius Rp

(a) (b)

(c)

Figure 46: Percentage of lightcurves by source radius for the three source labels (a) crescent (b) disk (c)
random .
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Crescent Lightcurves by Small Disk Radius Rn

Figure 47: Percentage of crescent lightcurves by small disk radius Rn.

Random Lightcurves by Subtypes

Figure 48: Percentage of random lightcurves by subtypes.
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