PROTON STRUCTURE TH: LAST LIGIT PARTON

Gavin Salam, CERN with Aneesh Manohar, Paolo Nason and Giulia Zanderighi

Particle Physics Seminar
University of Zurich and ETH Zurich
20 September 2016

The LHC and its Experiments

ALICE: heavy-ion physics

CMS: general purpose

LHCb: B-physics

+ TOTEM, LHCf

LHC - TWO ROLES - A DISCOVERY MACHINE and a Precision machine

Increase in luminosity brings discovery reach and precision

LONG-TERM HIGGS PRECISION?

Naive extrapolation suggests LHC has long-term potential to do Higgs physics at $\mathbf{1 \%}$ accuracy

NNLO hadron-collider calculations v. time

N3LO

Anastasiou et al, 1602.00695

N3LO ggF Higgs

Dreyer \mathcal{E} Karlberg, 1606.00840
N3LO VBF Higgs

how well do we know the parton distributions?

PDF uncertainties ($\mathrm{Q}=100 \mathrm{GeV}$)

PDF uncertainties ($\mathrm{Q}=100 \mathrm{GeV}$)

> core partons (up, down, gluon) are quite well known ~2\%
> strangeness ~10\%

PDF uncertainties $(\mathrm{Q}=100 \mathrm{GeV})$

> core partons (up, down, gluon) are quite well known ~2\%

> strangeness ~10\%
> one other parton, the photon, has been debated. The only model-independent determination (NNPDF23qed) has $0(100 \%$) uncertainty

IT MATTERS FOR DI-LEPTON, DI-BOSON, TTBAR, EW HIGGS, ETC.

where else does the photon come in?

- Electroweak corrections to almost any process
> Largest uncertainty on VBF Higgs and WH (\pm few \%)
LHC-HXSWG YR4
> top production
Pagani, Tsinikos, Zaro, arXiv:1606.01915
> constraints on tqץ coupling
Goldouzian \mathcal{E} Clerbaux, 1609.04838
> VV production 1409.1803, 1510.08742, 1603.04874, 1601.07787, 1605.03419, 1604.04080,1607.04635, ...

photon-induced corrections to $\mathrm{pp} \rightarrow \mathrm{HW}^{+}$

$$
\mathrm{pp} \rightarrow \mathrm{HW} \mathrm{~W}^{+}\left(\rightarrow \mathrm{l}^{+} \mathrm{v}\right)+\mathrm{X} \text { at } 13 \mathrm{TeV}
$$

non-photon induced contributions
photon-induced contribs (NNPDF23)
$91.2 \pm 1.8 \mathrm{fb}$
$6.0+4.4-2.9 \mathrm{fb}$

PHOTON PDF ESTIMATES (not exhaustive)

	elastic	inelastic	$\begin{aligned} & \text { in } \\ & \text { LHAPDF? } \end{aligned}$
Gluck Pisano Reya 2002	dipole	model	x
MRST2004qed	x	model	\checkmark
NNPDF23qed	no separation: fit to data		\checkmark
CT14qed	x	model (data-constrained)	\checkmark
CT14ged inc	dipote	model (data-constrained	\checkmark
Martin Ryskin 2014	dipole (only electric part)	model	x
Harland-Lang, Khoze Ryskin 2016	dipole	model	x
elastic: Budnev, Ginzburg, Meledin, Serbo, 1975	$=\overbrace{=}^{s^{5}}$		

YOU SHOULDN'T NEED A MODEL ep scattering (i.e. structure functions) contains all info about proton's EM field

YOU SHOULDN'T NEED A MODEL
 ep scattering (i.e. structure functions) contains all info about proton's EM field

study hypothetical ("BSM") heavy-neutral lepton production process Calculate it in two ways
(1) in terms of structure functions (known)
(2) in terms of photon distribution (unknown)

Equivalence gives us photon distirbution

Manohar, Nason, GPS \& Zanderighi, arXiv:1607.04266 (use of BSM inspired by Drees \& Zeppenfeld, PRD39(1989)2536)

calculation

STEP 1

work out a cross section (exact) in terms of F2 and FL struct. fns.

$$
\sigma=\frac{1}{4 p \cdot k} \int \frac{d^{4} q}{(2 \pi)^{4} q^{4}} e_{\mathrm{ph}}^{2}\left(q^{2}\right)\left[4 \pi W_{\mu \nu} L^{\mu \nu}(k, q)\right] \times 2 \pi \delta\left((k-q)^{2}-M^{2}\right)
$$

STEP 1

work out a cross section (exact) in terms of F2 and FL struct. fns.

Cross section in terms of structure functions

> Lagrangian of interaction: $\quad \mathcal{L}_{\text {int }}=(e / \Lambda) \bar{L} \sigma^{\mu \nu} F_{\mu \nu} l$ (magnetic moment coupling)
> Using leptons neutral and taking Λ large, ensure that only single-photon exchange is relevant

- Answer is exact up to $1 / \Lambda$ corrections

$$
\begin{aligned}
& \sigma=\frac{c_{0}}{2 \pi} \int_{x}^{1-\frac{2 x m_{p}}{M}} \frac{d z}{z} \int_{Q_{\min }^{2}}^{Q_{\max }^{2}} \frac{d Q^{2}}{Q^{2}} \alpha_{\mathrm{ph}}^{2}\left(-Q^{2}\right)\left[\left(2-2 z+z^{2}\right.\right. \\
& \left.+\frac{2 x^{2} m_{p}^{2}}{Q^{2}}+\frac{z^{2} Q^{2}}{M^{2}}-\frac{2 z Q^{2}}{M^{2}}-\frac{2 x^{2} Q^{2} m_{p}^{2}}{M^{4}}\right) F_{2}\left(x / z, Q^{2}\right) \\
& \left.\quad+\left(-z^{2}-\frac{z^{2} Q^{2}}{2 M^{2}}+\frac{z^{2} Q^{4}}{2 M^{4}}\right) F_{L}\left(x / z, Q^{2}\right)\right] \\
& c_{0}=16 \pi^{2} / \Lambda^{2}
\end{aligned}
$$

STEP 2

work out same cross section in terms of a photon distribution

hard-scattering cross section
calculate in collinear factorisation

$$
\hat{\sigma}_{\gamma}\left(\frac{M^{2}}{x s}, \mu^{2}\right)
$$

$\overline{M S}$ photon distribution: TO BE DEDUCED

$$
\sigma=c_{0} \sum_{a} \int \frac{d x}{x} \hat{\sigma}_{a}\left(\frac{M^{2}}{x s}, \mu^{2}\right) x f_{a / p}\left(x, \mu^{2}\right)
$$

Cross section in terms of structure functions

> Hard cross section driven by the photon distribution at LO

$$
\hat{\sigma}_{a}\left(z, \mu^{2}\right)=\alpha\left(\mu^{2}\right) \delta(1-z) \delta_{a \gamma}
$$

Cross section in terms of structure functions

> Hard cross section driven by the photon distribution at LO

- Quarks and gluons come in at higher orders

ACCURACY AIM

- Take quark and gluon distributions $\sim \mathrm{O}(1)$
$>\alpha$ is QED coupling, α_{s} is QCD coupling, $L=\ln \mu^{2} / m_{p}{ }^{2}$
> Take $L \sim 1 / \alpha_{\mathrm{s}}$, so all $\left(\alpha_{\mathrm{s}} L\right)^{\mathrm{n}} \sim 1$
> Think of $\alpha \sim\left(\alpha_{s}\right)^{2}$
> To first order, photon distribution $\sim(\alpha L)$
> we aim to control all terms:
$>\alpha L\left(\alpha_{s} L\right)^{\mathrm{n}}$
$>\alpha_{s} \alpha L\left(\alpha_{s} L\right)^{\mathrm{n}} \equiv \alpha\left(\alpha_{s} L\right)^{\mathrm{n}}$
$>\alpha^{2} L^{2}\left(\alpha_{s} L\right)^{\mathrm{n}}$
$>$ Matching done at large M^{2} and μ^{2} to eliminate higher twists

STEP 3

equate them to deduce the photon distribution (LUXqed)

$$
\begin{aligned}
& x f_{\gamma / p}\left(x, \mu^{2}\right)=\frac{1}{2 \pi \alpha\left(\mu^{2}\right)} \int_{x}^{1} \frac{d z}{z}\left\{\int_{\frac{x^{2} m_{p}^{2}}{1-z}}^{\frac{\mu^{2}}{1-z}} \frac{d Q^{2}}{Q^{2}} \alpha^{2}\left(Q^{2}\right)\right. \\
& {\left[\left(z p_{\gamma q}(z)+\frac{2 x^{2} m_{p}^{2}}{Q^{2}}\right) F_{2}\left(x / z, Q^{2}\right)-z^{2} F_{L}\left(\frac{x}{z}, Q^{2}\right)\right]} \\
& \left.-\alpha^{2}\left(\mu^{2}\right) z^{2} F_{2}\left(\frac{x}{z}, \mu^{2}\right)\right\}
\end{aligned}
$$

STEP 3

equate them to deduce the photon distribution (LUXqed)

$$
\begin{gathered}
x f_{\gamma / p}\left(x, \mu^{2}\right)=\frac{1}{2 \pi \alpha\left(\mu^{2}\right)} \int_{x}^{1} \frac{d z}{z}\left\{\int_{\frac{x^{2} m_{2}^{2}}{1-z}}^{\frac{\mu^{2}}{1-z}} \frac{d Q^{2}}{Q^{2}} \alpha^{2}\left(Q^{2}\right)\right. \\
{\left[\left(z p_{\gamma q}(z)+\frac{2 x^{2} m_{p}^{2}}{Q^{2}}\right)\right.} \\
\left.F_{2}\left(x / z, Q^{2}\right)-z^{2} F_{L}\left(\frac{x}{z}, Q^{2}\right)\right] \\
\left.-\alpha^{2}\left(\mu^{2}\right) z^{2} F_{2}\left(\frac{x}{z}, \mu^{2}\right)\right\}
\end{gathered}
$$

STEP 3

equate them to deduce the photon distribution (LUXqed)

$$
\begin{gathered}
x f_{\gamma / p}\left(x, \mu^{2}\right)=\frac{1}{2 \pi \alpha\left(\mu^{2}\right)} \int_{x}^{1} \frac{d z}{z}\left\{\int_{\frac{x^{2} m_{p}^{2}}{1-z}}^{\frac{\mu^{2}}{1-z}} \frac{d Q^{2}}{Q^{2}} \alpha^{2}\left(Q^{2}\right)\right. \\
{\left[\left(z p_{\gamma q}(z)+\frac{2 x^{2} m_{p}^{2}}{Q^{2}}\right) F_{2}\left(x / z, Q^{2}\right)-z^{2} F_{L}\left(\frac{x}{z}, Q^{2}\right)\right]} \\
\left.-\alpha^{2}\left(\mu^{2}\right) z^{2} F_{2}\left(\frac{x}{z}, \mu^{2}\right)\right\}
\end{gathered}
$$

At low Q^{2}, F_{2} and F_{L} come directly from data (non.pert.) At high Q^{2}, get them from PDFs, including up to $O\left(\alpha_{s}{ }^{2}\right)$ (NNLO) terms

STEP 3

equate them to deduce the photon distribution (LUXqed)

$$
\left.\begin{array}{l}
x f_{\gamma / p}\left(x, \mu^{2}\right)=\frac{1}{2 \pi \alpha\left(\mu^{2}\right)} \int_{x}^{1} \frac{d z}{z}\left\{\int_{\frac{x^{2} m_{0}^{2}}{\frac{\mu^{2}}{1-z}} \frac{\mu^{2}}{1-z}}^{\frac{Q^{2}}{Q^{2}} \alpha^{2}\left(Q^{2}\right)}\right. \\
{\left[\left(z p_{\gamma q}(z)+\frac{2 x^{2} m_{p}^{2}}{Q^{2}}\right)\right.}
\end{array} F_{2}\left(x / z, Q^{2}\right)-z^{2} F_{L}\left(\frac{x}{z}, Q^{2}\right)\right] .\left[\begin{array}{l}
\left.-\alpha^{2}\left(\mu^{2}\right) z^{2} F_{2}\left(\frac{x}{z}, \mu^{2}\right)\right\}
\end{array}\right.
$$

Terms at boundaries are suppresed by $1 / L$ (NLO)

STEP 3

equate them to deduce the photon distribution (LUXqed)

$$
\begin{gathered}
x f_{\gamma / p}\left(x, \mu^{2}\right)=\frac{1}{2 \pi \alpha\left(\mu^{2}\right)} \int_{x}^{1} \frac{d z}{z}\left\{\int_{\frac{x^{2} m_{D}^{2}}{1-z}}^{\frac{\mu^{2}}{1-z}} \frac{d Q^{2}}{Q^{2}} \alpha^{2}\left(Q^{2}\right)\right. \\
{\left[\left(z p_{\gamma q}(z)+\frac{2 x^{2} m_{p}^{2}}{Q^{2}}\right) F_{2}\left(x / z, Q^{2}\right)-z^{2} F_{L}\left(\frac{x}{z}, Q^{2}\right)\right]} \\
\left.-\alpha^{2}\left(\mu^{2}\right) z^{2} F_{2}\left(\frac{x}{z}, \mu^{2}\right)\right\}
\end{gathered}
$$

terms at boundary $\sim \mu^{2}$ ensure $\overline{\text { MS }}$ fact. scheme

STEP 3

equate them to deduce the photon distribution (LUXqed)

$$
\begin{aligned}
& x f_{\gamma / p}\left(x, \mu^{2}\right)=\frac{1}{2 \pi \alpha\left(\mu^{2}\right)} \int_{x}^{1} \frac{d z}{z}\left\{\int_{\frac{x^{2} m_{p}^{2}}{1-z}}^{\frac{\mu^{2}}{1-z}} \frac{d Q^{2}}{Q^{2}} \alpha^{2}\left(Q^{2}\right)\right. \\
& {\left[\left(z p_{\gamma q}(z)+\frac{2 x^{2} m_{p}^{2}}{Q^{2}}\right) F_{2}\left(x / z, Q^{2}\right)-z^{2} F_{L}\left(\frac{x}{z}, Q^{2}\right)\right]} \\
& \left.-\alpha^{2}\left(\mu^{2}\right) z^{2} F_{2}\left(\frac{x}{z}, \mu^{2}\right)\right\}
\end{aligned}
$$

QED running of α accounts for most $(\alpha L)^{2}$ effects (NLO) (others come in the way we match to normal PDFs)

cross-checks

Cross checks \& literature comparisons

$>$ Repeat calculation for a different process ($\mathrm{\gamma p} \rightarrow \mathrm{H}+\mathrm{X}$, via $\mathrm{VY} \rightarrow \mathrm{H}$). Intermediate results differ, final photon distribution is identical.
> Substitute elastic-scattering component of F_{2} and F_{L} :

$$
\begin{aligned}
& F_{2}^{\mathrm{el}}=\frac{\left[G_{E}\left(Q^{2}\right)\right]^{2}+\left[G_{M}\left(Q^{2}\right)\right]^{2} \tau}{1+\tau} \delta(1-x), \\
& F_{L}^{\mathrm{el}}=\frac{\left[G_{E}\left(Q^{2}\right)\right]^{2}}{\tau} \delta(1-x), \\
& \tau=Q^{2} /\left(4 m_{p}^{2}\right)
\end{aligned}
$$

and reproduce widely-used Equivalent Photon Approximation with electric (G_{E}) and magnetic (G_{M}) Sachs proton form factors

Cross checks \& literature comparisons

> A core part of our answer

$$
\left[\left(z p_{\gamma q}(z)+\frac{2 x^{2} m_{p}^{2}}{Q^{2}}\right) F_{2}\left(x / z, Q^{2}\right)-z^{2} F_{L}\left(\frac{x}{z}, Q^{2}\right)\right]
$$

appears in literature for QED compton process ep $\rightarrow \mathrm{e} Y \mathrm{X}$ (but with inexact treatment of the upper and lower limits for Q^{2} integration)

Anlauf et. al, CPC70(1992)97 Mukherjee \& Pisano, hep-ph/0306275
> [NB other literature has an expression for photon distribution in terms of F_{2} and F_{1} that doesn't reproduce DGLAP limit]

Luszczak, Schäfer \& Szczurek, arXiv:1510.00294

Cross checks \& literature comparisons

> μ^{2} derivative of our answer should reproduce known DGLAP QCD-QED splitting functions
$>$ At LO, this is trivial.
> At NLO we get relations between QED-QCD splitting functions (P) and DIS coefficient functions (C)

$$
\begin{aligned}
P_{\gamma q}^{(1,1)} & =e_{q}^{2}\left[p_{\gamma q} \otimes C_{2 q}-h \otimes C_{L q}+\left(\bar{p}_{\gamma q}-h\right) \otimes P_{q q}^{(1,0)}\right], \\
P_{\gamma g}^{(1,1)} & =\sum_{q, \bar{q}} e_{q}^{2}\left[p_{\gamma q} \otimes C_{2 g}-h \otimes C_{L g}+\left(\bar{p}_{\gamma q}-h\right) \otimes P_{q g}^{(1,0)}\right] \\
P_{\gamma \gamma}^{(1,1)} & =(2 \pi)^{2} b_{\alpha}^{(1,2)} \delta(1-x)=-C_{F} N_{C} \sum_{q} e_{q}^{2} \delta(1-x)
\end{aligned}
$$

$$
h(z) \equiv z \text { and } \bar{p}_{\gamma q}(z) \equiv p_{\gamma q}(z) \ln \frac{1}{1-z}
$$

> These agree with de Florian, Sborlini \& Rodrigo results

data inputs

INTEGRATION REGION

> depends on momentum fraction of the photon (x_{Y}) and factorisation scale (μ^{2})

$$
\begin{gather*}
x f_{\gamma / p}\left(x, \mu^{2}\right)=\frac{1}{2 \pi \alpha\left(\mu^{2}\right)} \int_{x}^{1} \frac{d z}{z}\left\{\int_{\frac{x^{2} m_{n}^{2}}{1-z}}^{\frac{\mu^{2}}{1-z}} \frac{d Q^{2}}{Q^{2}} \alpha^{2}\left(Q^{2}\right)\right. \\
{\left[\left(z p_{\gamma q}(z)+\frac{2 x^{2} m_{p}^{2}}{Q^{2}}\right) F_{2}\left(x / z, Q^{2}\right)-z^{2} F_{L}\left(\frac{x}{z}, Q^{2}\right)\right]} \\
\left.-\alpha^{2}\left(\mu^{2}\right) z^{2} F_{2}\left(\frac{x}{z}, \mu^{2}\right)\right\}, \tag{6}
\end{gather*}
$$

SEPARATE CONTRIBUTIONS TO PHOTON PDF

photon uncertainties (aim to be conservative \& pragmatic)

photon uncertainties (aim to be conservative \& pragmatic)

photon uncertainties (aim to be conservative \& pragmatic)

photon uncertainties (aim to be conservative \& pragmatic)

photon uncertainties (aim to be conservative \& pragmatic)

photon uncertainties (aim to be conservative \& pragmatic)

photon uncertainties (aim to be conservative \& pragmatic)

Uncertainties included in LUX

Added members with variations in photon PDF calculation:

- 0-100: original PDF members (PDF4LHC15_nnlo_100)
- 101: Replace CLAS parametrization of resonance region with Christy-Bosted one. (Becomes particuarly crazy al large x).
- 102: rescale R in low Q^{2} region by 1.5.
- 103: rescale R in high- Q^{2} region with a higher-twist component.
- 104: Use 'World' elastic fit from A1: no polarization data, no fit to Two Photon Exchange effects.
- 105: Use lower edge of elastic fit error band.
- 106: Start using PDF's from $Q^{2}=5$ rather than $9 \mathrm{GeV}^{2}$.
- 107: Upper limit of integration in f_{γ} formula changed to μ^{2} instead of $\mu^{2} /(1-z)$, with suitable correction of $\overline{\mathrm{MS}}$ term.
All errors are taken as symmetric.
PDF valid for $\mu>10 \mathrm{GeV}$ (related to PDF4LHC15 issues)

PHOTON PDF ESTIMATES (not exhaustive)

	elastic	inelastic	in LHAPDF?
Gluck Pisano Reya 2002	dipole	model	x
MRST2004qed	X	model	\checkmark
NNPDF23qed	no separation; fit to data		\checkmark
CT14qed	x	model (data-constrained)	\checkmark
CT14qed_inc	dipole	model (data-constrained)	\checkmark
Martin Ryskin 2014	dipole (only electric part)	model	X
Harland-Lang, Khoze Ryskin 2016	dipole	model	X
LUXqed 2016	data	data	\checkmark

examine result

PHOTON UNCERTAINTY (1-2\%) COMPARED TO OTHER FLAVOURS

PDF uncertainties $(Q=100 \mathrm{GeV})$

other PDFs v. LUXqed

central NNPDF result much higher at large x (but consistent within errors)

at small x , with corrected evolution (NNPDF30), about 20\% smaller

Others are numerically closer

Error bands don't always overlap with LUXqed, but within
~10-20\%

ratio of HKR (1607.04635) to LUXqed

HKR based on elastic contribution (dipole approx) + model for inelastic part + evolution

ATLAS photon (1606.01736): DY-driven reweighting of NNPDF23

ATLAS result based on reweighting of NNPDF23 with highmass $\left(\mathrm{M}_{\mathrm{ll}}>116 \mathrm{GeV}\right)$ data

ATLAS DRELL-YAN DATA (1606.01736)

MATCHING PROCEDURE FOR FULL SET OF PARTONS

> evaluate master eqn. for $\mu=100$ GeV (with default PDF4LHC15_nnlo partons)
$>$ Do $O\left(\mathrm{aa}_{\mathrm{s}}\right)$ photon evolution down to $\mu=10 \mathrm{GeV}$ (other partons: pure QCD evln.)
> Adjust momentum sum-rule by rescaling gluon $g(x) \rightarrow 0.993 g(x)$
> Evolve back up with NNLOQCD \& $O\left(a_{s}\right)$ QED for all partons

MATCHING PROCEDURE FOR FULL SET OF PARTONS

> evaluate master eqn. for $\mu=100$ GeV (with default PDF4LHC15_nnlo partons)
\Rightarrow Do $\mathrm{O}\left(\mathrm{aa}_{\mathrm{s}}\right)$ photon evolution down to $\mu=10 \mathrm{GeV}$ (other partons: pure QCD evln.)
> Adjust momentum sum-rule by rescaling gluon $g(x) \rightarrow 0.993 g(x)$
> Evolve back up with NNLOQCD \& $O\left(a_{s}\right)$ QED for all partons

MATCHING PROCEDURE FOR FULL SET OF PARTONS

> evaluate master eqn. for $\mu=100$ GeV (with default PDF4LHC15_nnlo partons)

- Do $\mathrm{O}\left(\mathrm{aa}_{\mathrm{s}}\right)$ photon evolution down to $\mu=10 \mathrm{GeV}$ (other partons: pure QCD evln.)
> Adjust momentum sum-rule by rescaling gluon $g(x) \rightarrow 0.993 g(x)$
> Evolve back up with NNLOQCD \& $O\left(a a_{s}\right)$ QED for all partons

MATCHING PROCEDURE FOR FULL SET OF PARTONS

> evaluate master eqn. for $\mu=100$ GeV (with default PDF4LHC15_nnlo partons)

- Do $\mathrm{O}\left(\mathrm{aa}_{\mathrm{s}}\right)$ photon evolution down to $\mu=10 \mathrm{GeV}$ (other partons: pure QCD evln.)
> Adjust momentum sum-rule by rescaling gluon $g(x) \rightarrow 0.993 g(x)$
> Evolve back up with NNLOQCD \& O(aa_{s}) QED for all partons
better approach would be full PDF re-fit for QCD partons incl. EW/QED corrections \& LUXqed photon

MOMENTUM CARRIED BY PHOTON

applications

APPLICATION TO HIGGS PHYSICS

$$
\mathrm{pp} \rightarrow \mathrm{HW}+(\rightarrow \mathrm{l}+\mathrm{v})+\mathrm{X} \text { at } 13 \mathrm{TeV}
$$

non-photon induced contributions
photon-induced contribs (NNPDF23)
photon-induced contribs (LUXqed)
non-photon numbers from LHCHXSWG (YR4) including PDF uncertainties

Yy luminosity

di-lepton spectrum with $3 a b^{-1}$

LUXQED photon has few \% effect on di-lepton spectrum and negligible uncertainties

di-lepton spectrum with $3 a^{-1}$

LUXQED photon has few \% effect on di-lepton spectrum and negligible uncertainties

conclusions \& resources

RESOURCES

> LUXqed_plus_PDF4LHC15_nnlo_100 set available from LHAPDF (for $\mu>10 \mathrm{GeV}$)
> Additional plots and validation info available from http://cern.ch/luxqed
> Preliminary version of HOPPET DGLAP evolution code with QED (order α and $\alpha \alpha_{s}$) corrections available from hepforge:
svn checkout http://hoppet.hepforge.org/svn/branches/qed hoppet-qed (look at tests/with-lhapdf/test_qed_evol_lhapdf.f90 for an example; interface may change, documentation missing)

CLOSING REMARKS

> distribution of photons in the proton depends on the nonperturbative QCD physics of the proton
> But perturbative QED enables you to deduce the photon density from measured (non-pert.) proton structure functions
> We've done just NLO (equiv. $a a_{s}$ in splitting functions), but higher theoretical should be accessible (e.g. $a^{2}, a_{a_{s}}{ }^{2}$) - open question of whether data can follow (and whether we need it)
"If you think about it, it's awesome: we are made of protons, and protons are, in some part, made of light... And now we know how much of it."
blog post by Tommaso Dorigo

extra slides

Elena Accomando, ${ }^{1,2, *}$ Juri Fiaschi, ${ }^{1,2, \dagger}$ Francesco Hautmann, ${ }^{2,3, \ddagger}$ Stefano Moretti, ${ }^{1,2, \S}$ and C.H. Shepherd-Themistocleous ${ }^{1,2, ~} \boldsymbol{q}^{\top}$

input data \& procedures

ELASTIC COMPONENT \& COMPARISON TO "DIPOLE" MODEL

The elastic contribution to f_{γ} is

$$
\begin{aligned}
x f_{\gamma}^{\mathrm{el}}\left(x, \mu^{2}\right) & =\frac{1}{2 \pi} \int_{\frac{x^{2} m_{\rho}^{2}}{1-x}}^{\frac{\mu^{2}}{1-x}} \frac{\mathrm{~d} Q^{2}}{Q^{2}} \frac{\alpha^{2}\left(Q^{2}\right)}{\alpha\left(\mu^{2}\right)}\left\{\left(1-\frac{x^{2} m_{p}^{2}}{Q^{2}(1-x)}\right) \frac{2(1-x) G_{E}^{2}\left(Q^{2}\right)}{1+\tau}\right. \\
& \left.+\left(2-2 x+x^{2}+\frac{2 x^{2} m_{p}^{2}}{Q^{2}}\right) \frac{G_{M}^{2}\left(Q^{2}\right) \tau}{1+\tau}\right\} .
\end{aligned}
$$

Dipole approximation, ($\mu \rightarrow \infty$ in figure.)

- Mostly G_{E} at small x.
- Mostly G_{M} at large x.
- Mostly from $Q^{2}<1 \mathrm{GeV}$.

CLAS DATA

Fitted data from $Q^{2}=0.225$ to
4.725 in steps of $0.05 \mathrm{GeV}^{2}$.

Hermes fit: we are interested in the region $Q^{2}<10 \mathrm{GeV}^{2}$. Continuum data region: $4 \mathrm{GeV}^{2}<W^{2} \lesssim 10^{5} \mathrm{GeV}^{2}\left(x \rightarrow 10^{-4}\right)$.

Inelastic Data coverage

- Low Q^{2} continuum essentially covered by data.
- F_{2} and F_{L} must vanish as Q^{2} and Q^{4} at constant W (by analiticity of $W^{\mu \nu}$).

Also:
$F_{2}\left(x, Q^{2}\right)=\frac{1}{4 \pi^{2} \alpha} \frac{Q^{2}(1-x)}{1+\frac{4 x^{2} m_{p}^{2}}{Q^{2}}}\left(\sigma_{T}\left(x, Q^{2}\right)+\sigma_{L}\left(x, Q^{2}\right)\right) \underset{Q^{2} \rightarrow 0}{\Longrightarrow} \frac{Q^{2} \sigma_{\gamma p}(W)}{4 \pi^{2} \alpha^{2}}$.
At small $Q^{2}, \sigma_{T} \Longrightarrow \sigma_{\gamma p}(W)$, becoming a function of W only (the $C M$ energy in photoproduction), and σ_{L} vanishes.
Photoproduction data included in Hermes and Christy-Bosted parametrizations.

MATCHING PROCEDURE FOR FULL SET OF PARTONS

> evaluate master eqn. for $\mu=100$ GeV (with default PDF4LHC15_nnlo partons)
> Do $\mathrm{O}\left(\mathrm{aa}_{\mathrm{s}}\right)$ photon evolution down to $\mu=10 \mathrm{GeV}$ (other partons: pure QCD evln.)
> Adjust momentum sum-rule by rescaling gluon $g(x) \rightarrow 0.993 g(x)$
> Evolve back up with NNLOQCD \& O(aa_{s}) QED for all partons
better approach would be full PDF re-fit for QCD partons incl. EW/QED corrections \& LUXqed photon

comparisons to others

Yy luminosity

