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Abstract

The Standard Model of particle physics represents the status of the art of our under-
standing of Nature at the tiniest scales. It was conceived in the first half of the twentieth
century and consolidated during the following years in a fascinating interplay between
experimental evidences and their interpretation in a rigorous theoretical framework,
which in turn allowed for conjecturing new predictions that would then receive further
experimental testing. This virtuous circle culminated with the confirmation of the
Spontaneous Symmetry Breaking mechanism, which was hypothesised in the early
sixties but received experimental confirmation through the discovery of the Higgs
particle ten years ago. Despite its success in explaining phenomena ranging from subnu-
clear to atomic scales, several open theoretical questions and compelling experimental
observations indicate the Standard Model is the low energy limit of a wider picture that
contains it. Therefore, searches for extensions of the Standard Model are conducted
at the Large Hadron Collider where particle physics experiments look for signatures
of New Physics, and in particular, LHCb is specialised in precision measurements of
observables that search for such signatures using an indirect approach. These searches
can be performed by testing an approximate symmetry of the Standard Model known
as Lepton Flavour Universality, which predicts that processes involving di�erent lepton
species are distinguished only by mass related e�ects, and hence precisely calcula-
ble within the Standard Model. In this thesis, the measurement of RK , a Lepton
Flavour Universality probe that compares rates of b æ s¸+¸≠ transitions to di�erent
light leptons species, is presented, using the full dataset of pp collisions collected at
LHCb. Moreover we provide a verification of the correct modelling of radiative e�ects
in b æ s¸+¸≠ decays to light leptons, which constitute a source of Lepton Flavour
Universality violation within the Standard Model. Finally we provide a general method
to interpret the global significance of Flavour Anomalies within the Standard Model
E�ective Theory framework. Not only this method allows for the determination of the
global significance in a conservative way, as far as the long-distance charm-loop e�ects
are concerned, but also it allows to incorporate present and future measurements for
which the form factors are not yet calculated.
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Chapter 1

Introduction

This chapter is aimed at introducing the subject matter of my dissertation which is
based on the articles published during my PhD at the University of Zürich.

The first section, Sec. 1.1 is not mandatory for their comprehension, however it
places them in the historical context of the development of our current understanding
of the microscopic world: the Standard Model (SM).

The reader who is interested in revising the formulation of this theory in terms
of gauge fields and spontaneous symmetry breaking can refer to the (non-exhaustive)
review in Sec. 1.2.1 and Sec. 1.2.2, in particular, the consequences of spontaneously
broken SM gauge symmetries, such as fermion and boson masses generation and the
flavour sector are outlined in Sec. 1.2.3.

Despite its fascinating success in describing nature at scales spanning several order
of magnitudes, the SM is an incomplete theory and Sec. 1.3.1 aims at outlining such
open questions, while Sec. 1.3.2 suggests useful tools to answer them.

As expressed by T. Lee, a theoretical physicist who formulated pivotal aspects of
the SM as we know it today:

1. Without theorists, experimentalists tend to falter.

2. Without experimentalists, theorists tend to drift.

Therefore, one of the best current laboratories for testing the SM at its intensity
frontier, the LHCb experiment, is outlined in Sec. 1.4.1, and an overview on the latest
measurements of b æ s¸+¸≠ processes is presented Sec. 1.4.2. Throughout this chapter
we adopt natural units for which ~ = c = 1.



2 Introduction

1.1 History of the Standard Model

The universe is simple;
it’s the explanation that’s complex.

W. Allen

1.1.1 A new player in the game

What is now the most precisely verified theory in particle physics, the Standard Model,
did not follow a linear path through its development. In fact, it was 1896 when the
french physicist H. Bequerel, hoping to demonstrate a link between minerals that glow
when exposed to strong light and a new type of electromagnetic radiation called X-rays,
discovered radioactivity by accident. On 26 February 1986 [1], after placing uranium
salts wrapped in black paper on top of a photographic plate, he observed that the salts
caused a blackening of the plate despite the paper in between. Becquerel concluded
that invisible radiation that could pass through paper was causing the plate to react
as if exposed to light. Subsequently, E. Rutherford, continued these experiments and
discovered in 1899 di�erent kinds of radiation defined by their penetrating power [2]:
–-particles, that did not leave any trace on the Bequerel plates since they were absorbed
by the black wrapping paper, and —-particles, that have a 100-times greater penetrating
power than –-particles. In 1900, Bequerel measured the mass-to-charge ratio of the
—-particles to conclude that these were in fact electrons. The puzzle, however, was far
from being solved: some years later, in 1914, data collected by J. Chadwick [3] showed
that the electron spectrum measured in a two-body —-decay

AZ æ
A(Z + 1) + —≠

was a continuous distribution instead of a Dirac ”, as one would naively expect from
energy-momentum conservation applied to a two-body decay. The open letter by W.
Pauli in 1930 [4] addressed to the radioactive attendants of the Gauverein meeting in
Tübingen was a desperate remedy in order not to renounce to the conservation laws of
energy and angular momentum. Pauli hypothesised the existence of a third, undetected
element in the decay products of the —-decay of the nucleon, that had almost no rest
mass and was electrically neutral:

AZ æ
A(Z + 1) + —≠ + ‹
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It was Chadwick’s discovery of the neutron in 1932 [5] that gave Fermi the inspiration
to name neutrino this hypothetical particle in his first theory of —-decay [6], which
can be regarded as the precursor of the theory of weak interactions. Assuming a close
analogy with the QED description of electron-proton scattering, Fermi proposed to
explain the —-decay as the contact interaction of two vector currents:

L—≠decay Ã GF (ūp“µun)(ūe“µu‹) (1.1)

However, the di�erence with the QED paradigm is striking since the currents in this
Lagrangian are charged.

In the same years (1932-1937) Heisenberg and Wigner, starting from the hypothesis
that the proton and the neutron are two di�erent states of the same object, gave birth
of SU(2) of flavour and the isotopic spin. In analogy to the spin states of the electron
wave-function, the neutron and the proton are spin up and spin down states of the
nucleon.

Q

an

p

R

b ≥

Q

a| øÍ

| ¿Í

R

b

e

(1.2)

According to this hypothesis the di�erence in mass between the proton and the neutron
is exclusively due to the electromagnetic repulsion.

It was 20 years after being hypothesised that the elusive neutrino was first observed
by C. L. Cowan and F. Reines [7], exploiting the inverse — reaction:

‹̄e + p æ e+ + n

initiated by anti-neutrinos produced at the nuclear facility of Savannah River Plant
near Augusta in Georgia.

1.1.2 Objects in the mirror don’t look as you’d expect

A few years later, in 1956, T. Lee and C. Yang [8] suggested that experimental data
neither confirmed nor refuted spatial reflection invariance (parity conservation) in
transitions governed by weak interactions. This lead to the study of the directional
properties of —-decay in a polarised sample of 60Co cobalt by C. Wu et al. [9]. The
observation of a preferred direction of emission for electrons in polarised nuclei was a
clear signature of parity symmetry violation in —-decays. Moreover, to enforce angular
momenutm conservation, it was concluded that neutrinos emitted in —-decays could
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only be left-handed or, in other words, that the projection of their spin along their
direction of motion is always anti-parallel. This was later confirmed in 1958 in an
experiment by M. Goldhaber et al. [10] which first measured the neutrino’s helicity
to be h(‹) = ≠1.0 ± 0.3 and concluded that anti-neutrinos are always right-helical
(h(‹̄) = +1).

Following these results, the initial hypothesis formulated by E. Fermi in (1.1)
required to be extended to a more general expression

Lw =
ÿ

i

Gi

2 (ūp�iun) (ūe�iu‹) + h.c. (1.3)

Which contains a sum over all possible bilinear covariants �i with i = {S, V, T, A, P}.
Eq. (1.1) is a special case in which Gi = 0 for i ”= V , leaving us with an expression that
represented a purely vector interaction. However, each product of bilinear covariants
in Eq. (1.3) is parity conserving, hence to include the experimental evidence of parity
violation in weak interactions, the product of hadron and lepton currents in (1.3) needs
to be modified as follows:

Lw =
ÿ

i

Gi

2 (ūp�iun) (ūe�i(1 + Ci“5)u‹) + h.c. (1.4)

Where Gi and Ci are scalar constants. It was at the Rochester conference held in 1957
where T. Lee and C. Yang presented two new operators PL and PR which projected a
four component massless bispinor into two opposite helicity spinors [11].

PR = 1 + “5

2 PL = 1 ≠ “5

2 (1.5)

and subsequently, R. P. Feynman (which in 1948 together with F. J. Dyson and
Schwinger [12,13] developed the QED formalism, including radiative corrections), used
these two new operators to replace the full spinors of the massive leptons contained in
weak interactions with their left-chiral projections

ue æ uL

e
= 1 ≠ “5

2 ue ūe æ ūL

e
= ūe

1 + “5

2 (1.6)

Plugging these chiral projections in the expression of the lepton current of (1.4) yields

(ūe�i(1 + Ci“5)u‹) æ

3
ūe�i(1 û Ci)

1 û “5

2 u‹

4
(1.7)
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where the top sign holds for i œ {V, A} and the bottom sign for i œ {S, T, P}. The sign
in the last term of the product is bound by experimental evidence to be the top one since
weak interactions only couple to left-handed particles, hence this interaction can only
involve V and A covariant forms. Moreover, for this whole term to be non-vanishing it
must be that Ci = ≠1, yielding the weak Lagrangian:

Lw =
5
GV

2 ūp“µun + GA

2 ūp“5“µun

6
[ūe“

µ(1 ≠ “5)u‹ ]

(1.8)

= GF
Ô

2
[ūp“µ(1 ≠ gA“5)un] [ūe“

µ(1 ≠ “5)u‹ ] + h.c.

With gA = |GA/GV | = 1.26 experimentally determined and GF © GV /
Ô

2.

1.1.3 A heavier sibling of the electron

To proceed with our review of the SM history we have to do one step back in time to the
mid-1930’s when H. Yukawa made an attempt [14] to describe the force responsible for
nucleons attraction through the exchange of an hypothetical charged boson. Yukawa
also suggested that this new particle might be responsible for the —-decay, because it
could decay into an electron-(anti)neutrino pair. After Anderson’s discovery of the
positron in 1932, Neddermeyer detected in 1937 [15] a particle that had a similar mass
to the one predicted by Yukawa and its decay products included an electron. However,
this was predicted to be responsible for the nuclear force and should have had very
strong interactions with nuclei, but the detected particle was able to traverse thick
layers of matter without any such interactions. The mass of this particle, which is the
muon µ, was measured to be orders of magnitude greater than the one of the electron,
but there were no indications that it could be an excited state of it, since decays of the
kind µ≠

æ e≠“, µ≠
æ µ≠e+e≠ and µ≠

æ e≠““ were not observed. While Yukawa’s
meson was later found to be the pion fi, the muon is the particle that lead from a
Fermi theory which is only useful in the description of —-decay to a theory which
encompasses many interactions, a "universal" Fermi theory. The originator of the idea
of a universal Fermi theory was B. Pontecorvo, who first noticed that the process of
muon absorption µ≠ + p æ n + ‹ could be described using Fermi’s theory (1.8), if the
mass di�erence between e and µ is taken into account [16]. Hence he proposed in 1947
that the following decays were possible:
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µ≠
æ e≠‹‹̄, µ+

æ e+‹‹̄ (1.9)

and the electron produced in such decay should manifest a continuous energy spectrum.
This observation was performed in 1949 by J. Steinberger [17] thus it became clear that
—-decay was not the only interaction which could be described by the Fermi theory. In
1962 the existence of a second form of neutrino, the muon neutrino ‹µ, was shown by a
team of scientists led by L. Lederman, M. Schwartz, and J. Steinberger [18]. Exploiting
the large number of pion decays to µ and ‹ at the BNL’s synchrotron, only reactions
of the type ‹̄µ + p æ µ+ + n were observed, confirming the existence of a separate
kind of neutrinos from the ones observed just a decade before, i.e. ‹µ(”= ‹e). A doublet
structure of the kind

Q

a‹e

e

R

b

L

Q

a‹µ

µ

R

b

L

(1.10)

is hypothesised, together with an extension to the muonic counterpart of the Lagrangian
Lw in Eq. (1.8)

LV ≠A = Lw + GF
Ô

2
ÿ

¸=e,µ

[ū‹¸
“µ(1 ≠ “5)u¸] [ū¸“

µ(1 ≠ “5)u‹¸
] + h.c. (1.11)

e μ

ν νμ e

p
2

p
1 k1

k2

Fig. 1.1 Schematic diagram
for the e‹e æ µ‹µ process in
the Fermi theory

However the V ≠ A Lagrangian of Eq.(1.11) violates the
unitarity bounds derived in Sec. 1.A.2.2. In fact, if we
consider the process:

e≠(p1) + ‹µ(p2) æ µ≠(k1) + ‹e(k2)

The transition amplitude according to Eq. (1.11) reads:

M(s, z) = ≠
GF
Ô

2
ū(k2)“–(1≠“5)u(p1)ū(k1)“–(1≠“5)u(p2)

(1.12)
In the massless lepton limit, taking the square modulus
of the transition amplitude we obtain

|M(s, z)|2 Ã 32 G2
F

s2

Since the result doesn’t depend on z, the partial wave decomposition will contain
exclusively a0(s) term and aj(s) = 0 for j > 0.
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a0(s) = 1
32fi

⁄ 1

≠1
dzP0(z)

Ô
32 GF s = GF s

2
Ô

2fi
(1.13)

The unitarity bound of Eq. (1.126) imposes that

GF s

2
Ô

2fi
Æ 1 (1.14)

Which, substituting the values for the Fermi constant, places an upper boundary on s

of
Ô

s . 875 GeV. For higher energies the unitarity bounds are violated, and at the
time of the formulation of the V ≠ A theory of weak interactions, this constituted
exclusively a conceptual problem, since experimentally

Ô
s π 875 GeV. The hypothesis

of a new mediator would have removed the s dependence of a0(s), however if massless it
wouldn’t have met the requirements imposed by experimental data that were suggesting
an interaction with a limited range of 10≠15 cm. An equally not viable option would
have been the addition a massive mediator with an ad-hoc mass. since it would have
introduced diagrams (such as ¸+ + ¸≠

æ W + + W ≠) which, in turn, would violate the
unitarity bounds. The problem of the mass of the force mediators was already clear to
Feynman, since the ad hoc addition of a related mass term in the Lagrangian would
have violated gauge invariance of QED. This posed a problem for any extension of
QED which would include a massive mediator.

1.1.4 The "strange" path to new fundamental particles

Neglecting the mass problem, by the start of the 1940s, it seemed like physicists were
getting a handle on the fundamental particles and their interactions. Properties of
electrons, protons and neutrons, as well as neutrinos and even positrons were known
and observed. However this status was soon due to end with the discovery in the
early 1950’s [19] of new particles, in an experiment using a cloud chamber to detect
penetrating particles from cosmic ray showers. These "strange" particles were measured
to be roughly 200 times heavier the proton, however they had unusual long lifetimes
(10≠8 s) for such heavy masses. Moreover they always came in pairs, but could decay
independently from each other.

The decay modes of these charged strange particles also presented a puzzle that
was of di�cult solution in the hypothesis of parity conservation of the interaction
responsible for their decay. These types of decays, into two or three pions, were labeled
as follows:
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·±
æ fi±fi+fi≠, ·±

æ fi±fi0fi0, ◊±
æ fi±fi0 (1.15)

All three decays appeared to originate from particles (of unknown spin-parity) with
nearly the same mass and lifetime, apparently having the same abundance ratio
(independently of their production mechanism) and same interactions with heavy
nuclei. While the first two decays of Eq. (1.15) could be described as two di�erent
decay modes of the same particle, the third one could not due to parity symmetry.
The analysis of the experimental Dalitz plot distributions from [20] indicated that the
spin-parity assignment for the two-pion final state, was not the same as the three body
one, so - on the grounds that parity must be conserved in the decay - the two modes
could not originate from the same state.

In the same years M. Gell-Man, K. Nishijima and A. Pais developed the idea
that these particles had a property called "strangeness", to which the corresponding
quantum number is associated. According to their hypothesis, strong nuclear forces
involved in the production of such particles conserve strangeness, but weak nuclear
forces responsible for their decays do not. This would explain why strange particles
would always appear in pairs of total strangeness 0, and their relatively long decay
time, since weak interactions tend to take longer to play out.

Up to that time though, evidence of parity violation was only found in weak
processes involving at least two leptons. Given the di�culty of building a pseudo-scalar
probe to test for parity violation in the ◊ ≠ · system, since the two- and three-pion
states cannot interfere directly, Lee and Yang suggested in 1956 The possibility of
testing parity violation in a fully hadronic system using decays of hyperons. Soon
after Lee and Yang’s proposal, a large parity violating asymmetry in � æ pfi≠ was
indeed measured [21][22]. This eventually lead to the resolution of the ◊ ≠ · puzzle:
the two and three pion decays originate from a single particle, the Kaon (K±) which
can actually decay to states of opposite parity because the weak interactions inducing
such decays do not respect parity symmetry.

M. Gell-Man, in 1963 [23], realised that a symmetry scheme, which he named "Eight-
fold Way", would allow to group the eight known baryons in multiplets characterised
by di�erent isotopic spin values, much in the same way as the periodic table classifies
the chemical elements. These multiplets represent the eight-dimensional adjoint repre-
sentation of SUF (3) (See Fig. 1.2), and, according to his model, the phenomenological
breaking of this symmetry is reflected in the mass spectrum of such multiplets, which
would be degenerate in case of unbroken symmetry. The fact that also K and fi mesons
could fit into a similar multiplet scheme allowed Gell-Man to predict the existence of
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Fig. 1.2 Fundamental, anti-fundamental and adjoint representations of SU(3)F for the
u, d, s baryon octet, also known as "The Eightfold Way"

an additional pseudo-scalar meson with 0 isotopic spin, the ÷ meson. This model also
predicted the realisation of the fundamental and anti-fundamental representations of
SUF (3), i.e. three new elementary particles which he called "quarks".

It was in these years that, from experimental observations of equality of the
couplings of ‹̄ee, ‹̄µµ currents to any other given current, and of the near equality of
coupling constants describing the µ-decay and the nuclear —-decay lead to the idea of
universality of charged current interactions. This however, was encountering di�culties
in explaining the phenomenology of leptonic K and fi decays. It was observed, in
fact, that albeit strongly favoured from the available phase space, the K+

æ µ+‹µ

happened 20 times less frequently than the same decay originating from a pion. This
lead N. Cabibbo in 1963 to formulate a weaker form of universality [24] by introducing
◊C as the angle rotating the axial and vector currents responsible of �S = 0, �Q = 1
with respect to the ones governing �S = �Q = 1 transitions.

�(K+
æ µ+‹µ)

�(fi+ æ µ+‹µ) Ã tan2◊C

From experimental data ◊C ƒ 0.257. The model introduced by N. Cabibbo received
confirmation thanks to the possibility of explaining ratios of branching fractions of
semi-leptonic decays of baryons. In particular it could explain the cancellation of the
axial contribution to the process �≠

æ n + e≠ + ‹̄e, and its relative suppression with
respect to � æ p + e≠ + ‹̄e decays.
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It was clear that a doublet structure similar to the one for the leptons (1.10) was
emerging

Q

au

dÕ

R

b

Q

a
s

R

b (1.16)

Where dÕ = cos ◊C d + sin ◊C s, i.e. the interaction basis appears rotated of ◊C with
respect to the mass basis. This model paved the way for the Glashow–Iliopoulos–Maiani
(GIM) mechanism which was developed a few years later and more generally to the
Cabibbo-Kobayashi-Maskawa (CKM) matrix as we know it today.

1.1.5 Symmetry as a guiding principle

To proceed with our historical review of the SM we have once again to jump back in
time to 1918 when the mathematician E. Noether discovered the profound connection
between symmetries and conservation laws in physics [25]. Noether’s theorem states
that if the Lagrangian describing a system is symmetric (invariant) with respect to
some transformation, then there must exist a conserved charge and a corresponding
conserved current within the system which is associated with this symmetry. In the same
year, Weyl’s attempts to describe gravitation and electromagnetism within a unifying
geometrical framework [26] paved the way the way for the correct understanding of
the role of gauge invariance. Weyl’s initial attempt of unification of general relativity
and electromagnetism was not viable, however, in view of the development of quantum
mechanics, he reinterpreted his speculative theory under a new perspective. In his 1929
work [27] he emphasised the role of gauge invariance as a constructive principle from
which electromagnetism can be derived. In fact he showed that it possible to introduce
in the Schrödinger equation the coupling of the electron with the electromagnetic field
by performing a shift of the electron wave function Â æ ei–(x)Â.

The experimental verification of this principle was proposed by Aharonov-Bohm in
1959 [28] by placing a solenoid, shielded by a conductor, between two beams obtained
from the same electron source (Fig. 1.3). The observation of an interference pattern
on the screen produced by the variation of the magnetic field B̨ would confirm that
the electron, even if never in contact with the magnetic field, would "feel" the auxiliary
field Aµ(x), and the interference between the two beams would depend on the phase
di�erence.

j
Ą · d˛̧ = „B
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Fig. 1.3 Schematic view of the Aharonov-Bohm "Gedankenexperiment": two electron
beams originating from the same source are collected on a screen on the opposite side
of a solenoid. The magnetic field inside the solenoid is screened inside the solenoid.
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Fig. 1.4 Schematic view of the wave
function shift induced by the field Aµ,
responsible for the Aharonov-Bohm ef-
fect

All these e�ects depend only on the gauge-
invariant quantity

i
Ą · d˛̧, so that in real-

ity they can be expressed in terms of the
fields inside the circuit, however, according
to relativity, all fields must interact only lo-
cally. And since the electrons cannot reach
the regions where the fields are, Aharonov and
Bohm could not interpret such e�ects as due
to the magnetic field B̨. Another interesting
point of this e�ect is that it would make the
field Aµ(x) measurable, in spite of the fact,
due to gauge invariance, that all the known
physical quantities are left unchanged by a
rescaling Aµ(x) æ AÕ

µ
(x) = Aµ(x) + ˆÂ/ˆxµ

where Â is a continuous scalar function. To conserve locality and gauge invariance of
the theory, Aharonov and Bohm where led to regarding Aµ(x) as a physical variable,
i.e. that it is possible to define the physical di�erence between two quantum states
which di�er only by gauge transformation.
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1.1.6 A "massive" problem

In 1954 C. N. Yang and R. L. Mills [29], starting from the isospin doublet introduced
earlier by Heisenberg and Wigner in Eq. (1.2), formulated Lagrangian that featured the
SU(2) symmetry of the isospin doublet. This theory predicted the existence of 3 gauge
fields, or force mediators, which however had to be massless since a mass term added by
hand would violate gauge invariance. Weak interactions and electromagnetism where
combined by S. Glashow in 1961 [30] under the formulation of a Lagrangian that is
invariant under SU(2)L ◊ U(1)Y transformations. This theory, which included (3+1)
massless gauge bosons, could not accommodate a fermion mass term mÂÂ due to
gauge invariance requirements. However, it allowed to establish a relation between
electric charge Q, the third component of the weak isospin I3 and the hypercharge Y

Q = I3 + 1
2Y (1.17)

of the particle content of the Lagrangian. In order to get an insight on the interplay
between gauge symmetries of the Lagrangian and the mass terms of the gauge bosons,
again we have to step back in time to 1911 when dutch physicist H. K. Onnes discovered
that mercury at cryogenic temperatures assumes a superconducting state, i.e. a state
in which electric current could flow without any resistance imposed by the conductor.
The experiment conducted in 1933 by W. Meissner and R. Ochsenfeld [31] provided a
physical example of a gauge theory with a massive boson as a result of a spontaneous
breaking of the gauge symmetry, in fact they showed that magnetic field is expelled
from a superconductor during its transition to the superconducting state. The magnetic
field inside the superconductor is null, except in a very limited (≥ 10 µm) superficial
region. As initially hypothesised by W. Heisenberg 5 years before [32], this can be
interpreted as the breaking of the rotational symmetry of the ferromagnetic material
when it is cooled down below the critical temperature, causing the mediator of the
electromagnetic interaction to acquire a mass and to penetrate only the superficial
volume of the superconductor.

It was in this context that Y. Nambu and J. Goldstone [33,34] showed the necessary
appearance of such massless bosons in models exhibiting spontaneous breaking of
continuous symmetries. According to Nambu and Goldstone, if the vacuum state is
non-invariant under a continuous symmetry of the theory, one massless state for each
generator of the symmetry that is broken is expected. In 1963 P. Anderson [35] realised
that for a gauge symmetric Lagrangian where this symmetry is spontaneously broken,
the Nambu-Goldstone massless modes can combine with the Yang-Mills massless gauge
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fields to produce a physical massive vector field. He remarked that, in elementary
particle physics, “the Goldstone zero-mass di�culty is not a serious one, because we can
probably cancel it o� against an equal Yang–Mills zero-mass problem” . The relativistic
formulation of this mechanism would be formulated one year later, in and independent
but complementary way, by Brout, R F. Englert [36] and P. Higgs [37], however, P.
Higgs appears to have been the first to discuss the existence in models like his of a
massive mode, i.e. the "Higgs particle". After several attempts to apply Brout-Englert-
Higgs ideas to the breaking of hadronic flavour symmetries without success, progress
came in 1967 when S. Weinberg [38] and A. Salam [39] independently realised that
the candidate for spontaneous symmetry breaking was the SU(2)L ◊ U(1)Y model of
leptonic electroweak interactions earlier proposed by S. Glashow [30]

SU(2)L ◊ U(1)Y

SSB
æ UEM(1)

The UEM (1) symmetry observed today, responsible for electric charge conservation and
electromagnetic interactions, is a relic of a greater symmetry which is spontaneously
broken by the scalar complex field

Q

a„ú

„

R

b (1.18)

In a process which gives mass to the gauge bosons, as well as to the fermion content
of the theory. The search for direct or indirect signatures of this mechanism had just
started.

1.1.7 The colour and flavour of particle physics

A few years later, deep inelastic scattering (DIS) experiments conducted by the MIT-
SLAC collaboration at the Stanford Linear Accelerator Centre (SLAC) revealed the
first signs that nucleons have an inner structure: as hypothesised by Gell-Man and
Zweig, the quark model, which predicted elementary half integer spin particles as
components of baryons and mesons, was confirmed. In the subsequent years, the
combination of these results with others from neutrino-scattering in the Gargamelle
bubble chamber at CERN, confirmed fractional electric charges of +2/3|e| and ≠1/3|e|

of quarks. However the existence of bound quarks states such as �≠(sss) was posing a
great problem for the quark model. In fact, since the wave function describing this
ground state baryon is symmetric, it would contradict Pauli exclusion principle if its
constituents are 3 identical quarks of spin 1/2.
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The formulation by H. Fritzsch and M. Gell-Man of QCD as an unbroken SUC(3)
Yang-Mills theory posed a solution to the statistics problem by introducing a new
quantum number that the quarks possessed, the colour charge [40,41]. According to
this theory all hadrons are singlets of the colour group: the baryon wave functions are
totally antisymmetric combinations of the 3 colour indices (rgb), while the mesons wave
functions are symmetric combinations of colour and anti-colour charges (rr̄, gḡ, bb̄).
The experimental confirmation of colour charge came from the ratio R

R(
Ô

s . 3 GeV) = ‡(e+ + e≠
æ hadrons)

‡(e+ + e≠ æ µ+ + µ≠) = NC

ÿ

f=u,d,s

Q2
f
/e2 (1.19)

The experimental data were in agreement with a ratio of R = 2, hence indicating that
NC = 3.

At the time a gauge theory for strong interactions was proposed, only three
quarks were thought to exist: up, down, strange. Starting from the phenomenological
observation that transitions such as K+

æ (fi0)µ+‹µ have a branching fraction of
≥ 66%(≥ 3%) while K0

æ (fi0)µ+µ≠ amount to ≥ 10≠7(10≠8)% of the total decay
width, S. Glashow, J. Iliopolos and L. Maiani (GIM) hypothesised the existence of a
fourth quark, named charm [42]. In this model, both down and strange eigenstates are
rotated with respect to the mass eigenstates by the Cabibbo angle ◊C .

Q

au

dÕ

R

b

Q

a c

sÕ

R

b ,

Q

adÕ

sÕ

R

b =
Q

a cos ◊C sin ◊C

≠ sin ◊C cos ◊C

R

b

Q

ad

s

R

b (1.20)

Through the GIM mechanism, Flavour Changing Neutral Currents (FCNC) would
only be possible at loop level, hence the suppression of K0

æ (fi0)µ+µ≠, while
�S = 1 processes are allowed only in weak charged current interactions. The existence
of a fourth quark flavour was independently confirmed with the observation of a
flavour-neutral vector meson with an invariant mass of mJ/Â = 3.097 GeV by two
independent collaborations. A bump in the electron positron pairs produced in high
energy p + Be æ e+ + e≠ + X collisions observed at the BNL’s 30 GeV alternating-
gradient-synchrotron, was named J by the first collaboration [43]. The same particle
was produced in collisions of electrons and positrons in the SPEAR storage ring at
the SLAC Laboratory [44] and was named Â by the second collaboration. Both
collaborations announced they had actually found the same particle, the J/Â(cc̄) in
November 1974, in an event that due to the subsequent rapid changes in the field,
became known as "November revolution".
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Flavoured bound states of the charm quark, the D mesons, were first discovered
by the SLAC-BNL Mark I collaboration at the SPEAR e+e≠ collider in 1976 using
data collected at 3.6 <

Ô
s < 4.6 GeV [45,46]. The first modes observed included the

decays D0
æ K≠fi+, K≠fi+fi≠fi+ and D+

æ K≠fi+fi+. Almost contemporarily to the
discovery of the charm quark, the electroweak model, which predicted the existence of
a neutral massive gauge boson carrying the weak force, obtained indirect confirmation.
The first observations of weak neutral current induced leptonic [47] and hadronic
processes [48] were performed at the Gargamelle bubble chamber at CERN in 1973.
Events involving a neutrino-electron scattering process in the former case, or with an
isolated vertex with hadrons produced in the latter case, were observed in the active
volume of the chamber which consisted in nearly 12 cubic metres of heavy-liquid freon
(CF3Br). The direct detection of the weak W ±/Z bosons followed in 1983 [49,50], at
the two moveable detectors UA1 and UA2 which collected data from proton-antiproton
collisions at the SPS beam pipe at CERN, performing the first measurements of the
electroweak gauge bosons’ masses.

1.1.8 Yet another symmetry is questioned

To proceed our historical review of the Standard Model, we have once again to shift
our attention from the gauge sector to the flavour sector. With the discovery of
the charm quark, and the development of the gauge theories, it was becoming clear
that the number of quarks was non-trivially related to the number of leptons. In
particular nq = n¸ to cancel gauge anomalies arising from symmetries which are exact
at the classical level but explicitly broken at the quantum level. The kaon system,
which led to the discovery of parity violation in hadrons through the ◊ ≠ · puzzle,
still had unexploited discovery potential in this regard. The neutral K mesons, form
a special system of neutral particles. In fact, the K0 and K̄0 are distinguished by
a conserved quantum number as far as strong interactions are concerned, but are
self-CP-conjugate as far as weak interactions are considered, since strangeness is not
conserved in weak processes. This implies that fi+fi≠ states obtained from a K0 cannot
be distinguished from those obtained from K̄0 and more generally, that processes such
as K0

¡ K̄0 would be possible through the common virtual decay states. The two
non self-conjugated states with definite strangeness:

CP |K0
Í = |K̄0

Í CP |K̄0
Í = |K0

Í

can be linearly combined
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|K1Í = 1
Ô

2
1
|K0

Í + |K̄0
Í

2
|K2Í = 1

Ô
2

1
|K0

Í ≠ |K̄0
Í

2

to obtain states with definite CP eigenvalues

CP |K1Í = +|K̄1Í CP |K̄2Í = ≠|K2Í

If weak interactions respect CP symmetry, the K1/2 would only decay to CP even/odd
states. In 1956 two neutral kaon states, named short-lived KS and long-lived KL, were
discovered, with lifetimes:

·(KS) = 0.89 · 10≠10s ·(KL) = 5.17 · 10≠8s

Since the short-lived neutral kaon was observed to decay into two pions, while the long-
lived one apparently only decayed into three-body final states, the KS was identified
with the CP = +1 eigenstate (K1), and the KL was identified with the CP = ≠1
eigenstate (K2).

The factor of ≥ 600 di�erence in their lifetimes, which is ascribed to the available
phase space in their decays to two or three pions, has important experimental conse-
quences: starting from a mixture of the two states, far enough from the production
point the beam will contain exclusively the long lived KL. In the experiment conducted
by J. Christenson, J. Cronin, V. Fitch et al. [51] at the Brookhaven National Labo-
ratories, KL in a collimated beam were found to occasionally decay into two charged
pions, violating CP conservation. Contrary to the case of parity violation, the physics
community had a hard time accepting that CP could be violated. Two conclusive
pieces of evidence came years later with the detection of the interference between the
2fi states obtained from KS and KL decays in 1965, and with the measurement of
the charge asymmetry of semi-leptonic KL æ fi+¸≠‹̄¸ vs. KL æ fi≠¸+‹¸ decays in
1967. The e�orts to incorporate CP violation phenomenology in the Standard Model
framework lead M. Kobayashi, T. Maskawa, building on the work by N. Cabibbo
(CKM), to propose the existence of an extra pair of quark beyond the four ones seen
until then [52]. A CP violating phase would appear in the Standard Model Lagrangian
if the multiplets of Eq. (1.20) where made by three quark flavours instead of two.

1.1.9 A third heavier family

Evidence of the existence of a third heavier lepton decaying into electrons and muons
[53] were found a few years later, in 1975, by the SLAC-BNL Mark I collaboration
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at the SPEAR e+e≠ storage ring. In the period from 1975-1978 more data from
the SPEAR storage ring, as well as from the DORIS storage ring at the Deutsches
Elektronen Synchrotron (DESY), confirmed the discovery and the interpretation of
the µ ≠ e production process as arising from a new heavy lepton, the · . According
to the pattern of the first two lepton generations, such a particle was predicted to
also have an associated neutrino type, the ‹· , which would be observed 20 years later
by the DONUT experiment at Fermilab using nuclear emulsion targets [54]. The self
consistency of the emerging theory describing elementary particles, which required
equality between the number of quark and lepton families, made search for a third
family of quarks even more compelling.

In 1977 L. Lederman et al. [55] presented the findings of E288, an experiment in
the proton fixed-target facility at Fermilab. They observed an excess at 9.5 GeV in the
di-muon mass spectrum of muons produced in p + (Cu, Pt) æ µ+ + µ≠ + X (the name
� comes from the assonance with Oops-Leon due to a clustering of di-electron data
around 6 GeV that was later found to be a background fluctuation). The surprisingly
small decay width of the �(1S) of ≥ 53 keV (or, equivalently, its long decay time),
is ascribed to the fact that at

Ô
s < 2mB the strong decay in two beauty flavoured

mesons is kinematically prohibited, hence the decay proceeds through weak processes,
which are typically slower. Studies on higher excited states such as �(2S) �(3S) and
�(4S), with masses of ≥ 10, 10.36, 10.58 GeV respectively, were later performed by
the CLEO collaboration at the Cornell Electron Storage Ring (CESR) and ARGUS
collaboration at DESY. These studies allowed to establish that the � states were bb̄

resonances, and to derive the electric charge of ≠1/3|e| of the b quark. The first �
resonance that can decay in a pair of B-mesons is the �(4S), hence its considerably
larger decay width (20 MeV) with respect to the lower states.

In the following 20 years, the rich phenomenology o�ered by b quarks was extensively
studied. The first measures on inclusive decays and lifetime of b hadrons were performed
at PEP (SLAC) and PETRA (DESY) in 1982 yielding a c·Xb

≥ 490µm, indicating that
the B meson decays where governed by the weak interactions, involving transitions to
lighter quark families, and hence suppressed by a CKM factor. In analogy to the neutral
strange mesons, evidence for B0

¡ B̄0 oscillations where first found by the ARGUS
collaboration [56] and their time dependence was subsequently studied in 1993 by the
ALEPH collaboration [57] at the Z resonance. B factories such as BaBar at SLAC
and Belle at KEKB, thanks to their asymmetric beam energies configuration, allowed
for precise time dependent measurements on which CP asymmetries are crucially
dependent.
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Violation of the CP symmetry arising from the interference of mixing and decay
amplitudes in B meson decays was found in 2001 by both BaBar [58] and Belle [59]
exploiting the "golden mode" B0

æ J/ÂKS, while direct CP violation was established
in 2004 by both Babar [60] and Belle [61] using B0

æ K±fiû decays. Despite working
in an extremely clean environment, e+e≠ colliders such as PEP, KEKB, and LEP su�er
from low bb̄ production cross section of O(1≠6 nb). On the other hand hadron colliders,
such as Tevatron (pp̄) at Fermilab or LHC (pp) at CERN, profit from a significantly
larger ‡

bb̄
= 100 ≠ 600 mb at

Ô
s = 2 ≠ 7 TeV respectively. However, they su�er from a

much lower signal to background ratio of 0.2 ≠ 0.6% (cf. 25 ≠ 15% at electron-positron
colliders), due to the richer hadronic environment. Studies on B-meson physics are
currently performed both at B factories such as Belle II at SuperKEKB and at hadron
colliders by ATLAS, CMS and LHCb at the LHC. These studies are proving crucial
for the advance of our knowledge on the Standard Model and to shape its possible
extensions, as will be shown in the following chapters of this thesis.

The weak isospin partner of the b-quark, although predicted in 1977 with the
discovery of the �(1S), was found only several years later: the top quark, which is the
sixth and quite possibly last quark to be encapsulated in the Standard Model, was
discovered in 1995 by the CDF [62] and D0 [63] experiments at Fermilab. The top quark
plays a special role in the Standard Model picture since it behaves di�erently from all
other quarks. In fact, its large mass, and correspondingly short lifetime (ƒ 1/20 the
timescale for strong interactions), causes the top quark to decay before it hadronises,
o�ering the opportunity to opportunity to study its "bare" decay properties.

Moreover, from the sensitivity of electroweak observables to the mass of the top
quark, the mass of the Higgs boson can be constrained without directly producing it.

It wasn’t until 2012 that the first signature of a scalar particle was observed by the
ATLAS [64] and CMS [65] collaborations each using ≥ 10 fb≠1 of pp collisions collected
in 2011 and 2012 at the LHC. The decay channel for discovery of the Higgs particle was
the H æ ““ indicating that a boson with a spin di�erent from one was observed, hence
it was compatible with the Standard Model predicted Higgs. In the years after its first
observation, processes of vector boson fusion V V H [66,67] and the Higgs coupling to
the top [68,69], bottom quarks [70,71] and · leptons [72,73] were observed, confirming
that the Higgs mechanism is actually responsible for the mass of the particles in the
Standard Model. With the discovery of the Higgs particle, the long sought missing
piece found its place in the Standard Model puzzle.

In the next section a more formal description of the structure of the Standard
Model is given.
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1.2 The Standard Model
As far as I see,
all a priori statements in physics
have their origin in symmetry.

H. Weyl

C’est la dissymmétrie, qui crée le
phénomène.

P. Curie

1.2.1 The electroweak sector

1.2.1.1 Assigning particles to representations of SU(2)L ◊ U(1)Y

The experimental evidences collected up to the 1960’s on weak and electromagnetic
interactions (charged currents couple only with left-handed fermions, the existence of a
massless photon and a neutral Z), except for the masses of the force mediators and the
fermions, were encapsulated by S. Glashow in a Lagrangian that is symmetric under
SU(2)L ◊ U(1)Y . In this model, representation of lepton fields are assigned according
to their handedness:

LL ©
1
2(1 ≠ “5)

Q

a‹i

¸

¸i

R

b =
Q

a‹i

¸L

¸i

L

R

b , ¸i

R
©

1
2(1 + “5)¸i (1.21)

The same applies for quarks:

Qi

L
©

1
2(1 ≠ “5)

Q

aui

di

R

b =
Q

aui

L

di

L

R

b , ui

R
©

1
2(1 + “5)ui, di

R
©

1
2(1 + “5)di (1.22)

Here, and throughout this section, i = 1, 2, 3 denotes the generation number. The
weak isospin group SU(2)L is characterized by three generators, hence this gives rise
to three gauge bosons, W 1, W 2 and W 3 and the coupling g. The generators ta are the
Pauli matrices ‡a/2 when acting on the gauge doublets and ta

© 0 when acting on the
gauge singlets. As far as the weak hypercharge U(1)Y is concerned, only one generator
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is present, the gauge boson B with coupling gÕ and hypercharge Y (Â) whose value
depends on the corresponding field.

The corresponding kinetic Lagrangian for the fermion fields reads

LÂ = iL
i

L
/DLi

L
+ iQ

i

L
/DQi

L

+ i¸
i

R
/D¸i

R
+ iui

R
/Dui

R
+ id

i

R
/Ddi

R
(1.23)

The covariant derivative in Eq. (1.23), which generates the interactions between the
gauge bosons and the fermion fields, is defined as:

Dµ = ˆµ
≠ igW µ

i
ti ≠ igÕBµ

Y (Â)
2 (1.24)

Any fermion mass term of the kind

mÂÂ = m(Â
L
ÂR + Â

R
ÂL) (1.25)

is not admitted in Eq. (1.23) since it would spoil the gauge invariance of the theory.
It is interesting to note that at this stage gauge bosons of SU(2)L ◊ U(1)Y couple
equally to charged fermions, or in other words, that the charges g, gÕ appearing in
Eq. (1.2.1.2) do not depend on the fermion generations. Let’s restrict our focus on
leptonic terms, the extension to the quark sector is (for the moment) trivial. The
Lagrangian in Eq. (1.23) is splitted in three parts:

LÂ = L
kin
Â

+ L
cc
Â

+ L
nc
Â

(1.26)

• A kinematic part containing the derivatives of the field, L
kin
Â

:

L
kin
Â

= iL
i

L
/̂Li

L
+ i‹i

¸ R
/̂‹i

¸ R
+ i¸

i

R
/̂¸i

R
(1.27)

• One involving only charged currents, L
cc
Â

:

L
cc
Â

= g W 1
µ
L

i

L
“µ

‡1

2 Li

L
+ g W 2

µ
L

i

L
“µ
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2 Li

L
(1.28)

Since for example the action of ‡1 on the lepton doublets:
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exchanges ¸i

L
¡ ‹i

L
. L

cc
Â

assumes a more familiar form if we take linear combi-
nations of the generators W 1 and W 2, W ±

µ
= 1Ô

2(W allows to rewrite L
cc
Â

in a
more familiar way:

L
cc
Â

= g
Ô

2
Ë
W +

µ
‹i

L
“µ¸i

L
+ W ≠

µ
¸

i

L
“µ‹i
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È
(1.29)

Where W ±
µ

= 1Ô
2

1
W 1

µ
± iW 2

µ

2
and ‡± = 1

2 (‡1
± i‡2), (‡±

œ R and the i has
entered the defintion of W ±).

• And finally one involving only neutral currents L
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Since it involves the diagonal SU(2)L generators t3.

1.2.1.2 Electroweak unification

If we focus on L
nc
Â

of Eq. (1.30), neither W 3
µ

nor Bµ can be interpreted as the photon
field Aµ, since they couple to the neutrino. However since the fields are still massless,
they can be rotated by means of an orthogonal matrix without a�ecting the Lagrangian.
To do this, L

nc
Â

can be more conveniently expressed as:

L
nc
Â

= g�“µ
T3�W 3

µ
+ gÕ�“µ

Y

2 �Bµ (1.31)

With:

� =

Q
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‹i
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¸i
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¸i

R
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ddb , T3 = diag(1/2, ≠1/2, 0), Y = diag(Y (‹i

L
), Y (¸i

L
), Y (¸i

R
))

By performing a rotation of the fields Bµ and W 3
µ

by the Weinberg angle ◊W :
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Bµ = Aµ cos ◊W ≠ Zµ sin ◊W

W 3
µ

= Aµ sin ◊W + Zµ cos ◊W (1.32)

The Lagrangian in Eq. (1.31) is rewritten as

L
nc
Â
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5
g sin ◊W T3 + gÕ cos ◊W

Y

2

6

¸ ˚˙ ˝
|e|Q
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5
g cos ◊W T3 ≠ gÕ sin ◊W

Y

2

6
�Zµ

(1.33)
Aµ can be identified with the photon field if

g sin ◊W T3 + gÕ cos ◊W

Y

2 = |e|Q, Q = diag(0, ≠1, 0, ≠1) (1.34)

Hence e = gÕ cos ◊W = g sin ◊W relating the electric charge to g and gÕ. Substituting
this relation in Eq. (1.34) yields the Gell-Man Nishijima formula Q = T3 + Y

2 (See
Eq. (1.17)), which connects the third component of the weak isospin and electric charge
to the hypercharges Y (Â). Up to now we did not include strong interactions in our
treatment, however the inclusion of QCD is obtained by requiring the Lagrangian of
Eq. (1.23) to be invariant under SU(3)C , the gauge symmetry is then extended to:

GSM = SU(3)C ◊ SU(2)L ◊ U(1)Y (1.35)

And the covariant derivative in is extended:

Dµ = ˆµ
≠ gsG

µ

a
⁄a ≠ igW µ

i
ti ≠ igÕBµ

Y (Â)
2 (1.36)

to include the gluon fields Ga

µ
. The ⁄a are the generators of SU(3)C , the Gell-Mann

matrices, when acting on quark fields or ⁄a © 0 when acting on lepton fields. The
assignments of fermion fields to multiplets of the SM gauge symmetries, and their
corresponding charges, are summarised in Tab. (1.1).The model can be extended to
include a right handed neutrino, however, as can be seen in Tab. (1.1), being a singlet
under the SM gauge group, it is completely decoupled from SM fields.
Any mass term for the force mediators would spoil the gauge symmetry of the La-
grangian, this is in contradiction with experimental evidence of a short range weak
interaction. Moreover, since the structure constants for SU(2)L are non zero, the theory
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Table 1.1 Organisation of the fermion content of the SM in multiplets of SU(3)C ◊

SU(2)L ◊ U(1)Y .
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uL

dL

R

dddb

Q

ccca

cL

sL

R

dddb

Q

ccca

tL

bL

R

dddb 3 2 +1
3

+2
3

≠
1
3

ui

R
uR cR tR 3 1 +4

3 +2
3

di

R
dR dR dR 3 1 ≠

2
3 ≠

1
3

Li

L

Q

ccca

‹e L

eL

R

dddb

Q

ccca

‹µ L

µL

R

dddb

Q

ccca

‹· L

·L

R

dddb 1 2 -1
0

≠1

‹i

R
‹e R ‹µ R ‹· R 1 1 0 0

ei

R
eR µR ·R 1 1 -2 -1

will present cubic W + +W ≠
æ “/Z0 and quartic gauge bosons W + +W ≠

æ W + +W ≠

interactions arising from the Yang-Mills Lagrangian:

L
kin
YM = ≠

1
4Bµ‹Bµ‹

≠
1
4W i

µ‹
W i µ‹ (1.37)

Where:

Bµ‹ = ˆ‹Bµ ≠ ˆµB‹ (1.38)
W i

µ‹
= ˆ‹W i

µ
≠ ˆµW i

‹
≠ g‘ijkW j

µ
W k

‹
(1.39)

These processes are of interest since amplitudes for elastic scattering of longitudinally
polarised gauge bosons, such as for example W +

L
+ W ≠

L
æ W +

L
+ W ≠

L
violate the

unitarity bounds, if we include only the vertices appearing in the kinetic part of the
gauge fields.

If we admit massive gauge bosons, in the s ∫ m2
W

limit, the amplitude is of the
form:

M(W +
L

+ W ≠
L

æ W +
L

+ W ≠
L

) ƒ
g2

4m2
W

(s + t) (1.40)
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Expanding the matrix element on partial waves, an taking the zero-th order term a0(s)
we find

a0(s) = 1
32fi

⁄ 1

≠1
dzP0(z) g2 s

4m2
W

(1 + z) = GF s

16
Ô

2fi
(1.41)

Having used the relation GFÔ
2 = g

2

8m
2

W

. The unitarity bound of Eq. (1.126) imposes
that |a0(s)| Æ 1, hence the vector boson model breaks down for

Ô
s & 2.5 TeV if no

additional diagram is considered in the process of longitudinal vector boson scattering.
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1.2.2 Spontaneous symmetry breaking

In the Standard Model, fermion and gauge bosons masses arise from the spontaneous
breaking of gauge invariance. In this mechanism, the mass terms arise from the kinetic
energy term of a complex scalar doublet „ that undergoes a spontaneous symmetry
breaking process. We introduce the four Hermitian fields, disposed in an SU(2)L

doublet with hypercharge Y („) = 1:

„ =
Q

a„+

„0

R

b =
Q

a„1 + i„2

„3 + i„4

R

b (1.42)

and add the following terms to the Standard Model Lagrangian, without breaking
SU(2)L ◊ U(1)Y gauge invariance:

LHiggs = (Dµ„)†(Dµ„) ≠ V („†„) (1.43)

with:

V („†„) = ≠µ2„†„ + ⁄(„†„)2, [µ] = 1, [⁄] = 0 (1.44)

and the covariant derivative Dµ is defined as:

Dµ = ˆµ ≠ igW i

µ
ti

≠ igÕ Y („)
2 Bµ (1.45)

The idea at the basis of spontaneous symmetry breaking is that the lowest energy
(vacuum) state does not respect the gauge symmetry and induces e�ective masses for
particles propagating through it. The vector

v =

Q

ccccca

È„1Í

È„2Í

È„3Í

È„4Í

R

dddddb
= constant (1.46)

whose components are the vacuum expectation values (VEV) of the scalar fields, are
constants due to the fact that space is isotropic, and scalars since it is Lorentz invariant.
Written in the basis Eq. (1.42), V („†„) is O(4) invariant:

V („) = ≠
µ2

2

A 4ÿ

i

„2
i

B

+ ⁄

A 4ÿ

i

„2
i

B2

(1.47)
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hence we can choose an axis in four-dimensional space such that È„iÍ = 0, for i = 1, 2, 4
and È„3Í = ‹. To determine ‹ we minimise V (v):

V („) æ V (v) = ≠
1
2µ2‹2 + ⁄‹4 (1.48)

If µ2 < 0 the minimum occurs at ‹ = 0 which corresponds to empty space and
SU(2)L ◊ U(1)Y is unbroken at the minimum. On the other hand, if µ2 > 0 the ‹ = 0
point is unstable, and the minimum of the potential appears at some non-zero value of
‹ which breaks the SU(2)L ◊ U(1)Y symmetry.

V Õ(‹) = ‹(≠µ2 + ⁄‹2) = 0 æ ‹2 = µ2

2⁄
(1.49)

The vacuum state is degenerate in the sense that the solution ‹ can be brought in
the solution ≠‹ by a proper O(4) transformation. Adding the Higgs field to the
Lagrangian still leaves it SU(2)L ◊U(1)Y gauge invariant until the vacuum expectation
value È„3Í = ‹ assumes a non-zero value and picks one of the degenerate vacuum
configurations. Picking as the vacuum state

„ æ
1

Ô
2

Q

a0
‹

R

b © v (1.50)

The generators of SU(2)L ◊ U(1)Y , ta and Y are broken, in fact:

‡1v =
Q

a0 1
1 0

R

b

Q

a 0
‹/

Ô
2

R

b ”= 0, ‡2v =
Q

a0 ≠i

i 0

R

b

Q

a 0
‹/

Ô
2

R

b ”= 0

‡3v =
Q

a1 0
0 ≠1

R

b

Q

a 0
‹/

Ô
2

R

b ”= 0, Y v = Y („)
Q

a 0
‹/

Ô
2

R

b ”= 0

(1.51)

The electric charge operator Q̂ = T3 + Y/2 on the electrically neutral vacuum state
leaves it invariant

Q̂v = 1
2(‡3 + Y ) = 1

2

Q

aY („) + 1 0
0 Y („) ≠ 1

R

b

Q

a 0
‹/

Ô
2

R

b Y („)=1= 0 (1.52)

The unbroken generator of the electromagnetic charge gives rise to the residual U(1)EM

symmetry. Rescaling and translating the doublet in Eq. (1.42)
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„ =
Q

a„+

„0

R

b = 1
Ô

2
exp

C
i‡i◊i(x)

‹

D Q

a 0
‹ + H(x)

R

b (1.53)

We can rotate away the fields ◊i(x) by an SU(2)L gauge transformation.

„ æ „Õ = U(x)„ = 1
Ô

2

Q

a 0
‹ + H(x)

R

b (1.54)

With U(x) = exp
Ë
≠

i‡i◊
i(x)

‹

È
. This gauge choice (unitary gauge) is equivalent to

absorbing the three would-be Goldstone modes ◊i(x) which are "eaten up" by the three
vector bosons W ±, Z that acquire a mass. Expanded around the vaccum state, the
terms in the LHiggs Eq. (1.43) are rewritten as:

V („†„) = 1
2(2⁄‹2)H2

¸ ˚˙ ˝
(1.)

+ ⁄‹H3 + ⁄

4H4

¸ ˚˙ ˝
(2.)

≠
⁄‹4

4¸˚˙˝
(3.)

(1.55)

(.1) This term encodes the mass of the scalar field, mH =
Ô

2⁄‹. The electroweak
breaking scale ‹ is predicted by the theory, however the quartic coupling ⁄ is
unknown, so mH is also not predicted.

(.2) Cubic and quartic Higgs field self-interactions appear in the Lagrangian

(.3) This constant term reflects the fact that V was chosen such that V (0) = 0, and
therefore V < 0 at the minimum, and is discarded as an overall constant term,
however this poses a problem when gravity is included since this vacuum energy
density term is related to the cosmological constant.

and:

(Dµ„)†(Dµ„) ∏

Q

ccca 1¸˚˙˝
(1.)

+ H

‹¸˚˙˝
(2.)

R

dddb

2
S

WWWWU

3
g‹

2

42

¸ ˚˙ ˝
m

2

W

W +
µ

W ≠,µ + 1
2

‹2 (g2 + gÕ2)
4¸ ˚˙ ˝

m
2

Z

ZµZµ

T

XXXXV
(1.56)

(.1) The the gauge bosons (W ±) and Z have acquired masses

m2
W

= g2‹2

4 , m2
Z

= ‹2(g2 + gÕ2)
4 = m2

W

cos2 ◊W

(1.57)
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but thanks to the requirement of Y („) = 1 the photon field Aµ did not. Moreover,
by linking the Fermi theory of Eq. (1.11) with the electroweak model an explicit
estimate of ‹ can be made:

GF
Ô

2
=

A
g

2
Ô

2

B2 1
m2

W

=∆ ‹ =
Û

1
Ô

2
GF (1.58)

Which from precise measurements of the µ decay time yields the electroweak
breaking scale ‹ ƒ 246 GeV. Below this scale, the gauge bosons "naturally"
acquire their mass. Having measured sin2 ◊W ≥ 0.23 from neutral current
scattering experiments, and – ≥ 1/137 being the fine structure constant

mW = mZ cos ◊W ≥
(fi–/

Ô
2GF )1/2

sin ◊W

(1.59)

The masses of the gauge bosons are expected to be mW ≥ 78 GeV and mZ ≥ 89 GeV

(.2) Cubic and quartic Higgs field self-interactions appear in the Lagrangian. In
particular the cubic HVV couplings

LHVV ∏
1
2g2‹
¸ ˚˙ ˝
ÃmW

W +,µW ≠
µ

H + g
Ô

g2 + gÕ2‹

4 cos ◊W¸ ˚˙ ˝
ÃmZ

ZµZ≠
µ

H (1.60)

which induce vector boson fusion processes (VBF), are a probe of the Standard
Model spontaneous symmetry breaking. In particular, their presence in the
Lagrangian is a unique indication of the SSB pattern, since a term ‹HV V with
‹ = 0 wouldn’t have the correct energy dimensions to enter the Lagrangian.
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1.2.3 Fermion mass generation and the flavour sector

Before the inclusion of an Higgs doublet, the Standard Model Lagrangian exhibits a
global U(3)5 flavour symmetry. In fact the kinetic Lagrangian of the fermion fields
Eq. (1.23) is invariant for a rotation in flavour space:

U(3)5 = U(3)QL
◊ U(3)dR

◊ U(3)uR
◊ U(3)LL

◊ U(3)eR
(1.61)

The SSB mechanism breaks this global symmetry to a smaller symmetry group The
fermions masses are generated through Yukawa interaction terms:

LYukawa = ≠ Y ij

d
Q̄Õi

L
„dÕj

R
+ h.c.

≠ Y ij

u
Q̄Õi

L
„cu

Õj
R

+ h.c.

≠ Y ij

¸
L̄Õi

L
„¸Õj

R
+ h.c.

(1.62)

Where

„c + i‡2„
ú = 1

Ô
2

Q

a‹ + H(x)
0

R

b (1.63)

All terms in Eq. (1.62) are gauge invariant and renormalizable since the Y are di-
mensionless 3 ◊ 3 complex matrices in generation space, spanned by the indices i, j.
The primed QÕ

L
, uÕ and dÕ indicate that these states are expressed as gauge interaction

eigenstates, hence a linear combination of the mass eigenstates ui, di.
After SSB, in unitary gauge, the Yukawa terms become:

LYukawa = ≠

3
1 + H

‹

4 Ë
M ij

d
d Õi

L
d Õj

R
+ M ij

u
u Õi

L
u Õj

R
+ M ij

¸
¸ Õi

L
¸ Õj

R
] + h.c.

= L
quarks
Yukawa + L

leptons
Yukawa

(1.64)

Where M ij

f
= Y ij

f
‹/

Ô
2 are 3 ◊ 3 fermion mass matrices. Gauge symmetry violating

mass terms Ã Â
L
ÂR for the fermions have appeared in the Lagrangian.
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1.2.3.1 The CKM matrix

We focus first on L
quarks
Yukawa. This Lagrangian exhibits the global symmetry in Eq. (1.61),

which is broken to an accidental symmetry by the SSB mechanism:

U(3)QL
◊ U(3)dR

◊ U(3)uR
æ U(1)B (1.65)

which reflects baryon number conservation. While U(3)3 has 27 generators (9 real
parameters and 18 phases) U(1)B has only one phase generator. This broken symmetry
allows to rotate away 26 unphysical parameters by moving to a more convenient basis.
The Yukawa matrices for the quark sector are 3 ◊ 3 complex matrices, which contain a
total of 36 parameters (18 real parameters and 18 phases ) so the number of physical
parameters reduces to

N real
phys = 18 ≠ 9 = 9, Nphases

phys = 18 ≠ 17 = 1 (1.66)

of which 6 are the quark masses, 3 are the CKM matrix mixing angles and 1 is the CP
violating phase of the CKM matrix. To identify the physical states, the mass matrices
in L

quarks
Yukawa are diagonalised by separate unitary transformations for the left and the

right-handed fields

(U f

L
)†MfU f

R
= �f , f = u, d (1.67)

Where the matrix �f has diagonal real and positive entries, the physical quark masses

�u = diag(mu, mc, mt), �d = diag(md, ms, mb) (1.68)

These unitary transformations can be reabsorbed in the field definitions rotating from
the interaction eigenstates to the mass eigenstates:

f
Õi
L
M ij

f
f Õj

R
= f

Õi
L
U f

L¸ ˚˙ ˝
f

i

L

(U f

L
)†M ij

f
U f

R¸ ˚˙ ˝
�f

(U f

R
)†f Õj

R¸ ˚˙ ˝
f

j

R

=
3ÿ

i=1
mi

f
f

i

L
f i

R
, f = u, d (1.69)

Adopting the mass eigenstates basis, the quark L
quarks
Yukawa assumes the form:

L
quarks
Yukawa = ≠

ÿ

f

mf

3
1 + H

‹

4
(f

L
fR + f

R
fL), f = (u, d, c, s, t, b) (1.70)
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A few remarks are due at this point:

• A coupling between fermions and the Higgs (Yukawa coupling) has appeared in the
Lagrangian, whose strength is proportional to the fermions’ mass. This coupling
is flavour diagonal and doesn’t generate flavour changing Higgs interactions.

• The interaction basis are brought into the mass eigenstates by two unitary
rotations. In components:

f Õj
L

= (U f

L
)ijf

j

L
, f Õj

R
= (U f

R
)ijf

j

R
, f = u, d (1.71)

These rotations don’t a�ect the kinetic terms since the rotation matrices are space-
time independent. However, since we rotated independently the two components
of the same SU(2)L doublet, a flavour non-diagonal coupling between quarks and
the W boson arises, for example:

g
Ô

2
uÕi

L
/W

+
dÕi

L
+ h.c. æ

g
Ô

2
ui

L

1
(Uu

L
)† Ud

L

2

ij

/W
+

di

L
(1.72)

From which the unitary matrix VCKM = (Uu

L
)† Ud

L
is defined. The CKM matrix

VCKM is a complex unitary matrix and its entries are determined experimentally.

1.2.3.2 Lepton masses

Moving to the lepton Yukawas we write

L
leptons
Yukawa = ≠Y ij

¸
L̄Õi

L
„¸Õi

R
≠ Y ij

‹
L̄Õi

L
„c‹

Õi
R

+ h.c. (1.73)

The second term in this Lagrangian would extend the Glashow-Weinberg-Salam model
and generate Dirac type masses for the neutrinos, however, experimental evidence sets
upper bounds for the neutrino masses of O(0.1) eV which is several orders of magnitude
smaller than the vacuum expectation value ‹ implying, Y‹ ≥ 0. Alternative mechanisms
to the SSB, such as for example the Seesaw mechanism, are possible candidates for
explaining the masses of the neutrinos, as well as their peculiar lightness with respect
to the other SM fermion fields.

In the SM, where Y‹ = 0, the Lagrangian of Eq. (1.73) exhibits a U(3)2 global
symmetry, which is broken to the lepton family number conservation:

U(3)2 = U(3)LL
◊ U(3)eR

æ U(1)e ◊ U(1)µ ◊ U(1)· (1.74)
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Therefore, in the lepton case, the number of broken generators is 15 which allow to
rotate away the same amount of unphysical parameters

N real
phys = 9 ≠ 6 = 3, Nphases

phys = 9 ≠ 9 = 0 (1.75)

The three real parameters we are left with are identified as the three charged lepton
masses. To see this explicitly let’s express Eq. (1.73) in the unitary gauge:

L
leptons
Yukawa = ≠

3
1 + H

‹

4 Ë
M ij

¸
¸ Õi

L
¸ Õj

R

È
+ h.c. (1.76)

Having neglected the neutrino masses, i.e. Y‹ = 0. In analogy to the quark sector, we
rotate to the mass eigenstates basis by a bi-unitary transformation:

�¸ = (U ¸

L
)†M¸U

¸

R
= diag(me, mµ, m· ) (1.77)

which allows to write:

¸Õj
L

= (U ¸

L
)ij¸

j

L
, ¸Õj

R
= (U ¸

R
)ij¸

j

R
(1.78)

and:

L
leptons
Yukawa = ≠

ÿ

¸

m¸

3
1 + H

v

4
(¸L¸R + ¸R¸L), ¸ = e, µ, · (1.79)

The following remarks can be made:

• Since Y‹ = 0 in the Standard Model, the three neutrino mass eigenstates are
degenerate with eigenvalues 0. There is nothing to distinguish them except
weak interactions, so they are simply defined as weak interaction partners of
the charged leptons ‹e, ‹µ, ‹· . This freedom allows to align the neutrino mass
eigenstates to the charged leptons mass eigenstates:

‹ Õj
¸ L

= (U ¸

L
)ij‹

j

¸,L
(1.80)

And the charged current gauge interaction terms read:

g
Ô

2
‹ Õi

L
/W

+
¸Õi

L
+ h.c. æ

g
Ô

2
‹i

L

1
U ¸

L

2ú

ji

1
U ¸

L

2

ij¸ ˚˙ ˝
/W

+
¸i

L
+ h.c. = g

Ô
2

‹i

L
/W

+
¸i

L
+ h.c.

(1.81)
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No flavour changing charged currents arise in the leptons sector, hence, in the
Standard Model, not only to the total lepton number is conserved, but also the
number of leptons of a specific family is (see Eq. (1.74)).

• As opposed to the quark sector, the Yukawa couplings for the leptons are small
compared to their gauge couplings.

Ô
2m¸

‹
≥ O(10≠2

≠ 10≠6) π g, gÕ (1.82)

in practice, the only terms in the Standard Model Lagrangian which lead to
observable di�erences between the leptons are their masses. This leads to another
accidental symmetry in the Standard Model, which is referred to as Lepton
Flavour Universality (LFU) which is approximate since it is only broken by
kinematic e�ects in the Standard Model.



34 Introduction

1.3 Beyond the Standard Model

The more original a discovery,
the more obvious it seems afterwards.

A. Koestler

1.3.1 Unanswered questions in the Standard Model

The Standard Model of electroweak interactions is a renormalizable field theory which
predicts or is consistent with a stunning range of experimental facts, from low energy
—-decays to high energy collider experiments. As outlined in the previous sections,
among the most remarkable achievements for this theory are the ability to predict the
existence (and masses) of the W and Z bosons, the existence of the charm quark, as
necessitated by the GIM mechanism, and the existence of a third family of fermions,
as required by CP violating experimental evidences.

The charged current weak interactions, as described by the generalized Fermi theory,
were successfully incorporated, as was quantum electrodynamics. The consistency
between theory and experiment indirectly tested the radiative corrections and allowed
the successful prediction of the top quark mass and the constraints on the Higgs mass,
which were confirmed with its discovery in 2012.

When combined with quantum chromodynamics for the strong interactions, the
Standard Model is almost certainly the approximately correct description of the
elementary particles and their interactions down to at least 10≠16 cm.

Nevertheless, there are still fundamental unanswered questions which suggest the
necessity for an extension of the Standard Model. A (non exhaustive) list follows:

• Gravity: the gravitational force is not included in a common framework together
with the other three fundamental interactions described by the Standard Model.
In fact, general relativity is not a quantum theory, and the proposed solutions for
a quantum theory of gravity do not yield a renormalizable theory. In addition
there is another di�culty related to gravity, namely the cosmological constant
in Eq. (1.55). As an overall constant, it has no significance for microscopic
interactions, however, it assumes great importance when the Standard Model
is extended to include gravity because it couples to the cosmological constant,
or vacuum energy density. Given the measured mass of mH ≥ 125 GeV, �SSB ≥

108 GeV4, however, from cosmological observations, �obs. ≥ 10≠46 GeV4 [74] and
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would involve a cancellation to ≥ 50 orders of magnitude precision to link these
two quantities. [75]

• Matter-antimatter asymmetry: The Standard Model doesn’t have su�cient CP

violation sources to explain the observed asymmetry between baryons and an-
tibaryons in the Universe. [76]

• Dark Matter: Several experimental observations have shown that the matter
described by the Standard Model is just a small fraction of the matter content
of the Universe, the rest corresponds to Dark Matter which possesses only
gravitational interactions with the known physics [77,76]. Possible NP candidates
for this phenomena are Weakly Interacting Massive Particles (WIMP), and e�orts
to detect their signatures are carried both at collider, such as for example CMS
[78] and fixed target experiments such as XENON [79] (See [80] for a review).

• The hierarchy problem and fine tuning: The tree-level Higgs mass receives cor-
rections due to a top-quark loop [81]

”m2
H

= 3GF m2
t

Ô
2fi2

�2
≥ (0.27�)2 (1.83)

which are quadratically divergent with respect to the next higher scale in the
theory �. In absence of a higher scale � could be interpreted as an ultraviolet
cuto� necessary to render mH observable. However, experimental observations
indicate that the Standard Model is embedded in some larger theory that cuts
o� the momentum integral at the finite scale of new physics. Hence, the natural
scale for mH would be O(�), which in the case of the Planck scale MP = G≠1/2

N
≥

1019 GeV or of grand unification theories MGUT ≥ 1016 GeV, which is much larger
than the measured value. If there is no new physics below these scales then there
must be a fine-tuned cancellation between the bare value and the correction, to
≥ 30 decimal places. This is known as the fine-tuning problem.

• Evidence for neutrino masses: Since the inception of the Fermi theory of weak
interactions, neutrinos played a special role in advancing our understanding of
nature. In the Standard Model, the unitary transformation that rotated neutrinos
interaction eigenstates to mass eigenstates was chosen to be the same as the
one acting on their charged isospin partners. This is possible thanks to their
massless-ness in the theory, and renders them undistinguishable if not for the
weak interactions they give rise to. However, neutrino flavour oscillations, which
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are sensitive to their non-zero masses or mass di�erences, are experimentally
observed (See [82,83] for a review). This gives rise to a mixing matrix VPMNS, with
3 mixing angles and a CP violating phase in the lepton sector. As opposed to its
quark counterpart VCKM, VPMNS exhibits a non flavour-diagonal pattern [84,85].
Moreover, given the fact that the neutrinos are the only neutral fermion in the
Standard Model, they could receive their mass not only via the Higgs mechanism,
but also via a lepton number violating Majorana term. This motivates the huge
experimental e�ort to search for signatures induced by this class of operators
such as the neutrinoless double beta decay 0‹2— (See [86] for a review) or lepton
flavour violating (LFV) modes such as µ≠

æ e≠e+e≠ [87,88].

• The flavour puzzle: The Standard Model has too much arbitrariness to be the
final story. If we include neutrino masses the model has 25 free parameters: 20
belong to the flavour sector (12 fermion masses , 6 mixing angles and 2 CP

violation phases (+ 2 possible Majorana phases) ) while 5 determine the gauge
sector with 3 coupling 1 the Higgs mass and 1 VEV. Moreover the Standard
Model gives no explanation as to why fermions appear in three generations with
such hierarchical pattern of masses, which spans over 10≠5 orders of magnitude
from the top quark to the electron.

The Standard Model is therefore considered an incomplete theory and a huge
amount of both experimental and theoretical e�orts are addressed to shed light towards
its extensions. Experimentally, these e�orts can be classified in two complimentary
approaches:

• Direct searches: Aim at producing and observing the decay of new particles or
mediators. The reach of this approach is limited by the energy in the centre of
mass, which has to be enough to produce the new particles on-shell.

• Indirect searches: Aim at observing the indirect e�ects of NP contributions to
SM processes. These contributions would arise from virtual loops which involve
new particles or interactions, therefore this approach allows to probe energy scales
far beyond those accessible to present particle accelerators in a complimentary
way with respect to direct searches.

Both these approaches contribute on constraining the possible shapes New Physics
(NP) can assume, which are systematically developed in an E�ective Field Theory
Framework (EFT).
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1.3.2 The Standard Model as a low energy e�ective theory

1.3.2.1 A systematic approach to identifying the New Physics structure

In presence of NP, the SM is considered as the low energy limit of a more general
Lagrangian which includes operators of dimension d > 4 which are written in terms of
SM fields and suppressed by inverse powers of the NP scale �.

This approach is similar to the one that lead Fermi to hypothesise a four-fermion
operator between two currents (Fig. 1.1) when formulating his theory of weak inter-
actions. The four-fermion operator is a result of integrating out the unknown heavy
degrees of freedom and contracting the W mediator exchange to a contact interaction.
In doing so we obtain a dimensionful coupling constant, and a d > 4 operator in the
Lagrangian. The SM Lagrangian when considered as an E�ective Field Theory (EFT)
can be written as [89]:

LSMEFT = LSM +
ÿ

d>4

Ndÿ

n=1

c(d)
n

�d≠4 Q(d)
n

(SM fields)
¸ ˚˙ ˝

�Ld>4

(1.84)

The operators Q(d)
n

in �Ld>4 respect the gauge symmetries of the SM, and their
coe�cients are strongly constrained from present data, in particular:

• The only d = 5 electroweak structure [90] violates the total lepton number and
describes non-vanishing Majorana-type masses for the left handed neutrinos.
The upper limits on neutrino masses and lepton number conservation strongly
suppress these contributions.

• Given that the Higgs naturally tends to become as heavy as the heaviest degree of
freedom in the underlying theory Eq. (1.83), from the Higgs mass measurement
we are lead to expect that NP should be characterised by �NP of a few TeV.
Sizeable contributions should arise for operators involving the Higgs field and
fields strongly coupled to the Higgs, such as the third generation quarks. Present
data constrains these contributions to �Ld>4 to have very small coe�cients.

• Experimental observations also impose strong constraints on d = 6 operators that
do not explicitly violate symmetries of the LSM such as the ones contributing to
flavour-changing processes, if we are to expect �NP ≥ O( TeV)

• As discussed in Sec. 1.2.3, the SM Lagrangian exhibits accidental symmetries
leading to baryon number and lepton number conservation. The strong constraints
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on baryon and lepton number violating terms (from proton decay time lower
limits and smallness of neutrino masses) impose that the O( TeV) NP terms must
preserve those symmetries and suggests a multi-scale structure in the SMEFT.

The hierarchical way in which the flavour symmetry of the gauge sector is broken
by Yukawa couplings induces approximate accidental symmetries for lighter leptons
Eq. (1.82), and the search for their possible violation represents a very sensitive probe
to search for physics beyond the Standard Model. The b quark properties (for example
its relatively long decay time, and high mass hence large number of available decay
modes) render the B meson phenomenology an excellent physics laboratory for indirect
BSM searches.

1.3.2.2 b æ s¸+¸≠ transitions

As we have seen in the previous sub-section, EFT allows to factorise e�ects which are
typical of separate physics scales. Hence it becomes handy in describing rare processes
involving heavy flavoured meson decays [91], since they are governed by two di�erent
energy scales: the electroweak scale, characterised by the (W ±, Z) and the top quark
masses, and �QCD, which is related to the hadronisation processes. By integrating
out the heavy degrees of freedom in the SM Lagrangian we obtain an e�ective theory
written in terms of light SM field operators:

L
bæ s
eff

= 4GF
Ô

2
ÿ

i

Ci(µ)Qi(µ) (1.85)

Where the Ci are the e�ective couplings (Wilson Coe�cients, WC) and the index
i spans the complete basis of operators Qi which give rise to the bæ s transition.
The renormalisation scale µ, which these terms depend on, acts as a separator scale
between short distance (perturbative) e�ects which are embedded in the Ci(µ), and the
long-distance (non-perturbative) contributions given by the Qi(µ). The modification
with respect to the SM predictions due to NP amplitudes is systematically treated by
considering their contribution to the Ci at µ ≥ mW and subsequently by running the
Ci(µ) values to lower scales µ ≥ mB with the use of renormalisation group equations.
This leads to a shift in the Wilson coe�cients with respect to the SM prediction, in
the presence of NP.

Ci = C
SM
i

+ C
NP
i

(1.86)
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The e�ective Lagrangian inducing FCNC bæ s transitions can be classified in terms of
light SM fields operator content, Lorentz and gauge structures of the couplings as [89]:

L
bæ s
e� = L

bæ s
4(q) + L

bæ s
FCNC (1.87)

The first part L
bæ s
4(q) includes four quark operators inducing b æ s qq̄ processes:

L
bæ s
4(q) = 4GF ⁄t

Ô
2

S

U
ÿ

i=1,2
Ci(µ)Qi(µ)

T

V + O

A
⁄u

⁄t

B

+ O (C3...6) + h.c. (1.88)

Where ⁄q = V ú
qb

Vqs. Here we have used CKM unitarity to express ⁄t = ≠⁄c + O(⁄u).
Four-quark operators such as Q3...6, which induce b æ s qq̄ transition via a gluon
exchange (QCD penguins) are characterised by small Ci(µ = mb) within the SM [92],
while Q

(c)
1 and Q

(c)
2 are generated at tree-level by a W exchange. The ones with the

largest Wilson coe�cients are:

Q
(c)
1 = (s̄L“µtacL)(c̄L“µtabL),

Q
(c)
2 = (s̄L“µcL)(c̄L“µbL),

(1.89)

The second part contains relevant operators since they give rise to non-vanishing
b æ s¸+¸≠ tree level matrix elements:

L
bæ s
FCNC = 4GF ⁄t

Ô
2

S

UC7(µ)Q7(µ) +
ÿ

i=9,10

ÿ

¸

C
¸

i
(µ)Q¸

i
(µ)

T

V + O (gsC8) + h.c. (1.90)

Q7 = e

16fi2 mb(s̄L‡µ‹bR)Fµ‹ ,

Q
¸

9 = e

16fi2 (s̄L“µbL)(¯̧“µ¸),

Q
¸

10 = e

16fi2 (s̄L“µbL)(¯̧“µ“5¸).

(1.91)

These operators correspond to the local b æ s“ transition, and b æ s¸+¸≠ through
vector and axial vector lepton currents, respectively. Due to the V-A structure, the set
of operators Q

Õ
7,9,10 obtained by flipping the chirality of the quark spinors in Eq. (1.91)

are strongly suppressed within the SM. This is also valid for the scalar currents:
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Q
¸

S1
= e

16fi2 (s̄LbR)(¯̧
R¸L), Q

¸

S2
= e

16fi2 (s̄RbL)(¯̧
L¸R) (1.92)

Which receive strong helicity suppression in the SM due to the smallness of the lepton
masses. Moreover, the smallness of the SM Yukawa couplings for leptons is reflected in
the fact that C

¸

i
(µ) is independent on the lepton generation ¸. All of these stringent

constraints motivate the search for deviations from SM predictions in the Wilson
coe�cients appearing in the SMEFT describing b æ s¸+¸≠ transitions.

1.3.2.3 Sandwiching the currents

The decay amplitudes for exclusive B decays are obtained in terms of expectation
values of the e�ective operators Qi [89,93]:

M(B æ Hs¸
+¸≠) = ÈHs¸

+¸≠
|Qi|BÍ (1.93)

Where Hs is a meson containing a strange quark. These matrix element encode
the long-distance (non perturbative) QCD e�ects, two are the dominant sources of
uncertainties on their determination:

• Form factors: For bilinear quark operators, such as for example Q
¸

9,10, the
hadronic and leptonic currents in the matrix element factorise as M = Hµ‹Lµ‹ .
While the lepton current is treated perturbatively, the Hµ‹ is expressed in terms
of non-perturbative scalar functions, indicated as QCD form factors, and are
expressed as combinations of the B and Hs meson momenta which give Hµ‹ a
Lorentz covariant form. Despite the non-perturbative nature of the form factors,
important theoretical e�orts for are carried out to obtain them from Light Cone
Sum Rules [94,95] (valid at low q2 = (pB ≠ pHs

)2) or Lattice QCD (valid at high
q2) [96].

• Charm-loop e�ects: The factorisation that allowed to separate hadronic and
leptonic currents doesn’t hold for four-quark operators. The situation gets
complicated by the fact that Q

(c)
1,2 arise at tree level in the SM, hence their

coe�cients are large. These e�ects, which are indicated as charm-loop, are
estimated by means of a �QCD/mc expansion [97] or by a more general data
driven method based on analyticity of the function describing them [98]. Both
estimates suggest these e�ect are small, however, since there is no general
consensus on the hypothesis at their basis, they are a�ected by large theoretical
uncertainties.
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Nonetheless, the fact that these non-perturbative uncertainties are lepton flavour
universal allows to build observables and test statistics which cancel their impact on
the results, as will be shown in the following chapters. In the next section measurements
of the observables sensitive to these NP contributions are presented, together with
LHCb which is currently the current world leading particle physics experiment in
precision of their determination.
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1.4 The Large Hadron Collider

La sapienza è figliuola della
sperienza.

L. da Vinci

Fig. 1.5 Schematic view of the accelerator complex at CERN [99]

The Large Hadron Collider (LHC) is a particle accelerator and collider at the
European Organisation for Nuclear Research (CERN) laboratory. It is placed in the
27 km circumference tunnel located approximately 100 m underground which previously
hosted the Large Electron Positron Collider (LEP). Proton beams circulating at the
LHC are first gradually accelerated in the injection chain composed by other accelerators
formerly built at CERN for previous experiments, as illustrated in Fig. 1.5 [99], up
to the Super Proton Synchrotron (SPS) where they reach an energy of 450 GeV. At
this stage they are injected in the concentrical LHC rings, where the two proton
beams circulate in opposite directions. A complex system of superconducting magnetic
multipoles, operating at 1.9 K and producing an 8.3 T magnetic field, bend and focus
the beam around its trajectory in the acceleration process. At the design energies of
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7 TeV and 14 TeV for Run-I and Run-II„ respectively stable circulating proton beams
are focused by the magnets in 2800 bunches, each consisting of 1.15 ◊ 1011 protons and
collide at the frequency of bunch crossing (20 ≠ 40 MHz). These parameters contribute
directly at reaching the LHC design instantaneous luminosity of 1034 cm≠2 s≠1.

The proton beams cross at four interaction points where the main experiments are
located: ALICE [100], ATLAS [101], CMS [102], LHCb [103]. While ALICE focuses
on the study of quark-gluon plasma processes through heavy ion collisions, ATLAS
and CMS aim at studying the direct production of NP particles and LHCb is designed
to investigate phenomena related to heavy flavour physics.

1.4.1 The LHCb experiment at the LHC
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Fig. 1.6 Angular (left) and rapidity (right) correlation between two heavy quarks in QQ̄
production [104], simulated using PYTHIA8 and the CTEQ6 NLO parton distribution
functions.

The expected rate for a process is obtained by the product of the luminosity times
its corresponding cross section. At leading order, the di�erential cross section for heavy
flavour quark pair production at hadron collisions is given by [105]:

d

dydȳdp2
T

‡(pp æ QQ) = fi

4m4
T

1
[1 + cosh(y ≠ ȳ)]2 ‡partonic(qq̄, gg æ QQ̄) (1.94)

Where y, ȳ are the rapidities of the heavy quark produced, m2
T

= p2
‹ + m2 is the

transverse mass. For a fixed value of mT , the cross section is heavily suppressed when
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the di�erence in rapidity becomes large. This implies once a detector has registered
the b quark, there is a large probability that the b̄ will be nearby in rapidity as shown
in Fig. 1.6.

Fig. 1.7 Side view of the LHCb detector [103], the beam is aligned with the z axis

At 14 TeV the total pp cross section is 100 mb, of which inelastic processes amount
to 70% [106]. Heavy quark pair production through strong interactions is dominated
by cc̄ and bb̄ pair production with the latter being expected ≥ 500µb at the LHC
design energy. Motivated by the strong rapidity correlations between heavy quark pairs
produced at high energy, the LHCb detector [103] is a single-arm spectrometer with
forward angle coverage of 10 mrad to 300 (250) mrad in the bending (non-bending)
plane, corresponding to a pseudorapidity coverage of 2 < ÷ < 5 where ÷ = ≠ln[tan ◊]
with ◊ defined as the polar angle with respect to the beam direction (See Fig. 1.7). In
the LHCb acceptance, the bb̄ pair production cross section was measured to be [107]:
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‡(pp æ bb̄X)[@ 7 TeV] = 72 ± 0.3 ± 6.8 µb
‡(pp æ bb̄X)[@ 13 TeV] = 144 ± 1 ± 21 µb

(1.95)

Which, extrapolated with simulation to the full solid angle correspond to ≥ 295 µb
and ≥ 560 µb respectively. Hence ≥ 25% of bb pairs produced are contained in the
detector’s acceptance. In such a harsh hadronic environment, the optimal detector
performance is obtained by tuning the beam focus at its interaction point independently
from the other interaction points. In its Run-I and Run-II data taking periods, the
LHCb ran at instantaneous luminosities of ≥ 4 ◊ 1032 cm≠2 s≠1, roughly an order of
magnitude lower than CMS and ATLAS. Although levelling the luminosity corresponds
to reduced interactions rates, it has the advantage or reducing the pile-up (number of
pp collisions per bunch crossing), consequently the occupancy in the detector remains
low yielding easier to analyse events, and the radiation damage is reduced. This will
allow LHCb to maintain the optimal luminosity for the experiment in its subsequent
Upgrades. In these conditions roughly 105 bb pairs per second would be produced in
LHCb acceptance. The LHCb detector layout can be described by three components,
each optimised to maximally exploit the study of beauty and charm hadron decays: a
tracking system, a particle identification (PID) and trigger systems:

1.4.1.1 Tracking system

The relatively long (O(1 ps)) lifetime and the relativistic boost combine to yield an
average flight distance of few millimetres for a b-hadron in the detector, therefore the
identification of secondary vertices (SV) at short distance from the interaction point
is of crucial importance to discriminate b-hadron decays against the underlying event
originated by charged particles in the pp collision. An excellent SV resolution is for
example required for precision studies of systems with a high oscillation frequencies such
as the Bs ≠ Bs system. This is achieved by the combined e�ort of three sub-detectors:

• The VErtex LOcator (VELO): operating at 2 ◊ 10≠7 mbar vacuum and at a
temperature of ≠7¶C, the VELO consists of 42 silicon microstrip detectors
arranged along the beam, each providing a measurement of the r and „ charged
tracks coordinates, with pitches of 40 ≠ 100 µm. It is the closest sub-detector to
the interaction point surrounding the beam at 7 mm from its axis, and for detector
safety reasons, it is composed by two retractible semi-circular halves which are
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moved close to the beam after the injection and energy ramping procedure is
completed. It reaches impact parameter (IP) resolution of Æ 35 µm for particles
with pT > 1 GeV.

Fig. 1.8 Geometry of the VELO r and „ sensors. For the „ sensor, strips belonging to
two adjacent modules are represented in order to show the stereo angle [103]

• The Silicon Tracker (ST): The Silicon Tracker is composed by two sub-detectors:
the Tracker Turicensis (TT) which is located upstream of the magnet and the
Inner Tracker (IT), downstream of the bending magnet. Both are equipped with
silicon microstrip sensors disposed in a cross-shaped fashion, however while the
TT covers the entire acceptance of the detector, with a total e�ective area of
around 8 m2, the IT covers a smaller e�ective area of 4 m2. Each of the tracking
stations follows a x ≠ u ≠ v ≠ x arrangement with vertical strips in each of the
two x layers, and strips rotated by an angle of ±5¶ in the u, v layers (Fig. 1.9).
A similar microstrip pitch of 180 ≠ 190 µm for both detectors has been chosen to
minimise radiation damage and obtain a single hit resolution of 50 µm.

• The Outer Tracker (OT): The Outer Tracker is the outer part of the downstream
tracking station, where the incident particles flux is reduced with respect to the
inner regions. It is composed by a coarse array of lower-priced drift tubes filled
with a Ar CO2 O2 (70% - 28% - 2%) gas admixture which guarantees a drift-time
·D < 50 ns and a resolution on the drift coordinate ≥ 200µm. The three modules
(T1,T2 and T3) are disposed according to the same stereo angle as the IT/TT
and extend the IT active area to fully cover the LHCb acceptance.

The spectrometer magnet (Fig. 1.10), placed between TT and T1, is a warm magnet
which provides an integrated field of about 4 Tm and allows to measure the charged
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Fig. 1.9 Layout of one TT (left) and of the four TT layers (right) [103]

Fig. 1.10 Perspective view of the magnet, with dimensions in millimeters (left) and
measured on-axis magnetic field, for both "up" and "down" polarities (right)
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particles’ momenta with a resolution of ”p/p ≥ 0.5% for momenta up to 200 GeV
by bending their trajectories in the horizontal plane. The current in the magnet is
periodically inverted, and comparable amounts of data are collected in each polarity
configuration in order to reduce the impact of systematic e�ects due to detection
asymmetries.

1.4.1.2 Particle identification

Excellent particle identification capabilities are fundamental to study heavy hadron
decays at LHCb, where the separation between fi±-K±

≠ p as well as e±-fi± signatures
is crucial. The former relies on the information collected at the two Ring Imaging
Chereknov (RICH) detectors, while the latter heavily relies on the information collected
at the electromagnetic calorimeters (ECAL) which are detailed in the next subsection.
Since the momenta of the B mesons is greater at greater polar angles, two RICH
detector subsystems are deployed:

• RICH1: Placed between the VELO and the TT, RICH1 covers the entire LHCb
acceptance and contains an admixture of aerogel1 (SO2) and (C4F10) which
allow a momentum operation range of 1 ≠ 60 GeV. Being placed upstream, light
spherical mirrors are employed within the detector acceptance to minimise the
material budget, while the optical system is placed outside acceptance, achieving
a radiation length (including radiators) of ƒ 8%X0. Moreover the low angle
acceptance is limited by the beam pipe which traverses the detector, the Hybrid
Photon Detectos (HPDs) are screened from the dipolar field of the magnet.

• RICH2: is located between the last tracking station and the first muon station
and equipped with C4F10 radiator which covers the higher momentum range
of 15 ≠ 100 GeV and a limited acceptance of acceptance from ±15 mrad to
±120 mrad (horizontal) and ±100 mrad (vertical).

Cherenkov light is collected by HPDs and its spatial position is measured to obtain
information on the particle velocity. This, combined with momentum information from
the tracking systems allows to infer the particles mass, and therefore their type (e.g.
pion, proton, kaon).

1The aerogel radiator was employed in the RICH detectors only during Run I data taking period
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Fig. 1.11 Side view schematic layout of RICH-I (left) and RICH-II (right) detectors
[103].

Fig. 1.12 Left: reconstructed Cherenkov angle for isolated tracks as a function of their
momentum; the Cherenkov bands for µ, fi, K are clearly visible. Right: Same quantity
as obtained from simulation, for di�erent particles and radiators.
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1.4.1.3 Calorimeters

Calorimeters are of paramount importance at the LHCb detector since they are deputed
to e±-fi± discrimination, to energy and position measurement of electrons photons
and hadrons, and to selection of candidates with high transverse energy at the first
(hardware) trigger level (L0) deciding after just 4µs after the interaction took place.
In particular The stringent performance requirements define the general structure
and the characteristics of the calorimeter system and the associated electronics. The
calorimeter system is composed of three main components:

• The Scintillating Pad Detector (SPD) and Preshower (PS) detectors. The SPD
improves the separation of electrons and photons before entering the calorimeters
while the PS, placed after a 2.5X0(15 mm) lead converter, improves the elec-
tron/charged pion separation by measurement of the longitudinal partitioning of
the EM shower.

• An Electromagnetic Calorimeter (ECAL): the fi±/e± separation relies heavily on
the ECAL which is composed by alternating layers of scintillators and lead. At
this point the major background component for triggers based on the electron
signature in the calorimeter is still dominated by upstream “ conversions for
which no PID information is available yet, this requires full containment of the
EM showers for optimal energy resolution, hence the thickness of the ECAL of 25
radiation lengths (X0). The granularity of the ECAL in the transverse dimension
increases with the distance from the beam pipe, to adapt to the non-uniform
detector occupancy.

• The Hadronic Calorimeter (HCAL): The HCAL, which is in charge of triggering
high transverse energy hadrons, consists of a sampling calorimeter made from 26
layers of iron and scintillating tiles, as absorber and active material, respectively.
The segmentation of the tiles is transverse to the beam-pipe, hence they are
placed parallel to the beam axis for a total of 5.6⁄i(Fe) (≥ 20 cm) interaction
lengths.

The obtained energy resolution is found to be [108]:

‡E

E
ƒ

Y
__]

__[

9%Ô
E( GeV)

ü 0.8% for the ECAL and
69%Ô

E( GeV)
ü 9% for the HCAL.

(1.96)
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Where the first uncertainty is related to the stocasticity of shower development and
the second is related to detector resolution.

1.4.1.4 The muon system

Fig. 1.13 Left: side view of the LHCb Muon Detector [103]. Right: geometry of a
quadrant, with each rectangle representing a chamber. [103]

Muon triggering and muon identification are of fundamental for LHCb physics
program. Muon final states are present e.g. in CP sensitive B decays such as B0

d
æ

J/Â(µµ)K0
S

and B0
s

æ J/Â(µµ)„, or helicity suppressed B0
s/d

æ µ+µ≠ or FCNC
B0

æ Kú0µ+µ≠ rare decays, which are sensitive to NP models as outlined in the
previous chapters. The muon systems provide information for the high-pT muon
triggers at the L0 level, as well as muon identification information for the subsequent
stages of trigger (HLT1 and HLT2) and o�ine analysis.

The muon systems consist of 5 rectangular stations placed along the beam axis
covering an acceptance of 20 ≠ 306 mrad(16 ≠ 258 mrad) in the bending (non-bending)
plane. Energetic muons are able to pass through several meters of material loosing only
a small fraction of their energy, for this reason muon detectors are placed at the farthest
point from the interaction point. The stations are disposed as M1(ECAL-HCAL)M2-
M5 and the ones after the calorimeters are insterspaced by layers of 80 cm or iron,
to select penetrating muons: for a muon to traverse the whole system, whose length
corresponds to ≥ 20 interaction lengths, the minimum energy has to be ≥ 6 GeV. All
muon stations are equipped with multi-wire proportional chambers, with the exception
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of M1 for which gas electron multiplier detectors (GEM) are employed, due to higher
radiation harshness. While M1-M2-M3 improve the pµ

T input for the trigger (at this
stage ”pµ

T ≥ 20%), M4-M5 provide binary information to the trigger system. The
geometry of the 5 stations scales transversally with the distance from the interaction
point and spatial information on the muon tracks is obtained by partitioning the muon
chambers along the plane perpendicular to the beam axis. Their granularity scales
with the distance from the beam axis so that the incident particle flux is constant.

1.4.1.5 The trigger system

Considering the high rate of collisions and the large number of track in the underlying
event compared to the small fraction of interesting decays of a bb pair inside LHCb
acceptance, a trigger system is needed to identify events of interest and reduce the
rate to manageable levels to be stored on disk for o�ine analysis. The LHCb trigger is
organised in two stages (levels):

• L0 Trigger The L0 Trigger system reduces the output rate to 1 MHz which is the
maximum rate at which the whole detector can be read out. Due to its large
mass, B decay products are typically characterise by high transverse momenta
and energy hence, the L0 trigger selects the highest ET hadron, electron or “

from the calorimeters or the single/di-muon candidates with highest pT . To do
so it reads information from calorimeters, PS and SPD or the muon stations. An
estimate of the total number of tracks is also provided by the SPD. A Decision
Unit (DU) collects all the collected information until now and derives the final
trigger decision for each bunch crossing. Not only the L0 trigger reduces the rate
to a writeable amount, but also to a level that is compatible to the computing
power of the next stage, the HLT.

• High Level Trigger (HLT) In order to reduce the rate to the writeable 5 kHz and
12.5 kHz rates in Run I and Run II respectively, software based HLT makes use
of the of the full information from the detector to select events filtered by the L0
and organise them in separate alleys based on more complex quantities than the
one of L0 such as kinematical, topological and particle identification variables, as
well as geometrical variables and invariant masses.
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1.4.2 Overview of latest b æ s¸+¸≠ results

In this subsection, an overview of the latest measurements of observables governed
by the underlying FCNC b æ s¸+¸≠ transition is presented. These, together with
LFU tests in b æ c¸‹ decays, are collectively referred to as "Flavour Anomalies", and,
although none of those measurements exhibits a discrepancy larger than the golden
value of 5‡, they present an interesting pattern of global and coherent deviations
with respect to the corresponding SM expectations. These observables consist of semi-
leptonic or leptonic branching fractions, angular observables and ratios of branching
fractions. While the SM prediction for semi-leptonic branching fractions and angular
observables su�er from potentially large theoretical uncertainties related to form factors
determination and charm-loop contributions (See Sec. 1.3.2.3), they are experimentally
clean thanks to the fact that they are measured using muons in the final state, which
traverse the detector almost undisturbed up to the muon stations.

On the other hand, purely leptonic branching fractions and ratios of semi-leptonic
branching fractions are of clean determination within the SM, thanks to the fact
that they are free from QCD related uncertainties, nonetheless they pose non-trivial
experimental challenges since the former class of observables is loop, CKM and helicity
suppressed and hence extremely rare, while the latter class of observables involves
detection of electrons which, among other problems, lose a significant amount of energy
to bremsstrahlung radiation and are a�ected by lower reconstruction e�ciency with
respect to muons.

1.4.2.1 Di�erential semi-leptonic branching fractions

The LHCb experiment measured the di�erential branching fractions of several decay
channels governed by the bæ sµ+µ≠ transition, each involving di�erent spectator
quarks, as a function of the dimuon invariant mass q2. These consist of mesonic
transitions B0,(+)

æ K0,(+)µ+µ≠ and B+
æ Kú+µ+µ≠ [109], B0

æ Kú,0µ+µ≠ [110],
and B0

s
æ „µ+µ≠ [111] decays, and baryonic transitions such as �0

b
æ �µ+µ≠ decays

[112]. Apart from overall normalisation parameters, such as for example the Fermi
coupling constant and elements of the CKM matrix, the di�erential decay rates depend
on the Wilson Coe�cients Ci(µ), hence their measurement gives potential direct access
to NP contributions which would induce a shift on their value with respect to the
SM predction. As can be seen in Fig. 1.14, all of the measured di�erential decay
rates d�/dq2 involving bæ sµ+µ≠ processes have lower measured values than the
SM prediction, in particular in the region below the charmonium resonances, for
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1 . q2/ GeV2 . 6. However, the broad theoretical uncertainties represented by solid
coloured bands reduce the significance of such deviations.
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Fig. 1.14 Di�erential branching ratios d�/q2 of B+
æ K+µ+µ≠ (top left) B+

æ

Kú+µ+µ≠ (top right) and B0
s

æ „µ+µ≠ (bottom). A deficit with respect to the SM
prediction in the intermediate q2 region is observed for all modes, however the large
theory error bands don’t allow to draw unambiguous conclusions.

The �0
b

æ �µ+µ≠ di�erential decay rate, in fact, is an example of how the sig-
nificance of the deviations with respect to the SM predictions of absolute branching
fractions depends on determination of non-perturbative quantities and on experimental
inputs. An example of the former case can be seen in Fig. 1.15 where the two SM
predictions for the di�erential decay rate are both obtained with Lattice QCD calcula-
tions, however the result shown in the right subfigure relaxes the static approximation
and treats the b quark relativistically in the form factors derivation, thus reducing
the theoretical uncertainties and therefore the significance of the tension with respect
to the SM prediction [113,114]. On the other hand, an example for the latter case is
shown in [115]. Since the �0

b
æ �µ+µ≠ di�erential decay rate is measured relative

to the control channel �0
b

æ �J/�, the absolute �0
b

æ �µ+µ≠ decay rate depends
on the experimental input of f�b

. In [115] it is shown that the tension with the SM
expectation at high q2 is greatly reduced when including results on f�b

from TeVatron
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data only, given its strong dependence on the b-quark production processes and the
b-quark transverse momentum.
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Fig. 1.15 Comparisons of the measured d�/dq2 for �0
b

æ �µ+µ≠ decays with respect
to theoretical predictions that use di�erent assumptions in the derivation of the form
factors. Relaxing the static b hypothesis (right) reduces the tension with the SM
prediction.

1.4.2.2 Angular observables

In case of a vector hadron in the final state, e.g. the decay B0
æ Kú0(K+fi≠)¸+¸≠,

a rich series of angular observables is accessible thanks to the non-trivial angular
dependence of the b-hadron decay width. The number of independent variables needed
to describe a process involving n final states is 2n ≠ 3, hence the decay rate is expressed
in terms of 5 independent variables: the invariant mass of the K+fi≠ system mKfi, the
dilepton invariant mass q2 and the set of angular variables �̨ = (cos ◊l, cos ◊K , „) as
[116]:

d5�
dmKfidq2d�̨

Ã
ÿ

i

Ii(q2, mKfi)fi(�̨) (1.97)

Where the fi(�̨) are combinations of spherical harmonics which depend on ◊l (the
angle between one of the leptons’ spatial momentum and the B meson direction in
the dilepton rest frame), ◊K (the angle between the K+ spatial momentum and the
B meson momentum in the Kú0 rest frame) and „ (the angle between the plane of
the dilepton pair and the plane of the K and fi originated from the Kú0 in the B rest
frame). Assuming an on-shell Kú0 of narrow width and integrating over mKfi the Ii(q2)
are q2 dependent angular observables. Starting from the parametrisation of Eq. (1.97),
a set of CP -averaged and CP -asymmetric observables can be built:
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Si(q2) = Ii(q2) + I i(q2)
(d� + d�)/dq2

Ai(q2) = Ii(q2) ≠ I i(q2)
(d� + d�)/dq2

(1.98)

Where the I i and � refer to the CP conjugated decays. The observables Si and Ai

are extracted by fitting the decay rate via (un)binned maximum likelihood fits to the
angular distributions of the final state particles, or by adopting the method of moments.
In analogy to the di�erential branching fractions, they are sensitive to short distance
(the Wilson Coe�cients Ci(µ)), and long distance (form factors and charm-loop e�ects)
contributions, whose SM predictions su�er from sizeable uncertainties due to their
non-perturbative nature. To reduce the impact of said uncertainties an optimised set
of observables, which consist of combinations of the longitudinal fraction FL

3
m¸æ0

ƒ S1

4

and S3≠9, has been engineered [117,118]. Among these, P Õ
5:

P Õ
5 = S5

FL

Ô
1 ≠ FL

(1.99)

received much attention in the recent years due to the deviation in the intermediate
q2 bin which was first observed by LHCb in 2013 [119] using 1 fb≠1 of data, and
subsequently confirmed in 2016 and 2020 expanding the analysed dataset to 3 fb≠1

(Fig. 1.18 (top left) [120]) and 4.7 fb≠1 (Fig. 1.18 (top right)[121]) respectively. Although
with larger uncertainty, the same observable measured using the isospin partner decay
B+

æ Kú+(æ K0
S
fi+)µ+µ≠ using 9 fb≠1 of pp collision data Fig. 1.18 [122], exhibits a

similar tension as the neutral B0 mode. Complimentary information provided by the
very low q2 angular analysis of B0

æ Kú0(K+fi≠)e+e≠ [123] place stringent constraints
on possible NP contributions on Wilson Coe�cients to which these observables are
particularly sensitive to, such as C

(Õ)
7 . Thanks to the copious quantity of b-mesons

produced at LHCb, the determination of angular observables exploiting decays governed
by the b æ s¸+¸≠ transition but with di�erent spectator quarks, such as B0

s
æ

„(K+K≠)µ+µ≠ decays was performed using the full dataset collected (Fig. 1.18) [124].
In addition to the e�orts from the theory community to hone in on the theoretical

determination of non-local matrix elements [125], improvement of the experimental
determination of the binned angular observables is foreseen exploiting the full dataset
collected by LHCb, together with several unbinned q2 and angular analyses which,
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albeit with di�erent degrees of model dependence, aim to pin down the size of the
charm-loop contribution, defined in Sec 1.3.2.3 (e.g. [126]).

24 the B0 �K�0�+�� decay and the flavour anomalies
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Figure 8: Differential branching ratio d�/dq2 for (left) B+ � K+µ+µ� [77]
and (right) B0 � K�0µ+µ� [79] decays. The shaded regions illus-
trate the theoretical predictions and their uncertainties.
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Figure 9: Left: first P�
5 measurement by the LHCb experiment corresponding

to a dataset of 1 fb�1 [80]. Right: Updated measurement of P�
5

including LHCb 3 fb�1 [81], ATLAS [83], CMS [84] and Belle [82]
results.

P�
5 variable (see Fig. 9) [80]. Thereafter, several updates have been

published in more recent years, both by LHCb (with three times more
statistics [81]) and by other experiments (Belle [82], ATLAS [83] and
CMS [84]). Figure 9 (right) summarises the results obtained by the dif-
ferent collaborations. While the updated publication of LHCb [3 fb�1]
confirmed the initially-observed tension, analyses by Belle, ATLAS and
CMS present large uncertainties that do not allow to draw any further
conclusions. It is worth to note that, despite the limited sensitivity to
this kind of measurements, the effort performed by general-purpose
experiments like ATLAS and CMS proves the strong interest of the
entire particle-physics community in the flavour anomalies.

2.3.3 Charm loop or New Physics?

Several models have been suggested in order to interpret the P�
5 de-

viation as a signature of New Physics [43–49], nevertheless, non-
perturbative QCD contributions from Obscc operators (known as
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Fig. 1.16 Comparison of measurements of P Õ
5 in bins of q2 as obtained from ATLAS,

Belle, CMS and Run I LHCb data [120] (top left) and using data collected during Run
I and 2016 [121] (top right). Measurements of P Õ

5 (bottom left) using B+
æ Kú+µ+µ≠

decays [122] and FL (bottom right) using B0
s

æ „µ+µ≠ decays [124], in bins of q2,
using Run I + Run II datasets collected at LHCb.

1.4.2.3 Purely leptonic branching fractions

Of more clean and precise SM prediction than the previously reviewed observables are
the purely leptonic branching fractions of b-mesons such as Bs,d æ µ+µ≠, where the
non-perturbative contributions reduce to decay constants fBs,Bd

. They are proportional
to the meson vacuum matrix elements, and are obtained using Lattice QCD calculations
to percent level precision. This leads to a SM determination of branching ratio of
O(2 ≠ 5%) precision [127,128].

The Bs,d æ µ+µ≠ decay rate is sensitive to vector couplings C
(Õ)
10 as well as combi-

nations of pseudo-scalar and scalar couplings CS ≠ C
Õ
S

and CP ≠ C
Õ
P

and place stringent
constraint on NP models which would predict an enhancement of these contributions.
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Fig. 11 Likelihood contours in
the plane of BR(B0 → µ+µ−)
and BR(Bs → µ+µ−) from the
individual ATLAS, CMS, and
LHCb measurements (thin
contours), our combination
(thick solid contours), and the
Gaussian approximation (thick
dashed contours). Also shown
are the SM predictions and their
1σ correlated uncertainties

it. Using our two-dimensional likelihood, we find

BR(Bs → µ+µ−) = (2.93+0.33
−0.35) × 10−9

BR(B0 → µ+µ−) profiled, (16)

BR(Bs → µ+µ−) = (2.86+0.35
−0.32) × 10−9

BR(B0 → µ+µ−) SM-like. (17)

For B0 → µ+µ− we get analogously

BR(B0 → µ+µ−) = (0.56+0.70
−0.36) × 10−10

BR(Bs → µ+µ−)profiled, (18)

BR(B0 → µ+µ−) = (0.24+0.72
−0.17) × 10−10

BR(Bs → µ+µ−)SM-like. (19)

B Appendix: Details on theory uncertainties

B.1 Parameterization of Non-Factorizable Effects

We parameterize the non-factorizable effects in the decay
amplitudes of semileptonic rare B decays following [22,54].

For B → K decays, the Wilson coefficient Ceff
9 (q2) is

modified in the following way

Ceff
9 (q2) → Ceff

9 (q2)+ aK + bK (q2/GeV2) at low q2,

Ceff
9 (q2) → Ceff

9 (q2)+ cK at high q2,

(20)

where low q2 and high q2 refers to di-lepton invariant masses
below and above the narrow charmonium resonances, respec-
tively. The central values of the complex parameters aK , bK ,

and cK are set to zero and the 1σ uncertainties enclose the
effects considered in [55–57]

Re(aK ) = 0.0 ± 0.08, Re(bK ) = 0.0 ± 0.03,

Re(cK ) = 0.0 ± 0.2, (21)

Im(aK ) = 0.0 ± 0.08, Im(bK ) = 0.0 ± 0.03,

Im(cK ) = 0.0 ± 0.2. (22)

We use the same ranges for B+ → K+ and B0 → K 0

decays and assume that the corresponding coefficients are
correlated by +99% due to iso-spin symmetry.

For B → K ∗ and Bs → φ decays we use the following
parameterization

Ceff
7 (q2) → Ceff

7 (q2)+ a0,− + b0,−(q2/GeV2)

C ′
7 → C ′

7 + a+ + b+(q2/GeV2)
at low q2,

(23)

where the replacement of Ceff
7 is performed only in the λ =

0,− helicity amplitudes, and the replacement of C ′
7 only in

the λ = + amplitude. Furthermore, we have

Ceff
9 (q2) → Ceff

9 (q2)+ cλ at high q2, (24)

in all the helicity amplitudes. We use the following values
for the hadronic parameters

Re(a+) = 0.0 ± 0.004, Re(b+) = 0.0 ± 0.005,

Re(c+) = 0.0 ± 0.3, (25)

Im(a+) = 0.0 ± 0.004, Im(b+) = 0.0 ± 0.005,

Im(c+) = 0.0 ± 0.3, (26)

Re(a−) = 0.0 ± 0.015, Re(b−) = 0.0 ± 0.01,
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Fig. 1.17 Contour plots for ATLAS [129], CMS [130] and LHCb [131] combined
measurements (top left) and CMS measurement [132] (top right) of time-integrated
and CP -averaged Bs æ µ+µ≠ and prompt Bd æ µ+µ≠ branching fractions. The plots
in the bottom row show the comparisons of the latest CMS measurements with the
previous ones of the same quantities.

The combinations of ATLAS [129], CMS [130] and LHCb [131] measurements of
time-integrated and CP -averaged Bs æ µ+µ≠ branching fraction and upper limits
on the prompt Bd æ µ+µ≠ branching fractions are displayed in Fig. 1.17 (top left)
[133] and found to be in ≥ 2‡ tension with the SM prediction. In summer 2022 CMS
updated the measurement of the Bs æ µ+µ≠ branching fraction and the upper limit
on the Bd æ µ+µ≠ decay rate by analysing 140 fb≠1 of data collected in the 2016-2018
data taking period [132], superseding the previous analysis. The results are shown
in Fig. 1.17 (top right) and are in 1‡ agreement with the SM. As can be seen in
the summary plot in Fig. 1.17 (bottom left) the latest CMS measurement is singled
out by its central value, greater than the SM expectation, as opposed to all previous
measurements of this quantity.

As opposed to the di�erential semi-leptonic branching fractions and angular ob-
servables, purely leptonic branching fractions are precisely determined within the SM,
however, their strong suppression poses challenges to their experimental determination
and is limited by the statistical uncertainty. The sensitivity to the Bs æ µ+µ≠ branch-
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ing fraction is expected to be competitive with the SM prediction [134] by the end of
Upgrade II of the LHCb detector [135].

1.4.2.4 Ratios of branching fractions

As detailed in Sec. 1.2.3.2, accidental symmetries are an excellent opportunity to
test beyond SM e�ects. A LFU breaking sensitive class of observable consists of
RH ratios, which in case of a b-hadron Xb decaying to a well defined meson system
containing an s squark Hs, compare the ratio of semi-leptonic branching fractions of
muons with respect to electrons in the final state, in the dilepton mass-squared range
q2

min < q2 < q2
max[136,137]:

RH ©

⁄
q

2
max

q
2

min

dB(Xb æ Hsµ+µ≠)
dq2 dq2

⁄
q

2
max

q
2

min

dB(Xb æ Hse+e≠)
dq2 dq2

. (1.100)

In the SM, deviations of LFU observables from unity are governed by kinematic
and radiative e�ects, which for ratios involving light leptons are of O(%) [138,139],
due to their small mass compared to that of b quarks. Moreover since charm-loop
contributions are LFU, they cancel in ratios of branching fractions to di�erent leptons,
rendering the SM prediction free from uncertainties relative to long-distance e�ects.
LFU ratios involving B decays to K (Fig. 1.18b), Kú0 (Fig. 1.18a), KS and Kú+

(Fig. 1.18d) mesons were measured by the LHCb [140–142], Belle [143–146] and BaBar
[147] collaborations. Most precise measurements of these LFU observables from the
LHCb experiment exhibit, in the low q2 region, discrepancies ranging from 1.4‡ to
2.5‡ from the SM expectations. LHCb measured the analogous LFU ratio involving
baryonic »0

b
decays with Hs = pK≠ (Fig. 1.18c) exhibiting compatibility with unity at

the level of one standard deviation [148]. As for the case of purely leptonic B decays,
current LFU measurements are dominated by the statistical uncertainty, which, in
turn, is driven by the uncertainty on the yield of the electron channel. However, the
improved electron detection e�ciency at the future LHCb Upgrades coupled with the
higher luminosity reached at the LHC would allow to reach sub-percent precision on
the determination of observables sensitive to LFU violation.
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LHCb [1] and the B factories [2, 3]. The LHCb Run 1 result is greyed out since it is superseded
by the new result.
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1 Supplementary material for LHCb-PAPER-2019-
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This appendix contains supplementary material that will be posted on the public CDS

record but will not appear in the paper.

Figure 1: Measured value of R�1
pK in the range 0.1 < q2 < 6 GeV2/c4 and m(pK�) < 2600 MeV/c2

(red point), including statistical and systematic uncertainties, compared to unity (dashed line).
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Figure 2: Measured value of RpK in the range 0.1 < q2 < 6 GeV2/c4 and m(pK�) < 2600 MeV/c2

(red point), including statistical and systematic uncertainties, compared to unity (dashed line).

1

(c) �b æ �(pK
≠)¸¸ [148]

0 1 2 3
(*)KR

 Belle*+KR
4c/2 < 6.0 GeV2q1.1 < 

 Belle*+KR
4c/2 < 1.1 GeV2q0.045 < 

 Belle0
SK

R
4c/2 < 6.0 GeV2q1.0 < 

-1 LHCb 9 fb*+KR
4c/2 < 6.0 GeV2q0.045 < 

-1 LHCb 9 fb0
SK

R
4c/2 < 6.0 GeV2q1.1 < 

(d) B
+,0

æ K
ú+(K0

Sfi
+), KS¸¸ [142]

Fig. 1.18 Measurements of LFU universality probes using di�erent hadronic systems,
all connected by b æ s¸+¸≠ transitions comparing muons to electron decay rates. For
each plot, the corresponding channel is indicated below.
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1.5 Personal contributions
Time is an illusion.
Lunchtime doubly so.

D. Adams

In the following chapters of this dissertation, original work performed during my
PhD is presented, and is organised as follows:

• As stated in 1.2.3.2, mass related e�ects can induce lepton flavour non universality
within the SM. In case of muon/electrons di�erences these consist of QED
e�ects, which are taken into account by experimental collaborations via Monte
Carlo simulations such as PHOTOS, which performs leading log approximations
when simulating the radiative process. In Chapter 2 [149] we present a custom
simulation built on a full NLO computation for B0

æ K0¸+¸≠ decays and
compare the QED induced e�ects in both the q2 and cos ◊l distributions in the
two approaches.

• In Sec. 1.3.2.3 the theoretical limitations related to the absolute determination
of b æ s¸+¸≠ observables such as the branching ratios and angular observables
are introduced. The fact that these contributions are lepton flavour universal
can be exploited to cancel their impact on the SM prediction when taking ratios
of branching fractions. In Chapter 3 [150] the test of LFU using B+

æ K+¸+¸≠

using the full Run-I and Run-II dataset collected at LHCb is presented.

• Multiple e�orts from the theory community are aimed at establishing the lo-
cal significance of the b æ s¸+¸≠ anomalies by fitting the Wilson Coe�cients.
These methods are perfectly defined for testing particular models, however they
cannot be used to assess a global significance unless all of the involved Wilson
Coe�cients are introduced, and are susceptible of SM uncertainties arising from
non-perturbative QCD e�ects. In Chapter 4 [151] we address this problem by
defining a new method of assessing the global significance of b æ s¸+¸≠ results
which is insensitive to the uncertainties arising from LFU contributions induced
by potentially underestimated charm-loop e�ects.

• The application of the method outlined in the previous point is expanded to the
more general Hb æ Xs¸+¸≠ transitions in Chapter 5 [152]. Not only this allows
to evaluate for the first time in a global significance fit the result for RpK [148],
but also to include in the global significance estimate LFU ratios which have
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still an indefinite formulation in terms of form factors and are being measured at
LHCb.
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Appendix 1.A Appendix to Chapter 1

1.A.1 The optical theorem

The Standard Model of particle physics (SM) is a relativistic quantum field theory
(QFT) that describes the fundamental constituents of matter and their interactions.
Starting from symmetries of the Lagrangian and the representations of the particles
under such symmetries, QFT allows to derive predictions for observables such as
properties of bound states, cross sections and br anching fractions. In QFT the
probabilities are calculated via the scattering matrix S, its (i, j) ≠ th element encodes
the transition probability from an initial state |iÍ to a final state |fÍ

Sij = inÈi|fÍout (1.101)

The requirement that the sum of all the probabilities related to every outcome is one
implies the unitarity of the scattering matrix S. By decomposing the matrix S in a
trivial, non-interacting part proportional to the identity matrix (for which i = f), and
an interaction part T (for which i ”= f)

S = + iT (1.102)

the unitarity of S implies:
T T

† = ≠i(T ≠ T
†) (1.103)

which can be inserted in the bra-ket product of states a and b to obtain:

Èa|T T
†
|bÍ = ≠i(Èa|T |bÍ ≠ Èa|T

†
|bÍ) (1.104)

The matrix element Sij is related to the transition amplitude via Fermi’s golden rule:

Èf |T |bÍ = Maf (2fi)4”(pa ≠ pf ) (1.105)

The Lorentz invariant completeness relation reads

=
ÿ

f

Q

a
Ÿ

j

⁄ d3pf

j

(2fi)32Ef

j

R

b |fÍÈf | (1.106)
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Which, when inserted in (1.104), and by making use of Fermi’s golden rule (1.105)
yields the relation:

ÿ

f

Q

a
Ÿ

j

⁄ d3pf

j

(2fi)32Ef

j

R

b (2fi)4”(pa≠
ÿ

j

pf

j
)”(pb≠

ÿ

j

pf

j
)MbfM

ú
af

= ≠i (Mba ≠ M
ú
ab

) ”(pa≠pb)

(1.107)

This expression can be simplified by making use of the Dirac ” to fix pa = pb = q
j pf

j

ÿ

f

Q

a
Ÿ

j

⁄ d3pf

j

(2fi)32Ef

j

R

b (2fi)4”(pa ≠
ÿ

j

pf

j
)MbfM

ú
af

= ≠i (Mba ≠ M
ú
ab

) (1.108)

In case a = b, (1.108) connects the imaginary part of the amplitude for elastic
scattering to the sum of all possible cross sections of a æ anything.

2 Im (Maa) =
ÿ

f

Q

a
Ÿ

j

⁄ d3pf

j

(2fi)32Ef

j

R

b (2fi)4”(pa ≠
ÿ

j

pf

j
)
---Maf

---
2

(1.109)

Using very general arguments of unitarity of the scattering matrix, Lorentz in-
variance of the completeness relation and Fermi’s golden rule, the optical theorem
Eq.(1.109), connects the imaginary part of an elastic scattering amplitude Maa with
the sum of the square moduli of all possible final states f , |Maf |

2.
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1.A.2 Applications of the optical theorem

1.A.2.1 Decay widths and unstable particles

An important application of the optical theorem can be found in the definition of the
total decay width, which for a particle of mass m reads:

�tot =
ÿ

f

�f = 1
2m

ÿ

f

S

U

Q

a
Ÿ

j

⁄ d3pf

j

(2fi)32Ef

j

R

b (2fi)4”(pa ≠
ÿ

j

pf

j
)
---Maf

---
2
T

V (1.110)

Using (1.109) we can connect the total decay width of a particle with the elastic
scattering amplitude

m�tot = Im(Maa) (1.111)

The elastic scattering amplitude Maa is decomposed as a sum of one particle
irreducible diagrams, which is resummed as a geometric series:

= + +FULL 1PI 1PI 1PI +I > #I • • •

= 1 + �(q2) + (�(q2))2 + · · · = 1
1 ≠ �(q2) (1.112)

Fig. 1.19 Decomposition of the full elastic scattering amplitude as sum of powers of 1PI
transition amplitudes. This is resummed as a geometric series leading to the propagator
term in Eq. (1.113)

The resummed term in (1.112) is nothing but the full propagator:

i

q2 ≠ m2
0 ≠ Re(�(q2)) ≠ iIm(�(q2)) (1.113)

With m2
0 being the pole mass. By proceeding to its renormalisation we can assign

a physical (measurable) mass to the term that satisfies the following equation:

m2
≠ m2

0 ≠ Re(�(q2)) = 0 (1.114)

Substituting the definition of physical mass Eq.(1.114) and the optical theorem as
declined in Eq.(1.111) in the propagator of Eq.(1.113) we obtain:
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i

q2 ≠ m2 ≠ im�tot
(1.115)

The imaginary part of the elastic scattering amplitude dresses the bare propagator
and shifts the pole from the physical mass, eliminating the divergences at denominator.
Example with e+e≠

æ Z æ ff̄ .

‡(e+e≠
æ Z æ ff̄)(q2) Ã

1
(q2 ≠ m2

Z
)2 + �totm2

Z

1.A.2.2 Unitarity bound

If we shift our focus to processes involving two particles in the initial state as well as in
the final state, the optical theorem places an upper bound on the cross section. Let’s
consider the case of two massless particles colliding head to head, p1 + p2 = k1 + k2

and pick the center of mass frame to explicit the momenta:

p1 = E(+1, 0, 0, +1) , k1 = E(1, + sin ◊, 0, + cos ◊) ,

p2 = E(+1, 0, 0, ≠1) , k2 = E(1, ≠ sin ◊, 0, ≠ cos ◊) ,

(1.116)

Here we have set the azimuthal angle Ï = 0 exploiting the rotational invariance of
the system. There are two independent Mandelstam variables for this system, s and t:

s = (p1 + p2)2 = 4E2, t = (p1 ≠ k1)2 = ≠
s

2(1 ≠ cos ◊), u = ≠s ≠ t (1.117)

Hence the matrix element describing this process can be described by two indepen-
dent kinematic variables

M(2 æ 2) = f(s, t) = f(s, z) (1.118)

With z = cos ◊ and |z| Æ 1. Since the matrix element M(2 æ 2) depends on the
bounded variable z, it can be projected onto the Legendre polynomial basis:

M(2 æ 2)(s, z) = 16fi
ÿ

j

(2j + 1)aj(s)Pj(z) (1.119)
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Where Pj(z) is the j ≠ th Legendre polynomial, satisfying the orthonormality
relation:

⁄ +Œ

≠Œ
dzPj(z)Pk(z) = 2

2j + 1”jk (1.120)

The energy dependent coe�cient aj(s) is recovered by projecting the matrix element
M(2 æ 2)(s, z) onto the Legendre polynomial basis:

aj(s) = 1
32fi

⁄ +Œ

≠Œ
dzPj(z)M(s, z) (1.121)

If we recover the formulation of the optical theorem of (1.109), we can split the
RHS into elastic and inelastic processes as:

1
s

Im(Maa) = ‡(2 æ 2)
¸ ˚˙ ˝

elastic

+ ‡(2 æ anything
¸ ˚˙ ˝

inelastic

)

Ø ‡(2 æ 2)
¸ ˚˙ ˝

elastic

(1.122)

If we decompose the RHS (1.122) in partial waves:

‡(2 æ 2)(s) = 1
2s

⁄ d3k1

(2fi)22E1

d3k2

(2fi)22E2
(2fi)2”4(p1 + p2 ≠ k1 ≠ k2)|M(s, z)|2

= 1
32fis

⁄ 1

≠1
dz

S

U16fi
ÿ

j

(2j + 1)aj(s)Pj(z)
T

V
C

16fi
ÿ

k

(2k + 1)aú
k
(s)Pk(z)

D

= 16fi

s

ÿ

j

(2j + 1)|aj(s)|2 (1.123)

Doing the same on the LHS of (1.122) we obtain:

2Im [Maa(s, z)] k1Îp1= 2 [Maa(s, 1)] Pj(1)=1= 32fi
ÿ

j

(2j + 1)Im [aj(s)] (1.124)

Recovering the inequality of (1.122) and substituting (1.123) and (1.124) we can
see that for any j, the coe�cients (1.121) partial wave decomposition of M(2 æ 2)
need to satisfy
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0 0.5

1 a (s)j

Re[a (s)]j

Im[a (s)] j

Fig. 1.20 Argand diagram for the partial wave decomposition coe�cients aj(s). The
area delimited by the circumference is the one allowed by the optical theorem

Im[aj(s)] Ø |aj(s)|2 (1.125)

Hence, the optical theorem imposes an upper boundary on the coe�cients of the
partial wave decomposition of M(2 æ 2). In order for it to be satisfied,

Re [aj(s)] <
1
2 , and |aj(s)| Æ 1 (1.126)

This has an important consequence on the validity of the contact interaction model
in the Fermi theory, as well as of the gauge vector boson model in the electroweak
theory.
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1.A.3 General facts about SU(N)

SU(N) is the group of complex unitary matrices with unit determinant:

SU(N) =
Ó
U(n ◊ n) / UU † = U †U = , det(U) = 1

Ô
(1.127)

Out of the 2n2 real parameters defining a generic complex n ◊ n matrix, n2
≠ 1 are

free if U œ SU(N). If we express the matrix U using the exponential parametrisation:

U = exp[i–KtK ] (1.128)

where the –K are real parameters, and expand U around the identity, we find:

U
–Kæ0
æ + i–KtK + O(–2) (1.129)

The tK are the n2
≠ 1 generators of the Lie algebra associated to the group and

form a vector space which has the same dimensionality as SU(N).
To identify the characteristics that the generators must have, we make use of the

conditions of unitarity of U :

UU † = ( + i–KtK)( ≠ i–Kt†
K

) = =∆ t = t† (1.130)

And the unity of its determinant:

det(U) = eTr[i–KtK ] = 1 =∆ Tr[tK ] = 0 (1.131)

Where we made use that for a diagonalisable matrix M

det(M) = det(�) =
NŸ

i

⁄i

with � = S M S≠1 eigenvalue matrix, then:

exp [Tr (logM)] = exp
Ë
Tr

1
S log� S≠1

2È
] = exp

C
Nÿ

i=1
log⁄i

D

=
NŸ

i

⁄i = det(M)

The tK form a basis of the vector space of traceless hermitian matrices, the
commutator of this Lie algebra is a linear combination of elements of the basis. In fact

i [tk, tj] = i(tjtk ≠ tktj) (1.132)
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is hermitian

[i(tjtk ≠ tktj)]† = ≠i [(tktj ≠ tjtk)] = i(tjtk ≠ tktj) (1.133)

and traceless:

iTr [(tjtk ≠ tktj)] = Tr [tjtk] ≠ Tr [tktj] = 0 (1.134)

Hence we define the structure constants fijk

[tk, tj] = if ¸

jk
t¸ (1.135)
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1.A.4 Symmetries and interactions

1.A.4.1 global vs. local gauge invariance

As extensively discussed in the previous sub-section, symmetries play an important
role in the definition of the Standard Model. The Lagrangian density:

L0 = Â(x)(i /̂ ≠ m)Â(x) (1.136)

for a free particle exhibits a global U(1) symmetry, since the transformation

Â(x) æ ei◊qÂ(x)
ˆµÂ(x) æ ei◊qˆµÂ(x) (1.137)

with ◊ and q constant parameters, leaves it invariant. According to Noether’s
theorem, there exist a conserved current Jµ(x) = qÂ(x)“µÂ(x) and an associated
conserved charge q.

The interactions between matter and forces arise naturally by requiring that the
Lagrangian is locally gauge invariant. In fact, if we gauge this symmetry, and promote
the U(1) symmetry to a local symmetry (i.e. ◊ æ ◊(x)), we obtain QED.

The local U(1) gauge transformation reads:

Â(x) æ ei◊(x)qÂ(x)
ˆµÂ(x) æ ei◊(x)qˆµÂ(x) + iqei◊(x)qÂ(x)ˆµ◊(x) (1.138)

Clearly, the gauge invariance of Eq. (1.136) is now broken due to the extra term
generated by the space-time dependence of the transformation. In other words, gauge
invariance is violated since fields and derivatives of fields transform di�erently under a
local gauge transformation.

By redefining the derivative ˆµ æ Dµ as:

Dµ © ˆµ + iqAµ (1.139)

the requirement that both Â(x) and Dµ now transform in the same way under a
local U(1) transformation
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Â(x) æ ei◊q(x)Â(x) = U(x)Â(x)
DµÂ(x) æ ei◊q(x)DµÂ(x) = U(x)DµÂ(x) (1.140)

is enforced by the fact that a redefinition of the field

Aµ æ AÕ
µ

= Aµ ≠ ˆµ◊(x) (1.141)

leaves the Maxwell equations unchanged. The covariant derivative of Eq. (1.141),
plugged in the Lagrangian of Eq.(1.136)

L1 = Â(x)(i /D ≠ m)Â(x)
= Â(x)(i /̂ ≠ m)Â(x) ≠ qÂ(x)“µÂ(x)Aµ

(1.142)

generates a term that can be interpreted as the coupling between the electromagnetic
current Jµ = qÂ(x)“µÂ(x) and the photon field Aµ. A peculiar feature of abelian field
theories (such as QED) is given by the fact that the field strength tensor F µ‹(x) is
gauge invariant:

F µ‹(x) = 1
iq

[Dµ, D‹ ] = 1
iq

[ˆµ + iqAµ, ˆ‹ + iqA‹ ] = ˆµA‹(x) ≠ ˆ‹Aµ(x) (1.143)

The last missing ingredient to have LQED is a kinetic term for the photon field
Lkin = 1

2(|Ę(x)|2 ≠ |B̨(x)|2), which in manifestly covariant form reads:

Lkin = ≠
1
4F µ‹(x)Fµ‹(x)

hence:
LQED = Â(x)(i /D ≠ m)Â(x) ≠

1
4F µ‹(x)Fµ‹(x) (1.144)

Which is local U(1) gauge invariant. Including a mass term for the gauge boson,
proportional to Aµ(x)A‹(x), would violate such invariance:

m2
“
Aµ(x)A‹(x) LGT

æ m2
“
[Aµ(x) + ˆµ◊(x)][A‹(x) + ˆ‹

”= ◊(x)] ”= m2
“
Aµ(x)A‹(x) (1.145)
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1.A.4.2 Non-abelian (Yang-Mills) gauge theories

The procedure outlined for U(1) can be extended to the more general case of SU(N)
gauge invariance. We start from a Lagrangian of free fields which is invariant under a
global symmetry:

LÂ(Â, ˆµÂ) (1.146)

where Â is a N-tuplet of a compact Lie group G. The global gauge invariance of LÂ

implies that the transformation:

Â æ ÂÕ = U(◊)Â (1.147)

with U(◊) œ SU(N), leaves the Lagrangian invariant. If we express the matrix U

in exponential parametrisation U = exp[ig ta◊a] and expand around the identity, we
see that the generators of this symmetry group are N2

≠ 1 traceless hermitian matrices
ta which generate infinitesimal transformations around the identity (1.A.3):

U = + ig ta◊a + O(◊2) (1.148)

In order to gauge this symmetry and allow the parameters ◊a to be function of the
space-time coordinates, hence promoting this symmetry to a local symmetry of the
Lagrangian, the derivative in (1.146) has to be made covariant:

LÂ(Â, ˆµÂ) æ LÂ(Â, DµÂ) (1.149)

With

Dµ = ˆµ + ig taAa

µ
(1.150)

From the requirement that both fields and field derivatives transform homogeneously
under a local transformation

Â(x) æ ÂÕ(x) = U(◊(x))Â(x)
DµÂ(x) æ (DµÂ(x))Õ = U(◊(x))DµÂ(x) (1.151)
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We obtain the transformation rule for the covariant derivative, i.e. DÕ
µ

= UDµU †.
Which, once substituting the definition of covariant derivative (1.150) yields the
transformation law for the fields Aa

µ

Aa

µ
æ AÕa

µ
= Aa

µ
≠ ˆµ◊a(x) ≠ gfabcAb

µ
◊c(x) + O(◊2) (1.152)

The taAa

µ
are (n◊n) matrices which result from the sum of the N2

≠1 ta multiplied
by a vector of dimension N . In complete analogy to the abelian case, the kinetic term
for the Aa

µ
fields are obtained from the commutator of the covariant derivative:

1
ig

[Dµ, D‹ ] = taF a

µ‹
, with F a

µ‹
= ˆµAa

‹
≠ ˆ‹Aa

µ
≠ gfabcAb

µ
Ac

‹
(1.153)

Having defined Aµ = taAa

µ
and Fµ = taF a

µ‹
the field strength tensor can be expressed

as:

Fµ‹ = ˆ‹Aµ ≠ ˆµA‹ + ig [Aµ, A‹ ] (1.154)

As opposed to non-abelian gauge theories, the newly defined field strength tensor
F a

µ‹
is not gauge invariant by itself

F Õ
µ‹

= UF Õ
µ‹

U †

However, it can be shown that the kinetic term F a

µ‹
F a,µ‹ is gauge invariant:

Lkin = ≠
1
4F a

µ‹
F a,µ‹

= ≠
1
4”abF a

µ‹
F b,µ‹

= ≠
1
2Tr[tatb]F a

µ‹
F b,µ‹

= ≠
1
2Tr[Fµ‹F µ‹ ]

(1.155)

And the gauge transformed Lagrangian would read:
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L
Õ
kin = ≠

1
2Tr[F Õ

µ‹
F Õµ‹ ]

= ≠
1
2Tr[UF Õ

µ‹
U †U¸ ˚˙ ˝ F Õµ‹U †] = Lkin

(1.156)

Putting the pieces back together we obtain the Yang-Mills Lagrangian:

LYM = ≠
1
4F a

µ‹
F a,µ‹ + LÂ(Â, ˆµÂ) (1.157)

Where LÂ is the Lagrangian describing matter fields. Much as Eq. (1.144), Eq.
(1.157) describes forces mediated by massless bosons since a mass term Aa

µ
Aa,µ would

violate gauge invariance. This indicates that gauge bosons like W ±/Z must acquire
mass via a di�erent mechanism. Moreover an interesting feature arises from the kinetic
term for SU(N) gauge theories:

F a

µ‹
F a,µ‹ = (ˆµAa

‹
≠ ˆ‹Aa

µ
≠ gfabcAb

µ
Ac

‹
)(ˆµAa,‹

≠ ˆ‹Aa,µ
≠ gfabcAb,µAc,‹) (1.158)

the requirement of gauge invariance has determined the appearance in the La-
grangian of cubic and quartic self-interaction terms between bosons. These where not
appearing in QED since fabc = 0 for an abelian group such as U(1). Moreover, if
N = 3 we obtain the QCD Lagrangian, where the fermions are triplet of colour and
there are N2

≠ 1 = 8 massless gauge bosons which are identified as the gluons.





Chapter 2

QED in B̄ æ K̄¸+¸≠ LFU ratios:
Theory versus Experiment, a Monte
Carlo Study

2.1 Introduction
Within the Standard Model (SM), the Yukawa coupling is the only interaction that
distinguishes the di�erent fermion families. In the lepton sector, all the Yukawa
couplings are small compared to the SM gauge couplings, giving rise to an approximate
accidental symmetry known as Lepton Flavour Universality (LFU). This symmetry
holds to a very good accuracy within the SM, especially for the two lightest families (e
and µ), and it can be tested to high accuracy in B meson decays, where the kinematic
e�ects due to light lepton masses are small (see e.g. Ref. [1,2] for a review).

Particularly interesting in this respect are the µ/e LFU ratios in flavour changing
neutral currents (FCNC) transitions [3], such as

RK |
q

2

0
œ[q2

1
,q

2

2
] GeV2 = �[B̄ æ K̄µ+µ≠]

�[B̄ æ K̄e+e≠]

-----
q

2

0
œ[q2

1
,q

2

2
] GeV2

, (2.1)

where q2
0 © (pB ≠ pK)2. In the SM, RSM

K
¥ 1 up to QED corrections [4,5]. The current

experimental determination is [6–8]

RK |
q

2

0
œ[1.1,6] GeV2 = 0.846+0.042+0.016

≠0.039≠0.012 , (2.2)
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and exhibits a statistically significant deviation from the theory prediction. Similar
tensions between data and SM predictions, albeit with smaller statistical significance,
have been reported in the analogous quantities RKú0 [9], RKú+ and RKS

[10].
In this paper, we assess the robustness of the theoretical determination of RK

with respect to QED corrections, which provide the dominant source of LFU violation
within the SM. While QED corrections are tiny for fully inclusive observables (when
di�erential in collinear-safe variables), they induce non-universal corrections of the
type (–/fi) ln(m¸/mB) which can reach the 10% level in the electron mode, when
accompanied by tight cuts on the photon energy [4,5]. These e�ects are corrected for
by the experimental collaborations: the value in Eq. ((2.2)), as well as the results for
the LFU ratios reported in [9,10], correspond to photon-inclusive observables (in the
collinear safe di�erential variable q2

0, cf. Sec. 2.2.1.) However, what is really measured
are not photon-inclusive observables: tight cuts on reconstructed B mass are employed
to reduce, amongst the di�erent background contributions, events originated from
resonant modes, e.g. B̄ æ K̄(J/� æ ¸+¸≠) that leak into the signal region. The
photon-inclusive results are obtained by comparing with appropriate Monte Carlo (MC)
simulations. The purpose of this paper is to check this procedure using a dedicated
MC-framework developed on grounds on our earlier work [5]. The latter consists of a
complete di�erential description of O(–) QED corrections in B̄ æ K̄¸+¸≠(“) based on
an e�ective meson theory.

In the experimental analyses, QED corrections are implemented via photon shower
algorithms such as PHOTOS [11–14], or the PHOTONS++ module [15] of SHERPA [? ], where
mesons are treated as point-like particles. In [5], using gauge invariance, it was shown
that no further lepton non-universal collinear logs (i.e. ln(m¸) terms) are generated by
structure dependent corrections, i.e. that the point-like approximation for the mesons is
a very good approximation, especially when considering LFU ratios. The photon shower
algorithms used by the experiments therefore do provide a very good starting point to
describe data. In practice, QED corrections in B̄ æ K̄¸+¸≠(“) are not treated perfectly
due to the resonant mode being simulated separately from the rare mode, therefore
neglecting the respective interference. The latter is a potentially dangerous e�ect due
to the migration towards lower q2-values of events with on-shell charmonium resonances
and sizeable photon-energy emission: an e�ect which is particularly pronounced for
the electron mode [4,5]. We note that in the inclusive case these e�ects have been
investigated in the factorisation approximation in [? ], whereas we can go beyond since
the B̄ æ K̄� branching fractions are known from experiment.
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This paper consists of two parts. Firstly, the description of our MC-framework based
on [5], and its comparison with PHOTOS at the fully di�erential level, considering the
rare mode only (i.e. the short-distance (SD) part of the decay amplitude) is discussed.
Second, going beyond the PHOTOS analysis, we assess the impact of the charmonium
resonances (or the long-distance (LD) contribution to the decay amplitude), which is
particularly relevant in the electron mode [6–8]. This second part is addressed in a
twofold manner: i) by means of our MC-framework, assessing the impact of the SD–LD
interference e�ects (not included in PHOTOS), focusing on the region q2

œ [1.1, 6] GeV2;
ii) by means of a semi-analytic approach, using the splitting function, assessing the
complete impact of the resonant modes beyond interference terms (and resumming the
leading collinear logs).

We limit our analysis to the neutral mode B̄0
æ K̄0¸+¸≠. This choice does not

limit the validity of our conclusions on SD–LD interference e�ects due to charmonium
resonances, whilst it has an important simplification for the numerical study. In this
case, we can analyse in full generality the impact of the hadronic form factor, without
resorting to a derivative expansion in the underlying meson e�ective theory [5].

It is noted that a first comparison of analytical estimates of QED corrections
and PHOTOS has been presented in Ref. [4]. The present study provides significant
improvements compared to [4] on various aspects: i) building a dedicated MC to
simulate B̄ æ K̄¸+¸≠(“) events, we are able to perform an extensive study of the
tool used to interpret data at a fully di�erential level; ii) our MC is valid for generic
photon kinematics, while the analysis of [4] implicitly assumed tight cuts on the
photon-angle emission (cf. App. A.2 [5]); iii) we perform a detailed study of the e�ects
of the resonances, taking into account also the variation of the strong phase between
SD and LD contributions.1

The paper is organised as follows. In Sec. 2.2, we introduce the the basic kinematics
of the process and the principles of our MC-approach. In the following Sec. 2.3, we
compare kinematic distributions obtained with our MC-simulation with those obtained
with PHOTOS. The impact of charmonium resonances is discussed in Sec. 2.4. Finally,
in Sec. 5.5, we summarise our results and present a brief outlook. Technical details
are deferred to Apps. 2.A.1, 2.A.2 to 2.A.4 and supplementary plots are collected in
App. 2.A.3.

1 Some other studies related to Monte Carlo are for semileptonic modes B æ fi¸‹ [16] and B æ D¸‹

[17] and are di�erent in that they do not contain resonances from the phenomenological viewpoint
alone.
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2.2 Monte Carlo Framework

2.2.1 Generalities

The process of interest is

B̄(pB) æ K̄(pK)¸1(¸1)¯̧2(¸2) + gA(k) . (2.3)

In the absence of photon emission, it is a 3-body process, while in the presence of
real photon emission, it corresponds to a 4-body process. The latter is characterised
by five independent kinematic variables, cf. App. 2.A.1. The two kinematic variables
adopted to describe the 3-body kinematics, or even the 4-body one if the photon is not
detected, are

q2 = (¸1 + ¸2)2 and c¸ © cos ◊¸ = ≠

Q

a
˛̧1 · p̨K

| ˛̧1||p̨K |

R

b

q-RF

, (2.4)

where q-RF denotes the dilepton rest frame (RF). If the B momentum is known
(e.g. at the generator level, or in a B-factory type experimental setup) the following
the kinematic variables

q2
0 = (pB ≠ pK)2 and c0 © cos ◊0 = ≠

Q

a
˛̧1 · p̨K

| ˛̧1||p̨K |

R

b

q0-RF

, (2.5)

are more useful [5]. Furthermore we define

p̄B © pB ≠ k = ¸1 + ¸2 + pK , p̄2
B

= (mrec
B

)2 , (2.6)

which corresponds to the reconstructed B-meson mass from its visible decay products,
and the variable ”ex,

(mrec
B

)2 = m2
B

(1 ≠ ”ex) , 0 < ”ex < 1 , (2.7)

which provides a natural choice for the physical cut-o� regulating soft divergences
of real photons emission. Soft and soft-collinear logs then manifest as ln ”ex and
ln ”ex ln m¸ terms. Single ln m¸ terms are referred to (hard)-collinear logs throughout; a
terminology which di�ers at times from the ones used in soft-collinear e�ective theories
[? ].
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As stated in many textbooks, a photon energy cut-o�, mrec
B

or ”ex in our case, is
su�cient to define IR-safe observables (for massive charged particles). However, this is
not the procedure applied in many of today’s experiments, especially at hadron colliders.
In this case the event distributions are fitted in a given window of mrec

B
> mrec,¸

B
and mrec

B

becomes a key di�erential variable. Using the simulated shape in mrec
B

, by a MC-tool
(e.g. PHOTOS), the theoretical non-radiative rate in the IR-safe di�erential variable q2

0 is
reconstructed.2 Checking the validity of this procedure requires the comparison of the
MC-tool used in the data analysis with one based on a QED calculation defined in a full
theoretical framework, such as the one presented in [5]. The validation of the procedure
ensures that, within the SM, the measured RK is then RK |

SM
reconstr. = 1 + O(–

fi
), where

– = e2/(4fi) ¥ 1/137 is the fine structure constant.

2.2.2 Basic strategy of the Monte Carlo approach

The strategy of our MC-framework is based on the following steps:

• We introduce a technical cut-o� E(i)
“ ,cut on the photon energy in a given RF

(indicated by the superscript i). This cut-o� is chosen well below the experimental
resolution on the missing energy, such that events with E(i)

“
< E(i)

“ ,cut can be
simulated according to 3-body kinematics, while events with E(i)

“
> E(i)

“ ,cut are
simulated according to 4-body kinematics.

• The 3-body and 4-body events are simulated according to the corresponding
(Born-level) distributions reported in Ref. [5], which depends on the f±(q2)
hadronic form factors for B æ K. The relative normalisation between 3-body
events (N3) and 4-body events (N4), namely the ratio

f th
©

N3

N4
©

�3

�4
= f(E(i)

“ ,cut) , (2.8)

is the key theory input for the numerical simulation.

• The 3-body rate is computed at O(–), taking into account both virtual and real
corrections. By construction, �3 is free from soft divergences, but it depends loga-
rithmically on the (artificial) photon energy cut-o� E(i)

“ ,cut. It can be decomposed
as

�3 = �soft≠log ln E(i)
“ ,cut + �(i)

rest . (2.9)
2In terms of the q

2
0-variable, the single-di�erential non-radiative rate is equivalent to the fully

photon-inclusive rate up to O( –
fi ) corrections.
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Here, �soft≠log is the well-known universal (Lorentz-invariant) coe�cient of the
soft singularities [18], while �(i)

rest is a frame-dependent quantity, indicated by the
superscript [5].

• A key simplification for the determination of f th is the observation that the total
rate �tot is equal to the tree-level rate, �tree, up to finite (non-log enhanced)
corrections of O(–):

�tot © �3 + �4 = �tree ◊ [1 + O(–)] . (2.10)

Neglecting the tiny O(–) terms, this allows us to extract f th simply by the ratio
�tree/�3, via the relation

f th =
A

�tree

�3
≠ 1

B≠1

. (2.11)

• As demonstrated in [5], the q2
0 single-di�erential spectrum is also free from soft

and collinear divergences. This implies that the relation ((2.10)) holds not only
for the total rate, but also for the q2

0 single-di�erential rate (or partial rates
defined on a given q2

0 interval). Using Eq. (2.11) simplifies the numerical analysis
considerably, since �tree/�3 can be determined using only 3-body phase-space
integrations. The values of �tree/�3 computed using the analytic code from [5]
relevant to the present study are reported in Tab. 2.3 in App. 2.A.4.

2.2.3 Numerical procedure

The 3- and 4-body decay rates are implemented in a numerical framework by means of
the zfit package [19]. They are interpreted as (non-negative) probability distribution
functions (PDFs) with an a priori unknown normalisation. This allows us to generate the
MC samples by means of the hit-or-miss algorithm. The concrete sampling procedure,
for both 3- and 4-body decays, is outlined as follows:

1. A single point in phase space, denoted by x̨, is uniformly sampled in the kine-
matically allowed region of (q2, c¸) or (q2, p̄2

B
, c¸, c“, „“) for simulated 3- or 4-body

events, respectively.

2. Using the kinematic decomposition reported in App. 2.A.1, the sampled variables
are translated to the corresponding momenta of the B decay products. The scalar
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products that enter the decay widths, as well as the decay width �(x̨) itself, are
evaluated at the sampled point in phase space.

3. A random number r is extracted uniformly in the range r œ [0, m] , where m

is the maximum value of the decay width in the allowed kinematic range. If
r > �(x̨) (“miss") points 1. and 2. are repeated until for one sampled r, r < �(x̨)
(“hit") and the point x̨ is kept.

The standard hit-or-miss algorithm can su�er from very low sampling e�ciency in
the case where the decay width exhibits pronounced peaks since it only accepts a
fraction of extractions equal to the ratio of the volume under �(x̨) and the volume of
the hypercube containing �(x̨) itself. This is valid in particular for the 4-body decay
width �4(x̨) which is peaked close to collinear and soft regions. In order to increase the
sampling e�ciency, the “importance sampling" technique is employed. This technique
consists in dividing the support, over which x̨ is sampled, such that in each subinterval,
�(x̨) has a smaller variation than in the overall range, hence allowing to increase the
sampling e�ciency by one to two orders of magnitude.

2.2.3.0.1 We compare our MC-approach against the EvtGen [20] + PHOTOS [11,12]
which are the simulation software packages used by the LHCb collaboration. The
former is an event generator specifically designed for B-physics in which the decay
amplitudes (models), instead of PDFs, are used for the simulation of heavy meson
decays. PHOTOS encodes the QED radiative corrections to such decays and uses a
splitting function approach iteratively. In principle, this achieves the inclusion of the
leading logs and thus, remaining discrepancies can be expected to be of O(–

fi
). Since

2005, when multi-photon radiation was introduced [13], there were no further public
upgrades of the program until 2010, when PHOTOS was moved to a C++ environment
allowing the use of event records such as HepMC [21]. We employ version 3.64 which
enables the use of PHOTOS in the case where there are no parent particle(s) or incoming
beams generating the decaying particle, which, paired with the EvtGen package, allows
us for a direct comparison with our MC simulation. In order to match the EvtGen
model with our description of the decay, O(–s) two-loop virtual corrections [22] to the
decay width are switched o� from the default EvtGen configuration.

Moreover, since our MC accounts for QED corrections up to O(–), for each B decay
in which more than a real photon is emitted, only the hardest emission is considered
and all the softer emissions’ momenta are summed and saved into one “particle" for
further cross-checks.
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2.3 Direct Comparison with PHOTOS at the Short
Distance Level

2.3.1 Parameterisation of the short distance amplitude

In this section, we compare our MC-method, as described in Sec. 2.2.3, with the
PHOTOS framework at the level of the SD contribution. Since both frameworks are
expected to capture the leading logs one should expect di�erences to be of order of
O(–

fi
) only. Let us first define the SD amplitude. Following our previous conventions

[5], we write

A
B̄æK̄¸+¸≠ © ÈK̄¸+¸≠

|(≠Lint)|B̄Í = GF
Ô

2
V ú

tsVtb L0 ·H0 + O(–) , (2.12)

where L0 and H0 correspond to the leptonic and hadronic parts which read

Lµ

0(q2) = ū(¸≠)gA

µ(CV + CAgA5)v(¸+) ,

Hµ

0 (q2) = f+(q2)(pB +pK)µ + f≠(q2)(pB ≠pK)µ , (2.13)

with CV (A) = ≠–C9(10)/(2fi), thereby neglecting the dipole operator O7 as justified for
a scalar meson final state.3 The SD contribution consists of the standard form factors
f± . Note that when f≠ is traded for the scalar form factor f0 = f+ + q

2

m
2

B
≠m

2

K

f≠ only
f+ enters the vector part CV Ã C9. The specific form factors are taken from [23] (with
set 2), which is a light-cone sum rules computation up to NLO twist-3 and O(–s), and
is also used by the LHCb collaboration.

2.3.2 Comparison of our Monte Carlo with PHOTOS

The main results of this section consist of the plots in Fig. 2.1 and Fig. 2.2, for the
kinematic variables q2

0 (2.5) and q2 (2.4), respectively. In each of these figures, the top
plots display the impact of the radiative corrections on the q2

0- and q2-spectra when
considering either muons (left) and electrons (right), in our MC. The normalisation per
se of the MC-plots is not meaningful as both LO and NLO are separately normalised
to 1 when integrated over q2

0 or q2 (compare with the normalised plots in Fig. 4 in [5]).
This ambiguity can be removed by taking double ratios between our MC-approach and

3 In the relation of CV (A) and C9(10) we correct a factor minus two w.r.t. the published version of
[5] which, however, has no impact on the result of that paper as all results are relative.
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Fig. 2.1 Di�erential distributions in q2
0 for the short distance transition only: NLO over

LO for muons in blue (top left) and for electrons in red (top right) in our MC, with
appropriate cuts as in Tab. 2.1. The normalisation of these upper plots is arbitrary
(cf. main text). The double ratios of our MC versus the PHOTOS framework, shown in
the middle and bottom plots, are free of ambiguities.
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Fig. 2.2 Di�erential distributions in q2 for the short distance transition only: The
notation is the same as in Fig. 2.1.
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the PHOTOS software as shown in the middle and bottom of these figures for muons and
electrons respectively.

Let us discuss the q2
0-variable first. Even though the hard-collinear logs cancel in

this variable, the introduction of a photon energy cut-o�, via mrec
B

= (4.88, 5.18) GeV,
leads to sizeable QED contributions. The agreement between the two approaches is
excellent as shown by the good compatibility of these distributions with unity across
the q2

0-spectrum, for both lepton flavours (bottom plot).
The distributions in the q2-variable, shown in Fig. 2.2, are more delicate as hard

collinear logs do not cancel. In addition, events can migrate in the q2-spectrum due to
radiation which will be important when discussing the impact of the resonances. Hence,
even without placing a photon-energy cut-o�, the corrections are sizeable, cf. Fig. 4 in
[5].

Again, the agreement between the two approaches is excellent, as expected, except
for electrons at high q2 where deviations up to O(4%) are found. This originates
from large corrections that go beyond the fixed O(–) accuracy of our MC. In fact,
at the kinematic endpoint, the corrections are roughly 20% (cf. Fig. 8 in [5]) at
NLO, indicating the need of NNLO accuracy to reach % level precision, and explaining
qualitatively the residual di�erence with PHOTOS (where the resummation of the leading-
log corrections is implemented). Using the splitting function formalism in Sec. 2.4.3, in
its resummed form, we were able to reproduce quantitatively the O(4%)-e�ect between
our MC and PHOTOS (cf. footnote 8).

It is worthwhile to elaborate on why the corrections are large at the kinematic
endpoint in q2. This happens because, at the endpoint, the leptons carry all the energy
and there is e�ectively no phase space for the real radiation. As a result, near the
endpoint in q2, virtual corrections dominate and the cancellation between real and
virtual corrections is maximally out of balance. In other words, requiring large q2

is equivalent to a tight cut on the photon emission energy. In the splitting function
approach, this can be seen from the lower boundary of the real emission integral (over
the momentum fraction carried by the lepton, z) approaching the upper boundary.

In summary, the cross checks we have performed allow us to validate that the
approximations adopted by PHOTOS in describing (real and virtual) QED corrections in
B̄0

æ K̄0¸+¸≠ decays are accurate to sub-percent level. Additional plots displaying
comparisons of the impact of radiative corrections on the kinematic variable cos ◊¸

between our MC and PHOTOS can be found in App. 2.A.3.
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¸ mrec

B
[ GeV] ”ex (q2

0)max
µ 5.18 0.0486 q2 + 1.36 GeV2

e 4.88 0.146 q2 + 4.07 GeV2

Table 2.1 Relation between the cut on the reconstructed mass m
rec
B

and the maximal value
of q

2
0 a�ecting the spectrum at a given q

2-value, after photon radiation, according to ((2.14)).
The specific values of m

rec
B

are fixed to the same values used in the LHCb analysis of RK [24].

2.4 Adding Long Distance (Charmonium Resonances)
In this section, we assess the impact of the charmonium resonances on the lower part
of the spectrum, specifically on the 1.1 GeV2 < q2 < 6 GeV2 region currently used to
measure the LFU ratios. While the main contribution (peak) of the resonances is cut
in the experimental analyses, a residual e�ect from the radiative tail of the resonances
is potentially present at hadron colliders, where the q2

0 variable is not accessible. As
previously mentioned, the migration in q2, due to QED radiation, implies that events
generated at high q2

0 (e.g. close to the resonance region) necessarily move down toward
low q2-values, possibly a�ecting the signal region for the rare mode. The migration is
controlled by the mrec

B
cut: only events with

q2
Æ q2

0 Æ (q2
0)max © q2 + ”exm2

B
, (2.14)

are relevant to determine radiative corrections at a given q2-value.4

The mrec
B

cuts used to define the signal windows for electron and muon modes in the
LHCb analyses are reported in Tab. 2.1. Note that the cut on the electrons is looser
than the one on the muons: a measure implemented to decrease the loss of events in
the electron case where radiation e�ect is stronger. As can easily be checked, in the
electron case, events at q2 = 6 GeV2 probe (via photon radiation) the non-radiative
spectrum above the J/�-resonance (m2

J/� ¥ 9.58 GeV2), but do not probe the �(2S)
peak.

This e�ect is well known and the residual contribution of radiation from the J/�
in the signal region is taken into account in the experimental analyses. However, this
is simulated as a completely incoherent process, while in reality interference e�ects
between the SD amplitude and LD one are present. The purpose of this section is
to estimate the possible impact of these e�ects. In Sec. 2.4.1, we discuss how the
amplitude of the rare mode can be adapted to describe SD-LD interference terms.
Using this modified parametrisation of the amplitude, in Sec. 2.4.2, we analyse the

4 The value (q2
0)max is reached for photons emitted backward with respect to q̨ in the B RF [5].
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� m�[ MeV] B(� æ e+e≠) B(� æ µ+µ≠) ��[ MeV]
J/�(1S) 3097 5.971(32) · 10≠2 5.961(33) · 10≠2 92.6(17)
�(2S) 3686.1(6) 7.93(17) · 10≠3 8.0(6) · 10≠3 294(8)

Table 2.2 Data of charmonium resonances included in our analysis as taken from [25]. The
J/� mass uncertainty is negligibly small.

numerical impact of the interference terms in our MC-framework. Finally, in Sec. 2.4.3
we analyse the e�ect of interference terms, as well as the whole modulus square of the
LD amplitude, via a semi-analytic approach.

2.4.1 Parameterisation of the charm amplitude

We extend the parameterisation of the amplitude in Sec. 2.3 for the SD form factor by
including the e�ects of the charmonium resonances which we label as long distance
(LD)

A
tot
B̄æK̄¸+¸≠ = A

SD
B̄æK̄¸+¸≠ + A

LD
B̄æK̄¸+¸≠ . (2.15)

The LD contribution can be absorbed into,

Ce�
9 (q2) = C9 + �C9(q2) , (2.16)

a q2-dependent Wilson coe�cient �C9(q2) (recall CV Ã C9). Its q2-dependence is
parameterised by an n-times subtracted dispersion relation

�C9(q2) =
n≠1ÿ

kØ0

(q2
≠s0)k

k! �C(k)
9 (s0) + (q2

≠s0)n

2fii

⁄ Œ

cut

ds

(s ≠ s0)n

disc[�C9](s)
s ≠ q2 ≠ i0 , (2.17)

with a cut starting just below m2
J/�. Above, “disc" stands for the discontinuity, the

k-superscript denotes the kth derivative, and “cut" stands for the branch cut. Formally,
n Ø 1 as otherwise, the dispersion integral is not convergent. In this form, (2.17)
is valid in full generality and one can equally write it for the amplitude. For the
representation (2.17), the main idea is to evaluate the Taylor series in �C9 for some
q2 = s0, where perturbative methods can be trusted. The discontinuity, disc[�C9],
which enters the dispersion integral, is approximated by the Breit-Wigner form for the
resonances. This is su�cient for the purposes of estimating the contamination of the
resonances on B̄ æ K̄¸+¸≠ due to QED-corrections.5 The final form of �C9 used is

5 Refinements include the interference of broad resonances [? ] and the inclusion of two-particle
thresholds assuming strong constant phases [26].
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the one corresponding to one subtraction

�C9(q2) = �C9(s0) ≠
ÿ

rœ�

A
q2

≠ s0

m2
r

≠ s0

B
÷rei”rmr�r

q2≠m2
r
+imr�r

. (2.18)

The values of the phenomenological coe�cients ÷r and ”r for the first two narrow
resonances are reported in Sec. 2.4.2 and Sec. 2.4.3 respectively (cf. (2.33) on how
÷r relates to underlying parameters). The value used for the subtraction term is
�C9(0 GeV2) ¥ 0.27 + 0.073i. More details on the charm parameterisation are deferred
to App. 2.A.2.

2.4.2 Study of the J/�-resonance interference term in our
Monte Carlo

In the MC-study, we include the J/�-resonance in the sampling method outlined in
Sec. 2.2.3, by extending the definition of Ce�

9 (q2) as detailed in the previous section. The
modulus squared of the resonant mode, A

B̄æK̄(J/�æ¸+¸≠) µ A
LD
B̄æK̄¸+¸≠ in Eq. (2.15),

is not included in our simulation since its sharp pole at q2
¥ m2

J/� renders the MC
sampling e�ciency too low. In turn, this requires to place a cut on q2

0 Æ 9.59 GeV2

(cf. App. 2.A.4 for details) since the remaining terms become negative above that
threshold, invalidating their interpretation as a PDF (cf. Sec. 2.2.3). Another factor
limiting the sampling e�ciency is the lepton mass, which in the electron case has to be
increased to 10 times its physical value (c.f. App. 2.A.4) to allow for e�cient sampling.6

Our approach is well justified since the modulus squared of the J/�-resonance
is well simulated by PHOTOS (see [8]), and the component describing its leakage in
the signal region is included in the fit used to extract the rare mode yield. With our
simulation, we aim to analyse the e�ect on the q2 bin migration of the J/� interference
term, that has so far not been considered in the experimental analyses.

The resonance data is given by the normalisation ÷J/� = 8180 in the notation of
(2.18) (or flJ/� = 1.38, in the notation of (2.33)), with mass and width in Tab. 2.2,
and the interference phase ”J/�. For the latter, we choose two representative values:
”J/� = (1.47, 0) where the former is deduced by the LHCb analysis of the dilepton
spectrum [27], and the latter is a conservative choice aimed at maximising the J/�
interference e�ect.

6 We have checked that the ln m¸-behaviour is consistent with what is obtained using the the
semi-analytic method described in Sec. 2.4.3.
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Fig. 2.3 Double ratio of the q2-spectrum, with and without the inclusion of interference
e�ects induced by the J/�-resonance, for electron and muons, using the respective
reference mrec

B
cuts in Tab. 2.1. For numerical stability we use me æ 10me (as indicated

by the darker shade in red). The phase of the J/� amplitude, relative to the SD term,
is set to ”J/� = 1.47.

The plots in Figs. 2.3 and 2.4 show the e�ect, as a function of q2, on the radiative
corrections when including the J/� interference term in the decay width, for interference
phases of ”J/� = (1.47, 0) respectively. More specifically, they represent the double
ratio of NLO over LO di�erential decay widths including charm over the same ratio
without charm.
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Fig. 2.4 Same plots as in Fig. 2.3 with the relative phase of the J/� amplitude set to
”J/� = 0.



2.4 Adding Long Distance (Charmonium Resonances) 105

Both figures include electron-like (red) and muon (blue) distributions, with appro-
priate mrec

B
= (4.88, 5.18) GeV cuts (cf. Tab. 2.1). As can be seen from these plots, the

impact of the SD–LD interference term is well below the 1%-level in the q2 < 6 GeV2

region, for the (realistic) phase choice ”J/� = 1.47. Even, in the conservative case
”J/� = 0, it remains just below 1%. We thus conclude that when applying the afore-
mentioned cuts, the experimental approach of neglecting the interference e�ect of
charmonium resonances, when fitting for the rare mode in the q2 < 6 GeV2 region, is
well-justified.

2.4.3 J/� and �(2S), including the resonant mode via a semi-
analytic approach

Here, we follow a semi-analytic approach, using the splitting function, which reproduces
the relevant collinear logarithms. There are a few advantages to this approach: it
is numerically less demanding, there is no normalisation ambiguity, no issues with
positivity, further resonances are easily incorporated, we can simulate for the actual
electron mass and we may assess the impact of the full resonant amplitude. While it is
not a MC-based approach, and therefore not directly of use for an event simulation, it
may be serve as a reweighting tool for our MC-framework.

Evaluating the impact of the full resonant amplitude is of interest since its rate
is sizeable B(B̄0

æ K̄0J/Â) = 8.91(21) · 10≠4 compared to the rare mode itself which
is O(10≠6), and with a cut set at mrec

B
= 4.88 GeV the electron mode does probe the

first resonant peak for q2
¥ 6 GeV2, as previously stated. In fact, in a decay like

B̄ æ K̄¸+¸≠ the (hard)-collinear and soft-collinear logs in the lepton mass can be
reproduced from the lepton to lepton-photon splitting function.7,8

It is convenient to parameterise the relative QED correction d2� Ã (1+�(¸)(q̂2, c¸))dq̂2dc¸),
following our earlier work, as

�(¸)
hc (q̂2, c¸) = –

fi

A
1

�LO
d2�LO(q̂2)

dq̂dc2
¸

B≠1 1
Q̂2

¸1
�̃(¸)

hc,¸1
+ Q̂2

¸2
�̃(¸)

hc,¸2
) . (2.19)

7 The specific details are postponed to a future publication [? ] and for more generic remarks we
refer the reader to [? ]. Although, note that the kinematic relations, to follow below, can be found
in our previous work [5] (cf. ancillary notebook for the expression with mK ”= 0). Eq. (A.5) in [5]
corresponds to the single-di�erential and photon-inclusive version of (2.20).

8 This formalism can be extended to resum all the collinear logs using the electron structure
function. Taking the last bin [20.9 GeV2

, (mB ≠mK)2], used in Fig. 2.2, and weighing by the rate, we
produce an e�ect of ¥ 0.96 which agrees very well with the central value in that figure.
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where q̂2
© q2/m2

B
for brevity and the subscript “hc" stands for the (hard) collinear

contribution. This quantity reads

�̃(¸)
hc, ¸1

(q̂2, c¸) = ln µhc

m¸1

A
1

�LO

⁄ 1

max(q̂2,z
”

¸1
)
dzPfæfgA

(z)d2�LO(q̂2
0, c0)

dq̂2
0dc0

B

J¸1
(c¸, z) , (2.20)

where PfæfgA
(z) = limzúæ0

Ë
1+z

2

(1≠z)◊((1 ≠ zú) ≠ z) + (3
2 + 2 ln zú)”(1 ≠ z)

È
is the split-

ting function where µhc = O(mB) is an a priori undetermined scale (to be commented
further below). The variable relations and the Jacobian (dq2

0dc0 = J¸1
(c¸, z)dq2dc¸)

are given by

q2 = zq2
0 , c0|mK=0 = c¸(1 + z) + z̄

c¸z̄ + 1 + z
, J¸1

(c¸, z)|mK=0 = 4
(c¸z̄ + 1 + z)2 , (2.21)

with z̄ © 1 ≠ z. The lower integration boundary is set by the maximum of the photon
inclusive limit q̂2 and the photon-cut o� dependent

z”

¸1
|mK=0 = 1 + q̂2

≠ ” + c¸(1 ≠ q̂2
≠ ”)

1 + q̂2 + ” + c¸(1 ≠ q̂2 ≠ ”) . (2.22)

The corresponding expression for �̃(¸)
hc, ¸2

can be obtained by changing the signs on all
the cosines in the lepton angles in Eqs. (2.21) and (2.22).
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Fig. 2.5 Plots with the resonant mode cut out (cf. main text for explanation). For q
2

< 6 GeV2

the interference e�ects are small, even in the electron case (confirming the plot in Fig. 2.4),
and do not indicate any contamination to RK in particular. The corresponding plot without
the LO normalisation can be found in App. 2.A.3 in Fig. 2.8.

We turn to the practical implementation. As compared to the previous section,
we include the second resonance �(2S), cf. Tab. 2.2 for the basic inputs. In this case
÷�(2S) = 1160 (or fl�(2S) = 1.56, in the notation of (2.33)) describes its residue up
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Fig. 2.6 Same plots as in Fig. 2.5 including resonant modes: (left) for electrons and (right)
for muons respectively. It is noted that at q

2 = 6 GeV2, the e�ect is noticeable for electrons
and care has to be taken (cf. main text). For the electrons, the plot ends at q

2 = 6 GeV2 since
beyond this value the e�ects are too large (at q

2 = (7, 8) GeV2 we find, approximately, (6.5, 40)
and (8.4, 73) for +charm and -charm respectively). We have checked that resummation
slightly tames the e�ect but qualitatively, it remains the same. The muon plot looks
deceptively similar to the one in Fig. 2.5 for q

2
< 8 GeV2 but di�erences arise thereafter. The

corresponding plot without the LO normalisation can be found in App. 2.A.3 in Fig. 2.9.

the free phase ”�(2S). In order to emulate the LHCb procedure in eliminating the
J/� mode, we cut out the amplitude squared of the resonant mode in the following
q2

0-window: m2
� ≠ �Ê2 < q2

0 < m2
� + �Ê2 with �Ê2 = 0.1 GeV2. Empirically, we

find that choosing the undetermined scale to be µ2
hc ¥ 6q2 ,does reproduce our short

distance results in [5] rather well. It is not surprising that the scale is proportional to
q2 since this is the relevant scale “seen" by the lepton pair.

In order to assess the possible uncertainty of the charm contribution, we choose the
phases to give rise to maximal interference i.e. ”J/�,�(2S) = 0 and plot the three graphs:
one without any charm, one as described above and one with the sign reversed (i.e.
”J/�,�(2S) = fi). The maximal di�erence can then be seen as a conservative estimate
for the error of not including the charm.

Plots for the electron and the muon cases with the resonances cut out are shown in
Fig. 2.5. This situation mimics the interference of the rare and resonant mode and it
is seen from the plots that, for q2 < 6 GeV2, this contribution is small. At q2 = 6 GeV2

the di�erence between the two charm contributions with opposite sign is 2% and when
this e�ect is averaged over the entire [1.1, 6] GeV2 bin it is clear that the e�ect does not
exceed O(1%) which would be comparable to structure dependent corrections. This is
fortunate since, as previously mentioned, resonant versus rare-mode interference are
not included in the LHCb analysis. These results can be seen as a validation of the
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double ratio plots in Fig. 2.4 obtained in the MC-framework (with meaningful absolute
normalisation).

We turn to the case where we include the full resonant mode. Crucially, the
squared resonant amplitude is independent of the ”J/�-phase and dominates over the
interference. This can be seen from the electron plot shown in Fig. 2.6, by comparing it
to the corresponding one in Fig. 2.5. Furthermore, it can be seen that for the electron
cut-o�, QED e�ects begin to be sizeable below the q2 < 6 GeV2 and thus care has to
be taken. The e�ect is coming from the J/� resonance and the e�ect of the �(2S)
resonance is moderate for the given electron cut.

This is further reflected in the LHCb mass fit projections to the signal mode
(cf. Fig. 2 in [8]) where the leakage of the resonant mode is included in the total
fit model, together with the other backgrounds components, to extract the electron
signal yield. Amongst the cross-checks performed in the measurement of RK are the
integrated and di�erential ratios rJ/�, which directly compare electron and muon
detection e�ciencies, and thus constitute a stringent validation of their analysis. The
value of rJ/� is known in the SM to be unity to a very high degree of accuracy, since
it originates from the tree level mediated resonant mode, and was measured in the RK

analysis, rJ/� = 0.981 ± 0.020. This result is one sigma compatible the SM prediction
and with the previous measurements of this quantity [25]. Moreover, as can be seen
from Fig. 9-10 of [8], rJ/� is also performed di�erentially as a function of variables
which are used in the determination of the dilepton invariant mass, such as the opening
angle of the lepton pair and their transverse momentum. The flatness of rJ/� in those
variables reflects an excellent description of the e�ciency-related e�ects in muons and
electrons. Not only are these crucial cross-checks per se, but they also validate the
double ratio method used to minimise the e�ciency-related systematic error in the RK

measurement [8], and the accuracy in the description of the QED corrections from the
absolute square of the J/�-mode.

Despite all these positive cross-checks, since the overall impact of the resonance
modes is large (cf. Fig. 2.5), it would be of great relevance if the LHCb collaboration
could perform a q2-binned analysis of RK . This would provide a further important test
of the robustness of RK .

Related to that, we have investigated the robustness of the results with respect
to non-perturbative aspects which are di�cult to control: the extrapolation of the
Breit-Wigner form and neglecting higher resonances. The Breit-Wigner resonance
gives a good approximation close to its pole only and its extension away from the
pole is not thoroughly known. When using (2.18) an implicit assumption on its form



2.5 Outlook and Conclusions 109

was made; it is dictated by the short distance form factors (cf. App. 2.A.2 for further
comments). We may therefore assess the e�ect by choosing flat form factors multiplying
the Breit-Wigner resonances and adjusting the residue to reproduce the B æ �e+e≠

rate. Specifically, we replace the form factor by its value at the subtraction point. It is
found that this e�ect leads to changes which do not exceed the 2%-level for q2 < 6 GeV2

and is thus fortunately moderate. The e�ect of changing the number of subtractions
in (2.17) can be seen as a way to estimate neglecting higher resonances since many of
them are needed to reproduce the precise asymptotics of perturbative QCD. However,
one versus no subtraction leads to small O(1%) changes only and might be seen as
an indication of the consistency of the subtraction value with the resonance data. In
summary the extension of the J/�-resonance has a much larger e�ect than neglecting
higher states.

All in all, this underlines the importance of a refined q2-binning from a di�erent
viewpoint. Another way to look at it is that it emphasises the importance of knowing
the LO amplitude (i.e. the idealised amplitude in the absence of QED) since its precise
form a�ects the detailed form (size and magnitude) of QED corrections. In this respect,
given the smaller impact of QED e�ects and the better experimental resolution, the
muon case can serve as a tool for a precise determination of the LO spectrum in a
data-driven approach.

2.5 Outlook and Conclusions
In this article, we investigated numerical aspects of QED corrections on the B̄0

æ K̄0¸+¸≠

decay, which is of particular relevance in view of LFU tests. We constructed a dedicated
Monte Carlo framework based on the computation in [5] (cf. Sec. 2.2), and further
analysed QED e�ects by means of a semi-analytic (splitting-function based) approach
(cf. Sec. 2.4.3) which captures the numerically dominant collinear logs.

In Sec. 2.3, we compared our Monte Carlo framework with PHOTOS at the level of the
short distance matrix element (rare mode) and found good agreement at the di�erential
level in all relevant variables (in particular q2, c¸ and q2

0, c0). Particularly relevant is the
comparison in the q2-distribution, illustrated in Fig. 2.2, which plays a key role in the
LFU tests at hadron colliders. Since PHOTOS and our approach are supposed to capture
all the leading logs, agreement was to be expected. Indeed, a partial cross-check of
PHOTOS, in the q2

0- and with an e�ective cut-o� in the q2-distribution were already
reported in [4]. Our double di�erential comparison thus provides a solid cross-validation
of both our Monte Carlo framework and PHOTOS.
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In addition to the short distance contribution, our Monte Carlo and semi-analytic
framework has allowed us to assess the impact of the resonant mode B̄ æ K̄(J/� æ

¸+¸≠) on the extraction of RK (in Secs. 2.4.2 and 2.4.3 respectively). Both the Monte
Carlo and the semi-analytic approach confirm that the interference e�ects between
resonant and rare mode (not included in PHOTOS) are below 1% for q2 < 6 GeV2. This
justifies not simulating these e�ects in the experimental setup, as currently done. On
the other hand, the resonant mode, as known and expected, has a significant e�ect
in the electron mode below 6 GeV2 as the plot in Fig. 2.6 quantifies. This is taken
care of in the present experimental analyses. As pointed out, a useful validation of
this procedure could be obtained with an extraction of RK in di�erent q2-bins (in the
q2 < 6 GeV2 region). A further independent cross-check could be obtained varying
mrec

B
(in particular setting a tighter cut on the electron mode). Last but not least, we

stress that a precise description of the q2-dependence of the non-radiative amplitude,
including short- and long- distance terms, is a key ingredient to obtain the O(–)
corrections at the sub-percent level (cf. remarks at the end of Sec. 2.4.3).

In this paper, we have specifically focused on the case of neutral hadrons, which
has facilitated the implementation of an arbitrary q2-dependence in the form factor.
As discussed, we expect the conclusions for the charged modes to be qualitatively
similar, especially as far as the interference e�ects between resonant and rare modes
are concerned. Moreover, the same outcomes ought to hold for the B̄ æ K̄ú¸+¸≠ and
the �b æ �¸+¸≠ modes.

A decisive aspect is that the remaining QED corrections, due to structure depen-
dence, which are not incorporated in PHOTOS, have been shown to be free of ln m¸

enhanced factors (cf. Sec. 3.4 [5]). When going to the structure dependent level, which
necessitates the introduction of new gauge invariant interpolating operators [? ] and
or new gauge invariant distribution amplitudes [? ], new sizeable ln mK(fi)-e�ects can
be expected to be present for K(fi) final states. However, they would cancel in LFU
ratios [4,5], along with (other) structure dependent e�ects, for the reasons mentioned
above.

Putting all these ingredients together, the present analysis provides an important
further validation that the LFU tests so far performed by the LHCb collaboration are
robust with respect to LFU violations induced by QED corrections.
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Appendix 2.A Appendix to Chapter 2

2.A.1 Kinematics

Following Ref. [5], we reproduce the relevant kinematic paramteristion for the 4-body
decay kinematics in terms the five independent variables (q2, p̄2

B
, c¸, c“, „“), where

ci © cos ◊i. We start by defining the photon and the meson momenta in the p̄B-RF
(indicated by an upper index (2)):

k(2) = (E(2)
gA

, ≠ cos ◊gA
|̨k(2)

gA
|, ≠ sin ◊gA

cos „gA
|̨k(2)

gA
|, ≠ sin ◊gA

sin „gA
|̨k(2)

gA
|) ,

p̄(2)
B

= (p̄B, 0, 0, 0) , q(2) = (p̄B ≠ pK)(2) = (p̄B ≠ E(2)
K

, |p̨ (2)
K

|, 0, 0) = (E(2)
q

, |p̨ (2)
K

|, 0, 0) ,

p(2)
K

= (E(2)
K

, ≠|p̨ (2)
K

|, 0, 0) . (2.23)

Here,
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=
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) , (2.24)

and
⁄(s, m2

1, m2
2) = (s ≠ (m1 ≠ m2)2)(s ≠ (m1 + m2)2) . (2.25)

The lepton momenta ¸1,2 depend on the angle of the leptons w.r.t to the decay axis in
the q-RF,

¸(2)
1 = (gA(E(3)

¸1
+ — cos ◊¸|

˛̧ (3)
1 |), gA(—E(3)

¸1
+ cos ◊¸|
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where E(3)
¸1,2

and |˛̧ (3)
1 | are quantities defined in the q-RF:
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(2.27)
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The boost velocity — and gA-factor are given by

— = |p̨ (2)
K

|

E(2)
q

, gA = 1
Ô

1 ≠ —2 =
E(2)

q

q
. (2.28)

2.A.2 More Detail on the Charm Parameterisation

Here we give some more detail on the charm parameterisation (2.18) used in this paper.
The perturbative evaluation of �C9(q2) reads

�C9(q2) = (C2 + 3C1)hc(q2) ≠
–s

4fi

ÿ

i=1,2
CiF

(9)
i

(q2) + O(–2
s
, C3,6) , (2.29)

where hc is vacuum polarisation (Im[hc(s)] = fi

3 R(s) with R(s) ©
‡(e+

e
≠æhadrons)

‡(e+e≠æµ+µ≠) an
experimentally well-studied ratio of cross sections [25]), reproduced in [? ] for example,
and the second term includes bscc-vertex corrections not captured by the first term.
For the latter, we have adapted the notation and results from the inclusive mode
b æ s¸¸ [22]. This treatment falls short of e�ects specific to the structure of the B̄- and
K̄-mesons. The Wilson coe�cients C3,6 correspond to the penguin induced four quark
operators and can be neglected for our purposes. The C2 ¥ 1 Wilson coe�cient arises
at tree level and C1 ¥ ≠0.15 is generated by renormalisation group running (specifically
we employ (C1, C2, C9)(mb) = (≠0.15, 1, 4.035) as reference values). The combination
C2 +3C1 ¥ 0.6 is referred to as the colour suppressed contribution whereas the radiative
corrections are colour enhanced and reduce the LO corrections considerably. In our
numerical analysis we use a single subtracted point at �C9(0 GeV2) ¥ 0.27 + 0.073i.

We turn to the input into the dispersion integral which is the discontinuity. Let
us clarify the approximations used. In the case of infinitely narrow resonances and
further assuming naïve factorisation (NF) one has, (2fii)≠1disc[�C9]NF(s) = 3fi

–2 (C2 +
3C1)m���æ¸+¸≠”(s ≠ m2

�). In this limit, one can correct for NF by multiplying the
amplitude by a complex number fl�ei”� (fl� Ø 0),

1
2fii

disc[�C9](s)| ��

m�
æ0 = 3fi

–2 (C2 + 3C1) fl�ei”�m���æ¸+¸≠”(s ≠ m2
�) + . . . , (2.30)



116 References

which parameterises its deviation. Turning to the more realistic case of finite widths,
the dispersion integral in (2.17) assumes the form

(q2
≠s0)n

2fii

⁄ Œ

cut

ds

(s≠s0)n

disc[�C9](s)
s≠q2≠i0 =

≠
3fi

–2 (C2+3C1)
ÿ

rœ�

A
q2

≠ s0

m2
r

≠ s0

B
n

flrei”rmr�ræ¸+¸≠

q2≠m2
r
+imr�r

+ . . . . (2.31)

As previously mentioned the dots stand for neglected multi-hadron contributions which
start at q2 = 4m2

D
. At last, let us comment on the status of the resonance data, the

significance of writing the dispersion relation in �C9 rather than the amplitude and
parameterising without reference to the SM.

• From the branching fractions, it has been known for a long time that flJ/� ¥ 1.38
and fl�(2S) ¥ 1.56 and that there are sizeable corrections to NF. By fitting the
interference of the (broad) charm resonances with the short distance contributions,
the corresponding correction factors were found to be even larger and come with
opposite phase ”� ¥ fi as compared to NF [? ] (cf. plots and tables therein).
Later, the LHCb collaboration [27] fitted the phases of the J/�- and �(2S)-
resonances which are more challenging as they are narrow. Qualitatively, a
four fold degeneracy (”J/�, ”�(2S)) ¥ (±fi

2 , ±
fi

2 ) (cf. Tab. 3 in [27]) emerges which
indicates a rather small interference e�ect since the short distance contribution
is real.

• In principle, one could have directly written a dispersion relation for the full
amplitude. However, the amplitude and �C9 essentially di�er by the form factor
f+(q2) which is an analytic function with a pole and branch points above the
physical region. They are thus both legitimate functions for a dispersion relation.
Di�erences comes into play when approximations are made. In our case, they
di�er on how we extend from the narrow resonance limit, which is not-known
from first principles, and thus, a priori, any of the two seems as good as the other.
Perhaps, the one for �C9 is preferable as we know that the extension is at least
correct in the case of NF, which might be seen as a reasonable qualitative starting
point (cf. end of Sec. 2.4.3 for comments on the actual numerical relevance.)

• One may parameterise without reference to NF (cf. Eq. (3) in [27])

1
2fii

disc[�C9](s) = ÷re
i”rmr�r”(s ≠ m2

r
) , (2.32)
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thereby avoiding reference to the SM. Comparison with (2.30) reveals the relation
between the parameters

÷r �r = flr

3fi

–2 (C2 + 3C1)�ræ¸+¸≠ . (2.33)

2.A.3 Supplementary plots

In this appendix, we provide a few supplementary plots which might be of interest to
certain readers of the paper. This includes the MC-plots in Figs. 2.7 about angular
distributions. The fact that QED gives rise to qualitatively di�erent angular distribution
(or higher moments) was pointed out in [28] (cf. Sec. 5) and advertised as a way to
measure pure QED e�ects. Auxiliary plots for the semi-analytic approach are shown
in Figs. 2.8 and 2.9 which can help to better understand the normalised figures since
the normalisation depends on the charm input.

2.A.4 Values of f th used in the Monte Carlo Simulations

Tab. 2.3 gives the values of �3

�tree
for various cases, which are used to calculate f th,

needed for the normalisation of the Monte Carlo.
When the resonance is “o�", only the contribution from the rare mode is considered,

and the integration for the total rates is performed over the full range of q2
0. In this

case, we consider two possible frames (p̄B and q0) for imposing the spurious cut on
the photon energy E(i)

“
in order to separate 3- and 4-body events. We note that the

coe�cient of the soft log (ln E(i)
“

) is the same for each case, as expected. The results are
given for 3 di�erent leptons (µ, 10e and e) for each photon energy cut. The shorthand
10e denotes an “intermediate" lepton which has a mass of m10e = 10 me, which is
roughly in between the muon and electron mass.

When the resonance is “on", the contribution from the interference of the rare
mode with the Breit-Wigner term of the J/Â is included, but not the square of the
Breit-Wigner term itself. In this case, we consider two possible values for the phase of
the J/Â: ”J/Â = 0 (maximum interference) and ”J/Â = 1.47 (LHCb value from [27]).
The corresponding restrictions on the range of the q2

0 integration are q2
0 Æ 9.5905 GeV2

and q2
0 Æ 9.585 GeV2 respectively. This is done in order to capture the maximum

e�ect from the interference term in each case. Only results for photon energy cuts in
the q0-RF are given, since in the p̄B-RF, the MC has extremely low e�ciency. This
is because for a photon energy cut-o� in the p̄B-RF, the sampling for the MC also
has to be performed in p̄B. Then, applying a cut in q2

0 (which is now a function
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Fig. 2.7 Short distance (form factor) plots, in the cos ◊¸-variable, NLO over LO for
muons in blue (top left) and for electrons in red (top right) in our MC, with appropriate
cuts as in Tab. 2.1. The normalisation of these plots is not meaningful (cf. main text).
However, double ratios, shown in the middle and bottom, of our Monte Carlo versus
the PHOTOS framework are free of ambiguities.
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Fig. 2.8 Same plots as in Fig. 2.5 without LO-normalisation.

+

+ + + + +

+

- - - - - -

-
�

� � � � � �
+ +charm

- -charm

� no-charm

1 2 3 4 5 6

1.2

1.4

1.6

1.8

2.0 e, 10
8

GeV
d�

NLO

dq2

m
rec

B
>4.88GeV

”J/�,�(2S)=0,fi

with |A
B̄æK̄(�æee)

|2

q2[ GeV2]

+
+ + + + + +

+

+

- - - - - - -
-

-

� � � � � � � � �

+ +charm

- -charm

� no-charm

2 4 6 8

0.8

1.0

1.2

1.4

1.6

1.8

2.0
µ, 10

8
GeV

d�
NLO

dq2

m
rec

B
>5.18GeV

”J/�,�(2S)=0,fi

with |A
B̄æK̄(�æee)

|2

q2[ GeV2]

Fig. 2.9 Same plots as in Fig. 2.6 without LO-normalisation.

of several sampling variables) becomes problematic, and significantly decreases the
sampling e�ciency. Furthermore, having an electron mass also significantly decreases
the e�ciency of the Monte Carlo, so we restrict ourselves to a muon mass mµ and an
“intermediate" mass m10e(= 10me) when interference e�ects are considered.
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Resonance Frame for E(i)
“ ,cut Lepton �3

�tree

O�

p̄B

µ 1 + –

fi

1
5.1479 + 10.924 ln E(p̄B)

“ ,cut

2

10e 1 + –

fi

1
7.8551 + 23.012 ln E(p̄B)

“ ,cut

2

e 1 + –

fi

1
9.9605 + 32.222 ln E(p̄B)

“ ,cut

2

q0

µ 1 + –

fi

1
6.8903 + 10.924 ln E(q0)

“ ,cut

2

10e 1 + –

fi

1
12.473 + 23.012 ln E(q0)

“ ,cut

2

e 1 + –

fi

1
16.772 + 32.222 ln E(q0)

“ ,cut

2

On, ”J/Â = 0 q0
µ 1 + –

fi

1
8.7111 + 10.140 ln E(q0)

“ ,cut

2

10e 1 + –

fi

1
16.658 + 22.223 ln E(q0)

“ ,cut

2

On, ”J/Â = 1.47 q0
µ 1 + –

fi

1
9.6159 + 9.5767 ln E(q0)

“ ,cut

2

10e 1 + –

fi

1
19.271 + 21.647 ln E(q0)

“ ,cut

2

Table 2.3 f
th for di�erent cases. When the resonance is “on", the interference of the Breit-

Wigner term of the J/Â and the rare mode is included (but not the square of the Breit-Wigner
term). 10e is a ‘fake’ lepton that has an ‘intermediate’ mass (between the muon and the
electron), and we take m10e = 10 me. When the resonance is “o�" (ie. only rare mode), the
full range of q

2
0 is integrated over. When ”J/Â = 0, the q

2
0 integration is restricted in the

region q
2
0 Æ 9.5905 GeV2, whereas when ”J/Â = 1.47, the q

2
0 integration is restricted in the

region q
2
0 Æ 9.585 GeV2. E

(i)
“ ,cut is given in GeV units.



Chapter 3

Test of lepton flavour universality in
beauty quark-decays

The Standard Model (SM) of particle physics provides precise predictions for the
properties and interactions of fundamental particles, which have been confirmed by
numerous experiments since the inception of the model in the 1960’s. However, it
is clear that the model is incomplete. The SM is unable to explain cosmological
observations of the dominance of matter over antimatter, the apparent dark-matter
content of the Universe, or explain the patterns seen in the interaction strengths of
the particles. Particle physicists have therefore been searching for ‘new physics’ — the
new particles and interactions that can explain the SM’s shortcomings.

One method to search for new physics is to compare measurements of the properties
of hadron decays, where hadrons are bound states of quarks, with their SM predictions.
Measurable quantities can be predicted precisely in the decays of a charged beauty
hadron, B+, into a charged kaon, K+, and two charged leptons, ¸+¸≠. The B+ hadron
contains a beauty antiquark, b, and the K+ a strange antiquark, s, such that at the
quark level the decay involves a b æ s transition. Quantum field theory allows such
a process to be mediated by virtual particles that can have a physical mass larger
than the energy available in the interaction. In the SM description of such processes,
these virtual particles include the electroweak-force carriers, the “, W ± and Z0 bosons,
and the top quark (see Fig. 3.1, left). Such decays are highly suppressed [1] and the
fraction of B+ hadrons that decay into this final state (the branching fraction, B) is of
the order of 10≠6 [2].

A distinctive feature of the SM is that the di�erent leptons, electron (e≠), muon
(µ≠) and tau (·≠), have the same interaction strengths. This is known as ‘lepton
universality’. The only exception to this is due to the Higgs field, since the lepton-Higgs
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interaction strength gives rise to the di�ering lepton masses m· > mµ > me. The
suppression of b æ s transitions is understood in terms of the fundamental symmetries
on which the SM is built. Conversely, lepton universality is an accidental symmetry
of the SM, which is not a consequence of any axiom of the theory. Extensions to
the SM that aim to address many of its shortfalls predict new virtual particles that
could contribute to b æ s transitions (see Fig. 3.1, right) and could have nonuniversal
interactions, hence giving branching fractions of B+

æ K+¸+¸≠ decays with di�erent
leptons that di�er from the SM predictions. Whenever a process is specified in this
article, the inclusion of the charge-conjugate mode is implied.

Calculation of the SM predictions for the branching fractions of B+
æ K+µ+µ≠ and

B+
æ K+e+e≠ decays is complicated by the strong nuclear force that binds together

the quarks into hadrons, as described by quantum chromodynamics (QCD). The
large interaction strengths preclude predictions of QCD e�ects with the perturbation
techniques used to compute the electroweak force amplitudes and only approximate
calculations are presently possible. However, the strong force does not couple directly
to leptons and hence its e�ect on the B+

æ K+µ+µ≠ and B+
æ K+e+e≠ decays is

identical. The ratio between the branching fractions of these decays is therefore
predicted with O(1%) precision [3–8]. Due to the small masses of both electrons and
muons compared to that of b quarks, this ratio is predicted to be close to unity, except
where the value of the dilepton invariant mass-squared (q2) significantly restricts the
phase space available to form the two leptons. Similar considerations apply to decays
with other B hadrons, B æ Hµ+µ≠ and B æ He+e≠, where B = B+, B0, B0

s
or »0

b
;

and H can be e.g. an excited kaon, Kú0, or a combination of particles such as a proton

Fig. 3.1 Contributions to B+
æ K+¸+¸≠ decays in the SM and possible new physics

models. A B+ meson, consisting of b and u quarks, decays into a K+, containing s
and u quarks, and two charged leptons, ¸+¸≠. (Left) The SM contribution involves
the electroweak bosons “, W + and Z0, and the up-type quarks ū, c̄ and t̄. (Right) A
possible new physics contribution to the decay with a hypothetical leptoquark (LQ)
which, unlike the electroweak bosons, could have di�erent interaction strengths with
the di�erent types of leptons.
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and charged kaon, pK≠. The ratio of branching fractions, RH [9,10], is defined in the
dilepton mass-squared range q2

min < q2 < q2
max as

RH ©

⁄
q

2
max

q
2

min

dB(B æ Hµ+µ≠)
dq2 dq2

⁄
q

2
max

q
2

min

dB(B æ He+e≠)
dq2 dq2

. (3.1)

For decays with H =K+ and H =Kú0 such ratios, denoted RK and RKú0 , respectively,
have previously been measured by the LHCb [11,12], Belle [13,14] and BaBar [15] col-
laborations. For RK the LHCb measurements are in the region 1.1 < q2 < 6.0 GeV2/c4,
whereas for RKú0 the regions are 0.045 < q2 < 1.1 GeV2/c4 and 1.1 < q2 < 6.0 GeV2/c4.
These ratios have been determined to be 2.1–2.5 standard deviations below their
respective SM expectations [3–5,16–18,6,19,7,20–22]. The analogous ratio has also
been measured for »0

b
decays with H = pK≠ and is compatible with unity at the level

of one standard deviation [23].
These decays all proceed via the same bæ s quark transition and the results have

therefore further increased interest in measurements of angular observables [24–34] and
branching fractions [35–38] of decays mediated by bæ sµ+µ≠ transitions. Such decays
also exhibit some tension with the SM predictions but the extent of residual QCD e�ects
is still the subject of debate [21,3,39–47]. A consistent model-independent interpretation
of all these data is possible via a modification of the b æ s coupling strength [48–54].
Such a modification can be realised in new physics models with an additional heavy
neutral boson [55–78] or with leptoquarks [79–108]. Other explanations of the data
involve a variety of extensions to the SM, such as supersymmetry, extended Higgs-boson
sectors and models with extra dimensions [109–120]. Tension with the SM is also
seen in the combination of several ratios that test lepton-universality in bæ c¸+‹¸

transitions [121–129].
In this article, a measurement of the RK ratio is presented based on proton-proton

collision data collected with the LHCb detector at CERN’s Large Hadron Collider (see
Methods). The data were recorded during the years 2011, 2012 and 2015–2018, in
which the centre-of-mass energy of the collisions was 7, 8 and 13 TeV, and correspond
to an integrated luminosity of 9 fb≠1. Compared to the previous LHCb RK result [11],
the experimental method is essentially identical but the analysis uses an additional
4 fb≠1 of data collected in 2017 and 2018. The results supersede those of the previous
LHCb analysis.
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The analysis strategy aims to reduce systematic uncertainties induced in modelling
the markedly di�erent reconstruction of decays with muons in the final state, compared
to decays with electrons. These di�erences arise due to the significant bremsstrahlung
radiation emitted by the electrons and the di�erent detector subsystems that are used
to identify electron and muon candidates (see Methods). The major challenge of the
measurement is then correcting for the e�ciency of the selection requirements used to
isolate signal candidates and reduce background. In order to avoid unconscious bias,
the analysis procedure was developed and the cross-checks described below performed
before the result for RK was examined.

In addition to the process discussed above, the K+¸+¸≠ final state is produced
via a B+

æ XqqK+ decay, where Xqq is a bound state (meson) such as the J/Â . The
J/Â meson consists of a charm quark and antiquark, cc, and is produced resonantly
at q2 = 9.59 GeV2/c4. This ‘charmonium’ resonance subsequently decays into two
leptons, J/Â æ ¸+¸≠. The B+

æ J/Â (æ ¸+¸≠)K+ decays are not suppressed and
hence have a branching fraction orders of magnitude larger than that of B+

æ K+¸+¸≠

decays. These two processes are separated by applying a requirement on q2. The
1.1 < q2 < 6.0 GeV2/c4 region used to select B+

æ K+¸+¸≠ decays is chosen to reduce
the pollution from the J/Â resonance and the high-q2 region that contains contributions
from further excited charmonium resonances, such as the Â(2S) and Â(3770) states, and
from lighter ss resonances, such as the „(1020) meson. In the remainder of this article,
the notation B+

æ K+¸+¸≠ is used to denote only decays with 1.1 < q2 < 6.0 GeV2/c4,
which are referred to as nonresonant, whereas B+

æ J/Â (æ ¸+¸≠)K+ decays are
denoted resonant.

To help overcome the challenge of modelling precisely the di�erent electron and
muon reconstruction e�ciencies, the branching fractions of B+

æ K+¸+¸≠ decays are
measured relative to those of B+

æ J/Â K+ decays [130]. Since the J/Â æ ¸+¸≠

branching fractions are known to respect lepton universality to within 0.4% [131,2],
the RK ratio is determined via the double ratio of branching fractions

RK = B(B+
æ K+µ+µ≠)

B(B+
æ J/Â (æ µ+µ≠)K+)

M
B(B+

æ K+e+e≠)
B(B+

æ J/Â (æ e+e≠)K+) . (3.2)

In this equation, each branching fraction can be replaced by the corresponding event
yield divided by the appropriate overall detection e�ciency (see Methods), as all other
factors needed to determine each branching fraction individually cancel out. The
e�ciency of the nonresonant B+

æ K+e+e≠ decay therefore needs to be known only
relative to that of the resonant B+

æ J/Â (æ e+e≠)K+ decay, rather than relative to the
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B+
æ K+µ+µ≠ decay. As the detector signature of each resonant decay is similar to that

of its corresponding nonresonant decay, systematic uncertainties that would otherwise
dominate the calculation of these e�ciencies are suppressed. The yields observed in
these four decay modes and the ratios of e�ciencies determined from simulated events
then enable an RK measurement with statistically dominated uncertainties. As detailed
below, percent-level control of the e�ciencies is verified with a direct comparison of
the B+

æ J/Â (æ e+e≠)K+ and B+
æ J/Â (æ µ+µ≠)K+ branching fractions in the

ratio rJ/Â = B(B+
æ J/Â (æ µ+µ≠)K+)/B(B+

æ J/Â (æ e+e≠)K+), which does not
benefit from the same cancellation of systematic e�ects.

Candidate B+
æ K+¸+¸≠ decays are found by combining the reconstructed trajec-

tory (track) of a particle identified as a charged kaon, together with the tracks from a
pair of well-reconstructed oppositely charged particles identified as either electrons or
muons. The particles are required to originate from a common vertex, displaced from
the proton-proton interaction point, with good vertex-fit quality. The techniques used
to identify the di�erent particles and to form B+ candidates are described in Methods.

The invariant mass of the final state particles, m(K+¸+¸≠), is used to discriminate
between signal and background contributions, with the signal expected to accumulate
around the known mass of the B+ meson. Background originates from particles selected
from multiple hadron decays, referred to as combinatorial background, and from specific
decays of B hadrons. The latter also tend to accumulate around specific values of
m(K+¸+¸≠). For the muon modes, the residual background is combinatorial and, for
the resonant mode, there is an additional contribution from B+

æ J/Â fi+ decays with a
pion misidentified as a kaon. For the electron modes, in addition to combinatorial back-
ground, other specific background decays contribute significantly in the signal region.
The dominant such background for the nonresonant and resonant modes comes from
partially reconstructed B(0,+)

æ K+fi(≠,0)e+e≠ and B(0,+)
æ J/Â (æ e+e≠)K+fi(≠,0) de-

cays, respectively, where the pion is not included in the B+ candidate. Decays
of the form B+

æ D0(æ K+e≠‹e)e+‹e also contribute at the level of O(1%) of the
B+

æ K+e+e≠ signal; and there is also a contribution from B+
æ J/Â (æ e+e≠)K+

decays, where a photon is emitted but not reconstructed. The kinematic correlation
between m(K+e+e≠) and q2 means that, irrespective of misreconstruction e�ects, the
latter background can only populate the m(K+e+e≠) region well below the signal peak.

After the application of the selection requirements, the resonant and nonresonant
decays are clearly visible in the mass distributions (see Fig. 3.2). The yields in
the two B+

æ K+¸+¸≠ and two B+
æ J/Â (æ ¸+¸≠)K+ decay modes are determined

by performing unbinned extended maximum-likelihood fits to these distributions
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Fig. 3.2 Candidate invariant mass distributions. Distribution of the invariant mass
m(J/Â )(K+¸+¸≠) for candidates with (left) electron and (right) muon pairs in the final
state for the (top) nonresonant B+

æ K+¸+¸≠ signal channels and (bottom) resonant
B+

æ J/Â (æ ¸+¸≠)K+ decays. The fit projection is superimposed, with dotted lines
describing the signal contribution and solid areas representing each of the background
components described in the text and listed in the legend. In the resonant-mode
distributions, some fit components are too small to be visible.

(see Methods). For the nonresonant candidates, the m(K+e+e≠) and m(K+µ+µ≠)
distributions are fitted with a likelihood function that has the B+

æ K+µ+µ≠ yield
and RK as fit parameters and the resonant decay-mode yields incorporated as Gaussian-
constraint terms. The resonant yields are determined from separate fits to the mass,
mJ/Â (K+¸+¸≠), formed by kinematically constraining the dilepton system to the known
J/Â mass [2] and thereby improving the mass resolution.

Simulated events are used to derive the two ratios of e�ciencies needed to form
RK using Eq. (3.2). Control channels are used to calibrate the simulation in order
to correct for the imperfect modelling of the B+ production kinematics and various
aspects of the detector response. The overall e�ect of these corrections on the measured
value of RK is a relative shift of (+3 ± 1)%. When compared with the 20% shift that
these corrections induce in the measurement of rJ/Â , this demonstrates the robustness
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of the double-ratio method in suppressing systematic biases that a�ect the resonant
and nonresonant decay modes similarly.

The systematic uncertainty (see Methods) from the choice of signal and background
mass-shape models in the fits is estimated by fitting pseudoexperiments with alternative
models that still describe the data well. The e�ect on RK is at the 1% level. A compa-
rable uncertainty arises from the limited size of the calibration samples, with negligible
contributions from the calibration of the B+ production kinematics and modelling of
the selection and particle-identification e�ciencies. Systematic uncertainties that a�ect
the ratios of e�ciencies influence the measured value of RK and are taken into account
using constraints on the e�ciency values. Correlations between di�erent categories
of selected events and data-taking periods are taken into account in these constraints.
The combined statistical and systematic uncertainty is then determined by scanning
the profile-likelihood and the statistical contribution to the uncertainty is isolated by
repeating the scan with the e�ciencies fixed to their fitted values.

The determination of the rJ/Â ratio requires control of the relative selection e�cien-
cies for the resonant electron and muon modes, and does not therefore benefit from the
cancellation of systematic e�ects in the double ratio used to measure RK . Given the
scale of the corrections required, comparison of rJ/Â with unity is a stringent cross check
of the experimental procedure. In addition, if the simulation is correctly calibrated, the
measured rJ/Â value will not depend on any variable. The rJ/Â ratio is therefore also
computed as a function of di�erent kinematic variables. Even though the nonresonant
and resonant samples are mutually exclusive as a function of q2, there is significant
overlap between them in the quantities on which the e�ciency depends, such as the
laboratory-frame momenta of the final-state particles, or the opening angle between
the two leptons. This is because a given set of values for the final-state particles’
momenta and angles in the B+ rest frame will result in a distribution of such values
when transformed to the laboratory frame.

The value of rJ/Â is measured to be 0.981 ± 0.020. This uncertainty includes both
statistical and systematic e�ects, where the latter dominate. The consistency of this
ratio with unity demonstrates control of the e�ciencies well in excess of that needed
for the determination of RK . In the measurement of the rJ/Â ratio, the systematic
uncertainty is dominated by the imperfect modelling of the B+ production kinematics
and the modelling of selection requirements, which have a negligible impact on the
RK measurement. No significant trend is observed in the di�erential determination
of rJ/Â as a function of any considered variable. An example distribution, with rJ/Â

determined as a function of B+ momentum component transverse to the beam direction,
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pT, is shown in Fig. 3.3. Assuming the observed rJ/Â variation in such distributions
reflects genuine mismodelling of the e�ciencies, rather than statistical fluctuations,
and taking into account the spectrum of the relevant variables in the nonresonant
decay modes, a total shift on RK is computed for each of the variables examined.
The resulting variations are typically at the permille level and hence well within the
estimated systematic uncertainty on RK . Similarly, computations of the rJ/Â ratio in
bins of two kinematic variables also do not show any trend and are consistent with the
systematic uncertainties assigned on the RK measurement.

In addition to B+
æ J/Â K+ decays, clear signals are observed from B+

æ Â(2S)K+

decays. The double ratio of branching fractions, RÂ(2S), defined by

RÂ(2S) = B(B+
æ Â(2S)(æ µ+µ≠)K+)

B(B+
æ J/Â (æ µ+µ≠)K+)

M
B(B+

æ Â(2S)(æ e+e≠)K+)
B(B+

æ J/Â (æ e+e≠)K+) , (3.3)

provides an independent validation of the double-ratio analysis procedure and further
tests the control of the e�ciencies. This double ratio is expected to be close to unity [2]
and is determined to be 0.997 ± 0.011, where the uncertainty includes both statistical
and systematic e�ects, the former of which dominates. This can be interpreted as a
world-leading test of lepton flavour universality in Â(2S) æ ¸+¸≠ decays.
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Fig. 3.3 Di�erential rJ/Â measurement. The distributions of (left) the B+ transverse
momentum, pT, and (right) the ratio rJ/Â relative to its average value

e
rJ/Â

f
as a

function of pT. The pT spectrum of the B+
æ J/Â K+ decays is similar to that of

the corresponding B+
æ K+¸+¸≠ decays such that the measurement of rJ/Â tests the

kinematic region relevant for the RK measurement. The lack of any dependence of
the value of rJ/Â /

e
rJ/Â

f
as a function of B+ pT demonstrates control of the e�cien-

cies.Uncertainties on the data points are statistical only.
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The fit projections for the m(K+¸+¸≠) and mJ/Â (K+¸+¸≠) distributions are shown
in Fig. 3.2. The fit is of good quality and the value of RK is measured to be

RK(1.1 < q2 < 6.0 GeV2/c4) = 0.846 + 0.042
≠ 0.039

+ 0.013
≠ 0.012 ,

where the first uncertainty is statistical and the second systematic. Combining the
uncertainties gives RK = 0.846 + 0.044

≠ 0.041. This is the most precise measurement to date
and is consistent with the SM expectation, 1.00 ± 0.01 [3–7], at the level of 0.10%
(3.1 standard deviations), giving evidence for the violation of lepton universality in
these decays. The value of RK is found to be consistent in subsets of the data divided
on the basis of data-taking period, di�erent selection categories and magnet polarity
(see Methods). The profile-likelihood is given in Methods. A comparison with previous
measurements is shown in Fig. 3.4.

The 3850 ± 70 B+
æ K+µ+µ≠ decay candidates that are observed are used to

compute the B+
æ K+µ+µ≠ branching fraction as a function of q2. The results

are consistent between the di�erent data-taking periods and with previous LHCb
measurements [37]. The B+

æ K+e+e≠ branching fraction is determined by combining
the value of RK with the value of dB(B+

æ K+µ+µ≠)/dq2 in the region (1.1 < q2 <

6.0 GeV2/c4) [37], taking into account correlated systematic uncertainties. This gives

dB(B+
æ K+e+e≠)
dq2 (1.1 < q2 < 6.0 GeV2/c4) = (28.6 + 1.5

≠ 1.4 ± 1.3) ◊ 10≠9 c4/GeV2 .

The 1.9% uncertainty on the B+
æ J/Â K+ branching fraction [2] gives rise to the

dominant systematic uncertainty. This is the most precise measurement of this quantity
to date and, given the large (O(10%)) theoretical uncertainty on the predictions [132,7],
is consistent with the SM.

A breaking of lepton universality would require an extension of the gauge structure
of the SM that gives rise to the known fundamental forces. It would therefore constitute
a significant evolution in our understanding and would challenge an inference based on
a wealth of experimental data in other processes. Confirmation of any beyond the SM
e�ect will clearly require independent evidence from a wide range of sources.

Measurements of other RH observables with the full LHCb data set will provide
further information on the quark-level processes measured. In addition to a�ecting
the decay rates, new physics can also alter how the decay products are distributed
in phase space. An angular analysis of the electron mode, where SM-like behaviour
might be expected in the light of the present results and those from bæ sµ+µ≠ decays,
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Fig. 3.4 Comparison between RK measurements. In addition to the LHCb result,
the measurements by the BaBar [15] and Belle [13] collaborations, which combine
B+

æ K+¸+¸≠ and B0
æ K0

S¸+¸≠ decays, are also shown. The vertical dashed line
indicates the SM prediction.

would allow the formation of ratios between observable quantities other than branching
fractions, enabling further precise tests of lepton universality [133,16,31,134,18]. The
hierarchical e�ect needed to explain the existing bæ s¸+¸≠ and bæ c¸+‹¸ data, with
the largest e�ects observed in tau modes, then muon modes, and little or no e�ects
in electron modes, suggests that studies of bæ s·+·≠ transitions are also of great
interest [135,136]. There are excellent prospects for all of the above and further
measurements with the much larger samples that will be collected with the upgraded
LHCb detector from 2022 and, in the longer term, with the LHCb Upgrade II [137].
Other experiments should also be able to determine RH ratios, with the Belle II
experiment in particular expected to have competitive sensitivity [138]. The ATLAS
and CMS experiments may also be able to contribute [139,140].

In summary, in the dilepton mass-squared region 1.1 < q2 < 6.0 GeV2/c4, the ratio
of branching fractions for B+

æ K+µ+µ≠ and B+
æ K+e+e≠ decays is measured to

be RK = 0.846 + 0.044
≠ 0.041. This is the most precise measurement of this ratio to date and

is compatible with the SM prediction with a p-value of 0.10%. The significance of
this discrepancy is 3.1 standard deviations, giving evidence for the violation of lepton
universality in these decays.
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Methods

3.0.1 Experimental setup

The Large Hadron Collider (LHC) is the world’s highest-energy particle accelerator
and is situated approximately 100 m underground, close to Geneva, Switzerland. The
collider accelerates two counter-rotating beams of protons, guided by superconducting
magnets located around a 27 km circular tunnel, and brings them into collision at
four interaction points that house large detectors. The LHCb experiment [141,142] is
instrumented in the region covering the polar angles between 10 and 250 mrad around
the proton beam axis, in which the products from B-hadron decays can be e�ciently
captured and identified. The detector includes a high-precision tracking system with
a dipole magnet, providing measurements of momentum and impact parameter (IP),
defined for charged particles as the minimum distance of a track to a primary proton-
proton interaction vertex (PV). Di�erent types of charged particles are distinguished
using information from two ring-imaging Cherenkov (RICH) detectors, a calorimeter
and a muon system [142–147].

Since the associated data storage and analysis costs would be prohibitive, the
experiment does not record all collisions. Only potentially interesting events, selected
using real-time event filters referred to as triggers, are recorded. The LHCb trigger
system has a hardware stage, based on information from the calorimeter and muon
systems; followed by a software stage that uses all the information from the detector,
including the tracking, to make the final selection of events to be recorded for subsequent
analysis. The trigger selection algorithms are based on identifying key characteristics
of B hadrons and their decay products, such as high pT final state particles, and a
decay vertex that is significantly displaced from any of the PVs in the event.

For the RK measurement, candidate events are required to have passed a hardware
trigger algorithm that selects either a high pT muon; or an electron, hadron or photon
with high transverse energy deposited in the calorimeters. The B+

æ K+µ+µ≠ and
B+

æ J/Â (æ µ+µ≠)K+ candidates must be triggered by one of the muons, whereas
B+

æ K+e+e≠ and B+
æ J/Â (æ e+e≠)K+ candidates must be triggered in one of

three ways: by either one of the electrons; by the kaon from the B+ decay; or by
particles in the event that are not decay products of the B+ candidate. In the software
trigger, the tracks of the final-state particles are required to form a displaced vertex
with good fit quality. A multivariate algorithm is used for the identification of displaced
vertices consistent with the decay of a B hadron [148,149].
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3.0.2 Analysis description

The analysis technique used to obtain the results presented in this article is essentially
identical to that used to obtain the previous LHCb RK measurement, described in
Ref. [11] and only the main analysis steps are reviewed here.

3.0.2.1 Event selection

Kaon and muon candidates are identified using the output of multivariate classifiers
that exploit information from the tracking system, the RICH detectors, the calorimeters
and the muon chambers. Electrons are identified by matching tracks to particle showers
in the electromagnetic calorimeter (ECAL) and using the ratio of the energy detected
in the ECAL to the momentum measured by the tracking system. An electron that
emits a bremsstrahlung photon due to interactions with the material of the detector
downstream of the dipole magnet results in the photon and electron depositing their
energy in the same ECAL cells, and therefore in a correct measurement of the original
energy of the electron in the ECAL. However, a bremsstrahlung photon emitted
upstream of the magnet will deposit energy in a di�erent part of the ECAL than the
electron, which is deflected in the magnetic field. For each electron track, a search
is therefore made in the ECAL for energy deposits around the extrapolated track
direction before the magnet that are not associated with any other charged tracks. The
energy of any such deposit is added to the electron energy that is derived from the
measurements made in the tracker. Bremsstrahlung photons can be added to none,
either, or both of the final-state e+ and e≠ candidates.

In order to suppress background, each final-state particle is required to have sizeable
pT and to be inconsistent with coming from a PV. The particles are required to originate
from a common vertex, with good vertex-fit quality, that is displaced significantly from
all of the PVs in the event. The PVs are reconstructed by searching for space points
where an accumulation of track trajectories is observed. A weighted least-squares
method is then employed to find the precise vertex position. The B+ momentum
vector is required to be aligned with the vector connecting one of the PVs in the event
(below referred to as the associated PV) and the B+ decay vertex. The value of q2 is
calculated using only the lepton momenta, without imposing any constraint on the
m(K+¸+¸≠) mass.

The m(K+¸+¸≠) mass ranges and the q2 regions used to select the di�erent decay
modes are shown in Table 3.1. The selection requirements applied to the nonresonant
and resonant decays are otherwise identical. For the muon modes, the superior mass
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Table 3.1 Nonresonant and resonant mode q2 and m(K+¸+¸≠) ranges. The variables
m(K+¸+¸≠) and mJ/Â (K+¸+¸≠) are used for nonresonant and resonant decays, respec-
tively.

Decay mode q2 m(J/Â )(K+¸+¸≠)
[ GeV2/c4] [ GeV/c2]

nonresonant e+e≠

resonant e+e≠

nonresonant µ+µ≠

resonant µ+µ≠

1.1 – 6.0
6.00 – 12.96
1.1 – 6.0
8.68 – 10.09

4.88 – 6.20
5.08 – 5.70
5.18 – 5.60
5.18 – 5.60

resolution allows a fit in a reduced m(K+¸+¸≠) mass range compared to the electron
modes. For the electron modes, a wider mass region is needed to perform an accurate
fit, but the range chosen suppresses any significant contribution from decays with two
or more additional pions that are not reconstructed. The residual contribution from
such decays is considered as a source of systematic uncertainty. Resolution e�ects
similarly motivate the choice of nonresonant q2 regions, with a lower limit that excludes
contributions from „-meson decays and an upper limit that reduces the tail from
B+

æ J/Â (æ e+e≠)K+ decays. The proportion of signal candidates that migrate in
and out of the q2 region of interest is of the order of 10%. This e�ect is accounted for
using simulation.

Cascade background of the form B æ Hc(æ K+¸≠‹¸X)¸+‹¸Y , where Hc is a hadron
containing a c quark (D0, D+, D+

s
, »+

c
), and X, Y are particles that are not included

in the B+ candidate, are suppressed by requiring that the kaon-lepton invariant mass is
in the region m(K+¸≠) > mD0 , where mD0 is the known D0 mass [2]. For the electron
mode, this requirement is illustrated in Fig. 3.5 (left). Analogous background sources
with a misidentified particle are reduced by applying a similar veto, but with the
lepton-mass hypothesis changed to that of a pion (denoted ¸[æfi]). In the muon case,
Kµ[æfi] combinations with a mass smaller than mD0 are rejected. In the electron case,
a ±40 MeV/c2 window around the D0 mass is used to reject candidates where the veto
is applied without the bremsstrahlung recovery, i.e. based on only the measured track
momenta. The mass distributions are shown in Fig. 3.5. The electron and muon veto
cuts di�er given the relative helicity suppression of fi+

æ ¸+‹¸ decays. This causes
misidentification backgrounds to populate a range of Kµ masses but only a peak
in the Ke mass. The veto requirements retain 97% of B+

æ K+µ+µ≠ and 95% of
B+

æ K+e+e≠ decays passing all other selection requirements.
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Fig. 3.5 Simulated K+e≠ mass distributions for signal and various cascade background
samples. The signal is represented by the orange shaded region and the various
cascade background contributions by red, dark blue and light blue shaded regions. The
distributions are all normalised to unity. (Left, with log y-scale) the bremsstrahlung
correction to the momentum of the electron is applied, resulting in a tail to the right.
The region to the left of the vertical dashed line is rejected. (Right, with linear y-scale)
the mass is computed only from the track information. The notation fi≠

[æe≠] (e≠
[æfi≠])

is used to denote an pion (electron) that is reconstructed as an electron (pion). The
region between the dashed vertical lines is rejected.

Background from other exclusive B-hadron decays requires at least two particles
to be misidentified. These include the decays B+

æ K+fi+fi≠, and misreconstructed
B+

æ J/Â (æ ¸+¸≠)K+ and B+
æ Â(2S)(æ ¸+¸≠)K+ decays. In the latter two decays

the kaon is misidentified as a lepton and the lepton (of the same electric charge) as a
kaon. Such background is reduced to a negligible level by particle-identification criteria.
Background from decays with a photon converted into an e+e≠ pair are also negligible
due to the q2 selection.

3.0.2.2 Multivariate selection

A Boosted Decision Tree (BDT) algorithm [150] with gradient boosting [151] is used
to reduce combinatorial background. For the nonresonant muon mode and for each
of the three di�erent trigger categories of the nonresonant electron mode, a single
BDT classifier is trained for the 7 and 8 TeV data, and an additional classifier is
trained for the 13 TeV data. The BDT output is not strongly correlated with q2

and the same classifiers are used to select the respective resonant decays. In order
to train the classifier, simulated nonresonant B+

æ K+¸+¸≠ decays are used as a
proxy for the signal and nonresonant K+¸+¸≠ candidates selected from the data with
m(K+¸+¸≠) > 5.4 GeV/c2 are used as a background sample. The k-folding technique
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is used in the training and testing [152]. The classifier includes the following variables:
the pT of the B+, K+ and dilepton candidates, and the minimum and maximum pT of
the leptons; the B+, dilepton and K+ ‰2

IP with respect to the associated PV, where
‰2

IP is defined as the di�erence in the vertex-fit ‰2 of the PV reconstructed with and
without the considered particle; the minimum and maximum ‰2

IP of the leptons; the B+

vertex-fit quality; the statistical significance of the B+ flight distance; and the angle
between the B+ candidate momentum vector and the direction between the associated
PV and the B+ decay vertex. The pT of the final state particles, the vertex-fit ‰2 and
the significance of the flight distance have the most discriminating power. For each
of the classifiers, a requirement is placed on the output variable in order to maximise
the predicted significance of the nonresonant signal yield. For the electron modes that
dictate the RK precision, this requirement reduces the combinatorial background by
approximately 99%, while retaining 85% of the signal mode. The muon BDT classifier
has similar performance. In both cases, for both signal and background, the e�ciency
of the BDT selection has negligible dependence on m(K+¸+¸≠) and q2 in the regions
used to determine the event yields.

3.0.2.3 Calibration of simulation

The simulated data used in this analysis are produced using the software described in
Refs. [153,155–157,159]. Bremsstrahlung emission in the decay of particles is simulated
using the Photos software in the default configuration [160], which is observed to
agree with an independent quantum electrodynamics calculation at the level of 1% [5].

Simulated events are weighted to correct for the imperfect modelling using control
channels. The B+ production kinematics are corrected using B+

æ J/Â (æ ¸+¸≠)K+

events. The particle-identification performance is calibrated using data, where the
species of particles in the final state can be unambiguously determined purely on the
basis of the kinematics. The calibration samples consist of Dú+

æ D0(æ K≠fi+)fi+,
J/Â æ µ+µ≠, and B+

æ J/Â (æ e+e≠)K+ decays, from which kaons, muons, and elec-
trons, respectively, can be selected without applying particle-identification requirements.
The performance of the particle-identification requirements is then evaluated from the
proportion of events in these samples which fulfil the particle-identification selection
criteria. The trigger response is corrected using weights applied to simulation as a
function of variables relevant to the trigger algorithms. The weights are calculated
by requiring that simulated B+

æ J/Â (æ ¸+¸≠)K+ events exhibit the same trigger
performance as the control data. The B+

æ J/Â (æ ¸+¸≠)K+ events selected from the
data have also been used to demonstrate control of the electron track-reconstruction
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e�ciency at the percent level [161]. Whenever B+
æ J/Â (æ ¸+¸≠)K+ events are used

to correct the simulation, the correlations between calibration and measurement sam-
ples are taken into account in the results and cross-checks presented in the article. The
correlation is evaluated using a bootstrapping method to recompute the yields and
e�ciencies many times with di�erent subsets of the data.

3.0.2.4 Likelihood fit

An unbinned extended maximum-likelihood fit is made to the m(K+e+e≠) and
m(K+µ+µ≠) distributions of nonresonant candidates. The value of RK is a fit parame-
ter, which is related to the signal yields and e�ciencies according to

RK = N(B+
æ K+µ+µ≠)

Á(B+
æ K+µ+µ≠) ·

Á(B+
æ K+e+e≠)

N(B+
æ K+e+e≠) ◊

Á(B+
æ J/Â (æ µ+µ≠)K+)

N(B+
æ J/Â (æ µ+µ≠)K+) ·

N(B+
æ J/Â (æ e+e≠)K+)

Á(B+
æ J/Â (æ e+e≠)K+) , (3.4)

where N(X) indicates the yield of decay mode X and Á(X) is the e�ciency for
selecting decay mode X. The resonant yields are determined from separate fits to
mJ/Â (K+¸+¸≠). In the fit for RK these yields, together with the e�ciencies, are
incorporated as Gaussian-constraint terms.

In order to take into account the correlation between the selection e�ciencies, the
m(K+e+e≠) and m(K+µ+µ≠) distributions of nonresonant candidates in each of the
di�erent trigger categories and data-taking periods are fitted simultaneously, with a
common value of RK . The relative fraction of partially reconstructed background in
each trigger category is also shared across the di�erent data-taking periods.

The mass-shape parameters are derived from the calibrated simulation. The four
signal modes are modelled by multiple Gaussian functions with power-law tails on
both sides of the peak [162,163], although the di�ering detector response gives di�erent
shapes for the electron and muon modes. The signal mass shapes of the electron modes
are described with the sum of three distributions, which model whether the ECAL
energy deposit from a bremsstrahlung photon was added to both, either, or neither of
the e± candidates. The expected values from simulated events are used to constrain
the fraction of signal decays in each of these categories. These fractions are observed
to agree well with those observed in resonant events selected from the data. In order to
take into account residual di�erences in the signal shape between data and simulation,
an o�set in the peak position and a scaling of the resolution are allowed to vary in the
fits to the resonant modes. The corresponding parameters are then fixed in the fits
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to the relevant nonresonant modes. This resolution scaling changes the migration of
candidates into the q2 region of interest by less than 1%.

For the modelling of nonresonant and resonant partially reconstructed backgrounds,
data are used to correct the simulated Kfi mass spectrum for B(0,+)

æ K+fi(≠,0)e+e≠

and B(0,+)
æ J/Â (æ e+e≠)K+fi(≠,0) decays [164]. The calibrated simulation is used

subsequently to obtain the m(K+¸+¸≠) mass shape and relative fractions of these
background components. In order to accommodate possible lepton-universality violation
in these partially reconstructed processes, which are underpinned by the same b æ s

quark-level transitions as those of interest, the overall yield of such decays is left to
vary freely in the fit. The shape of the B+

æ J/Â fi+ background contribution is taken
from simulation but the size with respect to the B+

æ J/Â K+ mode is constrained
using the known ratio of the relevant branching fractions [165,2] and e�ciencies.

In the fits to nonresonant B+
æ K+e+e≠ candidates, the mass shape of the back-

ground from B+
æ J/Â (æ e+e≠)K+ decays with an emitted photon that is not recon-

structed is also taken from simulation and, adjusting for the relevant selection e�ciency,
its yield is constrained to the value from the fit to the resonant mode within its
uncertainty. In all fits, the combinatorial background is modelled with an exponential
function with a freely varying yield and shape.

The fits to the nonresonant (resonant) decay modes in di�erent data-taking periods
and trigger categories are shown in Fig. 3.6 (Fig. 3.7). For the resonant modes the
results from independent fits to each period/category are shown. Conversely, the
nonresonant distributions show the projections from the simultaneous fit across data
taking periods and trigger categories that is used to obtain RK . The fitted yields for
the resonant and nonresonant decays are given in Table 3.2.

The profile likelihood for the fit to the nonresonant decays is shown in Fig. 3.8.
The likelihood is non-Gaussian in the region RK > 0.95 due to the comparatively low
yield of B+

æ K+e+e≠ events. Following the procedure described in Refs. [11,12], the

Table 3.2 Yields of the nonresonant and resonant decay modes obtained from the fits
to the data. The quoted uncertainty is the combination of statistical and systematic
e�ects.

Decay mode Yield
B+

æ K+e+e≠ 1 640 ± 70
B+

æ K+µ+µ≠ 3 850 ± 70
B+

æ J/Â (æ e+e≠)K+ 743 300 ± 900
B+

æ J/Â (æ µ+µ≠)K+ 2 288 500 ± 1 500
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Fig. 3.6 Candidate invariant mass distributions. Distribution of the invariant mass
m(K+¸+¸≠) for nonresonant candidates in the (left) sample previously analysed [11]
and (right) the new data sample. The top row shows the fit to the muon modes and
the subsequent rows the fits to the electron modes triggered by (second row) one of
the electrons, (third row) the kaon and (last row) by other particles in the event. The
fit projections are superimposed, with dotted lines describing the signal contribution
and solid areas representing each of the background components described in the text
and listed in the legend.
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Fig. 3.7 Candidate invariant mass distributions. Distribution of the invariant mass
mJ/Â (K+¸+¸≠) for resonant candidates in the (left) sample previously analysed [11]
and (right) the new data sample. The top row shows the fit to the muon modes and
the subsequent rows the fits to the electron modes triggered by (second row) one of
the electrons, (third row) the kaon and (last row) by other particles in the event. The
fit projections are superimposed, with dotted lines describing the signal contribution
and solid areas representing each of the background components described in the text
and listed in the legend.
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Fig. 3.8 Likelihood function from the fit to the nonresonant B+
æ K+¸+¸≠ candidates

in terms of the ratio between the likelihood value (L) and that found by the fit (Lmax)
as a function of RK . The extent of the dark, medium and light blue regions shows the
values allowed for RK at 1‡, 3‡ and 5‡ levels. The red line indicates the prediction
from the SM.

p-value is computed by integrating the posterior probability density function for RK ,
having folded in the theory uncertainty on the SM prediction, for RK values larger than
the SM expectation. The corresponding significance in terms of standard deviations is
computed using the inverse Gaussian cumulative distribution function for a one-sided
conversion.

A test statistic is constructed that is based on the likelihood ratio between two
hypotheses with common (null) or di�erent (test) RK values for the part of the sample
analysed previously (7, 8 and part of the 13 TeV data) and for the new portion of
the 13 TeV data. Using pseudoexperiments based on the null hypothesis, the data
suggest that the RK value from the new portion of the data is compatible with that
from the previous sample with a p-value of 95%. Further tests give good compatibility
for subsamples of the data corresponding to di�erent trigger categories and magnet
polarities.

The departure of the profile likelihood shown in Fig. 3.8 from a normal distribution
stems from the definition of RK . In particular, in the RK ratio the denominator is
a�ected by larger statistical uncertainties than the numerator, owing to the larger
number of nonresonant muonic signal candidates. However, the intervals of the
likelihood distribution are found to be the same when estimated with 1/RK as the fit
parameter.
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3.0.2.5 Additional cross-checks

The rJ/Â single ratio is used to perform a number of additional cross-checks. The
distribution of this ratio as a function of the angle between the leptons and the
minimum pT of the leptons is shown in Fig. 3.9, together with the spectra expected
for the resonant and nonresonant decays. No significant trend is observed in either
rJ/Â distribution. Assuming the deviations observed are genuine mismodelling of the
e�ciencies, rather than statistical fluctuations, a total shift of RK at a level less
than 0.001 would be expected due to these e�ects. This estimate takes into account
the spectrum of the relevant variables in the nonresonant decay modes of interest
and is compatible with the estimated systematic uncertainties on RK . Similarly, the
variations seen in rJ/Â as a function of all other reconstructed quantities examined are
compatible with the systematic uncertainties assigned. In addition, rJ/Â is computed
in two-dimensional intervals of reconstructed quantities, as shown in Fig. 3.10. Again,
no significant trend is seen.

3.0.2.6 Systematic uncertainties

The majority of the sources of systematic uncertainty a�ect the relative e�ciencies
between nonresonant and resonant decays. These are included in the fit to RK by
allowing the relative e�ciency to vary within Gaussian constraints. The width of
the constraint is determined by adding the contributions from the di�erent sources
in quadrature. Correlations in the systematic uncertainties between di�erent trigger
categories and run periods are taken into account. Systematic uncertainties a�ecting
the determination of the signal yield are assessed using pseudoexperiments generated
with variations of the fit model. Pseudoexperiments are also used to assess the degree of
bias originating from the fitting procedure. The bias is found to be 1% of the statistical
precision, i.e. negligible with respect to other sources of systematic uncertainty.

For the nonresonant B+
æ K+e+e≠ decays, the systematic uncertainties are domi-

nated by the modelling of the signal and background components used in the fit. The
e�ect on RK is at the 1% level. A significant proportion (0.7%) of this uncertainty comes
from the limited knowledge of the Kfi spectrum in B(0,+)

æ K+fi(≠,0)e+e≠ decays. In
addition, a 0.2% systematic uncertainty is assigned for the potential contribution from
partially reconstructed decays with two additional pions. A comparable uncertainty to
that from the modelling of the signal and background components is induced by the
limited sizes of calibration samples. Other sources of systematic uncertainty, such as the
calibration of B+ production kinematics, the trigger calibration and the determination
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Fig. 3.9 Di�erential rJ/Â measurement. (Top) distributions of the reconstructed spectra
of (left) the angle between the leptons, –(¸+, ¸≠), and (right) the minimum pT of the
leptons for B+

æ K+¸+¸≠ and B+
æ J/Â (æ ¸+¸≠)K+ decays. (Bottom) the single

ratio rJ/Â relative to its average value
e
rJ/Â

f
as a function of these variables. In the

electron minimum pT spectra, the structure at 2800 MeV/c is related to the trigger
threshold. Uncertainties on the data points are statistical only.

of the particle identification e�ciencies, contribute at the few-permille or permille level,
depending strongly on the data-taking period and the trigger category.

The uncertainties on parameters used in the simulation model of the signal decays
a�ect the q2 distribution and hence the selection e�ciency. These uncertainties are
propagated to an uncertainty on RK using predictions from the flavio software
package [7] but give rise to a negligible e�ect. Similarly, the di�ering q2 resolution
between data and simulation, which alters estimates of the q2 migration, has negligible
impact on the result.
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ℓ ℓℓ ℓ

ℓℓ

ℓℓ
Fig. 3.10 Double di�erential rJ/Â measurement. (Left) the value of rJ/Â , relative
to the average value of rJ/Â , measured in two-dimensional bins of the maximum
lepton momentum, p(¸), and the opening angle between the two leptons, –(¸+, ¸≠).
(Right) the bin definition in this two-dimensional space together with the distribution
for B+

æ K+e+e≠ (B+
æ J/Â (æ e+e≠)K+) decays depicted as red (blue) contours.

Uncertainties on the data points are statistical only.





References

[1] S. L. Glashow, J. Iliopoulos, and L. Maiani. Weak interactions with lepton-hadron
symmetry. Phys. Rev., D2:1285–1292, 1970.

[2] P. A. Zyla et al. Review of particle physics. Prog. Theor. Exp. Phys.,
2020(8):083C01, 2020.

[3] Sébastien Descotes-Genon, Lars Hofer, Joaquim Matias, and Javier Virto. Global
analysis of b æ s¸¸ anomalies. JHEP, 06:092, 2016.

[4] Christoph Bobeth, Gudrun Hiller, and Giorgi Piranishvili. Angular distributions
of B̄ æ K ¯̧̧ decays. JHEP, 12:040, 2007.

[5] Marzia Bordone, Gino Isidori, and Andrea Pattori. On the Standard Model
predictions for RK and RKú . Eur. Phys. J., C76(8):440, 2016.

[6] Danny van Dyk, Nico Gubernari, DomLeljak, Méril Reboud, elgicse, Christoph
Bobeth, Martin Ritter, Stephan Kürten, Thomas Blake, Marzia Bordone, Ahmet
Kokulu, Eduardo Romero, Ismo Toijala, KKVos, Philip Lüghausen, and Eike
Eberhard. Eos version 0.3.3, March (2021).

[7] David M. Straub. flavio: a python package for flavour and precision phenomenol-
ogy in the Standard Model and beyond. 2018.

[8] Gino Isidori, Saad Nabeebaccus, and Roman Zwicky. QED corrections in B æ

K¸+¸≠ at the double-di�erential level. JHEP, 12:104, 2020.

[9] Gudrun Hiller and Frank Krüger. More model-independent analysis of b æ s

processes. Phys. Rev., D69:074020, 2004.

[10] Yili Wang and David Atwood. Rate di�erence between b æ sµ+µ≠ and b æ se+e≠

in supersymmetry with large tan —. Phys. Rev., D68:094016, 2003.

http://pdg.lbl.gov/


146 References

[11] R. Aaij et al. Search for lepton-universality violation in B+
æ K+¸+¸≠ decays.

Phys. Rev. Lett., 122:191801, 2019.

[12] R. Aaij et al. Test of lepton universality with B0
æ Kú0¸+¸≠ decays. JHEP,

08:055, 2017.

[13] S. Choudhury et al. Test of lepton flavor universality and search for lepton flavor
violation in B æ K¸¸ decays. JHEP, 03:105, 2021.

[14] S. Wehle et al. Test of lepton-flavor universality in B æ Kú¸+¸≠ decays at Belle.
Phys. Rev. Lett., 126:161801, Apr 2021.

[15] J. P. Lees et al. Measurement of branching fractions and rate asymmetries in
the rare decays B æ K(ú)¸+¸≠. Phys. Rev., D86:032012, Aug 2012.

[16] Bernat Capdevila, Sebastien Descotes-Genon, Joaquim Matias, and Javier Virto.
Assessing lepton-flavour non-universality from B æ Kú¸¸ angular analyses. JHEP,
10:075, 2016.

[17] Bernat Capdevila, Sebastien Descotes-Genon, Lars Hofer, and Joaquim Matias.
Hadronic uncertainties in B æ Kúµ+µ≠: a state-of-the-art analysis. JHEP,
04:016, 2017.

[18] Nicola Serra, Rafael Silva Coutinho, and Danny van Dyk. Measuring the breaking
of lepton flavor universality in B æ Kú¸+¸≠. Phys. Rev., D95(3):035029, 2017.

[19] Aoife Bharucha, David M. Straub, and Roman Zwicky. B æ V ¸+¸≠ in the
Standard Model from light-cone sum rules. JHEP, 08:098, 2016.

[20] Wolfgang Altmannshofer, Christoph Nieho�, Peter Stangl, and David M. Straub.
Status of the B æ Kúµ+µ≠ anomaly after Moriond 2017. Eur. Phys. J.,
C77(6):377, 2017.

[21] Sebastian Jäger and Jorge Martin Camalich. Reassessing the discovery potential
of the B æ Kú¸+¸≠ decays in the large-recoil region: SM challenges and BSM
opportunities. Phys. Rev., D93(1):014028, 2016.

[22] Diptimoy Ghosh, Marco Nardecchia, and S. A. Renner. Hint of lepton flavour
non-universality in B meson decays. JHEP, 12:131, 2014.

[23] R. Aaij et al. Test of lepton universality using »0
b
æ pK≠¸+¸≠ decays. JHEP,

05:040, 2020.



References 147

[24] R. Aaij et al. Angular analysis of the B+
æ Kú+µ+µ≠ decay. Phys. Rev. Lett.,

126:161802, Apr 2021.

[25] R. Aaij et al. Measurement of CP -averaged observables in the B0
æ Kú0µ+µ≠

decay. Phys. Rev. Lett., 125:011802, 2020.

[26] R. Aaij et al. Angular analysis of the B0
æ Kú0µ+µ≠ decay using 3 fb≠1 of

integrated luminosity. JHEP, 02:104, 2016.

[27] Morad Aaboud et al. Angular analysis of B0
d

æ Kúµ+µ≠ decays in pp collisions
at

Ô
s = 8 TeV with the ATLAS detector. JHEP, 10:047, 2018.

[28] Bernard Aubert et al. Measurements of branching fractions, rate asymmetries,
and angular distributions in the rare decays B æ K¸+¸≠ and B æ Kú¸+¸≠.
Phys. Rev., D73:092001, 2006.

[29] J. P. Lees et al. Measurement of angular asymmetries in the decays B æ Kú¸+¸≠.
Phys. Rev., D93(5):052015, 2016.

[30] J. T. Wei et al. Measurement of the di�erential branching fraction and forward-
backward asymmetry for B æ K(ú)¸+¸≠. Phys. Rev. Lett., 103:171801, 2009.

[31] S. Wehle et al. Lepton-flavor-dependent angular analysis of B æ Kú¸+¸≠. Phys.
Rev. Lett., 118:111801, 2017.

[32] T. Aaltonen et al. Measurements of the angular distributions in the decays
B æ K(ú)µ+µ≠ at CDF. Phys. Rev. Lett., 108:081807, 2012.

[33] Vardan Khachatryan et al. Angular analysis of the decay B0
æ Kú0µ+µ≠ from

pp collisions at
Ô

s = 8 TeV. Phys. Lett., B753:424–448, 2016.

[34] Albert M Sirunyan et al. Measurement of angular parameters from the decay
B0

æ Kú0µ+µ≠ in proton-proton collisions at
Ô

s = 8 TeV. Phys. Lett., B781:517–
541, 2018.

[35] R. Aaij et al. Measurements of the S-wave fraction in B0
æ K+fi≠µ+µ≠ decays

and the B0
æ Kú(892)0µ+µ≠ di�erential branching fraction. JHEP, 11:047, 2016.

[36] R. Aaij et al. Angular analysis and di�erential branching fraction of the decay
B0

s
æ „µ+µ≠. JHEP, 09:179, 2015.

[37] R. Aaij et al. Di�erential branching fractions and isospin asymmetries of
B æ K(ú)µ+µ≠ decays. JHEP, 06:133, 2014.



148 References

[38] R. Aaij et al. Di�erential branching fraction and angular analysis of »0
b
æ »µ+µ≠

decays. JHEP, 06:115, 2015.

[39] James Lyon and Roman Zwicky. Resonances gone topsy turvy – the charm of
QCD or new physics in b æ s¸+¸≠? 2014.

[40] A. Khodjamirian, Th. Mannel, and Y. M. Wang. B æ K¸+¸≠ decay at large
hadronic recoil. JHEP, 02:010, 2013.

[41] A. Khodjamirian, Th. Mannel, A. A. Pivovarov, and Y. M. Wang. Charm-loop
e�ect in B æ K(ú)¸+¸≠ and B æ Kú“. JHEP, 09:089, 2010.

[42] Sébastien Descotes-Genon, Lars Hofer, Joaquim Matias, and Javier Virto. On
the impact of power corrections in the prediction of B æ Kúµ+µ≠ observables.
JHEP, 12:125, 2014.

[43] Ronald R. Horgan, Zhaofeng Liu, Stefan Meinel, and Matthew Wingate. Calcu-
lation of B0

æ Kú0µ+µ≠ and B0
s

æ „µ+µ≠ observables using form factors from
lattice QCD. Phys. Rev. Lett., 112:212003, 2014.

[44] Frederik Beaujean, Christoph Bobeth, and Danny van Dyk. Comprehensive
Bayesian analysis of rare (semi)leptonic and radiative B decays. Eur. Phys. J.,
C74:2897, 2014.

[45] Christian Hambrock, Gudrun Hiller, Stefan Schacht, and Roman Zwicky. B æ Kú

form factors from flavor data to QCD and back. Phys. Rev., D89(7):074014,
2014.

[46] Wolfgang Altmannshofer and David M. Straub. New physics in B æ Kúµµ?
Eur. Phys. J., C73:2646, 2013.

[47] Christoph Bobeth, Marcin Chrzaszcz, Danny van Dyk, and Javier Virto. Long-
distance e�ects in B æ Kú¸¸ from analyticity. Eur. Phys. J., C78(6):451, 2018.

[48] Marco Ciuchini, Marco Fedele, Enrico Franco, Ayan Paul, Luca Silvestrini, and
Mauro Valli. Lessons from the B0,+

æ Kú0,+µ+µ≠ angular analyses. Phys. Rev.,
D103(1):015030, 2021.

[49] Kamila Kowalska, Dinesh Kumar, and Enrico Maria Sessolo. Implications for
new physics in b æ sµµ transitions after recent measurements by Belle and
LHCb. Eur. Phys. J., C79(10):840, 2019.



References 149

[50] Marcel Algueró, Bernat Capdevila, Andreas Crivellin, Sébastien Descotes-Genon,
Pere Masjuan, Joaquim Matias, Martín Novoa Brunet, and Javier Virto. Emerging
patterns of new physics with and without lepton flavour universal contributions.
Eur. Phys. J., C79(8):714, 2019. [Addendum: Eur.Phys.J.C 80, 511 (2020)].

[51] T. Hurth, F. Mahmoudi, and S. Neshatpour. Implications of the new LHCb
angular analysis of B æ Kúµ+µ≠ : Hadronic e�ects or new physics? Phys. Rev.,
D102(5):055001, 2020.

[52] Marco Ciuchini, António M. Coutinho, Marco Fedele, Enrico Franco, Ayan Paul,
Luca Silvestrini, and Mauro Valli. New Physics in b æ s¸+¸≠ confronts new data
on lepton universality. Eur. Phys. J., C79(8):719, 2019.

[53] Jason Aebischer, Wolfgang Altmannshofer, Diego Guadagnoli, Méril Reboud,
Peter Stangl, and David M. Straub. B-decay discrepancies after Moriond 2019.
Eur. Phys. J., C80(3):252, 2020.

[54] Ashutosh Kumar Alok, Amol Dighe, Shireen Gangal, and Dinesh Kumar. Contin-
uing search for new physics in b æ sµµ decays: two operators at a time. JHEP,
06:089, 2019.

[55] Bhubanjyoti Bhattacharya, Alakabha Datta, David London, and Shanmuka
Shivashankara. Simultaneous explanation of the RK and R(D(ú)) puzzles. Phys.
Lett., B742:370–374, 2015.

[56] Wolfgang Altmannshofer, Stefania Gori, Maxim Pospelov, and Itay Yavin. Quark
flavor transitions in Lµ ≠ L· models. Phys. Rev., D89:095033, 2014.

[57] Andreas Crivellin, Giancarlo D’Ambrosio, and Julian Heeck. Explaining h æ

µ±·û, B æ Kúµ+µ≠ and B æ Kµ+µ≠/B æ Ke+e≠ in a two-Higgs-doublet
model with gauged Lµ ≠ L· . Phys. Rev. Lett., 114:151801, 2015.

[58] Alejandro Celis, Javier Fuentes-Martín, Martín Jung, and Hugo Serôdio. Family
nonuniversal Z’ models with protected flavor-changing interactions. Phys. Rev.,
D92(1):015007, 2015.

[59] Adam Falkowski, Marco Nardecchia, and Robert Ziegler. Lepton flavor non-
universality in B-meson decays from a U(2) flavor model. JHEP, 11:173, 2015.

[60] Geneviève Bélanger, Cédric Delaunay, and Susanne Westho�. A dark matter
relic from muon anomalies. Phys. Rev. D, 92:055021, 2015.



150 References

[61] Andreas Crivellin, Giancarlo D’Ambrosio, and Julian Heeck. Addressing the LHC
flavor anomalies with horizontal gauge symmetries. Phys. Rev. D, 91(7):075006,
2015.

[62] Bhubanjyoti Bhattacharya, Alakabha Datta, Jean-Pascal Guévin, David London,
and Ryoutaro Watanabe. Simultaneous explanation of the RK and RD(ú) puzzles:
A model analysis. JHEP, 01:015, 2017.

[63] Stephen F. King. Flavourful ZÕ models for R
K(ú) . JHEP, 08:019, 2017.

[64] Cheng-Wei Chiang, Xiao-Gang He, Jusak Tandean, and Xing-Bo Yuan. RK(ú)

and related b æ s¸¯̧ anomalies in minimal flavor violation framework with Z Õ

boson. Phys. Rev. D, 96(11):115022, 2017.

[65] Adam Falkowski, Stephen F. King, Elena Perdomo, and Mathias Pierre. Flavour-
ful Z Õ portal for vector-like neutrino dark matter and R

K(ú) . JHEP, 08:061,
2018.

[66] B. C. Allanach, J. M. Butterworth, and Tyler Corbett. Collider constraints on
Z Õ models for neutral current B-anomalies. JHEP, 08:106, 2019.

[67] B. C. Allanach and Joe Davighi. Naturalising the third family hypercharge model
for neutral current B-anomalies. Eur. Phys. J., C79(11):908, 2019.

[68] Junichiro Kawamura, Stuart Raby, and Andreas Trautner. Complete vectorlike
fourth family and new U(1)’ for muon anomalies. Phys. Rev., D100(5):055030,
2019.

[69] Siddharth Dwivedi, Dilip Kumar Ghosh, Adam Falkowski, and Nivedita Ghosh.
Associated Z Õ production in the flavorful U(1) scenario for R

K(ú) . Eur. Phys. J.,
C80(3):263, 2020.

[70] Zhi-Long Han, Ran Ding, Su-Jie Lin, and Bin Zhu. Gauged U(1)Lµ≠L·
scotogenic

model in light of RK(ú) anomaly and AMS-02 positron excess. Eur. Phys. J.,
C79(12):1007, 2019.

[71] Bernat Capdevila, Andreas Crivellin, Claudio Andrea Manzari, and Marc Montull.
Explaining b æ s¸+¸≠ and the Cabibbo angle anomaly with a vector triplet.
Phys. Rev., D103(1):015032, 2021.



References 151

[72] Wolfgang Altmannshofer, Joe Davighi, and Marco Nardecchia. Gauging the
accidental symmetries of the Standard Model, and implications for the flavor
anomalies. Phys. Rev., D101(1):015004, 2020.

[73] Shao-Long Chen, Amit Dutta Banik, Zhaofeng Kang, Qin Qin, and Yoshihiro
Shigekami. Signatures of a flavor changing Z Õ boson in Bq æ “Z Õ. Nucl. Phys.,
B962:115237, 2021.

[74] Alexandre Carvunis, Diego Guadagnoli, Méril Reboud, and Peter Stangl. Com-
posite dark matter and a horizontal symmetry. JHEP, 02:056, 2021.

[75] A. Karozas, G. K. Leontaris, I. Tavellaris, and N. D. Vlachos. On the LHC
signatures of SU(5)◊U(1)Õ F-theory motivated models. Eur. Phys. J., C81(1):35,
2021.

[76] Debasish Borah, Lopamudra Mukherjee, and Soumitra Nandi. Low scale U(1)X

gauge symmetry as an origin of dark matter, neutrino mass and flavour anomalies.
JHEP, 12:052, 2020.

[77] B. C. Allanach. U(1)B3≠L2
explanation of the neutral current B≠anomalies. Eur.

Phys. J., C81(1):56, 2021.

[78] Jin-Huan Sheng. The analysis of b æ s¸+¸≠ in the family non-universal Z Õ Model.
Int. J. Theor. Phys., 60(1):26–46, 2021.

[79] Gudrun Hiller and Martin Schmaltz. RK and future b æ s¸¸ physics beyond the
Standard Model opportunities. Phys. Rev., D90:054014, 2014.

[80] Ben Gripaios, Marco Nardecchia, and S. A. Renner. Composite leptoquarks and
anomalies in B-meson decays. JHEP, 05:006, 2015.

[81] Ivo de Medeiros Varzielas and Gudrun Hiller. Clues for flavor from rare lepton
and quark decays. JHEP, 06:072, 2015.

[82] Riccardo Barbieri, Christopher W. Murphy, and Fabrizio Senia. B-decay anoma-
lies in a composite leptoquark model. Eur. Phys. J., C77(1):8, 2017.

[83] Luca Di Luzio, Admir Greljo, and Marco Nardecchia. Gauge leptoquark as the
origin of B-physics anomalies. Phys. Rev. D, 96(11):115011, 2017.



152 References

[84] Andreas Crivellin, Dario Müller, and Toshihiko Ota. Simultaneous explanation
of R(D(ú)) and b æ sµ+µ≠: the last scalar leptoquarks standing. JHEP, 09:040,
2017.

[85] Damir Be�ireviÊ and Olcyr Sumensari. A leptoquark model to accommodate
Rexp

K
< RSM

K
and Rexp

Kú < RSM
Kú . JHEP, 08:104, 2017.

[86] Admir Greljo and Ben A. Stefanek. Third family quark–lepton unification at the
TeV scale. Phys. Lett. B, 782:131–138, 2018.

[87] Marzia Bordone, Claudia Cornella, Javier Fuentes-Martín, and Gino Isidori.
Low-energy signatures of the PS3 model: from B-physics anomalies to LFV.
JHEP, 10:148, 2018.

[88] Bartosz Fornal, Sri Aditya Gadam, and Benjamin Grinstein. Left-right SU(4)
vector leptoquark model for flavor anomalies. Phys. Rev., D99(5):055025, 2019.

[89] A. Angelescu, Damir Be�ireviÊ, D. A. Faroughy, and O. Sumensari. Closing the
window on single leptoquark solutions to the B-physics anomalies. JHEP, 10:183,
2018.

[90] Damir Be�ireviÊ, Ilja Doröner, Svjetlana Fajfer, Nejc Koönik, Darius A. Faroughy,
and Olcyr Sumensari. Scalar leptoquarks from grand unified theories to accom-
modate the B-physics anomalies. Phys. Rev. D, 98(5):055003, 2018.

[91] Shyam Balaji and Michael A. Schmidt. Unified SU(4) theory for the RD(ú) and
RK(ú) anomalies. Phys. Rev., D101(1):015026, 2020.

[92] Claudia Cornella, Javier Fuentes-Martin, and Gino Isidori. Revisiting the vector
leptoquark explanation of the B-physics anomalies. JHEP, 07:168, 2019.

[93] Alakabha Datta, Divya Sachdeva, and John Waite. Unified explanation of
b æ sµ+µ≠ anomalies, neutrino masses, and B æ fiK puzzle. Phys. Rev.,
D100(5):055015, 2019.

[94] Oleg Popov, Michael A. Schmidt, and Graham White. R2 as a single leptoquark
solution to R

D(ú) and R
K(ú) . Phys. Rev., D100(3):035028, 2019.

[95] Innes Bigaran, John Gargalionis, and Raymond R. Volkas. A near-minimal
leptoquark model for reconciling flavour anomalies and generating radiative
neutrino masses. JHEP, 10:106, 2019.



References 153

[96] Jordan Bernigaud, Ivo de Medeiros Varzielas, and Jim Talbert. Finite family
groups for fermionic and leptoquark mixing patterns. JHEP, 01:194, 2020.

[97] Leandro Da Rold and Federico Lamagna. A vector leptoquark for the B-physics
anomalies from a composite GUT. JHEP, 12:112, 2019.

[98] Javier Fuentes-Martín, Mario Reig, and Avelino Vicente. Strong CP problem
with low-energy emergent QCD: The 4321 case. Phys. Rev., D100(11):115028,
2019.

[99] C. Hati, J. Kriewald, J. Orlo�, and A. M. Teixeira. A non-unitary interpretation
for a single vector leptoquark combined explanation to the B-decay anomalies.
JHEP, 12:006, 2019.

[100] Alakabha Datta, Jonathan L. Feng, Saeed Kamali, and Jacky Kumar. Resolving
the (g ≠ 2)µ and B anomalies with leptoquarks and a dark Higgs boson. Phys.
Rev., D101(3):035010, 2020.

[101] Andreas Crivellin, Dario Müller, and Francesco Saturnino. Flavor phenomenology
of the leptoquark singlet-triplet model. JHEP, 06:020, 2020.

[102] Christoph Borschensky, Benjamin Fuks, Anna Kulesza, and Daniel Schwartlän-
der. Scalar leptoquark pair production at hadron colliders. Phys. Rev.,
D101(11):115017, 2020.

[103] Shaikh Saad. Combined explanations of (g ≠ 2)µ, RD(ú) , RK(ú) anomalies in a
two-loop radiative neutrino mass model. Phys. Rev., D102(1):015019, 2020.

[104] Javier Fuentes-Martín and Peter Stangl. Third-family quark-lepton unification
with a fundamental composite Higgs. Phys. Lett., B811:135953, 2020.

[105] P. S. Bhupal Dev, Rukmani Mohanta, Sudhanwa Patra, and Suchismita Sahoo.
Unified explanation of flavor anomalies, radiative neutrino masses, and ANITA
anomalous events in a vector leptoquark model. Phys. Rev., D102(9):095012,
2020.

[106] Bartosz Fornal. Gravitational wave signatures of lepton universality violation.
Phys. Rev., D103(1):015018, 2021.

[107] Joe Davighi, Matthew Kirk, and Marco Nardecchia. Anomalies and accidental
symmetries: charging the scalar leptoquark under Lµ ≠ L· . JHEP, 12:111, 2020.



154 References

[108] K. S. Babu, P. S. Bhupal Dev, Sudip Jana, and Anil Thapa. Unified framework
for B-anomalies, muon g ≠ 2 and neutrino masses. JHEP, 03:179, 2021.

[109] Basabendu Barman, Debasish Borah, Lopamudra Mukherjee, and Soumitra
Nandi. Correlating the anomalous results in b æ s decays with inert Higgs
doublet dark matter and muon (g ≠ 2). Phys. Rev., D100(11):115010, 2019.

[110] Monika Blanke and Andreas Crivellin. B meson anomalies in a Pati-Salam model
within the Randall-Sundrum background. Phys. Rev. Lett., 121(1):011801, 2018.

[111] Shao-Ping Li, Xin-Qiang Li, Ya-Dong Yang, and Xin Zhang. RD(ú) , RK(ú) and
neutrino mass in the 2HDM-III with right-handed neutrinos. JHEP, 09:149,
2018.

[112] Avirup Shaw. Looking for B æ Xs¸+¸≠ in a nonminimal universal extra dimen-
sional model. Phys. Rev., D99(11):115030, 2019.

[113] Pere Arnan, Andreas Crivellin, Marco Fedele, and Federico Mescia. Generic loop
e�ects of new scalars and fermions in b æ s¸+¸≠ and a vector-like 4th generation.
JHEP, 06:118, 2019.

[114] Sokratis Trifinopoulos. B-physics anomalies: The bridge between R-parity vio-
lating supersymmetry and flavored dark matter. Phys. Rev., D100(11):115022,
2019.

[115] Luigi Delle Rose, Shaaban Khalil, Simon J. D. King, and Stefano Moretti.
RK and RKú in an aligned 2HDM with right-handed neutrinos. Phys. Rev.,
D101(11):115009, 2020.

[116] Astrid Ordell, Roman Pasechnik, Hugo Serôdio, and Franz Nottensteiner. Clas-
sification of anomaly-free 2HDMs with a gauged U(1)’ symmetry. Phys. Rev.,
D100(11):115038, 2019.

[117] Carlo Marzo, Luca Marzola, and Martti Raidal. Common explanation to the
R

K(ú) , R
D(ú) and ‘Õ/‘ anomalies in a 3HDM+‹R and connections to neutrino

physics. Phys. Rev., D100(5):055031, 2019.

[118] Luc Darmé, Marco Fedele, Kamila Kowalska, and Enrico Maria Sessolo. Flavour
anomalies from a split dark sector. JHEP, 08:148, 2020.

[119] Quan-Yi Hu and Lin-Lin Huang. Explaining b æ s¸+¸≠ data by sneutrinos in
the R-parity violating MSSM. Phys. Rev., D101(3):035030, 2020.



References 155

[120] Quan-Yi Hu, Ya-Dong Yang, and Min-Di Zheng. Revisiting the B-physics
anomalies in R-parity violating MSSM. Eur. Phys. J., C80(5):365, 2020.

[121] J. P. Lees et al. Evidence for an excess of B æ D(ú)·≠‹̄· decays. Phys. Rev.
Lett., 109:101802, 2012.

[122] R. Aaij et al. Measurement of the ratio of branching fractions
B(B+

c
æ J/Â ·+‹· )/B(B+

c
æ J/Â µ+‹µ). Phys. Rev. Lett., 120:121801, 2018.

[123] J. P. Lees et al. Measurement of an excess of B æ D(ú)·≠‹̄· decays and
implications for charged Higgs bosons. Phys. Rev., D88(7):072012, 2013.

[124] Y. Sato et al. Measurement of the branching ratio of B̄0
æ Dú+·≠‹̄· relative

to B̄0
æ Dú+¸≠‹̄¸ decays with a semileptonic tagging method. Phys. Rev.,

D94(7):072007, 2016.

[125] R. Aaij et al. Measurement of the ratio of branching fractions
B(B0

æ Dú+·≠‹· )/B(B0
æ Dú+µ≠‹µ). Phys. Rev. Lett., 115:111803, 2015.

[126] M. Huschle et al. Measurement of the branching ratio of B æ D(ú)·≠‹̄· relative to
B̄ æ D(ú)¸≠‹̄¸ decays with hadronic tagging at Belle. Phys. Rev., D92(7):072014,
2015.

[127] R. Aaij et al. Test of lepton flavor universality by the measurement of the
B0

æ Dú≠·+‹· branching fraction using three-prong · decays. Phys. Rev.,
D97:072013, 2018.

[128] G. Caria et al. Measurement of R(D) and R(Dú) with a semileptonic tagging
method. Phys. Rev. Lett., 124(16):161803, 2020.

[129] S. Hirose et al. Measurement of the · lepton polarization and R(Dú) in the
decay B æ Dú·≠‹̄· with one-prong hadronic · decays at Belle. Phys. Rev.,
D97(1):012004, 2018.

[130] R. Aaij et al. Test of lepton universality using B+
æ K+¸+¸≠ decays. Phys. Rev.

Lett., 113:151601, 2014.

[131] M. Ablikim et al. Precision measurements of B[Â(3686) æ fi+fi≠J/Â ] and
B[J/Â æ ¸+¸≠]. Phys. Rev., D88(3):032007, 2013.



156 References

[132] Alexander Khodjamirian and Aleksey V. Rusov. Bs æ K¸‹¸ and B(s) æ

fi(K)¸+¸≠ decays at large recoil and CKM matrix elements. JHEP, 08:112,
2017.

[133] Wolfgang Altmannshofer and Itay Yavin. Predictions for lepton flavor univer-
sality violation in rare B decays in models with gauged Lµ ≠ L· . Phys. Rev.,
D92(7):075022, 2015.

[134] Li-Sheng Geng, Benjamín Grinstein, Sebastian Jäger, Jorge Martin Camalich,
Xiu-Lei Ren, and Rui-Xiang Shi. Towards the discovery of new physics with
lepton-universality ratios of b æ s¸¸ decays. Phys. Rev., D96(9):093006, 2017.

[135] R. Aaij et al. Search for the decays B0
s
æ ·+·≠ and B0

æ ·+·≠. Phys. Rev.
Lett., 118:251802, 2017.

[136] J. P. Lees et al. Search for B+
æ K+·+·≠ at the BaBar experiment. Phys. Rev.

Lett., 118(3):031802, 2017.

[137] Physics case for an LHCb Upgrade II — Opportunities in flavour physics, and
beyond, in the HL-LHC era. (CERN-LHCC-2018-027 LHCb-PUB-2018-009),
2018.

[138] W. Altmannshofer et al. The Belle II physics book. PTEP, 2019(12):123C01,
2019.

[139] R. Bainbridge, on behalf of the CMS collaboration. Recording and reconstructing
10 billion unbiased b hadron decays in CMS. EPJ Web Conf., 245:01025, 2020.

[140] G. Aad et al. Performance of the ATLAS Level-1 topological trigger in Run 2.
2021.

[141] A. A. Alves Jr. et al. The LHCb detector at the LHC. JINST, 3:S08005, 2008.

[142] R. Aaij et al. LHCb detector performance. Int. J. Mod. Phys., A30:1530022,
2015.

[143] R. Aaij et al. Performance of the LHCb Vertex Locator. JINST, 9:P09007, 2014.

[144] R. Arink et al. Performance of the LHCb Outer Tracker. JINST, 9:P01002, 2014.

[145] F. Archilli et al. Performance of the muon identification at LHCb. JINST,
8:P10020, 2013.



References 157

[146] M. Adinolfi et al. Performance of the LHCb RICH detector at the LHC. Eur.
Phys. J., C73:2431, 2013.

[147] A A Alves Jr. et al. Performance of the LHCb muon system. JINST, 8:P02022,
2013.

[148] V. V. Gligorov and M. Williams. E�cient, reliable and fast high-level triggering
using a bonsai boosted decision tree. JINST, 8:P02013, 2013.

[149] T. Likhomanenko et al. LHCb topological trigger reoptimization. J. Phys. Conf.
Ser., 664:082025, Oct 2015.

[150] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
regression trees. Wadsworth international group, Belmont, California, USA, 1984.

[151] Peter J. Huber. Robust estimation of a location parameter, page 492. Springer
New York, New York, NY, 1992.

[152] Avrim Blum, Adam Kalai, and John Langford. Beating the hold-out: bounds
for k-fold and progressive cross-validation. In Proceedings of the twelfth annual
conference on computational learning theory, COLT ’99, page 203, New York,
NY, USA, 1999. ACM.

[153] Torbjörn Sjöstrand, Stephen Mrenna, and Peter" Skands. PYTHIA 6.4 physics
and manual. JHEP, 05:026, 2006.

[154] Torbjörn Sjöstrand, Stephen Mrenna, and Peter" Skands. A brief introduction
to PYTHIA 8.1. Comput. Phys. Commun., 178:852–867, 2008.

[155] I. Belyaev et al. Handling of the generation of primary events in Gauss, the
LHCb simulation framework. J. Phys. Conf. Ser., 331:032047, 2011.

[156] D. J. Lange. The EvtGen particle decay simulation package. Nucl. Instrum.
Meth., A462:152–155, 2001.

[157] John Allison, K. Amako, J. Apostolakis, H. Araujo, P.A. Dubois, et al. Geant4
developments and applications. IEEE Trans.Nucl.Sci., 53:270, 2006.

[158] S. Agostinelli et al. Geant4: A simulation toolkit. Nucl. Instrum. Meth., A506:250,
2003.

[159] M Clemencic et al. The LHCb simulation application, Gauss: Design, evolution
and experience. J. Phys. Conf. Ser., 331:032023, 2011.



158 References

[160] N. Davidson, T. Przedzinski, and Z. Was. PHOTOS interface in C++: Technical
and physics documentation. Comput. Phys. Commun., 199:86–101, 2016.

[161] Roel Aaij et al. Measurement of the electron reconstruction e�ciency at LHCb.
JINST, 14:P11023, 2019.

[162] Tomasz Skwarnicki. A study of the radiative cascade transitions between the
Upsilon-prime and Upsilon resonances. PhD thesis, Institute of Nuclear Physics,
Krakow, 1986. DESY-F31-86-02.

[163] Diego Martínez Santos and Frédéric Dupertuis. Mass distributions marginalized
over per-event errors. Nucl. Instrum. Meth., A764:150–155, 2014.

[164] R. Aaij et al. Di�erential branching fraction and angular analysis of the decay
B0

æ K+fi≠µ+µ≠ in the Kú
0,2(1430)0 region. JHEP, 12:065, 2016.

[165] R. Aaij et al. Measurement of the ratio of branching fractions and di�erence in
CP asymmetries of the decays B+

æ J/Â fi+ and B+
æ J/Â K+. JHEP, 03:036,

2017.

[166] Jon A. Bailey et al. B æ Kl+l≠ decay form factors from three-flavor lattice
QCD. Phys. Rev., D93:025026, 2016.

[167] Daping Du, A. X. El-Khadra, Steven Gottlieb, A. S. Kronfeld, J. Laiho, E. Lunghi,
R. S. Van de Water, and Ran Zhou. Phenomenology of semileptonic B-meson
decays with form factors from lattice QCD. Phys. Rev., D93(3):034005, 2016.

http://inspirehep.net/record/230779/


3.A Appendix to Chapter 3 159

Appendix 3.A Appendix to Chapter 3

Appendix 3.B Branching fraction measurements
The comparison of the B+

æ K+µ+µ≠ branching fraction from Ref. [37] to the
B+

æ K+e+e≠ branching fraction resulting from the measurement of RK presented
in this paper is shown in Fig. 3.11. The uncertainty stemming from the branching
fractions of the corresponding normalisation channels is folded into the total uncertainty
of each measurement.

0 5 10 15 20
]4c/2 [GeV2q

0

1

2

3

4

5

]2
/G

eV
4 c × 

-8
 [1

0
2 q

/dBd

LHCb SM prediction
-1electrons  9fb
-1muons      3fb

Fig. 3.11 Branching fractions of (blue) B+
æ K+e+e≠ from this paper and (black)

B+
æ K+µ+µ≠ from Ref. [37] including the q2 bin 15.0 < q2 < 22.0 GeV2/c4. The SM

predictions (red area) from Refs. [166,167] are also shown.
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Appendix 3.C Fits to the B+ æ Â(2S)K+ resonant
mode

The fits to the resonant B+
æ Â(2S)K+ decay mode in di�erent data-taking periods

and trigger categories are shown in Fig. 3.12. The strong correlation between the
combinatorial background and the partially reconstructed decays from higher char-
monium resonances causes the variation of the fitted mass shapes across data-taking
periods and trigger categories. However, this has a negligible e�ect on the signal yield
extraction as the sum of the two contributions is constant across data-taking periods
and trigger categories.
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Fig. 3.12 Candidate invariant mass distributions. Distribution of the invariant mass
mÂ(2S)(K+¸+¸≠) for B+

æ Â(2S)K+ resonant candidates in the (left) sample previously
analysed [11] and (right) the new data sample. The top row shows the fit to the muon
modes, the combinatorial component is included in the fit but is too small to be seen.
The subsequent rows show the fits to the electron modes triggered by (second row) one
of the electrons, (third row) the kaon and (last row) by other particles in the event.
The fit projections are superimposed.
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Appendix 3.D E�ect of q2 migration
Due to the finite resolution in q2, signal candidates with a true q2 (q2

true) outside the
interval of interest can be reconstructed with 1.1 < q2 < 6.0 GeV2/c4. The contribution
from B+

æ K+e+e≠ candidates that undergo this q2 migration is show in Fig. 3.13
for simulation and Fig. 3.14 for data.
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Fig. 3.13 Distribution of m(K+e+e≠) in simulated B+
æ K+e+e≠ decays. The

orange shaded area corresponds to B+
æ K+e+e≠ candidates with true q2 outside

the interval of interest. The green and purple components correspond to candidates
with q2

true > 6.0 GeV2/c4 and q2
true < 1.1 GeV2/c4, respectively. (Left) linear and (right)

logarithmic scales are shown.
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The fit projection is superimposed, with a black dotted line describing the signal
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in the text and listed in the legend. For illustration, the expected distribution of signal
candidates with q2
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true > 6.0 GeV2/c4 is shown as a grey dashed

and dotted line.
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Appendix 3.E Overview of RK measurements
An overview of available measurements of RK in di�erent q2 regions is given in Fig 3.15.
Previous LHCb measurements are also included for comparison in Fig 3.16 and Fig 3.17.
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Fig. 3.15 Comparison between RK measurements. The measurements by the BaBar [15]
and Belle [13] collaborations combine B+

æ K+¸+¸≠ and B0
æ K0

S¸+¸≠ decays.
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Fig. 3.16 Comparison between RK measurements. The measurements by the BaBar [15]
and Belle [13] collaborations combine B+

æ K+¸+¸≠ and B0
æ K0

S¸+¸≠ decays. The
previous LHCb measurement [11], superseded by the present result, is also shown.
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Fig. 3.17 Comparison between RK measurements. The measurements by the BaBar [15]
and Belle [13] collaborations combine B+
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S¸+¸≠ decays. The
previous LHCb measurements [11] and [130], superseded by the present result, are also
shown.





Chapter 4

On the significance of new physics
in b æ s¸+¸≠ decays

4.1 Introduction
Since 2013, several measurements have shown deviations from Standard Model (SM)
predictions in rare b-hadron decays controlled by the underlying quark-level transition
b æ s¸+¸≠ (¸ = e, µ) [1–10]. The latest of these measurements provides the first
evidence of a violation of Lepton Flavor Universality (LFU) in a single process [11].

While there is no single result exhibiting a 5 ‡ deviation from the SM, the pattern
of deviations, collectively denoted as the b æ s¸+¸≠ anomalies, is striking. In order
to guide future activities in this field, and possibly claim a discovery, it is essential
to determine the combined statistical significance of these anomalies in a robust way.
This is the purpose of this paper.

The first point to clarify is the alternative hypothesis that we aim to test with
respect to the SM. The scope of this paper is to test in general terms the hypothesis of
a new short-distance interaction connecting the b and s quarks with a dilepton pair.
By short-distance we mean a NP interaction which appears as a local interaction in b-
hadron decays. This general hypothesis, which is well justified by the absence of non-SM
particles observed so far at colliders, allows us to describe b æ s¸+¸≠ transitions using
the general formalism of e�ective Lagrangians, encoding a hypothetical NP contribution
via appropriate four-fermion operators. This description, which is conceptually similar
to Fermi’s theory of beta decays [12], allows to consider each specific b-hadron decay
of interest as a di�erent way to probe the same underlying b æ s¸+¸≠ short-distance
interaction.



168 On the significance of new physics in b æ s¸+¸≠ decays

The hypothesis of NP e�ects in b æ s¸+¸≠ transitions of short-distance origin
was formulated first in Ref. [13]. Later on several theory groups have analysed these
processes within the framework of e�ective Lagrangians (see e.g. Ref. [14–27]). These
analyses provided fits of the coe�cients of well-defined sets of four-fermion operators,
the so-called Wilson Coe�cients (WCs), obtaining significances that in the last few
years largely exceed the 5 ‡ level [25–27]. While these results are interesting and highly
valuable, they do not provide the robust and general estimate of the significance we aim
for. Our goal is not obtaining the best fit values of the WCs, which is the main goal
of these previous studies, but rather estimating the significance of the NP hypothesis
irrespective of its specific structure.

Most of the WC fits quoted in the literature are obtained by varying a small
number of WCs, typically one or two. While this approach is well suited to test
specific (often well motivated) NP hypotheses, and to determine the values of the
WCs in these frameworks, it does not provide an unbiased estimate of the significance
of the NP hypothesis. As we clarify below, the significance thus obtained resembles
the local significance in resonance searches. The concern lies in the fact that several
measurements are performed but only a few exhibit deviations with respect to the
SM, corresponding to well-defined sets of WCs. It should also be stressed that the
WC basis is a purely conventional choice: if a given correlation emerges from data
in a two-parameter fit, one can change the basis and perform a fit with apparently
higher significance enforcing such correlation via the basis choice and using a single
parameter.

Overestimating the significance of a subset of measurements is equivalent to the
look-elsewhere e�ect (LEE) in searches for new resonances [28–30]. While there is a
small probability to observe a n‡ statistical fluctuation in a given bin of a distribution
where the resonance could appear (local p-value), when several bins are measured
the probability that at least one of them deviates by n‡ is larger (global p-value).
When searching for a new resonance with unknown mass, the LEE can be addressed
by calculating a trial-factor with an ensemble of pseudo-experiments [30–32], which is
the ratio of the global and local p-values. Conceptually, this is the same approach we
adopt in this paper: We estimate the significance of the NP hypothesis in real data via
pseudo-experiments. The trial-factor is then due to alternative deviations which could
have emerged in a hypothetical dataset with the same experimental precision.

There are fits in the literature that use a large number of WCs and a rather general
NP hypothesis [14,25,33]. In particular, Ref. [33] fits all possible WC directions and
therefore does not su�er from the LEE. The issue in this case is not the number of WCs
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but the e�ective number of degrees of freedom in the system, which depends on the
correlations between WCs and the observables that are accessible to the experiments.
Using pseudo-experiments is an e�cient method to eliminate flat directions in the space
of WCs and can easily account for many experimental details such as non-Gaussian
uncertainties and correlated systematics.

As far as theoretical uncertainties are concerned, the main concern are non-local
contributions due to intermediate charm states. This subject has been widely discussed
in the literature [34–38,37,39–45]. As a conservative choice, we simply disregard
the extraction of short-distance information on amplitudes which might receive such
non-local contributions.

Summarizing, the approach we propose to determine the statistical significance of
NP in b æ s¸+¸≠ transitions is based on the following points:

• We consider the short-distance b æ s¸+¸≠ transition as a unique process con-
strained by di�erent decay channels.

• We describe NP e�ects in b æ s¸+¸≠ transitions using the most general e�ective
Lagrangian compatible with the hypothesis of an e�ective local interaction.

• We estimate the trial-factor via an ensemble of pseudo-experiments generated
according to the SM hypothesis and using the likelihood ratio as the test statistic.

• We adopt a highly-conservative attitude towards theory uncertainties, particularly
in the case of non-local charm contributions.

This method allows us to evaluate the probability to observe the numerical coherence
that is seen in data by chance. Only coherent deviations with respect to the SM can
give a large value of the test statistic. All possible deviations in both the measurements
and Wilson coe�cients are considered. Therefore, this method evaluates the global
significance of the b æ s¸+¸≠ anomalies for the first time.

4.2 E�ective Lagrangian and selection of the ob-
servables

In the limit where we assume no new particles below the electroweak scale, we can
describe b æ s¸+¸≠ transitions by means of an e�ective Lagrangian containing only
light SM fields. The only di�erence between SM and e�ective Lagrangians, renormalized
at a scale µ ≥ mb, is the number of e�ective operators, which can be larger in the NP
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case. To describe all the relevant non-standard local contributions, we add to the SM
e�ective Lagrangian

�L
bæs¸¸

NP = 4GF
Ô

2
ÿ

i

CiOi + h.c. , (4.1)

where GF denotes the Fermi constant, and where the index i indicates the following
set of dimension-six operators (treated independently for ¸ = e and µ):

O
¸

9 = (s̄L“µbL)(¯̧“µ¸) , O
¸

10 = (s̄L“µbL)(¯̧“µ“5¸) ,

O
¸Õ
9 = (s̄R“µbR)(¯̧“µ¸) , O

¸Õ
10 = (s̄R“µbR)(¯̧“µ“5¸) ,

O
¸

Ŝ
= (s̄LbR)(¯̧

R¸L) , O
¸Õ
Ŝ

= (s̄RbL)(¯̧
L¸R) . (4.2)

As shown in [46], these operators are in one-to-one correspondence with the independent
combinations of dimension-six operators involving b, s and lepton fields in the complete
basis of dimension-six operators invariant under the SM gauge group.

We do not include in the list (5.4) the dipole operators, O
(Õ)
7 , for two reasons:

these do not describe a b æ s¸+¸≠ local interaction and they are well constrained by
�(B æ Xs“) and �(B æ Kú“).1

The four scalar operators in (5.4) lead to b æ s¸+¸≠ amplitudes which are helicity
suppressed. We thus restrict the attention to the single e�ective combination which
contributes to the B0

s
æ µ+µ≠ helicity-suppressed rate. Finally, in the absence

of stringent experimental constraints on CP-violating observables, we treat the NP
WCs as real parameters.2 According to these general hypotheses, NP e�ects in
b æ s¸+¸≠ transitions are described in full generality by nine real parameters. As far as
Ce,µ

9,10 are concerned, it is convenient to separate universal and non-universal corrections
in lepton flavor, defining

Ce

i
= CSM

i
+ �CU

i
,

Cµ

i
= CSM

i
+ �CU

i
+ �Cµ

i
.

(4.3)

Adopting a conservative attitude toward theoretical uncertainties, we restrict the
attention to the following three sets of observables: i) the LFU ratios RK [11] and
RKú [5], ii) the branching ratio for the rare dilepton mode B0

s
æ µ+µ≠ [3,6,7,47]

and, iii) the normalized angular distribution in B0
æ Kú0µ+µ≠ decays [9,10]. As

1An explicit quantification of the change of the significance when C
(Õ)
7 are also varied, taking into

account their a priori knowledge before any LHCb measurements, is presented in Section IV.
2This statement refers to the standard quark-phase convention, where the WCs are approximately

real also in the SM. Imaginary contributions to the WCs would not interfere with the SM amplitude
and cannot induce large deviations from the SM in CP-conserving observables.
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the measurements in class i) and ii) are statistically dominated, they are treated as
uncorrelated whereas the full experimental correlation matrix given in Ref [9] is used
for the B æ Kúµ+µ≠ angular observables.

By construction, the observables in class i) and ii) are insensitive to form-factor
and decay constant uncertainties (except for fB0

s
in class ii) as well as non-local charm

contributions. The latter induce contributions to the decay amplitudes that can
e�ectively be described via the shift

�CU

9 æ �CU

9 + f cc̄

Bæf
(q2) (4.4)

where q2 denotes the squared dilepton invariant mass. The absence of a completely
reliable estimate of the theoretical uncertainty on the function f cc̄

Bæf
, in particular

on its normalization at q2 = 0, forces us to treat the determination of �CU

9 as SM
nuisance parameter3 and ignore the information from exclusive decay rates or dilepton
spectra. This way we automatically remove of most of the uncertainties associated
to the hadronic form factors: a choice that maybe seen as too conservative, but that
certainly does not lead to overestimate the NP significance.

The only observable with a residual form-factor uncertainty we retain is the B0
æ

Kú0µ+µ≠ angular distribution. We keep it since this distribution is sensitive to non-
standard e�ects in short-distance operators other than O

µ

9 , even if we marginalise over
�CU

9 . To reduce the form-factor uncertainty we make use of the Pi observables [48].
We explicitly checked that consistent results are obtained using the Si observables [49],
employing the form-factor parameterization in [50].

The set of nine parameters discussed above provides an unbiased description of
heavy NP contributions to b æ s¸+¸≠ transitions. In order to evaluate the impact
of motivated, but more specific theoretical assumptions, we also define a reduced set
of WCs based on the hypotheses of small flavor-violating e�ects in the right-handed
sector. According to this hypothesis, C¸Õ

i
¥ 0 and the set of independent WCs is

reduced to five operators. This hypothesis follows from the general assumption of a
minimally broken U(2)3 flavor symmetry: A general property of SM extensions which
was proposed in [51] well before the observation of the b æ s¸+¸≠ anomalies, motivated
by the stringent constraints on right-handed quark flavor mixing especially in the kaon
system (see e.g. [52]).

3If we were to include more channels potentially a�ected by non-local charm contributions, we would
need to treat the determination of �C

U
9 from each channel as an independent nuisance parameter.
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4.3 Statistical Method
To evaluate the significance of the NP hypothesis in the b æ s¸+¸≠ system we use

�‰2 = ≠2 log L(X|�ĈU

9 , CSM
i

)
L(X|Ĉi)

(4.5)

as the test statistic. The trial-factor is calculated with a similar technique as described
in Ref. [30–32]. Starting from SM predictions, a large number of pseudo-experiments
are generated, varying the measurements according to the experimental uncertainty.
For each simulated experiment, the full set of WCs (Ci) is fitted and the �‰2 between
the best fit (Ĉi) and the SM prediction (�ĈU

9 , CSM
i

) is calculated. Data are fitted in
the same way as pseudo-experiments and the distribution of �‰2 is used to calculate
the p-value. The software package Flavio [53] is used to fit WCs.

One of the interesting features of the b æ s¸+¸≠ anomalies is that they can be
easily explained with only one WC: Cµ

LL
= �Cµ

9 ≠ �Cµ

10. While this makes the NP
hypothesis easy to interpret from the theory point of view, it is not the best way to
assess the sensitivity with respect to the SM. To illustrate this point we apply our
method to the fit of one or two WCs. In Fig. 4.1, the �‰2 distribution under the
SM hypothesis is shown when the one/two WCs which maximise the likelihood are
chosen to fit the data: For each pseudo-experiment, we fit every single possible one/two
WC combination and choose the largest test statistic. The blue curve is an empirical
function that best describes the distribution. The comparison with a ‰2 distribution
with one/two degrees of freedom demonstrates that a sizeable trial-factor is present.
Taking for instance a hypothetical 4 ‡ discrepancy when fitting the best one/two WCs,
it would be diluted down to 3.7/3.5 ‡ with a trial-factor equal to 4.1/7.0, respectively.
Since the current best scenarios to explain the anomalies with NP in C¸

LL
or in C9 and

C10 have emerged from the data, using this hypotheses to evaluate the NP significance
can lead to overestimates.

As discussed in Sec. 4.2, we advocate the full set of nine WCs to be used if we
would like to have an agnostic approach to NP. However, the full set of WCs contains
redundancy, which makes the fit unstable. For instance, the deviations in RK and Rú

K

can be explained with non zero values of Cµ

LL
or non-zero values of Cµ

RL
= CµÕ

9 ≠ CµÕ
10.

Here we are not interested in interpreting the best NP direction and we therefore treat
all of these in the same way. In total, the maximum number of WCs that can be
fitted is seven, with the full basis of muonic operators, the single e�ective combination
of scalar operators, and two electronic operators. Each pseudo-experiment is fitted
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Fig. 4.1 �‰2 distribution extracted from pseudo-experiments (blue) for fitting the
best one/two WCs varying the SM, compared to the theoretical ‰2 distribution with
one/two degrees of freedom (red).

six times, with all possible combinations of seven WCs. For each experiment, the
largest test-statistic value is used. Adding redundant directions will not improve the
‰2 of a given pseudo-experiment, since there are not enough sensitive measurements to
constrain simultaneously all nine WCs.
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Fig. 4.2 �‰2 distribution (blue) for SM pseudo-experiments in the general 9 WC fit
basis (top) and the reduced 5 WC basis (bottom). The data is shown as a vertical red
line on the plot.

4.4 Results
The �‰2 distribution for the fit to the full set of Wilson coe�cients is shown in Fig. 4.2
(top). The same procedure is then used in data, obtaining a �‰2 = 31.4, which
corresponds to a global significance of 4.3‡. As expected, the large �‰ value arises
mostly due to the discrepancies with respect to the SM in the LFU ratios, RK and Rú

K
.

The goodness of fit to data can be computed by calculating the p-value of the absolute
‰2 of the best fit. This results in a 11% p-value, which is acceptable. The largest pulls
of the best fit with respect to the measurements come from the lowest q2 bins of the
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angular observables in the B0
æ Kú0µ+µ≠ decays. This is a known issue [54] and has

a small impact on the significance. Eliminating the lowest q2 bin of all the angular
observables decreases the �‰2 by only one unit and the fit quality of the fit improves,
leading to a p-value associated to the absolute ‰2 of 24%.

While the C(Õ)
7 WCs do not describe b æ s¸¸ contact interactions and are not

included in the default analysis, we investigated the impact of adding them to the
set of WCs we allow to be a�ected by NP. Imposing constraints on C(Õ)

7 prior to the
flavour anomalies from Ref [55] and including the angular analysis of B0

æ Kúe+e≠

from Ref [56], the total significance marginally decreases, as expected, from 4.3‡ to
4.2‡.

Here we advocate that for claiming a discovery, the NP significance should be
calculated using an agnostic approach. However, as discussed in Sec. 4.2, there were
good a-priori theoretical reasons to assume no NP in C¸Õ

9,10. To evaluate the significance
of this hypothesis we apply our method to the reduced set of five WCs. The �‰2

distribution is shown in Fig. 4.2 (bottom)4. Applying the same fit to data we obtain a
�‰2 = 30.5, which integrating the distribution corresponds to a significance of 4.7‡.
Interestingly, this is similar to the values quoted in the recent literature [57–59] for
single-parameter fits of theoretically clean observables only. Having a larger number of
free parameters, one could have expected a lower significance in our case. However,
in this specific case the LEE e�ect is compensated by two facts: i) the inclusion of
the angular distribution of the B æ Kúµ+µ≠ decay which, even after marginalizing
over �CU

9 , retains some sensitivity to the other WCs; ii) the overall higher �‰2

obtained with more parameters. This observation reinforces the high significance of
the b æ s¸+¸≠ anomalies in motivated NP models.

4.5 Conclusion and discussion
In conclusion, we have presented a method to evaluate the global significance for the
NP interpretation of the b æ s¸+¸≠ anomalies. This method transposes the known
criteria used for discovering new resonances, such as the Higgs boson, into searching
for NP in b æ s¸+¸≠ transitions. It is worth emphasizing that, while it is remarkable
that all data can be explained by fitting one or two WCs and that this observation can
be used to investigate what are the interesting theoretical directions, this hypothesis
has been made after having seen the data. Using the same hypothesis to evaluate the

4The 5 WCs fit has the same goodness of fit as the 9 WCs fit, since data can be well described
with a smaller number of Wilson Coe�cients.
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global significance of NP would be the Bayesian-inference equivalent of choosing the
prior after having calculated the likelihood. Therefore, we advocate a more agnostic
method to calculate the global NP significance with respect to the SM in b æ s¸+¸≠

processes. To this end, we have calculated the LEE for the first time and shown that
the trial-factor cannot be neglected.

We stress that the approach proposed in this paper should not be interpreted as
a criticism towards existing attempts made so far of combining and interpreting the
anomalies in motivated theoretical frameworks. We are simply addressing a di�erent
question. While current fits of selected WC sets in the b æ s¸+¸≠ system only evaluate
a local significance, these approaches are fundamental to obtain theory insights on the
flavor anomalies. Similarly, there is a strong theoretical interest in trying to combine the
b æ s¸+¸≠ anomalies with other hints of deviations from the SM, such as the b æ c¸‹

anomalies [60–68] or the recent (g ≠ 2)µ result [69,70] (see also [71]). However, this
combination is not appropriate to establish a global significance, given the hypothesis
of a connection between di�erent processes is made a posteriori, after having observed
data.

We also recognise that our approach of treating �CU

9 as a nuisance SM parameter
can be viewed as an overly conservative choice. Nevertheless, in the absence of a widely
accepted estimate for the theory uncertainty of the non-local cc contributions, this is
mandatory for a conservative estimate of the significance.

While the uncertainty of all the measurements used here are statistically dominated,
the results of our analysis can be improved by adding correlations of experimental
systematic uncertainties and taking into account that they can follow non-Gaussian
PDFs. Additional potential improvements concern the observables to be included. To
simplify the numerical analysis we have only included the observables that are most
sensitive.

For instance, observables such as Q5 [54] measured by Belle [72], were not included
in this work since these measurements are still not precise enough to have a sizeable
impact. For the same reason, angular observables in B0

s
æ „µ+µ≠ [73,74] decays are

not considered. While the decay B0
s

æ „µ+µ≠ is analogous to B0
æ Kú0µ+µ≠ from

theory point of view, it is limited statistically due to the value of the fragmentation
fraction fs/fd [75] and that it is not self-tagged decay.

While beyond the scope of this paper, a more rigorous approach of including
all observables and treat all correlated systematics is desirable in view of future
combinations.
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With current data, all these e�ects are expected to have a small impact and will
not change the main conclusions presented here.

The global significance of 4.3 standard deviations we obtain for the NP hypothesis
in the b æ s¸+¸≠ system clearly demonstrates the potential of combining di�erent
measurements in this system, even when adopting an agnostic alternative hypothesis
and an highly conservative theory approach. In view of future measurements, we
advocate that experimental collaborations adopt this method to calculate the global
significance of the new physics hypothesis in a conservative and unbiased way.
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Chapter 5

A general e�ective field theory
description of b æ s¸+¸≠ lepton
universality ratios

5.1 Introduction
In recent years, a pattern of deviations with respect to Standard Model (SM) predictions
has manifested in measurements of b æ s¸+¸≠ processes. These include deviations
in the angular distribution of the decay B0

æ Kú0µ+µ≠ [2,6,14,13], a deficit in the
decay rates [38,1,3,8,18,19,17] and deviations in lepton flavour universality (LFU)
ratios [5,10,12,20]. Within the framework of e�ective field theories, these deviations
are numerically consistent with each other, pointing to a well-defined hypothesis of new
physics of short-distance origin [25,21,22,29,32,26]. Even under highly conservative
theoretical assumptions, the global significance of the new physics hypothesis is as
large as 4.3‡ [33].

Among these deviations, the LFU ratios are particularly interesting as their SM
uncertainty is very precise [30,24,34]. They are defined within a region of squared
dilepton invariant mass (q2) as

RX ©

⁄
q

2
max

q
2

min

d�(Hb æ Xsµ+µ≠)
dq2 dq2

⁄
q

2
max

q
2

min

d�(Hb æ Xse+e≠)
dq2 dq2

. (5.1)
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where Hb represents a b-hadron (meson or baryon) and Xs represents a well-defined
hadronic system with strangeness, such that the transition satisfies �B = �S.

While the SM prediction RSM
X

= 1 is very robust,1 the precise cancellation of
hadronic uncertainties can be broken in presence of new physics (NP) [21]. Namely,
the interpretation of a new physics structure a�ecting these LFU ratios relies on the
knowledge of the hadronic structure of the decays involved. This is why the LFU
ratio RpK [12] has not been included yet in b æ s¸+¸≠ global fits, despite its clean SM
prediction [24,34,31]. The same problem holds for any LFU ratio which contains a
mixture of overlapping/interfering hadronic resonances where the underlying structure
is unknown, referred to in the following as non-exclusive RX ratios. Examples of this
type are the LFU ratios RKfifi and RKfi, where for the latter the Kfi system has an
invariant mass larger than the Kú(892)0 resonance. The experimental prospects for
these ratios are promising but their interpretation in terms of b æ s¸+¸≠ short-distance
dynamics is not obvious.

Here, we propose a new method that allows to interpret any LFU ratio within the
framework of e�ective Lagrangians for the first time, even if the detailed structure of
the hadronic matrix elements is unknown. The key observation that allows us to reduce
the number of unknown handronic quantities is the fact that the SM amplitude is both
lepton flavour universal and approximately left-handed. These two properties imply that
only a very limited set of NP amplitudes can yield sizeable non-standard contributions
to RX . Their contribution can be described in terms of very few combinations of
hadronic parameters, which can in turn be treated as nuisance parameters.

The theoretical decomposition of RX following this logic is presented in Sect. 5.2.
Using this decomposition we perform a global b æ s¸+¸≠ combination including the
measurement of RpK for the first time, improving upon the global estimate of the
significance presented in Ref. [33]. Using this method we also explore the potential
impact of the expected measurements of RpK , RKfifi, and RKfi with the full dataset
collected so far by LHCb (Sec. 5.4). The conclusions of our analysis are summarised in
Sect. 5.5.

1We assume the q
2 range extends well above the dilepton mass threshold.
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5.2 General expression of RX in terms of Wilson
coe�cients

In the limit of heavy new physics, we can describe both SM and NP e�ects in b æ s¸+¸≠

decays by means of an e�ective Lagrangian containing only light SM fields. We normalise
it as

�L
bæs¸¸

e� = 4GF
Ô

2
–

4fi
V ú

ts
V

tb

ÿ

i

CiOi + h.c. , (5.2)

where GF and – denote the Fermi constant and the electromagnetic coupling, respec-
tively, and Vij denotes the elements of the Cabibbo-Kobayashi-Maskawa matrix. The
only di�erence between the SM and NP cases lies in the number of e�ective operators,
which is larger in a generic NP framework. In full generality the dimension-six operators
with a non-vanishing tree-level matrix element in b æ s¸+¸≠ decays can be composed
into three sets: i) dipole operators,

O7 = mb

e
(s̄L‡µ‹bR)F µ‹ , O

Õ
7 = mb

e
(s̄R‡µ‹bL)F µ‹ , (5.3)

ii) vector operators,

O
¸

9 = (s̄L“µbL)(¯̧“µ¸) , O
¸

10 = (s̄L“µbL)(¯̧“µ“5¸) ,

O
¸Õ
9 = (s̄R“µbR)(¯̧“µ¸) , O

¸Õ
10 = (s̄R“µbR)(¯̧“µ“5¸) ,

(5.4)

and ii) scalar operators,

O
¸

Ŝ
= (s̄LbR)(¯̧

R¸L) , O
¸Õ
Ŝ

= (s̄RbL)(¯̧
L¸R) . (5.5)

In the NP case the ¸ = e and ¸ = µ terms should be treated separately. The scalar
operators lead to b æ s¸+¸≠ amplitudes which are helicity suppressed and can be safely
neglected in most of the observables we are interested in. The only exception being the
(single) e�ective combination which contributes to the Bs æ µ+µ≠ helicity-suppressed
rate. The dipole operator O

Õ
7 is negligible in the SM and is severely constrained by

�(B æ Kú“) and �(B æ Kú¸+¸≠) at low q2 [15]. To describe SM and NP e�ects in
the RX ratios, we can thus limit our attention to the SM dipole operator (O7) and the
four vector operators in Eq. (5.4).

As pointed in [31], to elucidate general properties of the LFU ratios beyond the SM,
irrespective of the detailed structure of the hadronic matrix elements, it is convenient
to write the decay amplitudes in a basis of chirally projected operators. To do so, we
introduce the combinations
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C¸

L
= C¸

9 ≠ C¸

10 , C¸Õ
L

= C¸Õ
9 ≠ C¸Õ

10 ,

C¸

R
= C¸

9 + C¸

10 , C¸Õ
R

= C¸Õ
9 + C¸Õ

10 . (5.6)

With this notation, the generic Hb æ Xs¸+¸≠ transition amplitude can be decomposed
as

A(Hb æ Xs¸
+¸≠) Ã (M¸

X,L
)–(J ¸

L
)– + (M¸

X,R
)–(J ¸

R
)– (5.7)

where
(J ¸

L
)– = ¯̧

L“–¸L , (J ¸

R
)– = ¯̧

R“–¸R , (5.8)

and

(M¸

X,L
)– = C¸

L
J–

X
+ C¸Õ

L
J Õ–

X
+ C7J

7–

X

(M¸

X,R
)– = C¸

R
J–

X
+ C¸Õ

R
J Õ–

X
+ C7J

7–

X
(5.9)

with

J–

X
= ÈXs|s̄L“–bL|HbÍ , J Õ–

X
= ÈXs|s̄R“–bR|HbÍ ,

J7–

X
Ã

1
q2 q‹ÈXs|s̄L‡–‹bR|HbÍ . (5.10)

In the limit where we neglect small lepton mass e�ects, the terms in Eq. (5.7) propor-
tional to the left-handed and right-handed leptonic currents do not interfere. Moreover,
the following relation holds

---M¸

X,R

---
2

=
---M¸

X,L

---
2

{C
¸

L
æC

¸

R
, C

¸Õ
L

æC
¸Õ
R

}
. (5.11)

Integrating over all kinematic variables but for q2, we can thus decompose the decay
rate as

d�¸

X

dq2 =
d�¸

X,L

dq2 +
d�¸

X,R

dq2 , (5.12)

with
d�¸

X,R

dq2 =
d�¸

X,L

dq2

-----
{C

¸

L
æC

¸

R
, C

¸Õ
L

æC
¸Õ
R

}
. (5.13)
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The explicit expression of d�¸

X,L
/dq2 in terms of Wilson coe�cients is

d�¸

X,L

dq2 = f ¸

X
(q2)

; ---C¸

L

---
2

+
---C¸Õ

L

---
2

+ Re
5
÷0

X
(q2)C¸ú

L
C¸Õ

L

6

+÷77
X

(q2)|C7|
2 + Re

5
÷79

X
(q2)Cú

7C¸

L
+ ÷79Õ

X
(q2)Cú

7C¸Õ
L

6<
,

(5.14)

where f ¸

X
(q2) and the four ÷i

X
(q2) are channel-dependent hadronic parameters. The

hadronic matrix elements J–

X
and J Õ–

X
are transformed into each other under the action

of parity, which is a unitary operator. As a result, integrating over the phase space
of |XsÍ for any q2 value, and summing (averaging) over the spin configurations of
both |XsÍ and |HbÍ, leads to the same coe�cients in Eq. (5.14) for

---C¸

L

---
2

and
---C¸Õ

L

---
2
.

Moreover, the positivity of the squared matrix element implies

|÷0
X

(q2)| Æ 2 , ÷77
X

(q2) > 0 . (5.15)

Given the definition of RX in Eq. (5.1), it is convenient to define the following
q2-integrated hadronic parameters:

F ¸

X
=

⁄
q

2
max

q
2

min

f ¸

X
(q2)dq2,

e
÷i,¸

X

f
= 1

F ¸

X

⁄
q

2
max

q
2

min

f ¸

X
(q2)÷i

X
(q2)dq2. (5.16)

The normalization factor f ¸

X
(q2) depends on the lepton mass via kinematic e�ects,

which are sizeable only close to the endpoint (i.e. for q2
æ 4m2

¸
). If the q2 range of

the measurement extends well above the di-lepton mass threshold, the lepton mass
dependence is safely neglected and we can set

F µ

X
= F e

X
© FX ,

e
÷i,¸

X

f
©

e
÷i

X

f
. (5.17)

In this limit the overall normalization factor drops out in RX and the same hadronic
parameters appear in both numerator and denominator:

RX =

;
|Cµ

L
|
2 +

---CµÕ
L

---
2

+ Re
Ë
È÷0

X
ÍCµú

L
CµÕ

L
+ Cú

7

1
È÷77

X
ÍC7 + È÷79

X
ÍCµ

L
+ È÷79Õ

X
ÍCµÕ

L

2È <
+

;
L æ R

<

;
|Ce

L
|
2 + |CeÕ

L
|
2 + Re [È÷0

X
ÍCeú

L
CeÕ

L
+ Cú

7 (È÷77
X

ÍC7 + È÷79
X

ÍCe

L
+ È÷79Õ

X
ÍCeÕ

L
)]

<
+

;
L æ R

< .

(5.18)
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This implies that in the SM, and in all models where the Wilson coe�cients are lepton
universal, RX ¥ 1 up to corrections due to QED and/or residual kinematic e�ects
which are at most of O(1%) [24,34].

The key observation of the present work is that RX retains a significant discrimi-
nating power with respect to NP models even in the absence of a precise knowledge
of the hadronic parameters, i.e. even when treating the È÷i

X
Í as nuisance parameters.

This statement emerges quite clearly by the following two observations:

• Sizeable deviations of RX from unity can only be attributed to non-universal
Wilson coe�cients, i.e. |RX ≠ 1| ”= 0 only if |�Ci| ”= 0 for some i, where

�Ci = Cµ

i
≠ Ce

i
, i = L, LÕ, R, RÕ . (5.19)

• Other observables constrain NP e�ects to be a small perturbation over the SM:
this implies that large NP e�ects in RX can arise only by non-vanishing �Ci

interfering with the SM amplitude. The latter has a peculiar structure,

|CSM
L

| = O(10) ∫ |CSM
7 |, |CSM

R
|,

|C¸Õ
L,R

|
SM = 0 , (5.20)

hence only a very limited set of NP amplitudes can lead to |RX ≠ 1| ∫ 0.

These two observations become evident when linearising the theoretical expression
of RX with respect to the �Ci and neglecting the interference of �Ci with suppressed
SM amplitudes. In this limit we obtain

RX ≠ 1 ¥

Re
3

2�CL

C
SM

L

+ È÷0
X

Í
�C

Õ
L

C
SM

L

4

1 + È÷77
X

Í

----
C

SM

7

C
SM

L

----
2

+ Re
5
È÷79

X
Í

C
SM

7

C
SM

L

6 . (5.21)

As can be seen, only two types of NP e�ects can lead to a sizeable deviation of RX

from one: a lepton non-universal shift in either C¸

L
or C¸Õ

L
. Note also that the only

hadronic parameter with direct impact on the extraction of NP constraints from RX is
÷0

X
, which is bounded by Eq. (5.15). The ÷77

X
and ÷79

X
parameters have a minor role:

they control the dilution of the LFU violation in the rate due to the lepton-universal
contribution by O7. Finally, the e�ect of ÷79Õ

X
is always subleading.

5.2.0.0.1 Numerical estimate of the È÷i

X
Í. The approximate expression in

Eq. (5.21) is shown for illustrative purposes only, in the following numerical analysis we
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Parameter Limits
default 4q-ops

È÷0
X

Í [-2,2]
È÷79

X
Í [-12,12] [-20,20]

È÷79Õ
X

Í [-4,4] [-10,10]
e
÷77

pK

f
[0,120] [0, 160]

e
÷77

Kfi,Kfifi

f
[0,60] [0,100]

Table 5.1 Limits placed on the hadronic nuisance parameters. The default values are
determined by a conservative extrapolation from B0

æ Kú(892)0 matrix elements (see
section 5.2.a). The larger interval for

e
÷77

pK

f
compared to

e
÷77

Kfi,Kfifi

f
takes into account

the di�erent q2 ranges in the experimental measurements [12]. The values in the last
column correspond to an extremely conservative extrapolation assuming large non-local
matrix elements of four-quark operators (see section 5.2.b).

use the complete expression in Eq. (5.18), treating all the È÷i

X
Í as nuisance parameters.

In order to define a range for the È÷7i

X
Í, we use a channel where we are able to compute

the values of the È÷i

X
Í parameters explicitly and where the impact of the dipole operator

is maximal, namely the B0
æ Kú(892)0¸+¸≠ decay. In this mode, characterised by a

spin-one final state, the dipole operator is maximally enhanced by the q2
æ 0 pole.

In multi-body channels, such as B0
æ K+fi≠¸+¸≠ and B+

æ K+fi≠fi+¸+¸≠, with a
sizeable S-wave component of the hadronic final state, we expect a significantly smaller
contribution of O7 to the total decay rate.

The values for the È÷i

KúÍ as a function of q2
min, setting q2

max = 6 GeV2, are shown
Fig. 5.1.2 These parameters are determined numerically as a function of q2

min by means
of Eq. (5.16), using the B æ Kú form-factors and non-local charm contributions from
the Flavio software package [39]. The ranges derived from these figures, used in the
numerical analysis for the other observables, are shown in Table 5.1 (default column).
These range are calculated for the cut on q2

min used in the corresponding existing
analyses.

5.2.0.0.2 Impact of four-fermion operators. In Eq. (5.14) we have neglected
the contribution to the rate of four-quark operators. Via non-local hadronic matrix
elements, the latter produce non-vanishing corrections to the decay amplitudes of
dilepton modes. These are responsible for an irreducible theoretical uncertainty in

2Note that the large value of
+
÷

77
X

,
is largely compensated by the smallness of C7: even if+

÷
77
X

,
= O(100),

+
÷

77
X

,
|C7|

2 = O(10) π |C
SM
L |

2 = O(100).
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LFU conserving observables. However, four-quark operators cannot induce a violation
of LFU and modify only the vector-part of the amplitude, i.e. they can be described as
an e�ective q2-dependent (and channel-dependent) modification of C9 with respect to
its short-distance value. In turn, this implies that the e�ect of four-quark operators in
RX can still be described in full generality by Eq. (5.18) simply re-defining the È÷i

X
Í.

To understand the last statement, consider the following modification in Eq. (5.14):
C¸

9 æ C¸

9+YX(q2), where YX(q2) is a lepton-indpendent function of q2 that describes the
e�ect of the four-quark operators in a given hadronic transition. Then the expression
of RX in Eq. (5.18) remains valid provided we shift the È÷i

X
Í as follows

e
÷79

X

f
æ

e
÷79

X

f
+ È’1

X
Í

C7
, (5.22)

e
÷79Õ

X

f
æ

e
÷79Õ

X

f
+ È’2

X
Í

C7
, (5.23)

e
÷77

X

f
æ

e
÷77

X

f
+ È’3

X
Í

C7
+ È’4

X
Í

C2
7

, (5.24)

where
e
’1

X

f
= 2

FX

⁄
fX(q2)YX(q2)dq2 , (5.25)

e
’2

X

f
= 1

FX

⁄
fX(q2)YX(q2)÷0

X
(q2)dq2 , (5.26)

e
’3

X

f
= 1

FX

⁄
fX(q2)YX(q2)÷79

X
(q2)dq2 , (5.27)

e
’4

X

f
= 1

FX

⁄
fX(q2)|YX(q2)|2dq2 . (5.28)

Assuming |YX(q2)| Æ 1, i.e. up to 25% corrections to C9 from four-quark operators,
which is a very conservative assumption, the previously determined ranges for È÷i

X
Í

are enlarged as shown in the last column in Table 5.1. As we shall discuss in the
following, this modification has an almost irrelevant impact in the numerical analysis
of the significance of the NP hypothesis. This provides a clear demonstration of the
marginal role played by the four-quark operators in RX .

We conclude this section two additional observations:

• The parameter ÷0
X

weights the relative contribution of vector and axial currents in
the hadronic transition, and is maximal for hadronic final states with well-defined
parity. In the B æ K case, where only the vector current contributes, ÷0

K
= 2;
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Fig. 5.1 Integrated hadronic parameters È÷i

X
Í, defined in Eq. (5.16), extracted from

B0
æ Kú0(æ Kfi)µ+µ≠ as a function of q2

min, setting q2
max = 6 GeV2.

in the B æ Kú case, which is dominated by the axial-current contribution,
≠2 < ÷0

Kú < ≠1; in the fully inclusive case ÷0
X

¥ 0.

• As pointed first in [31] (see also [28]), in the motivated class of NP models where
the lepton non-universal amplitudes have a pure left-handed structure, the value
of RX is expected to be the same for any Hb æ Xs¸+¸≠ transition:

(RX ≠ 1)|�CL ”=0 ¥ (RK ≠ 1)|�CL ”=0 . (5.29)

5.3 Global combination of current measurements
In this section we present a combination of b æ s¸+¸≠ measurements following the
procedure described in Ref. [33]. We include the following three sets of observables:
i) the LFU ratios RK [20], RKú [10] and RpK [16], ii) the branching ratio for the rare
dilepton mode B0

s
æ µ+µ≠ [35,1,38,23] and, iii) the normalised angular distribution in
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B0
æ Kú0µ+µ≠ decays [14,13]. In the case of RK and RKú , where the structure of the

hadronic matrix elements is well understood, we use the standard theoretical expressions
in terms of Wilson coe�cients and form factors using the Flavio package [39]. The
ratio RpK is described by means of Eq. (5.18).

As discussed in Ref. [33], we employ a highly generic NP hypothesis and a highly
conservative approach towards hadronic uncertainties. We generate pseudo-experiments
according to the SM, fluctuating the measurements according to their experimental
uncertainties, and calculate the likelihood ratio between the NP and SM hypotheses.
The distribution of the likelihood ratio is then used to calculate the p-value of a fit to
data. Long-distance charm contributions are treated by allowing for a lepton universal
shift of O

¸

9 in the SM definition.
The lepton universality ratio RpK has been measured by the LHCb collaboration

to be consistent with unity in the q2 region 0.1 < q2 < 6.0 GeV2/c4 [16]. We include
it in the combination by means of Eq. (5.18), using the limits reported in Table 5.1
(default values) for the hadronic parameters. In fact, preliminary results on the
di�erential branching fraction intervals of the dimuon invariant mass further confirms
the smaller contribution of O7 to the total rate [36], if compared to the benchmark
B0

æ Kú(892)0µ+µ≠ decay [9]. As four nuisance parameters are included with only
one measurement, degeneracies in the likelihood can occur due to multiple solutions.
To counteract this, loose Gaussian constraints, whose width is set to be the same as
the ranges given in table 5.1, are placed on each parameter to ensure the likelihood
has a well-defined minimum. The exact value of these ranges has a very small e�ect
on the numerical results.

The distribution of the likelihood ratio for the SM pseudoexperiemnts is shown in
Fig 5.2, along with the value obtained from data. The inclusion of the measurement of
RpK increases the e�ective degrees of freedom by 0.6 units. This increase represents the
uncertainty on the È÷i

X
Í which allows for potentially di�erent NP sensitivity compared

to the existing RK and RKú ratios. Compared with the results from Ref. [33], we observe
a small reduction in significance, from 4.3‡ to 4.2‡ when including the observable RpK .
This is due to the fact that the value of RpK is not perfectly consistent with the other
LFU ratios and the hadronic uncertainties allow to accommodate deviations from the
SM amplitude in other directions, within a general NP hypothesis.

Using the same approach we test the specific hypothesis of a violation of lepton
universality, considering all RX ratios measured so far, i.e. including RK , RKú and
RpK , and ignoring all other observables. This results in a local significance of 4.1‡

for the hypothesis of a LFU violation, which is very close to the global significance of
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Fig. 5.2 Distribution of the likelihood ratio for pseudo-experiments under the SM
hypothesis along with the value obtained from data. Results are shown under the same
conditions as in Ref. [33] and also when the measurements of RpK is included.

NP in b æ s¸+¸≠ decays. This small variation in the significance can be understood
as follows: the analysis of LFU observables has a smaller trial factor compared to the
generic NP analysis; however, with present data, this e�ect is compensated by the lack
of inclusion in the fit of B(Bs æ µ+µ≠) [38,1,35,19,17], which enhances the significance
in the generic NP case.

5.4 Impact of future measurements
In addition to assessing the significance with the current measurements, we calculate
the expected gain in discovery potential by using this approach with other non-exclusive
RX measurements that can be performed at LHCb in the near future. To this end,
we estimate the experimental sensitivity of these ratios and include the hypothetical
measurements in a fit with the current measurements.
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We estimate the experimental sensitivity of three modes with the full run I and
run II dataset of 9fb≠1 for the following ratios:

RpK = B(�0
b

æ pK≠µ+µ≠)
B(�0

b
æ pK≠e+e≠) ,

RKfifi = B(B+
æ K+fi≠fi+µ+µ≠)

B(B+ æ K+fi≠fi+e+e≠) ,

RKfi = B(B0
æ K+fi+µ+µ≠)

B(B0 æ K+fi+e+e≠) ,

where for the RKfi case, the K+fi≠ invariant mass is required to be above 1 GeV to
separate it from the comparatively well understood Kú(892)0 resonance.

The sensitivity for non-exclusive RX measurements depends primarily on the
precision of the electron mode. Given the ratio RpK has already been measured, the
precision can easily be predicted assuming it scales with luminosity, resulting in a
precision of 12.2%. As the decays B+

æ K+fi≠fi+e+e≠ and B0
æ K+fi≠e+e≠ have

yet to be observed, their yields are extrapolated from the corresponding muonic decay
modes from Refs. [7,4], by scaling with luminosity and the centre-of-mass energy. These
muon yields are compared to the corresponding yield in the RKú measurement [11]
to scale the resulting precision of the LFU ratio. A statistical uncertainty on RKfi

and RKfifi of 7.7 % and 13.5 % is expected for the full run I-II datasets in the range of
1.1 < q2 < 6.0 GeV2/c4. The estimated uncertainty on RKfi turns out to be comparable
with that of RKú , as can be expected given there are many significant contributions
above the Kú(892)0 resonance [7,37].

Information on the di�erential branching fraction in intervals of the dimuon in-
variant mass can provide insights on the underlying dynamics of the non-exclusive
hadronic system, which allows us to check the limits of the È÷i

X
Í parameters. For

instance, for the B0
æ Kú0µ+µ≠ decay a relative increase of the di�erential branching

fraction between the 0.1 < q2 < 0.98 and 1.1 < q2 < 6.0 GeV2/c4 regions by a factor of
three is reported in Ref. [9]. Similar inspection can be performed for the non-exclusive
channels and are found to be at the order of 2.0 and 2.6 for the Kfi and Kfifi hadronic
systems, respectively [7,4]. As a result, this confirms the conclusion of Sec 5.2 that the
limits obtained for the È÷i

X
Í parameters involving the Kú(892)0 resonance can be used

as a proxy for these channels.

The impact of these future measurements is examined by repeating the procedure
from the previous section introducing two benchmark points common to all non-
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Scenario NP Significance

Current data 4.3 ‡

Current data + RX = 0.8 5.4 ‡

Current data + RX = 1.0 3.8 ‡

Table 5.2 Change of the significance of the new-physics hypothesis in b æ s¸+¸≠ decays
adding hypothetical measurements of RpK , RKfi, and RKfifi, with full run I and run II
statistics, under two di�erent hypotheses for the central values.

exclusive LFU ratios: RX = 1.0 (SM) and RX = 0.8 (NP). The latter is chosen being
broadly consistent with current global fits. Figure 5.3 (top) shows the distribution of the
likelihood ratio when including these new RX observables under the NP hypothesis. A
large increase in the significance from 4.3 ‡ to 5.4 ‡ when including the RX observables
is seen. If the new measurements are set to the SM prediction of RX = 1.0, a reduction
to 3.8 ‡ can be expected. These measurements can therefore have a large impact on
the clarification of lepton universality violation in b æ s¸+¸≠ decays.

In order to investigate the dependence of the significance with respect to the freedom
given to the hadronic parameters, we have repeated the fit fixing the È÷i

X
Í to their

central values. The result is also shown in Fig. 5.3 (bottom). As expected, in this
case the additional measurements do not increase the e�ective degrees of freedom in
the system. The exact knowledge of all hadronic nuisance parameters would lead to a
significance of 5.9‡, i.e. an increase in significance of 0.5‡ compared to when they are
treated as nuisance parameters. This relatively small increase provides an a posteriori
confirmation that they play a minor role in the fit. We also compare the results
obtained with the ranges for the È÷i

X
Í set to the defalut values in Table 5.1 vs. the case

of large contributions from four-fermion operators (Table 5.1, right column). In the
latter case the significance decreases by 0.03‡, which rea�rms the small impact the
non-local contributions in this analysis. Finally, we also decrease the limits allowed
for È÷77

X
Í to 60, appropriate if the RpK ratio was measured setting q2

min above 1 GeV2.
A negligible di�erence in discovery potential is seen, which indicates that the exact
kinematic range is not crucial for the subsequent interpretation.

5.5 Conclusions
In summary, we have introduced a method to include any LFU ratio in global fits
by treating the hadronic uncertainties as nuisance parameters. This method is not
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designed to replace the existing theoretical description of RK or RKú , where we can take
advantage of a detailed knowledge of all the components of the transition amplitudes.
It is conceived for interpreting LFU ratios where we lack precise information about the
underlying hadronic dynamics.

To demonstrate the method, we have updated the global fit of Ref. [33] to include
the LHCb measurement of RpK . With current data, we find that RpK has a marginal
e�ect on the global significance of new physics in b æ s¸+¸≠ decays. However, when
extrapolating to the full LHCb dataset, and including also hypothetical measurements
of RKfi and RKfifi, we find that the increase in the significance can be large.

In this paper we concentrated on the three non-exclusive LFU ratios which are
more promising from the experimental point of view. However, the method proposed
here can be extended to include other channels, such as Bs æ K+K≠¸+¸≠. An
interesting experimental feature of some of the non-exclusive channels is that, due
to the large invariant mass of the hadronic systems, they su�er much less from
partially reconstructed backgrounds compared to the golden modes B0

æ Kú0¸+¸≠

and B+
æ K+¸+¸≠. This additional experimental advantage reduces the risk of

hypothetical mis-modelling of backgrounds, which right now are among the leading
systematic uncertainties in the LFU measurements. The inclusion of the non-exclusive
RX using the method proposed here will therefore not only increase the new-physics
sensitivity from a pure statistical point of view, but also enhance the redundancy of
the experimental results.
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Fig. 5.3 Distribution of the likelihood ratio for pseudo-experiments under the SM
hypothesis along with the value obtained from data. The distribution is overlaid with
a scenario including hypothetical non-exclusive RX measurements along with their
expected sensitivities (blue). An azimov dataset [27] is used to estimate the expectation
value for the significance.
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Conclusions

Not only is the Universe stranger
than we imagine,
it is stranger than we can imagine.

A. Eddington

One of the most active and promising areas of research for physics beyond the
Standard Model (SM) is the Flavour sector. As discussed throughout this dissertation,
b æ s¸+¸≠ decays to light leptons provide crucial insight on possible deviations from
precise Standard Model predictions, which are a smoking gun for New Physics e�ects.
In this thesis both the experimental and theoretical aspects of analyses involving this
class of decays have been presented, together with a pristine and general method of
interpreting the global significance of results connected by the underlying b æ s¸+¸≠

transition.
The correct modelling of e�ects that can mimic Lepton Flavour Universality (LFU)

violation within the Standard Model is of great importance when obtaining the simulated
samples needed for analyses measuring the related observables. The most important
of these e�ects on the SM prediction of LFU probes, such as RHs

of Eq. (1.100)
are radiative corrections. In Chapter 2 we have shown that these are safely taken
into account with the currently deployed PHOTOS software package. Moreover, our
custom simulation allowed us to cross check that neglecting the interference between
resonant and non-resonant modes in the simulated samples has next to no impact on
the e�ciencies determination, provided that the upper limit on the dielectron invariant
mass window is chosen far enough from the resonance, as is currently done.

The measurement of RK using pp collision data collected during Run I and Run II
of LHCb operation was presented in Chapter 3. It is the most precise measurement
of a LFU sensitive probe, and the first one exhibiting a 3‡ deviation with respect to
the SM expectation. The measured value, combined with previous measurements of
the decay rate of B+

æ K+e+e≠ indicate a deficit of the same decay rate proceeding



208 References

to muons in the final state, in line with the set of deviations in b æ s¸+¸≠ branching
fractions presented in Chapter ??. As opposed to those, however, this result is not
a�ected by potentially underestimated hadronic uncertainties as they cancel out in the
SM prediction of the ratio of b æ s¸+¸≠ branching fractions.

A method to evaluate the Look Elsewhere E�ect (LEE) for the set of anoma-
lies in b æ s¸+¸≠ decays was introduced for the first time in Chapter 4. This not
only allows to calculate the global significance of the hypothesis of New Physics in
b æ s¸+¸≠ decays of short-distance origin but also to adopt a very conservative approach
towards theory uncertainties arising from long-distance e�ects such as charm-loop
mediated decays. Including the latest LFU measurements of RK,Kú , together with re-
sults from B0

æ Kú0µ+µ≠ angular analysis results and information on the Bs æ µ+µ≠

decay rate, a significance of 4 standard deviations is obtained.
Finally, a general expression for RHs

in terms of Wilson Coe�cients and hadronic
nuisance parameter, was presented in Chapter 5. It allows to extend the set of
observables included in the global significance estimate to those for which the form
factors are still unknown. The measurement of RpK is hence included for the first
time in the determination of a combined significance of the New Physics hypothesis,
together with di�erent scenarios obtained by including the planned measurements of
RpK , RKfi and RKfifi, proving their drastic discovery potential.

Rare b æ s¸+¸≠ transitions are an important resource and physics laboratory for
advancing our understanding of the flavour structure of the Standard Model, and
ultimately of New Physics. The LHC and LHCb experiments are an ideal environment
to perform such compelling measurements, and the full potential of the dataset collected
until now has not been still fully exploited. Several measurements are being performed
at the time of writing, such as the angular B0

æ Kú0e+e≠ analysis which is of
crucial importance in disentangling the P Õ

5 anomaly observed in the muons from a
sheer SM e�ect. Of great relevance are also the e�orts in setting an upper limit to
the B0

æ Kú0·+·≠ branching fractions, due to the fact that most credited models
conceived to explain the anomalies predict a stronger coupling of NP mediators to
the heavier fermion families. Results from other LFU observables are also awaited
exploiting the full dataset collected at LHCb, such as RKfi and RKfifi, or in the high
dilepton invariant mass region, such as RK and RKú at high q2, and the cross check of
our understanding of the e�ciencies at low dilepton invariant mass, R„fi.
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