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|. General Introduction

In this thesis, two aspects of topological matter in presence of space group symmetries are
treated. To introduce topological materials and to give context to the topics of this thesis, we
start with a short historical overview.

Topological matter has become an increasingly prominent topic within condensed matter
physics during the last few decades|[1H13|. Topological condensed matter physics originally
started with the discovery of the Quantum Hall Effect (QHE) by von Klitzing et al.[14]. They
discovered that a two-dimensional electron gas in a strong magnetic field shows peculiar trans-
port behaviour with their Hall conductivity quantised to discrete levels

Ne?
ny = T, (Il)

which are integer multiples of a combination of physical constants. This transport behaviour
can be understood in terms of a discrete number of boundary modes, which can be understood
by taking into consideration that electrons are forced onto circular (Larmor) orbits inside
a strong magnetic field. Some of the orbits intersect the boundary and a skipping motion
emerges, which yields a boundary mode. The integer quantity N corresponds to the number
of delocalised boundary modes around the 2D sample.

A few years after the QHE, the fractional Quantum Hall Effect (FQHE) was discovered, in
which the Hall conductivity can also take fractional quantities

2
pe
O'xy = q7h7 (12)
with the integers p and ¢. This state was explained by Laughlin[15] using the famous Laughlin
wave function.

Subsequently it was realised that QHE-like states cannot only appear in presence of a magnetic
field, but also without. This was dubbed the Quantum Anomalous Hall Effect (QAHE)[16), |17]
or Chern insulator. The Hall voltage number N is then given as the TKNN invariant[18] of
the bulk band structure. It was quite quickly realised that the TKNN invariant coincides with
the Chern number, already known from the mathematical theory of fiber bundles[19]. This
established a connection between the mathematical field of topology and the newly discovered
physical phenomena. The Chern number can be expressed with the Berry phase (cf. Ref. |20,
p. 368-393]), known from adiabatic processes|21]. The Chern number of a band is|1, [22]

1
m=— [ d’°kF,, L.
n 27‘{‘/ F, ; ( 3)

which is given in terms of the Berry flux F,,, = V x A,, and the Berry connection A4,, =
i (Um|Vk|um). These quantities can be evaluated with the Bloch wave functions |u,,(k)) as



input. A Chern insulator was first experimentally observed by Chang et al.|23]. Both the
Chern insulator and the QHE require broken time reversal symmetry (TRS).

One of the hallmark features of QHE and Chern insulator phases is the appearance of quan-
tised edge currents around the sample. The number of these chiral boundary modes directly
corresponds to the number N, the current flows around the sample unidirectionally. These
edge states have the property that even if the surface is impure, they swerve any small obsta-
cles and do not scatter back. The correspondence between a property of the bulk bands, the
Chern number, and the surface states is called bulk boundary correspondence. Bulk bound-
ary correspondence is a generic property of topological phases and the interesting properties
of these surface states are one of the reasons for the high degree of interest in topological matter.

Afterwards, the research focus shifted to time reversal symmetry respecting systems. 2D
topological systems with TRS were first studied by Kane and Mele[24]. They investigated
graphene with symmetry-allowed spin-orbit coupling terms, and discovered that with certain
terms a Quantum Spin Hall Effect (QSHE) appears. This means that along the edges there are
protected helical currents. Helical currents are bidirectional currents protected against being
scattered by surface impurities or obstructions.

The study of topology was then extended to even more symmetry classes, taking into consid-
eration all types of internal symmetry: time reversal symmetry (TRS), particle hole symmetry
(PHS) and chiral symmetry (CS). For PHS and TRS there is distinction between the case
when the symmetry operator squares to —1 or to +1. Altand and Zirnbauer|25] developed a
set of symmetry classes (dubbed AZ symmetry classes), which stem from the symmetry classes
for the classification of random matrices. The symmetry classes and their corresponding in-
ternal symmetries are listed in Table on the left. A “0” entry means that the symmetry is
not present, 1 (—1) means that it is present and the symmetry operators squares to 1 (—1),
respectively. Depending on the symmetry class, a different topological classification space is
present|26-30]. Table on the right-hand side shows the topological classification; this is
called the periodic table for topological insulators and superconductors[27). Z means that the
topology has an integer classification. Anomalous QHE phases belong to class A in 2D, there-
fore the classification is Z. Zo means that one can distinguish two different phases, like for
example in the QSHE case. One of the phases appearing in the periodic table of topological
matter is the time reversal invariant 3D topological insulator (TI), which has gapless surface
states and therefore conducts on the surface, but remains an insulator in the bulk[1]. To study
models of topological phases relevant to experiments, tight-binding models are often used|31].

Later on Fu and Kane[32] discovered that many topological phases can be detected easily in
presence of inversion symmetry by studying the inversion parities at high-symmetry points
of the Brouillon zone (BZ). This concept, referred to as symmetry indicator invariants, was
extended to other space groups and internal symmetry classes|33H41].

From a mathematical point of view, all these different topological classes represent a classifica-
tion of the mappings from the Brouillon zone (BZ) torus T? to the real numbers. This mapping
is the band structure. The topology of such mappings can be studied using K-theory|[29, 42-45].
Two Hamiltonians are regarded as topologically equivalent if they can be smoothly deformed
into each other while respecting their symmetries at each point along the deformation path.



class | Internal Symmetry Dimension

TRS PHS CS 0 1 2 3

A 0 0 0 Z 0 Z 0
ATIT 0 0 1 0 Z 0 Z
Al 1 0 0 Z 0 0 0
BDI 1 1 1 Zo 7Z 0 O
D 0 1 0 Zo Zo Z 0
DIIT | -1 1 1 0 Zo Zo Z
All -1 0 0 7Z 0 Zo Zo
CII -1 -1 1 0 Z 0 Zo
C 0 -1 0 0o 0 Z 0
CI 1 -1 1 0o 0 0 Z

Table I.1.: Altland-Zirnbauer symmetry classes and the tenfold classification of topological
insulators and superconductors (reproduced from Ref. [26]).

Many aspects of topological matter can be understood in terms of Topological Quantum Field
Theory[46], 47].

The classification of topological phases of matter was further extended by the introduction of
the concept of Topological Crystalline Insulators (TCI). In addition to internal symmetries,
TCIs are taking into consideration space group symmetries like inversion or rotational symme-
tries|48-57], which allow for a finer structuring of the space of Hamiltonians into topologically
distinct classes. Such phases were demonstrated for instance in SnTe[58], Pb;_,Sn,Se[59] and
the CagAs family|60]. Phases in which the topological surface states are protected by inver-
sion symmetry only are referred to as axion insulators (AXI)[61-63]. Their behaviour can be
described with Axion Electrodynamics|64).

Furthermore, topological superconductors have become a topic of high interest in the re-
cent decades|9, [65H67]. Some topological superconductors possess Majorana boundary modes.
These Majoranas are important for the development of topological quantum computers|68],
69], since they might offer a path forward to a fault-tolerant quantum computer. Topological
superconductivity was, for instance, observed in thin BisTes films on a superconducting NbSes
substrate[69]. Without substrate, Bi;Tes is an insulator, but by proximity to the supercon-
ducting substrate superconductivity is induced and it turns into a topological superconductor.

The zoo of different topological phases of matter was unified in 2017 with the discovery of Topo-
logical Quantum Chemistry (TQC)|7, [70-72]. TQC moves the focus away from a pure band
structure point of view by taking into account the real space picture. It thereby establishes
a connection to chemistry. Its main ingredient are the band structures that can arise from
symmetry-respecting localised orbitals, referred to as band representations (BRs)[70, 73| 74].
All band representations can be decomposed into elementary band representations (EBRs),
a finite set of fundamental phases with localisable electrons. By comparing the symmetry-
allowed band structures in reciprocal space with the band structures arising from localised
orbitals (BRs), one realises that not all band structures can arise from localised orbitals. The
band structures that cannot arise from localised orbitals but are still symmetry-allowed are



the topological phases previously discovered, like TI oder Chern insulator phases. Amongst
the phases that correspond to a BR, there are so-called obstructed atomic limits (OALs). In
OALs, the Wannier charge centres do not coincide with ionic positions, and corner charges can
arise[75]. Furthermore, insulators whose bands become band representation under addition of
trivial bands are called fragile topological insulators[76-79].

Wannier functions describe localised electrons in a crystal and have been intensely studied[45]
77, 180-84]. In topological materials, there is an obstruction to the construction of Wannier
functions that are compatible all the symmetries. If a material corresponds to an atomic limit,
e.g. an OAL, symmetric localised Wannier functions can be calculated.

In a similar context, the term Higher-Order Topological Insulators (HOTIs)[63, 85-88] was
introduced. These are all topological insulators in which the difference between the dimen-
sionality of the gapless boundary states and the dimensionality of the system is more than
one. They require space group symmetries for the protection of their topological surface states
and are closely related to the previously known multipole insulators|89-91]. In multipole in-
sulators such surface states appear, too. They were, for example, implemented in microwave
systems[92]. Higher-order topology was observed in bismuth[93] and is thought to appear in
Twisted Bilayer Graphene (TBG)[94].

Another topic that has recently drawn more and more attention are non-Hermitian Hamilto-
nians and their topological classification|[95-104]. Non-Hermitian Hamiltonians appear when
studying systems with loss|105], resistance or when taking into consideration electronic in-
teractions. The topological classification for these systems differs from the Hermitian case,
and their boundary states are distinctly different[106-109]. Non-Hermitian HOTIs|110H113],
non-Hermitian Chern insulators[114-117] and non-Hermitian SSH chains|118 |119] are also a
topic of current interest. Non-Hermitian phases were experimentally implemented or proposed
in topoelectric circuits|120H126], as well as in optical|[127], cold-atom|[88] and mechanical[128,
129] systems.

In this thesis, we shed light on two very specific aspects of crystalline topological matter.

In the first part of the thesis, corner charges in two-dimensional spin-orbit coupled crystals
with fourfold rotational symmetry are discussed. In these crystals, there are several allowed
band representations, and it is possible that the electronic system corresponds to an OAL,
which means that the electrons are not centred at the ionic positions|75]. Until recently, there
was no topological invariant to distinguish one of the allowed obstructed atomic limits, the
case of two electrons on the corner of the real space unit cell (called 1b|%ﬁ ® 1b|z), from the
trivial atomic limit, in which the electrons are centred at the ionic position. In this OAL, all
the known invariants (cf. Ref. [75]) were identical to the invariants for the trivial case (la®la).
The problem of the non-existence of a topological invariant has been recently solved by Kooi et
al.[130]. We present an alternative, more elegant way to calculate the gauge needed to evaluate
their invariants. Furthermore, we describe a general method to calculate gauges with smooth
projectors in which the symmetries act as permutations on the bands.

In the second part of this thesis, symmetry indicator invariants in the realm of non-Hermitian



topological materials are described. Symmetry indicators are an easy way to analyse the topol-
ogy of a system by calculating eigenvalues of symmetry operators in the occupied bands at
high-symmetry points (HSPs) of the BZ. Unlike other invariants, which often require the eval-
uation of BZ integrals, symmetry indicators can be evaluated very speedily. In this part, the
main focus are invariants for systems with a point gap that have been characterised using the
v3 = wsp winding number for chiral systems in odd space dimensions. Furthermore, we present
a symmetry indicator to detect the non-trivial phase of the Zs classification in time reversal
symmetric 3D non-Hermitian systems with point gap. In 2D with line gaps, we show that the
allowed values for the Chern number can be constricted using the symmetry indicators already
known for Hermitian systems.



Il. Fractional Corner Charges with Fourfold
Rotational Symmetry

Still round the corner there may wait
A new road or a secret gate

And though | oft have passed them by
A day will come at last when |

Shall take the hidden paths that run
West of the Moon, East of the Sun.

(J.R.R. Tolkien)

11.1. Abstract

In this work, we describe and treat the problem of determining the band representation of
Wannierisable 2D systems in Altland-Zirnbauer class AIl. This work is based on previous work
by Schindler et al.[75] and tries to completely classify the OALs in 2-dimensional systems with
fourfold rotational and spin—% time-reversal symmetry (TRS with 72 = —1). First, parallel
transport methods are presented, including the recent discoveries by Kooi et al.[130], who
solved the problem we also aspired to solve and provided invariants.

Furthermore, we present a versatile easy-to-implement method to calculate gauges with smooth
projectors, with bloch wave functions |u;’) on which the symmetry operators of crystalline and
internal time reversal symmetry act as permutations. This means that any symmetry operator

(n)

s maps |uy) onto a state ¢ ugk > at the symmetry transformed momentum Sk times a factor

¢, where ¢ is a permutation.

This method, dubbed projected symmetric operator (PSO) method, extends on the previous
projected symmetry operator method by Alexandradinata et al.[131] by allowing for the con-
struction of gauges in which the permutations ¢ contain n-cycles, with n > 2. The invariants
presented in the work by Kooi et al.|130] can be evaluated in a gauge calculated using the PSO
method.

11.2. Introduction

In first part of this Master project, fractional corner charges in spin-orbit coupled 2D insula-
tors with fourfold rotational (C4) and time-reversal symmetry (TRS), represented by T with
T2 = —1, are treated. These insulators belong to class Al in the periodic table of topological
invariants (cf. Ref. [132]). As insulators without edge modes they are gapped both in the bulk
and along the edges. This means that the dipole polarisation P vanishes, because otherwise
the materials would exhibit metallic edges, which would conduct charge and keep the fractional
corner charge from being well localised[133].



The topic of this work is to extend the topological invariants previously found by Schindler et
al.|75] with an additional invariant to gain the ability to distinguish all atomic limits in this
class. In order to allow for an easy calculation of these topological invariants, this work focuses
on methods that only use the bloch wave functions |u}}) as input.

The research question of this part was unexpectedly already answered by a publication that
was published during the course of the work by Kooi et al.[130].

11.2.1. Motivation

In recent years, there has been increased interest in topological phases of matter. Topological
materials could lead to interesting applications, including topological quantum computers. Re-
cently, higher order topological insulators [89, |90} 93] (HOTIs) were discovered. HOTIs are a
subgroup of the topological crystalline insulators (TClIs); TCIs require space group symmetries
for the protection of their topological states. Unlike regular topological insulators, the differ-
ence between the dimensionality of the system, which is gapped in the bulk, and the gapless
regions (e.g. surface, hinges) is more than one for HOTIs. As an example, a HOTI could be a
2D material with gapped bulk and hinges, but gapless modes on the corners.

In order to obtain a complete understanding of HOTIs and the materials that fall into this
category, it is important to be able to use relatively easy to calculate quantities that indicate
whether a compound is a HOTI or not. It is convenient to have methods that are based on
the band structure, which is easily available for many compounds.

In this context, the concept of Topological Quantum Chemistry|7, 71| appeared a few years
ago. The idea behind it is that that one can distinguish two types of phases:

1. Phases that are continuously connected to a phase with localised electrons (a so-called
atomic limit). Their filled bands correspond to a band representation. We distinguish
“regular” atomic limits in which the electrons are centred at the ionic positions, and
obstructed atomic limits (OAL), in which the electrons are situated away from the ionic
positions. OALs are topologically distinct from each other and the trivial atomic limit.

2. Strong and weak topological phases that cannot be deformed to an atomic limit without
closing the bulk gap or breaking symmetries.

Furthermore, there exist so-called fragile topological phases, which have a description in terms
of localised, symmetric Wannier functions, but only under addition of trivial bands|76/-78].

This project is concerned with OALSs in the case of spin-orbit coupled two-dimensional crystals
with C4 rotational symmetry.

11.2.2. Current State of Research

Benalcazar et al.[133] developed topological invariants and formulae for the evaluation of cor-
ner charges for C,-symmetric 2D materials belonging to the class AI (spinless, time reversal
symmetric (TRS), 72 = +1) in the periodic table of topological invariants. They further-
more found that for (fractional) corner charges to occurr, the bulk dipole polarisation P has
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Figure II.1.: Visualisation of fractional %e corner charges in a Cy-symmetric system, spinless
case. Figure reproduced from Benalcazar, Li and Hughes|[133].

Table I1.1.: Electronic corner charge, polarisation and topological invariants for the different
primitive generators for Cy-symmetric spinless systems[133].

primitive generator | | X §2) M 1(4) M. 2(4) P Qcorner
@

B N
h%i); 2 0 0 (0,0) ¢
Al R Y

to vanish. The corner charges, which are actually charges belonging to disjoint sectors con-
nected by the involved symmetry, are exponentially localised on the corners. Figure shows
a visualisation of corner charges on a Cy-symmetric lattice. Bancalcazar et al.[133] found a
complete set of topological invariants using only symmetry indicator invariants, which can be
calculated by determining the eigenvalues of the symmetry operators in the occupied bands at
high symmetry points (HPSs) in the BZ. The invariants for the Cy case are

w0 = (7] ] 7]} uy

Symmetry indicator invariants are described in section [LI.5] By evaluation for three different
Hamiltonians that span all Csj-symmetric atomic limits, labeled by the Wyckoff position on
which the electrons are localised, they obtained the results in table

Schindler et al.|75] developed topological invariants and formulae for the calculation of (frac-
tional) corner charges for the case of spin-orbit coupled 2D insulators. These materials belong
to the Altland-Zirnbauer class AII (72 = —1). The topological invariants for Cy-symmetric
systems in Ref. [75] are given by the Wilson loop invariant vpx, the nested Wilson loop in-
variant v, and the symmetry indicator invariant [M1(4)]. For a definition of the different high
symmetry points in the Brouillon zone of Cj symmetric compounds, see Fig. [[I.2] The calcu-
lation of Wilson loop invariants and nested Wilson loops is described in section symmetry
indicator invariants are treated in section [L5l These three invariants are not sufficient to
distinguish all atomic limits that appear in C4-symmetric systems, as can be seen in table
where the values of the invariant for different atomic limits are listed|75]. In this table, dif-
ferent atomic limits are referred to as elementary band representations, which are basic bands

11



Ty "

Figure 11.2.: BZ of C4 symmetric crystals. T', X, X', and M are the high symmetry points of
the BZ. Figure reproduced from Ref. [75].

Table I1.2.: EBRs, topological invariants and corner charges for C4-symmetric systems. Table
reproduced from Ref. [75].

Cy Urx vy M1(4) Qe
la 0 0 0 0
104 11 1 12
18], 3 111 1/2
2c 1 0 0 0
1oz ®1bliss | 0 0 0 1

that span all the possible types of wannierisable bands that can appear. Because they can be
wannierised in a symmetry-respecting way, each of the EBRs corresponds to a clear Wyckoff
position. The maximal Wyckoff positions for a Cy-symmetric lattice are depicted in Fig. [[I.3]
The corner charge can be obtained from considerations of cutting through Wannier centres at
the corners of the material.

From this table, one sees that the trivial case la cannot be distinguished from the case
1b[i§ @ 1b|, o using solely the topological invariants proposed by Schindler et al. in Ref. [75].
Therefore the goal of the Master project presented in this thesis was originally to find an
invariant that solves this problem. On the way there, smooth and symmetric gauges of the
Bloch wave functions were studied in detail, which lead to a method to construct such gauges
as a main result.

Figure I1.3.: Real space unit cell and maximal Wyckoff positions of a Cy-symmetric 2D lattice.
Figure reproduced from Ref. [75].

12



11.2.3. Structure of Part Il

The first part of the thesis is structured as follows. In section space group symmetries
are explained. Section gives the details of the models that are later on used as examples
to show the methods presented. Later, in section the connection between localisation
at Wyckoff positions and symmetry eigenvalues; as well as the symmetry indicator invariants
following from it are explained. Section |L1.6| gives an overview over Wilson loops and a proof
for an odd property in two-band subspaces in which the two bands are mapped onto each
other by time-reversal. In section the first Chern number is quickly reviewed. Section [[I.8
describes parallel transport methods to construct symmetric and smooth gauges. There, the
method developed by Kooi et al.[130] that solves the problem this project was supposed to
solve is described. In section another method to construct symmetric gauges with smooth
projectors, the projected symmetric operator method, is explained and examples are given.
Section gives a short outlook to questions that might be of interest in the future.

11.3. Symmetries

In this section, the symmetries of Hamiltonians and their consequences for the eigenstates and
the degeneracies of the energies are described. The results of Schindler et al.|75] and Bernevig
and Hughes[10] are used.

11.3.1. Space Group Symmetries

The crystallographic symmetry of a translationally invariant system is given by the combination
of the translation with other symmetries like rotation, screw-rotation, inversion, etc. In 2D, the
space groups are referred to as wallpaper groups. They can have rotation, reflection and/or
glide reflection symmetries. In this work, we are concerned with crystals with rotational
symmetry as the only space group symmetry.

11.3.1.1. Translational Crystal Symmetry

Translational crystal symmetry allows, together with sufficiently weak interactions, the usage
of a band structure description of the electronic system[134} 135][136, pp. 161-182]. If G is a
vector of the reciprocal lattice, the crystal lattice in k-space, then

Hy = Hiiq (IL.2)
and
‘ul(f)> = ‘“l(f-)kG> and El(j) = EI(Q-G for  Hy ‘“1(3)> = El(<j) ‘ug)> . (11.3)

These equalities are nothing but the periodicity of the electronic bands in the BZ. We can
therefore equivalently say in 2D that k = (ks,k,) € T? = $! x $!, where T? is the two-
torus, and $' is the circle. The 2D BZ is a two-torus. A 3D Brouillon zone is a three-torus
T3 =8' x $! x $t.

11.3.1.2. Rotational Symmetry

Rotational symmetry (C,, symmetry) is the symmetry under a rotation by an angle 27” The
representation of rotational symmetry is given by a unitary operator r which acts on the Bloch

13



wave function. If R is the rotation operator on the momentum vectors k, then the effect of
rotational symmetry on the Hamiltonian is expressed as

rH(k)r! = H(RK), with 7 =771, (IL.4)

For spin-orbit coupled systems, r satisfies ) = —1. If we have an eigenstate ‘ul({z)> with

eigenvalue El(:) of H(k), it follows that

H(RK)r ‘uf()> — rH(K) ‘u§{>> _ B

u¥)> = E,(j)r ‘u¥)> . (IL.5)

This shows that r ‘ul((z)> is an eigenstate of H(Rk) with eigenvalue E (i); the band structure is

Chr-symmetric.

11.3.2. Internal Symmetries

Time reversal symmetry (TRS), particle hole symmetry (PHS) and chiral symmetry (CS) are
the possible internal symmetries of Hermitian Hamiltonians. The only relevant symmetry for
this part of the thesis is TRS.

11.3.2.1. Time Reversal Symmetry

Time reversal describes the effects of flipping the arrow of time. In condensed matter physics,
the main effect is to flip the spins. On the Bloch Hamiltonian TRS is given by

THX)T ' =7H*(k)r" = rHT (k)r' = H(—k), (I1.6)
with 7 = 7K, where T is a unitary matrix and K is the complex conjugation. The inverse of

T is given by
Tt =K1l (IL.7)

The implication of TRS for the eigenstate |uj ) with H (k) |uj) = Ej, }u@ is that
H(-K)T |ui) = TH(K) |uj.) = TEL |ui) = ELT |ui) . (IL.8)

This means that 7 |uf ) is an eigenstate of H(—k) with eigenvalue E}.

11.4. Models

In this section, we will introduce the models used in the further sections of this part to exemplify
proofs and to disprove other statements.

11.4.1. Models for Obstructed Atomic Limits

In this section, a number of models for OALs are introduced.
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11.4.1.1. Models Without TRS

Benalcazar et al.[133] have proposed a number of primitive generators for the case without
spin-orbit coupling in their paper about the Quantization of fractional corner charge in Cy-
symmetric higher-order topological crystalline insulators[133]. These primitive generators span
the space of all models whose occupied bands correspond to an atomic limit and respect the
symmetries. Each of them corresponds to an EBR. Thus, it is sufficient to study these primitive
generators to uncover the properties of OALs. The primitive generators are referred to as h(an),

x is the Wyckoff position (cf. section [I1.5)) at which the electrons are centred and n gives the

type of rotational symmetry. Z gives the number of electrons. So, for example hgé) means

that it is the primitive generator for two electrons at the 16 Wyckoff position, with fourfold
rotational symmetry.

Models corresponding to these generators can be transformed into models with spin-orbit
coupling by doubling the model, see section For the convenience of the reader, these
models, which are tight-binding models, are listed in the following.

Models with C5 and/or Cy. First, the models with Cy and/or Cy symmetry are described.

The first tight-binding model we consider is the one corresponding to the primitive generator
hﬁ). It is therefore a C4 symmetric model with one electron centred on the 1b position of the
unit cell, for parameters —1 < ¢, = t, < 1. Its lattice with four sites per unit cell is depicted in
Fig.|l1.4]a). The lines indicate hoppings with unit amplitude. In Fig. [[T.4c) its band structure
along high-symmetry lines is shown. The model has one occupied and three unoccupied bands.
In Figure ) and d) the different OALSs it can be in, depending on the parameters (¢,%,),
are shown: In b) for Co with a general t, # t,, and in d) for Cy with ¢, = t,. Its Hamiltonian
is given by

0 etka 0 e 0 tz 0 1
—ik ik
(2) _ e 0 et 0 12 ty 0O
Hl (k7 tl‘v ty) - 0 e—zky 0 e—zkx + 0 ty 0 ty (119)
e”hv 0 e 0 ty 0 t,
The representation of the Cy rotation operator is
00 01
10 00
e (I1.10)
0010
and Cj is represented as
ro =13 (IT.11)

The second model has a lattice depicted in Fig. [[1.5h). Its band structure is shown in Fig. )
It has two occupied bands and two unoccupied bands, giving two electrons per unit cell, centred
around the 1b position for —1 < ¢ty < 1. This model corresponds to the case 16@® 1b and will be
of great interest to us in its spin-orbit coupled form. It corresponds to the primitive generator

hgé). Its Hamiltonian is given by
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Figure I1.4.: Lattice model H£2) by Benalcazar et al.. This model corresponds to the
primitive generator hgi). Figure reproduced from Ref. [133].
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Figure I1.5.: Lattice model H§4) by Benalcazar et al.. This model corresponds to the

primitive generator hgz). Figure reproduced from Ref. [133].

o
Energy

16



. . . . . ty

I I I I I x®=1,0,1) |1®=(0, 0, 0)
e oo o0 oo oo o @P=e(%,0) P=(0,0)

———T1TT
L ] *—o *—o *—o *—o L] 1

I I I I I x?=(1,1,2) [x@=(,1,1)

vl 14 1 1 |ERresd) [eleod

3 .4 X [ [ .'_?,V. 0 1 tx

> 1 x=(1,1,-1) [19=(0,0,0)
L%’ "' < j @he(%,% P=(0,0)

r X M Y r 0 1 t=ty

Figure I1.6.: Lattice model H§2) by Benalcazar et al.[133]. This model corresponds to the

primitive generator hgi). Figure reproduced from Ref. [133].

0 to €i(kz+ky) to
(4) o to 0 to e_i(k”_ky)
to ei(szky) to 0

with the same representation of the rotation symmetry as in the model H 52), see eq. [[1.10

The third lattice model for C4-symmetric systems is H§2).

It corresponds to the the primitive generator h;i). The lattice is depicted in figure ), its
band structure in figure ). It has two filled bands. The representation of Cy is the same
as before. The atomic limits for Cy are depicted in ), the ones for Cy in figure ) As
can be seen, in the Cy case, the electrons in the obstructed atomic limit only have a Cs site
symmetry group, which means that if we look at one of the sites on the side of the unit cell
square, it is only mapped onto itself by Cs, taking into consideration lattice periodicity, not
Cy. The Hamiltonian is

For t, = t,, it is C4-symmetric.

0 0 e 0 0 0 t, 0
2) _| 0 0 0 ethy 0 0 0 ¢t
H3 (ka taﬁ ty) - e—zkx 0 0 0 + tx 0 0 0 (1113)
0 e 0 0 ty, 0 0
The remaining primitive generator for Cs is h%). The corresponding Hamiltonian is
2 0 to + ety
HP (k, t0) = <t0 + ik 0 (I1.14)
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Figure I1.7.: Lattice model H 4(2) by Benalcazar et al.[133]. This model corresponds to the

primitive generator hg?. Figure reproduced from Ref. [133].

with
0 1
Te = 0 = (1 O> (1115)

as representation of the Chy-symmetry. Its lattice model is shown in Figure [II.7p), its band
structure in Fig. [I1.7p), and its different atomic limits in Fig. [[1.7¢). It is effectively an array
of SSH models (cf. Ref. [137, p. 36-37] for the SSH model) stacked next to each other.

Models with C5 and/or C. For the case of C3 and Cs symmetry, we look at a lattice with
the two basis vectors
1 V3 >

(11.16)

a] — (170) and ag — (2, 7

and the third vector
asz = a; — as. (I1.17)

The first tight-binding model for the Cg-case is H £6). It corresponds to the primitive generator

hfg) and has the Hamiltonian

0 to eik-az 0 e—ik-ag to
tO 0 t(] e—ik'ag 0 e—ik~a1
—ik-ag —ik-ag
(6) _le v to 0 to e 0
H,;" (k,t) = 0 gkas 4 0 fy  e—kas (I1.18)
eik-ag, 0 eik-al to 0 to
tO eik-al 0 eik'&g tO 0
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Figure IL.8.: Lattice model Hfﬁ) by Benalcazar et al.[133]. This model corresponds to the

primitive generator hfg). Figure reproduced from Ref. |133].

The Cg symmetry is represented by the constant matrix

0 000 O0T1
100 000
010000
001 00O (IL.19)
0 00100
000010

The tight-binding model on the lattice is depicted in Fig. [[1.8a). Fig. [I1.8b) shows its band
structure. There are four occupied bands and two unoccupied bands. Figure MC) shows the
positions of the electrons in the atomic limits. The remaining symmetry for the individual
electrons is a C3 symmetry in the obstructed phase (tg < 1).

The second model with Cg symmetry is HQ(G)

Figure ) It corresponds to the primitive generator hgi). The tight-binding Hamiltonian
is

. Its tight-binding representation is depicted in

0 to 0 eka 0 to
to 0 to 0 e kas 0
(6) _ 0 to 0 to 0 e—ikar
Hy (k,to) = | —ikaz to 0 b 0 (I1.20)
0 eik-as 0 to 0 to
to 0 eka to 0

and has three occupied bands. The site symmetry group in the obstructed phase (ty < 1) is
Cs.

For C3 symmetry, there are two different tight-binding models for the two generators. The first
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Figure I1.10.: Lattice models H fs) and H§3) by Benalcazar et al. || These model correspond
to the primitive generators hé‘? and hgi), respectively. Figure reproduced from

Ref. .
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model has the tight-binding representation depicted in Fig. [[I1.10a) and has the Hamiltonian

0 to + eikaz to + e~ ka3
HP) (k,to) = | to + e ™2 0 to+ e kar | (I1.21)
to + ezk-ag to +ezk~a1 0

It corresponds to the primitive generator hé‘?- The individual electrons have Cs site symmetry

group. The position of the electrons in the unit cell is shown in Fig.[[1.10d). The representation
of C5 is

00 1
rs=(1 0 0]. (11.22)
01 0

)

The second primitive generator of Cs is hgi . For this generator, we use the Hamiltonian

0 tO + eik~a1 tO + eik-ag
HP (k,to) = [ to + e~k 0 to + eikas (I1.23)
to +6—ik~a2 to + 6ik~a3 0

with the same representation of Cs as before. The lattice model is shown in Fig. [II1.10c). The
band structures of the two C5 models are the same and shown in Fig. [II1.10b). Figure [II1.10g)
shows the position of the electrons in the unit cell.

1.4.1.2. Adding TRS.

In order to add TRS, the Hamiltonians are doubled. For example in the case of H. §4), we define
the Hamiltonian as @
@y - (H27(k) 0
Hy~(k) = . I1.24
o7 (k) ( 0 H2(4) (k) ( )

This new Hamiltonian has twice as many bands and correspondingly one electron is replaced
by one Kramers pair. The symmetries are rotational symmetry

1Moz

ror = e @, (11.25)

and TRS
T =io, ®1. (I1.26)

(m)

In the further sections of this part, H, will be referred to as Hr(lm).

11.4.2. Model for Double Topological Insulator with C; and TRS

Furthermore, we use a model for a double topological insulator, developed by Song et al.[138].
It is also a C4-symmetric model on a square lattice. It has a Hamiltonian given by

1 1
H(k) = —5(1 —cosky — cosky)og ® 0, ® 0p — 3 sin(kz)og ® 0, ® 0y
A

1
b sin(ky)oo ® 0, ® 0y — E(COS ky — cosky)oy @ oy @ 0g.  (11.27)
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Figure I1.11.: Band structure of the model by Song et al.|13§]

This Hamiltonian has TRS and C4 symmetry, which are represented by
T =1®i0yK (I1.28)

and .
1TOoy

ry=0,R0,Qe 4 . (I1.29)

The band structure of this model is depicted in Fig. Unlike the previous models, its
occupied bands do not correspond to a BR.

11.4.3. Random Perturbations

Random symmetry-respecting perturbations of a Hamiltonian Hy do not change the topolog-
ical invariants, as long as the gap remains open. In section they are extensively used to
construct useful gauges. One possibility to create a random perturbation is to start with a
general random matrix-valued function defined on the torus T? = {(ky, ky)}, then hermitise
it, if Hermiticity is required, and to symmetrise it according to the needed symmetries (e.g.

Cy and TRS).

Random matrices on the torus (which are sufficiently well-behaved) can be represented as
Fourier series

R(k) = R(ky, ky) = > > RandMat[N x NJ(ng,ny)e=F=Fimvky, (11.30)
ng€Zny€Z

where RandMat[N x N] are random complex matrices that are in general distinct for different
values of (nz,ny). In principle, RandMat[N x N] can be drawn from any distribution, and an
unlimited number of terms can be included. In practice, this is unnecessary and we only use
a finite number of terms (e.g. (ns,ny) = (0,0),(0,1),(1,0)), which also resolves any otherwise
occurring issues with divergences. For simplicity, we choose the real and imaginary parts of the
components of RandMat[N x N] from a continuous uniform distribution on the interval [—1, 1].

11.4.3.1. Random Perturbations with TRS and C; Symmetry

To get a random perturbation respecting Cy and TRS, we start with a random matrix R(k) and
then symmetrise it in three steps. First, we hermitise the matrix, then we make it compatible
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R(k)
Hermitisation J

D(k) = § (R(k) + FI(K))
|

|

D¢, (k) = D(K) + riD(RK)ry D¢, (k) = D(k) — 7 D(Rk)ry
DR + DR} P D(R*Kk)r] —r}*D(Rk)r]

| \

|

Dr(k) = D¢, 6,(k) + T D¢, /6,(-k)T

C, symmetrisation J J antisymmetrisation

T symmetrisation antisymmetrisation

Dz(k) = D¢, ,¢,(k) = T D¢, /6,(=k)T

Figure I1.12.: Symmetrisation procedure to get perturbations for the Hamiltonian or symmetric

operators.

with Cy-symmetry. In the end, we ensure that it is TRS-symmetric. This symmetrisation

procedure is depicted in Fig. [[I1.12

The hermitised perturbation is obtained as

R(k) + R(k)T

Dherm (k) - 2

To make it Cy-symmetric, one proceeds as follows:

Dherm,C4 (k> = Dherm(k) + rtherm(R4k)7q4

3
+ TZQDherm(Rik)T‘z + (d) Dherm(Rik)ri'

This is Cy-symmetric because
74 Dherm,cy (k)rj1 = r4rj14Dherm(Rﬁk)rirl + 7“47“1Dherm(R4k)1”47“j1
3
+ T4r12Dherm(RZk)rirl + 7y (rl) Dhem(Rik)ri’rj1
= Dherm(R4k) + Ttherm(R4R4k)7ﬂ4

+ 712 Dperm (R4 R3K) 73 + 71° Dherm (R4 RIK) 13 = Dy, (RaK).

If one wants to ensure that

T4Dherm,6_'4 (k)r:rl = _Dherm,C_'4 (R4k)’

(IL.31)

(I1.32)

(11.33)

(11.34)



one can set

Diermn, €4 (K) = Dherm (k) = 7} Dserm (Rak)ra
412 Dier(R073 — (1) Dherm(Ri)r. (1135)
As a last step, TRS is ensured by
Dherm, ¢4, 7(K) = Dherm,cy (k) + T Dherm,c, (=k) T (I1.36)
If one wants an anticommutation with 7, one has to choose
Dyerm, ¢4 7(K) = Dherm,cy (k) = T Dperm,c, (—K) 7T, (11.37)
which ensures that

T‘Dherm7 Cy, T(k)Til = _Dherm, Cy, 7’(_k) (1138)

The further steps do not interfere with the earlier symmetrisation steps because T and space
group symmetries commute and the prefactors +1/—1 are real. If some of the symmetries are
broken, there are remaining symmetries. For example, in the case of Cy x 7 what remains
is a Cy x T symmetry, or in the case of Cj x T, the remaining symmetry is a C; symmetry.
The anti-commutation-like behaviour under the broken symmetries can be useful to construct
gauges in which symmetry operators act by exchanging bands.

11.4.3.2. Random Perturbations with C5, C3 and Cgz Symmetry

To get Cs-, C3- and Cg-symmetric perturbation matrices, we start, as before, with a random
matrix R(k), and perform the Hermitisation step, if necessary. To enforce the space group
symmetry, we then execute one of the following steps.

To obtain a C symmetric matrix, one has to perform the symmetrisation step

Dherm,C’g (k) = Dherm(k) + 7ngDherm (RZk)T% (1139)
for Cy it is
Dperm ¢, (k) = Dherm (k) — 7 Dherm (Rak) 7. (11.40)
For Cs the step is
Dherm, 03 (K) = Dherm(K) + 75 Dyerm (R3K) 73 4 74° Derm (RIK) 2. (I1.41)

For Cg we get

Dherm,CG (k) = Dherm (k) + r;f;Dherm(R6k)T6 + ng2Dherm(R%k)7‘g
+ 782 Dyorm (REK) 72 + 78 Dhorm (REK)7e + 718° Dherm (RIK) 78 (11.42)

and for Cg

Dherm,CG (k) = Dherm (k) - rgDherm(Rfik)TG + T;erDherm(R%k)rg
— 782 Dyorm (REK) 78 + 78 Dy (REK) 78 — 78° Doy (RK) 3. (11.43)
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Figure I1.14.: Wyckoff positions in Cs-, Cy-, Cs- and Cg-symmetric 2D unit cells. We indicate
the maximal Wyckoff positions as well as the general Wyckoff position.

These types of perturbations or symmetric operators have some importance in the case of
other wallpaper groups. When studying systems with Cg or (s, it can be useful to construct
operators that break these symmetry. In the case Cg above, the symmetry we broke was Co,
but C3 remained intact. To break C3 symmetry one choses an operator with

127

raD(K)ri = ¢35 D(Rsk). (11.44)

Operators like these are extensively used in section their construction is discussed
there.

11.5. Wyckoff Positions and Symmetry Eigenvalues

In this section, Wyckoff positions are described and we see how the knowledge about them
can enable us to make statements about symmetry eigenvalues in the occupied bands at high-
symmetry points (HSPs) in the BZ. Furthermore, symmetry indicator invariants will be de-
scribed.

Every position in the real-space unit cell is a Wyckoff position, but with varying multiplicity.
A Wyckoff position with multiplicity one has the property that it stays invariant under all
symmetries. A Wyckoff position of multiplicity n has the property that there are n positions
within the unit cell such that any of them is mapped onto another under symmetry transforma-
tions. The Wyckoff positions of 2D materials with Cs, C3, Cy and Cg symmetry are depicted
in Fig. [I.14 The Wyckoff positions for a 2D material with Cy symmetry are depicted in
Fig. [l1.15} The figure shows all the different Wyckoff positions, beginning with la, which is
the Wyckoff position at the centre of the unit cell. It remains at the same position under Cy
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Figure I1.15.: Wyckoff positions in quadratic system with Cy symmetry. The positions 1a and
1b have multiplicity one. The position 2c¢ has multiplicity two. The position 4d
has multiplicity 4 and is the general Wyckoff position.

rotation. Position 1b is rotated by the Cy rotation, but the new position is equivalent to the old
one. In the case of 2c one needs to apply Cy twice to get back to a position that is equivalent to
the original position modulo lattice translations. Position 4d is the general Wyckoff position.
One needs to apply Cy four times to get back to the start. If the occupied bands correspond
to a band representation, it is possible to construct a gauge in which the electronic charge is
well-localised at Wyckoff positions (Wannierisation). In this case, the occupied can be grouped
into groups of bands, each of which corresponding to an EBR. The electrons in each EBR are
localised at a Wyckoff position, allowing us to make statements about symmetry eigenvalues
at high symmetry positions in the BZ. The HSPs of the BZs of 2D systems with Cy, C3, Cy
and Cg symmetry are depicted in Fig. To make such statements, we use the fact that
translation from an initial position r; to a final position ry adds the factor

etk (rs—ri) (IL45)

to the Bloch wave functions. So if the electrons of a band are localised at 1a, the ry eigenvalues
at I' and M are the same. If they are at 1b, the eigenvalues at I are multiplied with a factor

)
e’ik-(l‘f*ri) —e T 0 = €—i7r =-1

to obtain the eigenvalues at M.

This means that the C) eigenvalues of a band well-localised at 1b change their sign when
moving from I' to M. If that is not the case, it cannot correspond to a well-localised band at
1b. If there are only two bands, and these bands have r4 eigenvalues e/ at T', then these
eigenvalues change to e*®7/4 at M. This allows us to distinguish a phase with two electrons
at la from the one with two electrons at 1b. To formalise, one defines the symmetry indicator
invariant|75] as the difference between the number of ¢™/* eigenvalues at T' und M as

Y] = #pa(V — Y, (IL.46)
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where #T} is the number rotational eigenvalues ¢'™/* within the occupied bands at the time-
reversal invariant momentum (TRIM) T. Corresponding formulae also exist for systems with
other symmetries|75| [133].

A band inversion is a consequence of electronic centres being displaced from the centres of the
unit cell or of non-Wannierisability of a band. If, like before, we are at Wyckoff position 1b, we
have seen that the eigenvalues change between I' and M. If we now have two bands, one with
eigenvalues e¥™/4 r, at T, and a second one with eigenvalues e=3"/4 r, at T, then these bands

exchange their r4 eigenvalues when going from I' to M. This effect is called a band inversion.

11.6. Wilson Loops

Wilson loops are a way of characterizing the topology of a subspace of a vectorspace[139].
Intuitively, they express how the occupied space is deformed when moving on a path around
the BZ torus. To first get a feeling for their meaning we examine the 1D Hamiltonians

— b (eb] = k) (k] with [ud) = (Spetp ) ) an o) = (05 )
and (I1.47)
H0) = [o2) (0]~ i) ] winh ) = (Sonfl)) o o) = (20 )

The Wilson loop is now constructed by starting with the occupied space at £ = 0, and then
stepwise projecting onto the occupied space while moving from k& = 0 to k = 27. This is done
by applying P = |ug)(ug| at each step. This means that

N

i 1
W = (ugzr—o| <H|uki><uki> uor—0) = (tgr—o (Hpk> [uze—o) , with ki = -2, (IL48)

i=0
where we segmented the path into IV steps. In this calculation it is imperative to choose a
well-defined gauge, which means that it is BZ periodic. Evaluation of our two examples then
yields
Wi =—1and Wy = +1. (I1.49)

This result is intuitive, because the projection in this case is equivalent to projectively rotating
the initial vector around by an angle of 7 (27) for Hy (resp. Hs). The process of projecting
around a circle is depicted in figure |I1.16

Now, we can also observe that the two Hamiltonians have inversion symmetry

TH;(k)I' = Hy(—k) with Z =0, = <1 B 1) . (I1.50)

This symmetry has the consequence that

N f 0
wi = <<U2no\ (H‘Uki><uki> !U27ro>> (u2r=o| <H g, ) (g, !) |[u2r=0)

1=0 =N
0 N

= (Ugn—o| Z! (Hzm (ug, |IT>I|u2,r 0) = (u2r—o| (H| uki|> lugr—o) = W, (IL51)
=N 1=0
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Figure I1.16.: Graphical representation of the Wilson loops for H; and Hs. In panel a), the
product of the projection operators for H; is represented by the orange arrow,
which takes the blue state ‘u(1)> and rotates it around, by projecting it into the
spaces spanned by the projector Py, until it is on the green arrow []; Py, u(1)>
The overlap of the green and the blue arrow is equal to W1, and is here given by
W1 = —1. In panel b), the Wilson loop for Hy. The initial state is rotated once
around on a circle such that the overlap is then Wy = +1.

which then means that
W eR. (I1.52)

Because W is unitary, it further has absolute value 1. Then there cannot be a continuous trans-
formation that respects Z and can deform Hj into Hs, because it is not possible to deviate
from W = —1. In other words, Hy and Hs are topologically inequivalent. In this example, we
have seen that Wilson loops allow, in some situations, especially when there are space group
symmetries, to relatively simply classify Hamiltonians topologically. In the example above, we
obtained a Zy classification by distinguishing W = +1 from W = —

Next, we will write down the general formula for the Wilson loop, like described by Benalcazar
et al.[89]. We begin with the definition of a Wilson line. To define a Wilson line, we look at a
path C through the BZ = T", given by a mapping C : ¢t € [0, 1] — k(¢). We partition this path

In the example above, we can also see the concept of an obstruction to defining a smooth gauge, which is

in the next section [[L.7] detected by the Chern number in 2D. For this we interprete the Hamiltonian as
describing physics that only allows real vectors (that’s not the real world and has nothing to do with regular
quantum mechanics.). The only allowed vectors are then in R?.
We immediately see that the projectors into the occupied band of Hj (k) is smooth over BZ ring T* = 8. If
we now try to find a smooth gauge |11,1€> we encounter a problem. If we arbitrarily start with |ﬁ(1)> = (1, O)T,
we have to set, to keep continuity, |ﬂ;1€> = (cos(k/2),sin(k/2))T. This then implies that (—1,0)T = ‘ﬁ%,r> #
|ﬁ(1)> = (1, O)T. There is no smooth gauge over the whole BZ for this Hamiltonian, interpreted as a theory
over real fiber bundles instead of complex fiber bundles.

2TV can also be calculated using a symmetry indicator invariant, as

Noce

W = H i (0) A (), (IL.53)

with the inversion eigenvalues \;(k) at the inversion-invariant momenta k = 0 and k = 7|140].
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into M + 1 steps as k; = k(ﬁ),i € {0,..., M}, and take the limit M — oco. The Wilson line is
then given by

M M NOCC ) .
Winn = lim (ufg | (HPki) g, ) = Jim (g | (T[> ui><uf{’ up ), (IL54)
=0 i=0 | j=1

where Ny is the number of occupied bands, and Pk, is the projector onto the occupied space
at k;. W is a unitary matrix of shape Noce X Noce. It is called a Wilson loop if and only if
k(O) = k(l) and ‘uk(0)> = ‘uk(1)>

Often, especially when using a relatively small M, it is appropriate to use a Singular Value
Decomposition (SVD) on the multiplying factors constituting the Wilson loop. For this sake,
we define the overlap matrix F; and its SVD as

F)],. = <u$ uﬁi+1> Fy = UV, (IL55)
with unitary matrices U; and V; and a diagonal matrix with nonnegative diagonal entries X;.
The unitary-projected overlap matrix is then given as

G =UV] (11.56)

and allows us to calculate the Wilson loop as
W = lim F, = lim G;. (I1.57)

All the eigenvalues of W have absolute value 1 due to its unitarity. Therefore its eigenvalues
are of form €7, We define the Wilson loop spectrum as the set of arguments 0; of its eigen-
values. This means that if the Wilson loop eigenvalues are the set {ewi }, then the Wilson loop
spectrum is given by the set {6;}.

It is sometimes useful to define the nested Wilson loop. Its calculation is described, for instance,
by Benalcazar et al.[89, |90]. The procedure is to examine the set of Wilson loops along the
paths C(t) = (2xl,2xt), for a quadratic BZ, or Ci(t) = Ik, + tky for an arbitrary BZ with
reciprocal lattice vectors lA<1 2 and t,1 € {0,1}. This set of paths covers the whole BZ. Each
Wilson loop W, calculated along the path C; is a unitary matrix on the occupied space at C;(0).
We can then look at the Wilson loop spectrum for all the C;. If its spectrum is gapped (like
the spectrum in Fig. keeping in mind that 6; is only defined modulo 27), we can define

0

a “nested” Wilson loop. If the eigenvectors of W to the eigenvalue €% are given by ’V{ >, we

define a new basis

NOCC

ut) = > ]

W) ) - (IL58)

The gap in the Wilson loop spectrum allows us to group these vectors by their Wilson loop
eigenvalues, for example getting an m-band subspace at each k; = C;(0). The corresponding
overlap matrices are then

- 1
[Fl] = (Wit g wp), with Al = —, (I1.59)
mn M
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yielding the nested Wilson loop
M—1
1 H éi/M7 (11.60)
i=0

where we used the unitary projection éj = UjVjT from the SVD Fj = @ijfj. Another way
to interprete the nested Wilson loop is in terms of the so-called Wilson loop Hamiltonian, as
done, for instance, by Schindler et al.[75]. It is defined by the equation

[ GO (gt W5 o)) (IL61)

mn

The nested Wilson loop is then the Wilson loop of the Hamiltonian Hyy, which is defined only
along the line {C;(0)|l € [0,1]}.
Often, when talking about the Wilson loop spectrum, what we’re really talking about is the
Wilson loop spectrum as function of [, or as function of the momentum in direction C1(0).
This is then the set {6;} as function of {, or as function of one of the momenta. We calculate
the Wilson loops in direction k2 as function of k;, with starting point k1k1 Then the Wilson
loop spectrum as function of kq is the quantity which we then simply call the Wilson loop
spectrum. The Wilson loop spectra of the models introduced in section [[I.4] are depicted in

Fig.

Schindler et al.[75] use these Wilson loops to define invariants for spin-orbit coupled 2D systems.
The first invariant is vpyk using the Wilson loop Wy with the path from I to k and then back
to I' on the shortest path around the BZ torus. The invariant is evaluated as

vk = —— log [T %" | modze, (I1.62)
g a=1,3,..,.N—1

where the ¢ are the eigenvalues of the Wilson loop. The product runs only over odd as
to account for Kramers pairing. Secondly, Schindler et al.[75] define invariants stemming from
nested Wilson loops, l/g(g);T , with the new gauge calculated using the Wilson bands pinned to
0 or m, respectlvely, at j = 0,1 5, with an analogous formula to eq. I@ For example, in
Fig. no bands are pinned there, while in the spectrum in Fig. [[I.I7H] two bands are
plnned at 0 and two at m. The set of paths C; is given as C;(i) = kl j + kyi, where | = 2,y and
[ = y,z. To put it into other words: for v, we calculate all the Wilson loops W, at fixed ky
with paths in k, direction. Using these Wilson loops, we get a new gauge on the &, axis, and
then calculate the nested Wilson loop along the k, axis. The eigenvalues of this nested Wilson
loop are then used to evaluate eq. It is important to point out that this invariant is
trivial if there are no bands with 6; pinned to 7 or 0, respectively, at j = 0, %

11.6.1. Effects of Symmetries on the Wilson Loop

In this section, the effect of internal and space group symmetries on the Wilson loop spectrum
are discussed. This section is based on Schindler et al.|75], where the Wilson loop is represented
as

wy = [[ P(k), (I1.63)

key

30



2] 6
3.8

/\ 3.0
3 ° 6 o " - Y
aal 7 . : .
2.0
325
15
3.0 % Y .
1.0
28
- \/ \/ 05
k
24 1 2 3 4 5 6 ki

1 2 3 4 5 6
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tion |I1.4.1)).

LA O R R © L >}

kx
1 2 3 4 5 6

(d) Wilson loop spectrum W, in k,-direction of
Haouble T1(k, t = 0.0) as function of k,, (cf. sec-
tion [I1.4.2]).

Figure I1.17.: Wilson loop spectra of the models used in this thesis. The Wilson loop spectra
of models that correspond to an atomic limit do not show any winding in these
examples (There are no counterexamples known up to date.). The model of a
TI, Hyouble T1, sShows a winding behaviour.
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with the path  and the projector into the occupied space P(k) at momentum k. We call
this object w,. The Wilson loop including the encompassing vectors at the initial and final
momentum k* is then

W = (uges [wy|ugs ) - (I1.64)

If crystallographic and/or internal symmetries are respected, this can have consequences for
the Wilson loop spectrum.

TRS means for the projector at k that
TPK)T ' =7K > |uf) (uf| K7l = Y Ju™) (u"y| = P(=k), (I1.65)

meoce meoce

which then implies
W = W = <u;3 TT][PR)T'T uﬁ>
key
*% T *
= <ukm K [ P(-k)rK uﬁ> = <uﬁ T[] P(-¥)r uﬁ1> (11.66)
kevy key

= <uﬁ [ Px)r u;f> = <u;: JJ RS u;f> =wrm,

ke~ key

where we assumed that k — —k acts on v by inversing its direction and that k* = —k*.
Furthermore, |@) is in a different gauge than |u). Without loss of generality assuming that |u)
is a gauge in which W is diagonal, we get

W = (IL.67)

where the left-hand side belongs to the eigenvector |uy%) and the right-hand side to |@k) =
T lupt) L |ut) (cf. Bq. [[1.202). This shows that the Wilson loop spectrum at that point is
degenerate.

Furthermore, for general paths, we observe that

W = <ukm krt [ P(-¥)7K uﬁ> = <a’fk* [T P(-¥ a’zk*> = W (IL68)

key key

where 4(t) = —~(t). This also flips the orientation of the loop. To obtain a result that can
be directly applied to Wilson loop spectra, we define 4(t) = (1 —t) = —y(1 — t). These BZ
paths are depicted in Fig. for a case of quadratic BZ. Then we get

W = <u7lk* ] P& uTk*> — Wz, (IL.69)
Kkeqy

which implies that the Wilson loop spectrum of W have a TRS-type symmetry. This is because
W, = WWT and the fact that a matrix and its transpose have identical eigenvalues.
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Figure 11.18.: Brouillon zone with paths used in the arguments about the effects of symmetries
on the Wilson loop spectrum. The Wilson loop spectrum is calculated using the
paths in the upper right quadrant of the plot, which is the complete BZ.

Space Group Symmetries A space group symmetry (.5, s) acts on the projector as
sP(k)s' = P(Sk), (I1.70)

if S is its action on the crystal momentum k and s is its representation in the space of Bloch
wave functions.

This implies for the Wilson loop that if the symmetry projects a path back onto itself, but
reversed, leaving the starting momentum k* invariant, we find

W = <ug1 sts [ Pk)s's uﬁ> = <u{3 1 Psk) ﬂﬁ*>

k k
< < (IL71)

*

= <uﬁ I P u?> = W,

key

This means that }
W, = Wi (I1.72)

for paths starting and ending at TRIMs. Therefore the eigenvalues come in complex conjugate
pairs if Sk* = k*. For Cy symmetry with 4(t) = —y(1 — t), we obtain

W = <amk* 1P a"k*> = <a"k* I Px) a’”k*> = Wz, (IL.73)

key key
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which means that

W, =Wl (IL.74)
This property means that if €’ is an eigenvalue of the Wilson loop along ~y, then e~* must be
an eigenvalue of the Wilson loop along 4. This is a PHS-type symmetry of the Wilson loop
spectrum.
Thus, if a system respects TRS and Cy symmetry, its Wilson loop spectrum has a TRS-like
symmetry and a PHS-like symmetry. PHS and TRS together imply that the Wilson loop
spectrum has a chiral-like symmetry. This means that all Wilson loop eigenvalues come in
complex conjugate pairs.

11.6.2. Wilson-Eigenvalues of Two TRS-Permuted Bands

This section is about a very specific two-band case. The two bands belong to a system with
(at least) TRS and Co symmetry and are in a gauge such that the sewing matrices, defined by

DI = (T and D = (o) (1.75)

Dy = <* *> and D¢, = (* *> . (IL.76)

In this gauge ro maps the bands onto themselves and 7 maps between the two bands. Both
symmetries act as permutations. The intuition behind this is that we are splitting a Kramers
pair into two single electronic bands, each corresponding to a single electron per unit cell. The
interesting observation is then that the Wilson loop spectrum calculated using the two bands is
exactly the overlay of the two single-band Wilson loop spectra, calculated only using a single
band each. An example for how this looks like can be seen in Figures [[1.31d] and [[T.31¢| in
section We prove that this is indeed the case. We label the two bands as |u1> and ‘u2>
First we have a look at the symmetries of these bands: We know that the 1-band Wilson loop
is given by

take the form

1

Wi = T (ubalul) = Cubegafui) - Cubut) (IL77)
i=N

Due to how the symmetries act on the bands, we can express ’ull> as

lui) =roT |uf) = ro7K |uf) (IL.78)
which then gives us
1 1
Wi = H <uzl+1|uzl> = H (<Uz1+1|) T;TQT |u2> <H <u2+1‘u2>> . (1IL79)
i=N i=N

This proves that the Wilson loop eigenvalue of one band is the complex conjugate of the Wilson
loop eigenvalue of the other band. If we use the version of the Wilson loop given by Benalcazar
et al.[90], with application of the SVD at each step, the Wilson loop eigenvalues are

H At ) — W, (11.80)
‘<uz+1 ‘u >}
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To prove that these values are also eigenvalues of the 2-band Wilson loop, we use the form of the
Wilson loop with the SVD. This form allows us to prove that the individual overlap matrices
become diagonal after application of the SVD, assuming that }u22> = TQT’uil> = roT ‘u11>*
The overlap matrix is given as

r- ({0 D)= () (il () )
<“i+1 “z> (<“zl+1‘) TTT’2‘U%> (<“zl+1) TTT27’27(}UZ1>)
_ <“z1+1‘“zl> <uzl+1‘uz2> A B

- ((<u}+1\ug>)* (<u}+1\ug>)*) = (B* A*) . (I1.81)

which holds for KroT ’u11>* = TTT; |u11>, and where we defined A = <u11+1‘u11> and B =
(ul q|u?). The former follows from

) (s
Uz> <ui+1

Kror [u})" = i lupy & |ul) = rorKrar [ul)" = roTroT |uf) = T3 [ul) = [u})  (I182)
where we used that point group symmetry operators commute with TRS [T,72] = 0 [141,
p. 14].

We then do an SVD of F = UXV' in order to get G = UVT. G is one of the matrices that
constitute the Wilson loop. Using Mathematica[l42], we observe that the SVD is given by

1 ‘f| 7]
v=— 7' W,
\@(w w)

|A| - |B| 0
Z:
< 0 Al +|B| )’ (IL.83)

_B* 14
Y
\/5 A7 18| 1

This fulfils the SVD property F = USVT and we find that

. ald)
G=Uv= AT 0 | Kudaud)] 11.84
- - 0 A T <u2 1‘u2> ’ ( ’ )
7 0
|<“z+1|“z>|

which is independent of the choice of U, V[143| p. 42-45]. This then means that the Wilson
loop is given by
H‘l (uips|ul) 0
W = [ Y 1
0 le (ufy|u?)
=N (u?fu?)]
Since the diagonal entries of this matrix are exactly the Wilson loop eigenvalues of 1-band
Wilson loops in the form with SVD, this proves that the 2-band Wilson loop is decomposed
into the 1-band Wilson loops. [J
As Wilson loop eigenvalues are continuous and smooth throughout the BZ and the 1-band
Wilson loop eigenvalues appear in complex conjugate pairs, therefore the 1-band Wilson loop
eigenvalues exactly separate the two bands from each other, as seen, for instance, in Figures

[L31d and [L3Tel

(I1.85)

35



11.7. Chern numbers

It is often useful to calculate a quantity known as Chern number, which is defined in even
dimensions [26] as

1 /i\"
Ch, = — <Z> (F™), where n = d and F = dA + A? (I1.86)
n. 27T B7d 2

in terms of the non-Abelian Berry connection

A (k) = <uﬁ du£> = <uﬁ
The first Chern number Ch; detects an obstruction to defining a smooth Bloch function over
the BZ torus T?[144]. In the following, we will concentrate on the first Chern number Ch;,
which we call Chern number Q or C', omitting the “first”. There are a few ways to calculate
the Chern number.
Chern numbers for individual bands can be calculated as described by Asboth et al.|145] p. 23-
28] for individual bands in a discretised BZ. The Chern number is then

vku§> . dk. (1L.87)

1
Q=1 > Fum (I1.88)
nm
with the plaquette phase factor
Fom = —arg (<un,m‘un+l,m> <Un+1,m|un+1,m+1> <Un+1,m+1|un,m+1> <un,m+1|un,m>) ) (1189)

where the |uy, ) are the eigenstates at ky, ,,, which form a grid over the BZ torus.

Another way to calculate the Chern number is to determine the total Wilson loop winding[137),
p. 39-40]. For a quadratic 2D system, one looks at W (k;), the Wilson loop in k, direction
starting at (k;,0). The total winding is given by

1 1

Q= /dkaQi = /dkx In det Wy (k). (11.90)
7

This quantity can be read off straight-forwardly by looking at the Wilson loop spectrum.

The Chern number of individual bands is linked to whether a set of bands is band representable.

If all the symmetries of a 2D system in AZ class Al or AIl act as permutations on the bands,

ie.

ug‘;(n)> = s|uy), for all symmetries (S, s), (I1.91)

where s is the action of the symmetry on the Bloch wave functions and S is its action on
the momentum k, and the Chern number of all the bands is 0, then the bands are a band
representation[131 ]lﬂ

3Explicitly, the theorem is given by Alexandradinata et al.|[131] as

Crystallographic splitting theorem Let P be a rank-/N representation of G. P is a mono-

mial BR of G if and only if there exists a splitting P = EB;-\;lP]- satisfying:

(A) each P; is analytic (throughout the Brillouin torus) and has trivial first Chern class, and

(B) G acts as a permutation on {P;}},, ie, for all g € G, g : P; — Py, ;) with o4 a

permutation on {1,..., N}.
Herein P is the projector into the occupied bands, and P; are projectors into individual bands. G is the
symmetry group of the crystal, which includes TRS. The distinction between monomial and non-monomial
BRs does not exist in 2D, it only matters in cubic 3D systems. A single band has trivial first Chern class if
and only if its Chern number @) vanishes.

36



M

(b) Path T'MT, repre-
sented in the 2D BZ
plotted in a plane.
Due to the period-
icity of the edges,
the point M appears

(a) Path I'MT, showed on the 2D BZ represented as two-torus embedded in twice.
3D. The path is showed in red, the blue arrows are the axes k; and k,.

Figure I1.19.: Path I'MT in the BZ.

11.8. Methods Based on Parallel Transport

Methods based on parallel transport are methods to construct a gauge fulfilling certain prop-
erties like smoothness by iteratively applying unitary transformations to Bloch wave functions.
Such methods we first, at the beginning for 1D systems, developed by Soluyanov et al.[146].
Such gauges become significantly harder to calculate if in addition to smoothness symmetries
have to be respected.

In principle, it would be advantageous to be able to construct a smooth and symmetric gauge
over the whole BZ torus. This is a very difficult task that cannot be easily solved by parallel
transport. If one already has a one-band subspace whose projector is smooth over the BZ,
has trivial first Chern number and on which the symmetries act as permutations, it should be
possible to construct such a smooth symmetric gauge by applying 2D parallel transport (cf.
Ref. ) to the band. Such a symmetric gauge with analytic projectors can be constructed
using the PSO method (see section [[L.9).

In the following, parallel transport methods are illustrated by a procedure to obtain a smooth
gauge along the BZ line TMT. After that, the results by Kooi et al.[130] are described.

11.8.1. Continuous Gauge on the Line I'M, Ensuring Compatibility with C
Eigensectors in the Points I', M

In this section, we describe a procedure to construct a smooth gauge on the line I'MI that
coincides with eigenstates of 74 at I' and M. The path is depicted in Fig. [.L19} The idea
behind this calculation is to test whether the eigenvalues of the Wilson loop along this path,
taken only in the symmetry sector of some of the rotational Cy eigenvalues, can serve as an
invariant to distinguish the OAL 1b @ 1b from the trivial AL. The procedure consists of two
steps:

1. Smooth states along the line are constructed.
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2. The states are rotated to coincide with eigenstates of r4 at I' and M.

11.8.1.1. Smooth States

We are treating a Hamiltonian H (k;, k,) gapped along the line I'MI" around the BZ torus.
The eigenstates |u.) of H are split into those with energy below the energy gap, and those with
energy above. To those below the gap, the procedure developed by Soluyanov and Vanderbilt
146] is applied (see also Ref. [52]). The resulting states |ai ) along the line TMT are eigenstates
of neither the Hamiltonian nor ry.

The method works as follows. We require that the change of a state during one step of the
discretisation is orthogonal to the state itself. This gauge is referred to as parallel transport
gauge. To obtain such a gauge, the overlap matrix

ul > m,n € {1, ..., Noco} (11.92)

must be Hermititan with only positive eigenvalues. In order to ensure this we iterate along
our discretised path, starting at k = 0 = I', constructing new states at each step. At the point
I', the new states are identical to the old ones |ug) = |ug). In each step we first calculate
Linn = (i
matrix, we apply a SVD L = VEWT. We then define U = WVT. The transformed state at
the next step is then given by

uﬁj+l>. In order to ensure Hermiticity and positive eigenvalues of the overlap

um > . (11.93)

The states |@}}) are then smooth along the line from I" to M to I, but there can still be a jump
from I'(k, = ky = 2m) to I'(k; = k, = 0). Next, we remove this jump. We observe that the
states differ by the matrix

which has the property
Noce Noce
jag) = > lag ) (s |ag) =) A |U55) - (11.95)
m m

Then we find a unitary S that diagonalises A, given by the normalised eigenvectors of A. By
rotating all states by S, A becomes a diagonal matrix with entries e* along the diagonal,
which are the eigenvalues of A. This rotation by an angle has to be distributed over the whole
range k = I' - M — I. Therefore, we apply the transformation

NOCC
ﬁ{(j> — DM N g,
m

ap > . (11.96)

M is the number of discretisation steps along I'MTI'. The states ‘ﬂ{(]> are then smooth around

the whole BZ torus along the line TMI'. At each k; they span the occupied subspace, but
they are neither eigenstates of r4 nor of H(k;). In the next step, we ensure that the states
coincide with eigenstates of r4 at I' and M.
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11.8.1.2. C; Compatibility

In order to calculate the Wilson loop in the sector that has rotational eigenvalues e="/4, we
apply a unitary rotation to all the states. This rotation is obtained as follows. We define the

rotated states as N

gy = U |ag) (I1.97)

We want to construct a U} such that ‘Q}J and ‘ﬁi> span the eigenspace of ry with the
rs-cigenvalues e7/4 at the points I' and M. This means that they are orthogonal to the
eigenspace of eF317/4 We refer to the 4 r4-cigenstates with eigenvalues e*7/4 (ei?’i’r/ 1) as ‘r;’r>
(‘r; >), respectively. The needed orthogonality leads to the equations

[ Dourt gy =0=" U (rf

(ri | Z Ui lagty = 0= (r; | Z Ut laghy . (4 equations)

apy, (4 equations)
(11.98)

These equations are understood as equations for the components of U;™". Writing out the first
equation, we get

U (rf

af) + UR o

i)+ UP (rf

i) + Uit (rif

ap) =0 (I1.99)
for each i. This is equivalent to a column of Uy being an element of
Ker (TJ - {<rj ui>}) = {v1, v} . (I1.100)

We orthonormalise these vectors to make U unitary. The second equation in Eq. again
gives us two vectors {wq,ws}. U is then given as

U= (’01,’02,’[1)1,11)2) y (11101)

where the vectors are understood as column vectors.

Applying this procedure gives us two matrices Ur and Upng, which transform gauge |4}") such
that the symmetry sectors become clear (the first two of the eigenvectors }11@ belong to the
sector of e¥7/4 at k = T, M).

Another way to find the matrices Ur, Ung that allow to distinguish the different eigensectors

of r4 is to diagonalise r4 in the space spanned by the vectors 112) This is done by first

defining the basis transformation matrix S = (1111(, e ,ﬁfj‘““,u{j occtl . ,uf(v ), where the vec-

Noce+1,...,N
)

tors are understood as column vectors and the vectors are the original unfilled

eigenstates. r4 with respect to the basis of 4 is then given by

~ ~

rh=5"1.r,.8. (11.102)

If T’Z has block-diagonal form with a block 7 of size Noce X Noce at the left top, we can

diagonalise 74 in the subspace of occupied states. If we denote the eigenvectors of ry®“ by
W1, ..., Woce, then the matrix Uy is given as (wg(l), c+y We(Noee))s Where the w; are understood
as column vectors and o is an arbitrary permutation that can be used to sort the vectors
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Components

0.4

Figure I1.20.: Components of a smooth vector along the line TMT'MT".

according to the eigenvalues of ry.

In order to keep smoothness, these two independent unitary matrices at the momenta I,
M must be connected in a smooth unitary way. This is done by defining the continuous
transformation

U(t) = Urexp (tlog (Up'Um)) - (I1.103)

U(t) fulfills U(0) = Ur and U(1) = Unp. We then use t = § (1 — cos(k, = ky)). This gives us a
continuous interpolation from I' to M and further back to I', and thereby continuous states that
are not Hermitian anymore and have slightly imaginary eigenvalues. Still the states remain
continuous, since they were continuous after the smoothing of the states, and all the following
transformations were smooth too.

Figure [[T.20] depicts the real part of all the components of one smoothed vector along the line
I'MI'MTI'. The graph clearly shows that the components are smooth along the whole line.

are in a specific Cy-sector at I and M. In the end, the overlap matrices Lyn = <uk

The Wilson loop calculated along the line TMT" in only one of the symmetry sectors does not
allow a distinction between the the phase 16 ® 1b and la @ la.

11.8.2. Parallel Transport Method of Kooi, van Miert and Ortix

In a recent publication, Kooi, van Miert and Ortix describe a set of invariants that allows
for a full classification of OALs in C,-symmetric systems in AZ class AII (spinfull systems
with 72 = —1). They call them partial real-space invariants. These invariants are based on
the invariants previously developed for spinless systems by van Miert and Ortix, but work
for spinfull systems as well. The idea is to split the bands into two smooth and symmetric
subspaces which are mapped to each other by 7. In a second step they ease this condition
such that they get a quantity that can be calculated using straight-forward parallel transport
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techniques.
We first describe the invariants that are used when having such a smooth and symmetric gauge.
The gauge that is used to calculate the invariants has the properties that the 7 sewing matrix

0 =
B = (u™ | T|ui) Dry =By = <* 0) (IL.104)
is block-off-diagonal. This means that effectively, the two spin-components get separated. The
Cpr-sewing matrix is block-diagonal as

D™ = (u i) Peac=De= (g V). auoy

Such a gauge is very non-trivial to construct if there is non-negligible spin orbit coupling, still
we are able to calculate it directly using the Projected Symmetric Operator method described
in section In the following, we list the invariants, as given in Table I in Ref. [130]. The
invariants for Cao-symmetric systems are given by

1 1
y{a:§CI+Ff+§[F{i—Xfi—Yfi—Mfi],

1 1

N N (I1.106)
vl = 5cf_ 5 L, + x5, —-v! - ML],

1 1
vig = 501 ~3 L, — x5, -yl + ML),

where C! is the first Chern number in the first T-sector and A% are the multiplicities of the
symmetry eigenvalue « at A in the same sector. One way to calculate C! is to evaluate

lcf — i
2 27 JorBZ
Other methods are described in the section about Chern numbers [T T

The invariants for Cy systems are given by

dq - Tr (A'(q)) . (I11.107)

1 3 3
I I I I I I
Nag = — 50 + ( - 3Fem/4 - §Fe3i"/4 - Fe—3i7r/4 - §Fe—m/4
3 3
S MEey +2M i+ M+ XL,
I 1 I 3 I 1 3 I 1 1 1.1
Vip = — 50 + <§Fe3m/4 + 2P673m/4 + 51—‘672'77/4 - iMesm/zx ( . 08)
1
I 1 1
- 2M@737L7'r/4 - 5 e—im/4 T X—Z>7
1 1
VQIC =+ 501 + 5 <P£3i7\'/4 + Fi*iﬂ'/‘l - M(;ISiﬂ/él - Melfiﬂ'/4> .
The invariants for Cg systems are given by
1 5 1
Vlla = - 501 + <_ 5P£zﬂ/6 - §F£ZW/2 - F£i57r/6 - §F£7i57r/6
5 3
—T e = ST e+ SML 2K 42K ),

(I1.109)
VQIb :CI + <F£’LT(/2 + F£i57'r/6 + Fi*iﬂ'/2 + Fé*iﬂ/S - K£1 - Kelfiw/3)7

1 1
Véc :501 + 5 (Fiz‘”/z + F£7i57r/6 + Fi,iﬂ./()‘ - M£’L> .
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(c) Cs (d) Cs

Figure I1.21.: The effective BZ (EBZ) defined by Kooi et al.[130] to calculate invariants, for
Cy, Cy, C3 and Cg-symmetric systems.

These invariants allow for a complete classification of the atomic limits, so they solve our
problem. On page we discuss a method to construct such a gauge.

11.8.2.1. The Parallel Transport Method

Kooi et al.[130] also developed a method to evaluate the invariants given in the previous
chapter without having to calculate a gauge that is smooth and symmetric over the whole
BZ torus. They define the effective BZ (EBZ), which is the subregion of the BZ such that
by the action of C,, one gets the whole BZ (e.g. (0,7)? € BZ = (—m,7)? for C4). The
EBZs for rotationally symmetric 2D systems are depicted in Fig. [I.2I] The procedure then
consists of calculating a CyT-symmetric smooth gauge x(¢) within the EBZ and a Cs- & TRS-
symmetric smooth gauge ¥(q) along the edge OEBZ. The gauge ¥(q) is then used to calculate
the multiplicities of the rotation eigenvalues and the partial Berry phase ¢, dq- T‘r(ﬁl (Q))-
The gauge x(q) is used to calculate a Zsy or Z winding number W (U|sgpz) of the overlap-
matrix U(q) = (x(q)|¥(§)) along OEBZ. The invariants then need to be adjusted to take this
winding number into consideration, like in the example

1 . - 1

Vi, = ]{ dq- Tr (AI(cD) + W (Ulomsz) + T + = [T, = XL, —v!, — M%) . (IL110)
27 JorBz 2

We refrain from going into the details of this procedure, which can be found in the methods

section of Ref. [130].

11.9. Projected Symmetric Operators and Their Band Structures

Often, when wanting to calculate topological invariants and making statements about whether
a set of bands corresponds to a band representation, it is necessary to calculate gauges with
specific properties, like block-diagonality of sewing matrices of certain symmetries and smooth-
ness of the projectors of the gauge. This is often done using parallel transport techniques[130,
146, 147](cf. section . Here, we present a method, very similar to the projected symmetry
method proposed by Alexandradinata et al.[131], to calculate such gauges without having to
use parallel transport. The obtained gauges have smooth projectors throughout the BZ and
the symmetries act in a well defined way on the Bloch wave functions, for example by per-
muting the bands. We expect the method, to which we refer as projected symmetric operator
method, to be applicable to all wallpaper groups for Hermitian Hamiltonians in AZ classes A,
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AT and AIl, though due to time-constraints this was not tested thoroughly.

To construct the gauges, we define a smooth matrix-valued function gZ} tk — 7;1(, called
symmetric operator (SO), such that z/jk has well-defined bahaviour under the symmetry trans-
formations and carries the periodicity of the lattice. The projected symmetric operator (PSO)
is then defined as

g — <u{(”‘1/)k‘uﬁ> . form,n € {1, ..., Nocc ). (IL111)

We know that if the spectrum of \i/k is gapped, we can construct a smooth symmetric gauge
by looking at the eigenvectors v, of Wy (of WVT with ¥ = WEVT the SVD of ¥y) and
using them to construct a new gauge |by) = >, v, [up'), for a Hermitian (non-Hermitian)
1/3, respectively.

In general, the symmetries carried by the SO are

1. Lattice periodicity
Yk = Ykta, (I1.112)

with G as a vector in the reciprocal lattice. This symmetry must be fulfilled to guarantee
smoothness of the gauge.

2. Hermiticity
=i (1113)

need not be necessarily fulfilled, but it makes calculations in most cases much easier,
because then the eigenvalues of the projected symmetric operator \i/k are real and a gap
can be defined in the usual Hermitian way. If Hermiticity is not given, one has to look
at (star) line gaps in the complex plane instead, defined below.

3. Unitary (space group) symmetries

2mim ©

slwks =e n Ygk. (I1.114)

The prefactor e%vi allows for tuning which type of band-permutation one gets by apply-
ing this SO. If vy is Hermltlan only £1 are allowed because then sthest = eg —>
sz st = eﬂavﬂ = @ =7 — ¢ =41, +1 (—1) means that the correspond-

ing sewing matrix becomes block-(off-)diagonal, respectively. A complex prefactor e e
allows for the construction of n-cycle permutations.

4. Anti-Unitary (internal) symmetries
sl = £ (I1.115)

are relevant for TRS, which connects occupied bands at k with other occupied bands at
—k. If ¢y is Hermitian, such anti-unitary symmetries can equivalently be expressed as

5;KnKs! = 29y, (11.116)

where K is the complex conjugation. There are no internal symmetries that correspond
to permutation cycles of more than 2-cycles, therefore + as a prefactor in sufficient. If
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we have time reversal with complex conjugation 7 = 7K and a space group symmetry s
with prefactor €', then

sTT st =5 (:I: b ) st = +el@_ '
" Vo v el er i
Tsthes T = 7K Ygi K71 = +e g

This is the reason why we define the anti-unitary symmetry using the transpose in equa-

tion [LL.115

As an example, in the case of s = 4, one might use sz =74+ 7":[ with £1/2 as eigenvalues at
' and M.
The PSO is given by

foon — <u{<"‘¢k’uﬁ> . (IL118)
If @Zk is Hermitian, \ilk is Hermitian as well, because
° ° * ° ° o
s — (<u$‘wk‘uﬁ>) - <uﬁ‘¢f{‘uﬁ‘> - <uﬁ‘wk‘uﬂ‘> = fym, (IL.119)

If TZJk is Hermitian, we solve the eigenvalue problem of 0
Uielien = FionTion (I1.120)

and then define the new gauge using the eigenvectors vy ,, as

) = il |uil) - (IL.121)

m
If qj)k is non-Hermitian, we instead look at the SVD of \ilk
Uy = WVt (11.122)
then solve the eigenvalue problem of the unitary projected matrix
v =wvt (I1.123)
and finally define the new gauge again as in equation [[.120] and [[T.121]

For projectors of the new gauge to be smooth, we require that the spectrum of Uy is gapped.
This means that in the Hermitian case we require an overall real gap, in the non-Hermitian
case we require a “star”’-gap with a multiplicity corresponding to the type of cycle we want to
construct. These different gaps are depicted in figure [[1.22]

Overall, two important proofs need to be provided to use this method:

1. Proof for the existence of a 121( that fulfils these properties if the occupied bands corre-
spond to a band representation (see section [I1.9.1]).

2. Proof that the subspaces spanned by |bj) represent a smooth symmetric gauge, where
smooth is understood in a projector-sense (the projectors are smooth in k, not the vectors

themselves, see section [[1.9.2)).

Furthermore, we need to check the compatibility of symmetries.
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Rk Re(lik)

Im (ki)

—

Figure I1.22.: Types of gaps that can be useful. The gray areas represent the areas in which
the eigenvalues of Uy lie. On the left a Hermitian ¥ with a usual gap known
from Hermitian physics. On the right a non-Hermitian Ty to get three-cycles,
with the corresponding 3-star gap, is showed.

11.9.1. Proof for the Existence of an ik

To prove that a 121( with such properties exists, we first invoke the Crystallographic Splitting
Theorem[131], which leads to a gauge ‘u@ consisting of single bands that are analytic through-
out the BZ and on which the symmetries act as permutations. This only works if the occupied
bands correspond to a BR. We then construct our SO as a sum over projectors with prefactors

NOCC

B = Z Vi |uie) (uie] - (11.124)

The 5; have to be chosen such that a gap appears (e.g. £+/2). If the symmetry s acts as the
ug&)>) on the bands, then its action on [y is

permutation o : ¢ — j ( i.e. s !u{{> =

ugg)><u5k Z'Ya ¢ ‘uSk <“Sk‘

NOCC
sBest =) i
i=1

_ Z 122D o, g Y | = ";(i)ﬁsm (IL.125)

where we assumed that the condition
To—1(3)
Vi
is fulfilled. This is one of the conditions for a well defined SO. Next, we turn to the anti-unitary

= const. Vi (I1.126)

symmetry s. This symmetry also acts as a permutation & : ¢ — j (i.e. sK ‘uw = ‘ui(l?>) on
the occupied bands. Its action on Sy is then

Noce f Noce t
sofel = (ssie’) = ( > i um*s*) - <Zv* ) )

i=1

Noce Noce
= (Z Va1 [ulie) (ul k|> S Yaergo [l ) (ul | = 22 ”)ﬁ K (I1127)

=1
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where we assumed again that the condition

Y5-1(i)
Vi

= const. Vi (I1.128)

is fulfilled. This condition is the necessary condition for a well-defined SO.
The condition for Hermiticity of By is that

v eR Vi, (IL.129)

because then we have that

NOCC T NOCC
k= <Z Vi \“@@U) =) Juio) (uk| = B (I1.130)
i=1 i=1

Now one chooses the parameters «; such that the intended properties of Sy follow. Conse-
quently to get 1- (and 2-)cycles one assigns v = +1 such that v; = v5(;) (=7,(;)) and there
is a gap, respectively. For n-cycles, one assigns ~; = em%,m € {0,...,n — 1}. This ensures
that the condition is fulfilled. The continuity and lattice periodicity follows from ‘u@ hav-
ing these properties. We are allowed to use this smooth gauge without loss of generality of
the statement because the symmetric gauge vectors ’b@ are independent of the gauge ‘u{(

(cf. section [11.9.2.2)).

In practice, if one has a BR that can be decomposed into EBRs as BR = EBR; & EBRs &
EBR3 @ ..., one would first split the EBRs from each other with a @ZJ that decomposes the
occupied bands into bundles of bands, each of which forming an EBR. This works because the
permutations act on the smooth gauge obtained by the Crystallographic Splitting Theorem|[131]
only by cycling within the EBRs. Each of these EBRs can then be further decomposed, possi-
bly with need to break symmetries, by applying further 1Ls with corresponding prefactors ;.

In Appendix [[T.A] we show explicitly how to construct such an operator for a case with TRS
and Cy symmetry.

11.9.2. Proof of Smoothness and Symmetry of the Gauge

In this section, we prove the smoothness and the symmetry properties of the gauge spanned
by [b). We want to prove the following statements:

1. The |by) are independent of the choice of the gauge for |uy).
2. The |by) are an orthonormal set that spans the subspace of the occupied bands.

3. The subspaces of the occupied subspaces corresponding to different sides of gaps are
smooth. This does not mean that the [b}) are smooth, but only that the space that
is spanned by the vectors on the same side of the gap is smooth. In other words, the
projectors are smooth.

4. The sewing matrix f)?" = (b |r|by) corresponds to the intended type of permutation
(e.g. block-diagonality, three-cycle) for a unitary symmetry s.
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5. The sewing matrix B{’{m = <bl"k‘sl€|bﬁ> corresponds to the intended permutation (it is
either block-diagonal or block-off-diagonal, corresponding to the eigenvalues).

In this section, we make usage of Appendix A from Schindler et al. [75]. Proofs for block-
(off-)diagonality of sewing matrices that proceed in analogy to this work can be found in

Appendix

11.9.2.1. Orthonormality

The orthonormality of the |b}}) follows from
(Oklbie) = D o (e [ vt = D 0okt = (alvien) = O, (IL131)
mm m

for which we used the orthonormality of the eigenvectors of ¥ (¥') in the Hermitian (non-
Hermitian) case.

11.9.2.2. Gauge Independence

We prove that |b)}) does not depend on the gauge of the vectors |uj.). We suppress the parameter
k in the notation in this section. Using the notation

u= |77 " (11.132)
- ﬁNOCC -
we can write U as .
U = upul. (I1.133)

We apply a unitary transformation U to [@") = > Upp [u™). If v is an eigenvector of 0,
then we get that the vector

v =UM (I1.134)

is an eigenvector of 3
U = (UTw)*(UTw)" = Utwu"U = UTOU (I1.135)

with eigenvalue k, because
Up = WUty = UTOUUTw = UTw = kUTw = ko (11.136)

We use this to look at

B"> =S arjam. (IL137)

m

We rewrite it as follows

) - e = 5 (S0, ) 6 ) - Sevg

lp

)
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a) =30,

l

u’> — o™ (IL.138)

= Z 01
lp

This shows that the |b}}) are independent of the gauge of the occupied subspace.
For the non-Hermitian case, we instead look at the SVD of U = WXVT and at ¥ = WVT.
We then get a new SVD

b =utiu = utwsvio = weit (I1.139)

with V = U'V and W = UTW, which are both unitary because the composition of unitary
matrices is unitary. This then gives

V=Utwviy = ¥ = Ut (I1.140)

According to the arguments above in equations [[I.135] to [[1.138] this now implies that the
vectors |b") are gauge-independent.

11.9.2.3. Smoothness of the Gauge

Using that the |b}) are independent of the gauge of the |u}}) we can assume, without loss of
generality, that the |uj) are already in a locally smooth gaug This implies that \I”If” is
smooth as well, because it consists of multipications of smooth quantities. This then implies
that the ¥, span smooth subspaces above and below the gap (see Alexandradinata et al.[131],
Refs. [148-151]). Since the space spanned by the ({Ukp | Kkn > Kgap}) is smooth, the space
spanned by the back-transformations, [b) = >_,, vy, [ui'), is smooth as well, using the fact
that our |uy) are smooth. Due to the gauge-independence of the |by) this generalises to all
possible gauges of |uy).

If we are in the non-Hermitian case and are looking at U = WVT, we additionally have to
prove that the mapping f : U — U’ is smooth. The fact that this mapping is a well-defined
function comes from the uniqueness of the polar decomposition. The unitary projection can
equivalently be written in terms of a polar decomposition of the matrix

Uy = WSV = W W wa vl (IL.141)
Iy U
k k

The polar decomposition is unique for invertible matrices[143, pp. 42-45]. Therefore, the
mapping Wi — ¥}_is well-defined, whenever all its eigenvalues are nonvanishing. Furthermore,
since

po— (b, )" 11.142
k k *k ( : )

is a smooth function of k and the inverse does not impede differentiability away from 0, the
mapping f is smooth.

Another way to see is that we know that W and V are given by the eigenvectors of VARV
and \i'\iﬁ, respectively[152, pp. 91-120], which means, together with the fact that WVT is
independent of the chosen SVD, that f is indeed smooth.

4Tt is in general not possible to choose a globally smooth gauge, the impossibility to choose such a gauge is
detected by a nonzero first Chern number. Still, for the sake of this argument, it is sufficient to look at a
small open region around every momentum. All these regions can then be patched together, keeping in mind
that the new gauge is independent of the original gauge.
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11.9.2.4. Proof of Permutation-Likeness of Sewing Matrices

We assume that the W has the symmetries

2wim ©

sjthist = e sk (I1.143)

and ) )
sidLs! =+ . (I1.144)

The second line corresponds to a anti-unitary symmetry, expressed with the transpose instead
of the complex conjugation.

Hermitian case If Qj)k is Hermitian, it is possible to simply use the e1genvector decomposition
of Wy. In this case e e {+1, —1}. Because of the Hermiticity of ¥, we know that

Uy = Vi DWVyl, (I1.145)

with a diagonal matrix Dy and a unitary matrix V. Furthermore, we know that the occupied
eigenspace at Sk is spanned by |u$, ) = s |uy). This does not lead to a loss of generahty of the

argument, because the vectors |b}}) are gauge-independent. As before, we have \I/k = ukwkuk
This implies for Sk that

1_ 2mim ° T 2mim o

e” T o sisisul =e T n Uy (11.146)

o o T
Uy = U*Sk¢SkUSk = U1*<3

using that ugyx = uxs’. This now implies that if Uk, is an eigenvector of Uy with eigenvalue

Kk,n, it is also an eigenvector of / sk with eigenvalue e_%%/ik,n. If we have a set of orthogonal
eigenvectors vk, and the correspoding set |by}), then this implies that a vector i , can only be
nonorthogonal to vectors sk ,, with eigenvalue ethmﬁ;k,n. This proves the that the sewing
matrix for the |by) looks like a permutation (at least up to blocks of the size of the number of

bands grouped together by gaps.).

Next, the anti-unitary symmetry s is treated. In this case (e.g. TRS), the occupied space at
—k is spanned by |u”, ) = sK |u}!). Then

°

Uy = ut b gy = + (ufs”) " sipst (ups”)"

= :tukﬁTﬁletsTsuL = :I:ukij)f;u;r( ==+ (ul*(i/)ku£> =40, (IL147)

If \i/k has the eigenvector vy , with eigenvalue ky , \i/_k has the eigenvector Ui';n with eigenvalue
+ry ,,- This implies for the corresponding vector |bj) and the sewing matrix that

DR = (s = 3 it (0o F ) = 3ty = b (1L148)
Ji

This holds as long as the eigenvalues are nondegenerate. Due to the existence of a gap through-
out the BZ, the sewing matrix is then block-(off-)diagonal, taking into consideration the or-
dering of the ’b >
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Non-Hermitian case Unitary symmetries work in exactly the same way as they do in the
Hermitian case. For antiunitary symmetries, we have to look at the version of the symmetry
with the transpose instead of the complex conjugation. Here

° x ° % x ° % T
\Ij_k = ’U/_k’l)Z)_kUZk = Zl: (UkﬁT) 5¢1€5T (UksT)
o o 0 T o o
= tuest sl sTsul = tuhlul = (u;;zpkuﬁ) = 207 =+ (11.149)
Lemma (Biorthogonality)[153, p. 239]: If ¥ |[v) = & |v) and ¥ |w) = X |w) then
K (wlv) = <w’\11‘ > = <\I/w’v> =\ (wv) = (k=A%) (wlv) =0. (I1.150)

If Wy is a left eigenvector of Wy, which means that \llliwkm = Ak,mWk,m, then Wy is an

eigenvector of U_y with eigenvalue K_x , = £Ay ,,. The sewing matrix is given by
i)

= Zw{( m”kn ij = (Z wk mVk n) =0if £h xm = ANem # Fkn-  (11.151)
ji

<b ‘EK}bk = Zwi,mvﬁn <uj_k‘
i

This proves that the sewing matrix has block-off-diagonal form for — and a block-diagonal
form for +.

11.9.3. Construction of PSOs Based on Symmetry Only

In this section, we will describe how to construct SOs and how the corresponding band struc-
tures look like. This section describes an easy method to construct SOs that is based solely on
using symmetries and does not rely on defining real space operators. Still, the effects of real
space symmetries on band structures are taken into consideration, by considering the appear-
ance of band inversions.

We start this discussion with the case that motivated this thesis: the obstructed atomic limits
of two-dimensional Cy-symmetric materials in Altland-Zirnbauer class AIl (72 = —1). In the
second part of the section Cs- and Cg-symmetric Hamiltonians that require non-Hermitian
SOs are treated.

The application of the PSO method is shown in several examples.

11.9.3.1. Case with TRS and C; Symmetry

This chapter mainly deals with the models by Benalcazar et al.[133] (cf. section for
OALs that are Cy symmetric and the model by Song et al.[138] (cf. section [[L.4.2). For the
models by Benalcazar et al.[133] we look at the doubled models with TRS. The models are
defined on a 2D quadratic lattice. They have TRS and Cy symmetry and are lattice periodic.
In these models the use of non-Hermitian IZJS is not necessary to arrive at single bands. The
r4 eigenvalues at the TRIMs I' and M are either /4 or ¢¥37/4 The most straightforward
way to separate these four bands with different eigenvalues to twice two bands with specific
real parts of their rotational eigenvalues is to use the operator

i =14+, (I1.152)
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b) ¥ band structure of the model Héz)(k,t =
0) (corresponding to the primitive genera-
tor héi), Benalcazar et al.) at t = 0.
We can clearly see two Dirac-like doubly
generate points at X and Y.

(a) ¥ band structure of the model H2(4)(k,t = 0) (

(corresponding to the primitive generator hg;),
Benalcazar et al.) at t = 0. We can clearly
see four Dirac-like doubly generate points halfway
between the TRIMs I' = (0,0) and M = (7, 7).

Figure I1.23.: U band structures calculated using ¢ =ry+ rjl for two different models.

Figure I1.24.: A typical function ¢y with r4 symmetry.

This matrix satisfies the symmetry requirements

T4Q;Zle = Q;Z)R4k7
i =, L153)

Pl = e

If the spectrum of the corresponding PSO U is gapped, the two pairs of bands correspond
to specific eigenvalues. The compatibility with Wyckoff position 1a can be seen from the fact
that for 1la, the r4 eigenvalues at I' and M are the same as for a Wannierised band centred at
la. The same applies also for the bands obtained using this operator: we always project into
positive (negative) real part of the r4 eigenvalue for the upper (lower) band, respectively. This
is compatible with a BR corresponding to the Wyckoff position la. If we instead wanted a w
compatible with 1b, we would have to build a 1p that takes the band inversion into account.
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Using this 2/) =714+ TL a gapless spectrum can often be gapped out simply by using
U =14+ T+ tea (I1.154)

with a symmetrised constant matrix « (fulfilling the same symmetry requirements as @k in
equation [[I.153), where ty is a smooth function with values in [0,1]. This ¢y is 0 at I' and M
and also respects r4 symmetry. An example for a ¢y is the function depicted in Fig. [[1.24] It is
0 at I" and M, away from there it goes up to 1 in the shape of a cos(4|k|) and plateaus at the
first ridge of the cosine. It is continuous and once differentiable. Due to the discretisation, the
lack of higher order differentiability does not impede the application of smoothness arguments.
Appendix [I1.C| deals with the question whether it is possible to perturb \I/k instead of wk It
is hardly poss1ble.

In the following we look at the examples. We start with the two tight-binding Hamiltonians
H§4) (k) (primitive generator héb)) and Hj (2 )(k) (primitive generator hgi)) at t = 0. The ¥ band
structures of the models using O =rs+ rl are depicted in figure |II 2331 and |II 23b| We refer to
the eigenvalues of Uy as functlon of k as “U band structure”. The upper (lower) band of Ty is
then called the upper (lower) ¥ band.). Both of these band structures have double degeneracies

between the upper and the lower band. For H2(4)(k), these degeneracies are halfway between

I' and M. For H?EZ) (k) they are at X and Y. Since the ¥ band structure is gapless, the
corresponding gauge is neither symmetric throughout the BZ nor are its projectors smooth.
This makes it necessary to add a small perturbation to gap it out, like described in equation
The perturbation that leads to the appearance of a gap is in both cases given by

Qok = 09 ® 01 ® 0. (IL.155)

The other combinations of Pauli matrices do not lead to any gap appearance. The conditions
under which such degeneracies can be gapped out are discussed in detail in section where
we show that only double degeneracies can be gapped out. Single degeneracies always remain
closed, but can be moved through the BZ by applyin oerturbatlons The ¥ band structure
calculated with a perturbed 1/1 is shown in Fig. [[I.25a| , in Fig. [ m li the
Wilson spectra in the lower and upper ¥ band are shown, for H, ( )(k t =0) (resp. H (k,t =
0)). Appendix [[I.D| deals with the question whether the Wllson loop spectra deplcted in
Figures I[1.25b] and [[1.26b| can also be calculated without diagonalising Wy by instead modifying
how the Wilson loop is calculated.

The type of 1/) we used here leads to block-diagonal sewing matrices of the form

Dy = <* *> and D,, = <* *> . (I.156)

(4)

We are interested in distinguishing the case h,,” with two Kramers pairs at the Wyckoff position
1b from the cases with electrons centred at 2¢ or la. The question is whether this is easily
possible. Looking only at Figure one might think that this type of double winding
could be a clear signal of the hop OAL. While we do know that the winding for a 1/1 of the type
we used, projecting both at M and at I' into the same eigenvalues, must be non-trivial, the
Wilson loop spectrum does not necessarily show the double winding behaviour. In Fig.

we show an example of a Hamiltonian that corresponds to the same atomic limit (also h;é )
but shows a different winding pattern. This pattern with a fourfold winding appearing in
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(a) ¥ band structure of the model H2(4)(k, t = 0) (correspond-

ing to the primitive generator hgll)), Benalcazar et al. )
The Dirac-like cones, visible in Fig. are gapped out
using a small perturbation.

) )
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12 3 4 5 6 1 2 3 4 5 6

(b) Wilson loop spectrum in lower (left) and upper (right) ¥ bands. We can see a
double winding that cannot be trivialised within the symmetry constraints.

Figure 11.25.: ¥ band structures and Wilson loop spectra for H2(4)(k, t =0), perturbed w
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Ky 6

(a) ¥ band structure of the model H. §2)(k, t = 0) (correspond-

ing to the primitive generator hgi), Benalcazar et al. )
The Dirac-like cones, visible in Fig. are gapped out
using a small perturbation.
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(b) Wilson loop spectrum in lower (left) and upper (right) ¥ bands. We can see a
winding that cannot be trivialised within the symmetry constraints.

Figure I1.26.: ¥ band structures and Wilson loop spectra for H§2)(k,t = 0), perturbed ¢
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(a) U band structure of the model H (k t=—0. 2) +42 504 fold

(corresponding to the prlmltlve generator h2b , Benal-
cazar et al.). The ¥ band structure is gapped.
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(b) Wilson loop spectrum in lower (left) and upper (right) ¥ bands. We can see a
trivial winding in the upper ¥ bands and a fourfold winding in the lower bands.

Figure 11.27.: \I/ band structures and Wilson loop spectra. Here H Hé )(k t = —-0.2)+
5a4 fold, for ay fo1q see appendix III EI, Eq. |II 25’4 The ¥ band structure is calcu-

lated with iy = 74 + 7“1.

the lower ¥ bands and no winding at all in the upper U bands can be achieved by adding
a constant perturbation §a4 fold, given in appendix equation to the Hamiltonian

H2(4) (k,t = —0.2). Furthermore, we observe that the Wilson loop spectrum for k, = 0, 7 is not
pinned to 7 anymore, which means that this property is not a topological invariant. In this

example, ¥ = ry + rl was used.

Furthermore, it is enlightening to study the system H (k) = H§4) (k,t = 0.2) + amatadqa With
Q'matadd given in appendlx@, equation This system shows double winding in the up-
per and the lower ¥ bands for w =14+ T‘L but it can be driven to show the the combination of
fourfold and no winding by using T/Jk = H(k). The ¥ band structure and the Wilson spectrum
for ¢ =ry+ rl are depicted in Fig. m for @Zo)k = H(k) in Fig. Using this system, we
can see that the transition from one type of winding behaviour to the other can also happen
by changing 7Lk-

In the numerics, it can be clearly seen that the transitions between different types of winding
behaviour happen by gap closures. The gaps between the upper and lower ¥ bands close at a

95



(a) U band structure of the model H2(4)(k,t = 0.2) + Omatadd
(corresponding to the primitive generator héi), Benal-

cazar et al. ).
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(b) Wilson loop spectrum in lower (left) and upper (right) ¥ bands. We can see a
double winding that cannot be trivialised within the symmetry constraints.

Figure I1.28.: ¥ band structures and Wilson loop spectra for H§4) (t=0.2)+ %amamdd. z/ojk =

H§4) (k’ = 0'2) + O'matadd

point in the BZ. The appearing degeneracies are always at least double, because single degen-
eracies cannot be gapped out. The double degeneracies are split from each other, then moved
separately through the BZ and finally merged with other single degeneracies, to be gapped
out. is in which only single degeneracies appear, like those appearing when moving from one
type of winding to the other, cannot be gapped out using infinitesimaly small perturbations;
they require a certain strength of perturbation, because the single degeneracies must be moved
through the BZ to gap them out. The properties of degeneracies are explained more in detail
in chapter [[1.9.5

section . Its Hamiltonian is given in equation Its ¥ band structure for ¢ = 0 and
Yk = r4 + 1y is depicted in Fig. [I1.30al and its Wilson spectra in the upper and lower ¥ band
are shown in Fig. [[I.30b] This system is a double TI and does not correspond to an atomic
limit.

Another system also studied in this section is the system described by Song et al.|138](cf.
11.4.2)

Next, we observe that the gauges can be further split. To this end, we split each of the 2-band
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(a) U band structure of the model H§4)(k, t = 0.2) + amatadd

(corresponding to the primitive generator hg;), Benal-

cazar et al. ).
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(b) Wilson loop spectrum in lower (left) and upper (right) ¥ bands. We can see a
fourfold winding that cannot be trivialised within the symmetry constraints in
the upper ¥ bands.

Figure 11.29.: ¥ band structures and Wilson loop spectra for H2(4) (t = 0.2) + amatadd USIng

¢=r4+r:[.
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K, 6

(a) U band structure of the model Haouble T1(k, t = 0.0) (a
double TT) (Song et al.[138]).
)

4 F 4
2 M, 2 %
1 \/ 1 \/
1 2 3 4 5 6 X 1 2 3 4 5 6

(b) Wilson loop spectrum in lower (left) and upper (right) ¥ bands. We can see a
single winding that cannot be trivialised within the symmetry constraints.

Figure 11.30.: ¥ band structures and Wilson loop spectra for Hyouble T1-
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subspaces further using a 1/1 with the properties

Ui = U,
ratirt = YR,k (IL.157)
TeT ' = =

Intuitively, the idea behind it is to split the up- from the down-spin electrons. In this
gauge ( ‘bll(>, ‘b@), T maps one band to the other. This follows directly from the proof
for the permutation-likeness of sewing matrices (cf. section . For such gauges it can
be shown that, if, like here, C5 is present as well, the superimposed Wilson spectra of the
one-bands subspaces give exactly the Wilson loop spectrum of the 2-band subspace (cf. sec-

tion [[1.6.2). In Fig. |[1.31) and [1.32 we show two different gauge-constructions for the case of
Hy = H§4) (k,t = 0). One of the constructions (Fig. [[1.32) is like the previous one, only with
the second the split added to get single-band subspaces. This means that ¥, = 74 —|—rj1 + ok

The other construction (Fig. ) is the case of ¢ = (rq4 + rjl)(l + cosk, + cosky) + tkf3,
where (3 is the matrix in equation in appendix This @ZJ corresponds to a projection
into subspaces that change r4 eigenvalues from I' to M, which is then compatible with the
Wyckoff position 15, to which the Hamiltonian corresponds. This becomes evident from the
fact that bands with positive eigenvalues k of 0 change from having a positive real part of the
r4 eigenvalues to a negative one. This represents the band inversion of bands with Wannier
centres localised at the 16 Wyckoff position. Therefore, the expected effect is that there is no
winding. No winding in the Wilson spectrum of the single band subspaces corresponds to zero
first Chern number. We obtain a gauge with vanishing Chern numbers and symmetries that
act as permutations on the bands. Consequently, according to the Crystallographic Splitting
Theorem, the occupied bands are a band representation[131].

Both in Fig [lI.31f and [lI.32} we show the splittini of the lower two ¥ bands using the second

U with the properties described in equation [I1.15

Next, we look at the case when the electrons are situated at the positions 2¢ and 2¢/. In this
case, it is impossible to find a @Zk respecting Cy symmetry such that the Wilson loop spectra
of the final single bands do not wind. Instead, we construct a gauge such that the symmetries
of the site symmetry group of the single electrons are respected and the remaining symmetries
act by exchanging bands. To construct such a gauge, we use two consecutive splits, the first
one with a matrix respecting

b=,
ratir} = —tn, (IL.158)
TT ' =1,
the second split is achieved using a matrix respecting
i =},
1"41/3)1(7“1 = e, (IL.159)
TT ! =~
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(a) ¥ band structure of the (b) ¥ band structure within (c) ¥ band structure within
model H2(4)(k,t =0). Split the lower two bands using the upper two bands using
to two two-band spaces a random 1/1 the same random d)
using ¥ corresponding to
Wyckoff position 1b.

2] 6
5 /\_\ /_/\ ° a/\__\ /*/\-.
) / . . ) ; \ \
3 3
2 ! o / 2 \ & /
1 \/_/ \_\/ 1 \/J \_\/
1 2 3 4 5 § M 1 2 3 4 5 &
(d) Wilson loop spectrum in lower (left) and upper (right) ¥ bands. We see no
winding.
6 2]
5 5
4 Y 4
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2 &_\/ 2\/__/
1 1
1 2 3 4 5 6 1 2 3 4 5 6

(e) Wilson loop spectrum in lower (left) and upper (right) ¥ bands within the lower
¥ band. Both bands have vanishing Chern number.

Figure 11.31.: ¥ band structures and Wilson loop spectra for H§4) (k,t = 0), calculated using
= (rq+ rl)(l + cosk, + cosky) + tiS.
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(a) ¥ band structure of the (b) ¥ band structure within (c) ¥ band structure within
model H2(4)(k,t =0). Split the lower two bands using the upper two bands using
to two two-band spaces a random 1. the same random 2.
using 9 corresponding to
Wyckoff position la.
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6 6 - :
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4 i Y 4 Y Y
S
2 yoF yoF 2
U 1

T2 3 a4 s e M i T2 3 4 5 e

(d) Wilson loop spectrum in lower (left) and upper (right) ¥ bands. We can see a
double winding that cannot be trivialised within the symmetry constraints.
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(e) Wilson loop spectrum in lower (left) and upper (right) \i/ bands within the lower
W band. The bands both have non-zero first Chern number C' = +2.

Figure 11.32.: ¥ band structures and Wilson loop spectra for H§4) (k,t = 0) using Q;k = (rq +
TD +tkoo ® 01 ® 0y.
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(a) ¥ band structure of the (b) & band structure within (c¢) ¥ band structure within
model Héz)(k,t = 0.2). the lower two bands using the lower two bands using
Split to two 2-band-spaces a random 1. the same random 2.
using g corresponding to
Wyckoff position 2c.
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(d) Wilson loop spectrum in lower (left) and upper (right) ¥ bands. We
can see no winding.
G} 0
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(e) Wilson loop spectrum in lower (left) and upper (right) ¥
bands within the lower ¥ band. These bands have zero
first Chern number.
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(f) Wilson loop spectrum in the lower (left) and upper (right)
bands within the upper ¥ band. These bands have zero
first Chern number.

Figure 11.33.: ¥ band structures and Wilson loop spectra for H§2) (k,t = 0.2) using a 7;1( that
is compatible with Wyckoff position 2c.
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The constant matrix used as 121( for the first split is the matrix in eq. appendix
The ¥ band structure is shown in figure The constant matrix used for the second split
can be found in equation appendix [[I.LEl The ¥ band structures within the lower and
upper 0 (first split) bands are shown in figures |II.33b| and |II.330L This gauge corresponds to
the sewing matrices

D¢, = , Dy = . (11.160)

The Wilson loop spectra both in the two-band subspaces after the first split and in the individ-
ual bands after the second split are depicted in Figures and Figures [[T.33¢] and [IT.331,
respectively. The triviality of the Wilson loops together with the permutation-likeness of the
sewing matrices proves that these filled bands indeed form a band representation.

Projected Symmetry Indicators to evaluate the Invariants The invariants by Kooi et al.[130]
(cf. section can be evaluated using bands that are calculated using a PSO. To do so, we
choose a 121( that produces a gauge in which the Cy sewing matrix is block-diagonal and the
TRS sewing matrix is block-off-diagonal. Such a 1Zk has to fulfil

TLk = QL;L:
ratir) = Yrue (I1.161)
TeT ' =~ i

We can simply choose
i = <1 _1> (11.162)

when looking at the doubled models by Benalcazar et al.|133]. The resulting U band structures
and Wilson loop spectra in the lower ¥ bands are depicted in Fig. [I1.34| for H2(4) (k,t =0.2)
(Wyckoff position 1b), H§2)(k,t = 0.2) (Wyckoff position 2¢) and H32 (k,t = 1.2) (Wyckoff
position la). The calculation of the invariants and the needed quantities are listed in ta-

ble [T:3] They are straightforwardly evaluated, and lead to the correct number of electrons at
each Wyckoff position, given by the numbers v/{, > u{b and Vzlc, calculated using equations|I1.108
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(a) ¥ band structure (left) and Wilson loop spectrum in lower ¥ bands (right) for

H2(4)(k7 t = 0.2). This Hamiltonian corresponds to Wyckoff position 1b.
6
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(b) ¥ band structure (left) and Wilson loop spectrum in lower W bands (right) for
H 52) (k,t = 0.2). The occupied bands correspond to Wyckoff position 2c.
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(¢) ¥ band structure (left) and Wilson loop spectrum in lower ¥ bands (right) for
H§2)(k, t = 1.2). The occupied bands correspond to Wyckoff position 1a.

Figure 11.34.: On the left, ¥ band structures to get a gauge that allows for the calculation of
the invariants by Kooi et al.[130]. On the right, Wilson loop spectra in the lower
bands of this gauge to read off the Chern number.
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HYkt=02) | Bk t=02) | B (k,t =1.2)
L/ 1 1 1
IS 0 0 0
Thin/a 0 0 0
T gin/a 1 1 1
M, 1 0 1
ML, 0 1 0
My, 0 1 0
My 1 0 1
X7, 2 1 0
X! 0 1 2
c! 0 0 0
u{;a 0 0 -2
VlIb -2 0 0
1z 0 -1 0

Table I1.3.: Evaluation of the invariants by Kooi et al.|130] (cf. section [I1.8.2)) for the primitive
generators.

11.9.3.2. Case with (s and C35 Symmetry

Next, we will study some cases with Cg symmetry. The main focus herein will lie on the model
H 56) (k,t = 0.1). This section mainly deals with what we refer to as the problem of three-cycles.
To understand the problem of three-cycles, look at the non-spin-degenerate model in Fig.
It shows a lattice with Cg symmetry, in which the electrons are situated on the edges of the unit
cell as depicted on the right. There are three electrons per unit cell. One would like to split this
three-band model with {|u11{> , |ul2{> , |ui°’(>} into three bands, each of which should have trivial
Berry phase winding (Wilson loop spectrum without winding). Furthermore, the symmetries
have to act as permutations on the bands. The obvious permutation in this situation is a
permutation corresponding to cycling through the three electrons. In order to split them,
one has to break C3 symmetry, Co symmetry survives. The standard procedure to break, for
example TRS or r4 symmetry, is to have for a symmetry (s, S)

sthes ™ = —sic. (11.163)

This procedure ensures that the symmetry acts as a permutation and the sewing matrix be-
comes

D" = (uy|s|uy) with Dy = (2 3) . (I1.164)

The corresponding procedure for the case in Fig. |[1.35is that the symmetry acts as a three-
cycle. This translates into a sewing matrix of form

0
B = (uf i |rs|uiy) with By = [ 0 (11.165)
*

O O ¥
O x O
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Figure I1.35.: Lattice of a Cg-symmetric model with two (doubled model) or one (original
model) electron situated at the 3¢ Wyckoff position.

This can be induced using a non-Hermitian 1/) with the property
° 27 o

7“31/)1(7“;[ =e 3 Ypyk (I1.166)
that would have to exhibit a star gap. From the proof in section[[T1.9.2.4] follows that the sewing
matrices meet our conditions.
For the three-cycle solution to work when TRS is present, too, we need to use the T defined
with the transpose. If we use the version with complex conjugation, we do not obtain a viable
result. The reason for this is that we would require a 1 fulfilling the following two conditions:

4mi o

TWkT(JE = €3 YRk

; i (IL.167)
ToT ' =4 x
Furthermore, we know that [T,7¢] =0 = [T 1, rg] = 0. Together this yields
reToRT Lrh = Trewr T~
= etk = Te 5 paT 'y = =0, (IL.168)
= e%%Zng =e7o Jng

This problem does not appear if we instead define 7 using the transpose and require
bt =y, (11.169)
because then

T
TGT(IETTTE =T (TGQkT(Jg) 7‘Jr

47 T
= rga,krg =T <6 3 ang) 7']L (11170)
=€ 3 OZRélk =€ 3 OZRZék.
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Thus this allows us to construct nice gauges on which the symmetries act as permutations.
In the following, a few examples for such gauges are presented. To begin with we look at

HéG) (k,t = 0.1) and construct a gauge corresponding to a six-cycle in one step. The 1,/} for such
a gauge must carry the symmetries

TGTZJkT’(T; = €3 YRek
71/011{7'T = —TZ—k.

The TRS sewing matrix in this case must in addition be off-diagonal, because when cycling
through the six electrons we cycle both through up- and down-spin electrons. The sewing
matrices corresponding to this behaviour are

(IL171)

* *

(11.172)

D,, = and Dr =

The 1Lk we use in this case is a constant 1/011{ = ¢ constructed by symmetrising a random matrix

o

1. This symmetrisation procedure contains a Cg and a TRS step. The Cg step is given by

° o T o 217 o 3im o 4im o 511 o
Yo = UPr + e?rgzbrrf; + eTr§T¢rr§ + eTT‘g’Twrr% + eTréTwrré + eTrgTwrrg (I1.173)

and the TRS step by i . .
b7 = do, — ngﬁT_ (I1.174)

By trimming the starting matrix J)r, a U band structure with 6-star gap is found. The 1/37—
that was used is given in equation appendix [[L.E] The band structure is depicted in
Fig. (ring further outside). The inner ring with absolute value 1 consists of the eigen-
values of the unitary projection of \i/k.

Fig. explains the meaning of the colors in the band structure plots. The colors repre-
sent a color-coded k-space position. The three-dimensional impression in the figure of the o
band structure results from the order in which different points are plotted and has no physical
meaning. Without the colors, the band structure has sixfold rotational symmetry.

The Wilson loop spectra corresponding to the six single U bands are depicted in figures |I1.36¢

All the Wilson loops are trivial, which shows that the occupied bands indeed corresponds to a
BR.
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(b) Mapping from k =
(kz, ky) to colors.

Re k

(a) Band structure of a U to get a 6-cycle gauge (outer). The ring with
absolute value one consists of the eigenvalues of the unitary projection
of the W. The eigenvectors corresponding to this unitary projection form
the new gauge. There is a 6-star gap.
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(¢) Wilson loop spectra in the Cg-symmetric 6-cycle gauge.

Figure I1.36.: ¥ band structure and Wilson loop spectra for H2(6) (t = 0.1) to get a 6-cycle
gauge.
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Next, we show two ways to construct a gauge with three-cycle behaviour in both the rg and
the r3 sewing matrices. This can either be done in one step or in two steps. With the one step
procedure, we obtain the sewing matrices

* , *
* *
* *
DT6 - % 5 Dr3 == % )
* k
* *
(I1.175)
* *
k *
* *
Dy, = . and Dy =,
* *
* *
The symmetrisations used to get these sewing matrices are
1[) =iy +e 5 7“6%7"6 et r6T¢rr6 + T’GTl/JrT‘G et r6T1/Jrn3 tes r6T¢rr6 (I1.176)
and ) ) )
Y7 = Yo, — TG T (I1.177)
It follows that ) ) -

The 1/}7 we used is given in equation appendix [[I.LEl The ¥ band structure as well as the
eigenvalues of the unitary projection of U are deplcted in Fig. | The mapping between k
and the colors is again shown in Fig. Fig. [I shows the Wilson loop spectra of the
single bands. Their triviality together with the fact that the symmetries act as permutations
on the bands proofs that the occupied bands form a BR.

If we construct the three-cycle gauge in two steps, we get the sewing matrices

x *

(11.179)

D,, = and Dy =
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(b) Mapping from k =
(kz, ky) to colors.

Re k

(a) Band structure of a U to get a three-cycle gauge (outer). The ring with
absolute value 1 consists of the eigenvalues of the unitary projection of
the ¥. The eigenvectors corresponding to this unitary projection form
the new gauge. There is a 6-star gap.
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(¢) Wilson loop spectra in the Cg-symmetric a three-cycle gauge, constructed in one go.

Figure I1.37.: ¥ band structures and Wilson loop spectra for H§6) (t =0.1) to get three-cycles
in one step.
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(a) ¥ band structure to split the (b) ¥ band structures to split the upper and the lower ¥ bands

occupied subspace into two into a gauge on which r3 acts as a three-cycle. The mapping
subspaces mapped onto each from k to colors is given in figure [[I.37h|
other by 7.
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(c) Wilson loop spectra in the Cg-symmetric three-cycle gauge, constructed in two steps.
Figure 11.38.: ¥ band structures and Wilson loop spectra for H2(6) (t =0.1) to get three-cycles
in two steps.
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To construct this gauge, we first split the bands into “spin-up” and “spin-down*“ bands, using
a i with

";k = 1211)
TGQLkTg = qLR(jk? (11180)

P =~

The operator we used for the first step is

i = <1 _1> . (IL.181)

The ¥ band structure for this first split is depicted in Fig. Afterwards, the two three-
band subspaces are treated separately and split to obtain three-cycles. For this we use a
&k constructed with respect to Cg the same way as in equation but the time-reversal
symmetrisation is chosen as

by = %ZCG + T%gﬁﬂ (I1.182)

such that the TRS sewing matrix is then diagonal within the block.

The ¥ band structures of these two second splits are depicted in Fig. [II.38bl Below, in
Fig. we show the corresponding Wilson loop spectra in the single bands. They are,
as expected, trivial. The matrix used to split the bands into three-cycle single bands is given
in appendix [I.E] eq. [[T.264] It is often advantageous to perform such splits in several steps,
because then the requirements on the operators used for splitting are less strict. As we have
seen in the example, if we want to split the bands in one step, we need a 6-star gap; if we do
it in two steps, we only need a 3-star gap. It is easier to find a matrix that has a open 3-star
gap than a 6-star gap.

If the w and the ground state of the Hamiltonian do not fit together, there are two possiblities:
either the Wilson loop spectra show a winding behaviour, which means that the single bands
have nonzero first Chern number; or it is not possible to construct a gauge that is symmetric
and has smooth projectors, which means that all smooth functions \i/k k — \i/k that are

smooth are gapless. Looking at the Hamiltonian H fﬁ)(k), a Hamiltonian with eight occupied
band corresponding to the Wyckoff position 4b, and doing first a split breaking T to get “spin
up” and “spin down” bands, we can split it further to get a three-cycle. The U band structure
for this second split is shown in Fig. [T.39} it is gapless, because the BR of the occupied bands
does not fit to three-cycles.
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Re k

Figure 11.39.: ¥ band structures and Wilson loop spectra for H §6) (t =0.0) to get three-cycles
in one step. It is gapless because three-cycles are incompatible with the BR, of
the occupied bands of this Hamiltonian.

11.9.4. Construction of SOs based on Wyckoff Positions

In the previous section, we have described an unsystematic method to construct operators
1/011( to distinguish between different band representations corresponding to different Wyckoff
positions. A next step might be to think about how to do this more systematically by linking
the real space creation and annihilation operators to the k-space operators one might want to
use to do the splits. The basic idea is to define an operator

o= in. (I1.183)
R

where @ZR is a local operator. This operator is defined such that it assigns different values to
different Wyckoff positions. For example, if we have a creation operator dk at a 1b Wyckoff
position, then we would define

R = diprd}, »- (11.184)

This operator assigns a positive value to states situated at 1b, and therefore we expect to be
able to use it to split bands situated at 1b from other bands.

To make this concrete, we study the Cy symmetric models by Benalcazar et al.. They are
defined on a quadratic lattice with four sites per unit cell, depicted in Fig. The version
of the models studied here are the spin-degenerate ones, with one spin-up and one spin-down
electron per site (black in the figure). The eight sites are then given by 11,1 |, ..., 4 . For
each site 4, the creation operator is c;.rR, e.g. CJ{T((),O). We then define creation and annihilation
operators centred at the Wyckoff position, which also correspond to specific Cy eigenvalues.

The first such operator is

— t
dJ{aT,%’T,R = _CJ{TR + Cgm - C:T’)TR tiyr (I1.185)
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This operator has the property

7“4d]L

1wm%aR’0>

T T T T
T4 <_61TR Tor ~Gmt C4TR) 10)
_ iy - i i
=e 1 <_CQTR4R tChrRrR ~ R T CITR4R> 10)
3im 3im

=" (~chmr + am — %mm+immwm—e4ﬂ@%mﬂm-a“%)
This then implies that
"4 %: dia?,%,R =e'¥ ZdlaT,3” rar 10 = =e'% ZdlaT, 3 g |0 (IL.187)
which means that such a state has a well-defined Cy4-eigenvalue of e’
The corresponding operators for the other eigenvalues are given by
dIaT’ﬁ’R = _CITR + C;TR - C:TsTR + CzTLTRa
d11-a/|\7_3l R = ~iClir — g + ichip + cirs
dJ{aT,%,R = iCJ{TR - C;TR - ic:];TR + leTR’
dJ{aT,f%,R - CJ{TR + CJ;TR + C;L%TR + ijRv (IL188)
lal,3% R iCLR - Cgm - Z'C;E)m + CLR’ .
lal,— 37 R _CL,R + Cgm - icém + CLR?
diai,” R ™= CLR + Cgm + C:TuR + CLR?
dJ{a%_E = —z’cLR — C£¢R + ic:TuR + CLR.

r4 has two eigenvectors for every eigenvalue, one for spin-up, one for spin-down. We define an
operator that assigns positive eigenvalues to states located at the la, :I:‘ng7r position by

wla,:ﬁ:%’ = Z d 73I7R las,3™ R + dlas ;3# Rdlas =T R (11'189)
R,se{t,{}
The expectation is that the operator assigns zero eigenvalue to bands situated at other Wyckoff
positions, like 16 or 2c. After Fourier transformation using that CIR X Dk e~k Rch, we see
that this operator has the properties
jlat _ 7la
k k>
T4l r4__¢&gk, (I1.190)
Twlan k?

which are the properties needed in order to get a symmetric splitting with block-diagonality.
Analogously one gets the operator for 1b by changing

T T
ClsR 7 ClsRo

i T
CosR 7 CosR+(1,0)

T T
C3sR 7 C3sR4(1,1)

(I1.191)

T T
CasR 7 C4sR+(0,1)"
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Figure I1.40.: Unit cells for the Benalcazar model with Cy symmetry, including high symmetry
Wyckoff positions.

One might also want to to construct an operator for 2¢, to separate the two Kramers pairs at 2¢
and 2¢/. The problem in this case is that any such operator 1L2C can only carry the symmetries
of the little group of 2¢, which is 7 x Cy. To ensure that the symmetry operators 7 and ry
act as permutations on the bands, one must require that

Pt = e,
ragper] = —%,. (I1.192)
7—1212(67——1 _ 1L%Ck'

The important change here is the appearance of the minus in front of zﬁ%‘ik. One way to
construct such an operator is to first define two operators, one of them by the replacement

T T
CisR - CisR>

T T
C — C ’
2sR 2sR+(1,0) (11193)

T T
C3sR " C35R4(1,0)

f f
CasrR 7 CasRo
which we then refer to as d; .» and the other one by

T T
C1sR 7 CLsR+(0,1)
.I.

CosR 7 CgsRJr(O,l)’ (I1.194)
c;SR - C;’;R’
CLR - CLR?

:

which we refer to as d.,. There seems to be no obvious combination of the operators da. to

obtain a gapless ¢y for the position 2¢. Therfore, we are concerned with la and 16 Wyckoff
positions in the remainder of the section.

To provide a few examples, we examine the case H§4)(k,t = 0), which corresponds to the BR
1b@® 1b. For this case, we define two operators to completely split the occupied bands to single
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(a) ¥ band sztructure of the (p) ¥ band structure within the lower (left) and upper (right)
model Hé )(k,t = 12). two bands, resp., using V14, (1) k-
Split to two 2-band-spaces
using ¢1a,(37”<—>g),k'

6 0

TN L s o
—NWAOO

K K
) 1 2 3 4 5 68
(¢) Wilson loop spectrum in lower (left) and upper (right) ¥ bands. We
can see no winding.
e 0

i1 2 3 4 5 6

- NDNWhroIo®
—NwAOO

Ky Kx
1 2 3 4 5 6 1 2 3 4 5 6

(d) Wilson loop spectrum in lower (left) and upper (right) W
bands within the lower ¥ band. These bands have zero
first Chern number.

- NDWHOIO
= N WHr O

Ky ky
1 2 3 4 5 6 1 2 3 4 5 6
(e) Wilson loop spectrum in the lower (left) and upper (right)

U bands within the upper ¥ band. All these bands have
zero first Chern number.

Figure 11.41.: U band structures and Wilson loop spectra for Héz) (k,t = 1.2) with a @k that

is compatible with Wyckoff position la, constructed using creation operators.
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bands. The first operator, defined as

wlb 3” z - Z dlbo’sgi 1b053—”R dlbosf dlbUS R (11195)

4
UE{M}
3€{+77}

splits the bands with e=37/4 eigenvalue at 1b from those with e*™/4 eigenvalues. Then we
split bands with spin-up from those with spin-down by using the operator

Db (ress) = > dlyp o rdivtar = iy o gDbL.0.R- (11.196)
R
aelf -1 —5)

After Fourier transforming them, we simply obtain the operators for la instead 1b by setting

Ve (o)l T V(o) Ko (1w197)

wla (1451),k ¢1b (1451).k

The ¥ band structure and the Wilson loop spectrum when using 1211, on the occupied bands
of H( )(k t=0. 2) are shown in Fig. [1.42| Figure [I[.42af shows the ¥ band structure of the
first split using z/Jlb (Zez)- Figure [[1.42b|shows the ¥ band structure of the second split using

¢1b, (1)) Within the two two-band subspaces obtained after the first split. These three ¥ band
structures are completely flat. The Wilson loop spectra in the two-band subspaces obtained
after the first split are shown in Fig. Interestingly, they resemble the Wilson loop
spectra obtained for the whole occupied space. Figure shows the single-band Wilson
loop spectra after the second split. All these bands have zero first Chern number. Therefore
the occupied bands correspond to a band representation.

The ¥ band structure when using J}la applied to the occupied bands of the Hamiltonian
H, (2 )(k t = 1.2), is depicted in Fig. [[1.41, The occupied bands of this Hamiltonian correspond
to Wyckoff position 1la. Figure |[I.41a] shows the 0 band structure for the first split using
¢1a7(3% o) Fig. [[I.41b| shows the ¥ band structure of 1/11(17 (t«}) within the two two-band
subspaces of the previous split. The Wilson loop spectra in the two two-band subspaces are
shown in Fig. The Wilson loop spectra of the single bands, which all show trivial
winding, are depicted in Figures [[1.41d] and [[T.41e¢] This demonstrates that the occupied
correspond to a band representation.
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(a) ¥ band structure of the (b) ¥ band structure within the lower (left) and upper (right)

model H2(4)(k,t = 0.2). two bands, resp., using Tzlb,(T(—Ll,),k'
Split to two 2-band spaces

using ¢1b7(%ﬂ(_>%>’k.
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(¢) Wilson loop spectrum in lower (left) and upper (right) ¥ bands. We
can see no winding.
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(d) Wilson loop spectrum in lower (left) and upper (right) ¥
bands within the lower ¥ band. These bands have zero
first Chern number.
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(e) Wilson loop spectrum in the lower (left) and upper (right)

U bands within the upper U band. These bands have zero
first Chern number.

Figure 11.42.: ¥ band structures and Wilson loop spectra for H§4) (k,t = 0.2) with a 1/011( that

is compatible with Wyckoff position 1b, constructed using creation operators.

78



11.9.5. Degeneracies

In this section, degeneracies in the U band structure and their significance are investigated.
For simplicity, we only look at the case of TRS- and C4-symmetric Hamiltonians. Degeneracies
can also arise in other cases, for example when trying to construct three-cycles. In general,
degeneracies can arise either because the split one wants to perform is incompatible with the
physical properties of the underlying bands, or accidentally. This section is structured as
follows: In the first subsection we elucidate why single degeneracies cannot be gapped
out. In the second subsection we explain the appearance of some degneracies that are
enforced by the underlying bands, and can therefore not be gapped out. In the third subsection
we explain from a Berry phase point of view, why pairs of degeneracies can be gapped
out.

11.9.5.1. Protection of Degeneracies

("
be gapped out individually, but only in pairs, if we have TRS and C4-symmetry.
Because we are only interested in whether it is possible to gap out a degeneracy between two

bands, it is sufficient to look at only these two bands. This means that ¥ is a 2x2 matrix.
Since ¥y and ¢y are Hermitian, they are real linear combinations of the Pauli matrices

This section tries to prove that the degeneracies in the spectrum of \I”IZL” = <u’1? uﬁ> cannot

3
U =Y Ao, (I1.198)
1=0
o 3 .
Y= a0’ (I1.199)
=0

Without loss of generality, we study the situation with ro7 = K as representation of the
symmetry. In this situation, the allowed o? are o, o' and ¢3. ¢¥ only shifts the degeneracies
and therefore does not open a gap, thus it is not of interest. So what remains are two Pauli
matrices, which give in a linearised regime

Uy ~ (ay + asky + asky)o + (b + baky + baky)o™. (11.200)

We have two parameters (k; and k) to tune the positions of the degeneracies. The number
of free parameters is insufficient to gap out the cones. This is because a change of prefactors
only changes the position of the degeneracy in k-space, but does not lead to its disappearance.
This argumentation follows the precedent of the argumentation applied in similar cases by
Schindler and Neupert [137, p. 49-50], Bernevig |10, p. 75] or Bradlyn et al.[76].

11.9.5.2. Appearance of Degeneracies

In this section, two aspects are showed:

1. that degeneracies at general positions always appear in sets of four at a time, situated
at the position Rik, with i € [0,1,2,3].

2. that the U band structure is degenerate at the TRIMs (I', M, X, and Y).
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Degeneracies at general positions We know that the PSO at R,k is given by
b = (whne| b utac) = (w2 |} (radhird) rauit) = (i hefuit) = o (w201
This implies that a degeneracy at k also appears at Rik, which proves our statement. (]

Degeneracies at TRIMs At TRIMs, k = —k, we observe that due to TRS there are two
orthogonal eigenvectors |b) and ‘5> =T |b) = 7|b)*. This follows from

(ITI)" = K (| KT T2[0) = (B T2[b) = = (B[a[p) = = (bITI))" = 10) LTI}
(I1.202)
Furthermore, we observe that if the [b*) = > o [u™) is a basis of the occupied band, then

the ’i)m> = o*T |u™) also span the occupied space. The W in this basis is given by
Uy = (@) 717 K [0y = K <um‘¢‘u”> , (11.203)

which implies via
Uy =kt = ¥ = ko™ (I1.204)

that the two vectors ¢ and ™, which correspond to two orthogonal vectors |b1> and

5i>, have
the same eigenvalues (if ¢ Hermitian). We used the basis-indepedence of the vectors [b™).
It shows that there are two orthogonal vectors [0™) corresponding to the same eigenvalues.
Therefore, there is a degeneracy in the ¥ band structure. If we imagine being in a four band

situation, and closing a gap at a TRIM, we have to move two degenerate bands from below
and above to a joint energy. This will give us a fourfold degeneracy.

11.9.5.3. Trivialisation of Degeneracies

It is also important to consider whether these degeneracies (Dirac cones) can always be gapped
out. If we allow for a free choice of 121(, and assume that there is a periodic smooth and block-
wise symmetric gauge, then the possibility to remove them follows from the existence of a 121(
with flat bands. But this argument makes a lot of assumptions, so we will not step there.
Also, we showed in the last chapter that some degeneracies cannot be gapped out without
breaking symmetries.

Another way to see this is to look at the Berry phase (resp. the Wilson loop eigenvalues)
of Wilson loops that encircle a degeneracy or double degeneracies. This is based on the
observation that a single degeneracy contributes a Berry phase of 7, which corresponds to
Wilson loops eigenvalues (7,0). Degeneracies are regarded as trivialisable if the Wilson loops
around them can be deformed to have trivial Wilson loop eigenvalues (e.g. (0,0)). For this
we first have a look at the Wilson loop around an arbitrary isolated cone. We are always only
looking at the Wilson in the occupied occupied band (occupied bands of projected symmetric
operator, subspace of occupied bands of Hamiltonian).

For this we assume that we have a basis of the occupied occupied space with |ay) = 72T |ug).
The @ are simply a different basis of the same space. The Wilson loop is then given by

1
w =[] Fk) with Fyp(k;) = <um

ki1

uﬁ> . (IL.205)
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We observe that

Fii) = ((uit,,

*
n _ ~m

Because the Wilson loop eigenvalues are independent of reparametrisation of the basis, this
means that

TTT;T27-’&7IZ¢> = <aﬂ:+1 aﬁz> = Fynn (k). (IL.206)

Spectrum(W) = Spectrum(W™), (I1.207)

which implies that the eigenvalues must appear in complex conjugate pairs. If we only consider
one cone, we can separate off the involved bands and only get one Wilson loop eigenvalue, which
must be real. This then means that

esingle cone = 0, . (11208)

The second eigenvalue is then simply trivial, so 0 as well. This gives us the Wilson loop
eigenvalues of a single cone as (0,7), we amass a Berry phase of 7 when circling around one
cone.

Proof for trivialisability In this section, we argue that many degeneracies can be gapped out
because the Berry phases of Wilson loops sourrounding the degeneracies are trivial. The fact
that one cone contributes a phase of (0, 7) means that 4 cones together contribute only trivially.
To have a closer look at this, we will look at a closed Wilson loop and its Cy-correspondent.
A Wilson loop is given by

141

w= T[] Flk) with Fyp(k;) = <u$

uﬁ> . (I1.209)

We then see that the Wilson loop at the position rotated by Cy in k-space is given by

Cyk1 ki
W= H F(kl) = H F(kl) = {<u2}4k1\7+1 ug’4k1\/>} T {<ug4k2 |ug4k1>}
k;=Cskn Ci'ki=kn

= {Qt i)} - {0l ) } = (s

We see that the Wilson loops are the same. In this calculation we used that the C4 sewing
matrix is block-diagonal|75].

This can now be applied to the case of four degeneracies at general positions in the BZ (not
at I', M, X or Y). The joint Wilson loop W, is then formed in Cy-symmetric way, such that
four degeneracies are included. Its eigenvalue problem is then

e, ) b { (i et ) } = W

(11.210)

Wt = Wio = 495 = 7, (I1.211)

which is the case because the 6 is 0 or 7.

On the other hand, if we are at a high symmetry point of the BZ, which also happens to be
TRIM for C4 symmetric systems, our cones always appear in pairs. This then means that the
total amassed Berry phase is 2 = 0, which means that they can be gapped out.
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11.10. Outlook

This section points out some possible directions of further research and describes a few ill-
thought-through ideas I had. Maybe some of the ideas could be of use in the future and lead
to interesting results.

11.10.1. Non-Hermitian Topology with Star-Gaps

Star-gaps are a (possibly) new phenomenon that appear when trying to construct gauges
corresponding to n-cycle permutations. In the current research literature on non-Hermitian
topology (cf. Ref. [95]) the only distinction seems to be between point gaps, which are gaps
with one forbidden energy in the complex plane, and line gaps that are forbidden lines through
the complex plane, which can be deformed to “real” gaps in the imaginary or real part of
the energy spectrum. Star-like gaps are not mentioned. Therefore, it might be worthwhile to
consider three questions:

e Are there physical systems that show such a star-like gap? If this is not the case, there
is no reason to continue thinking about it.

e If yes, what is the topological classification of systems with such a gap?

e With which internal symmetries and/or space group symmetries are these gaps compat-
ible? Is there any connection to C), and/or screw-rotation symmetry?

11.10.2. PSO Method for Non-Hermitian Hamiltonians

It was shown in this part of the thesis that using an operator 1;1( and its projection onto the
occupied subspace Uy highly symmetric gauges can be constructed. Is there a corresponding
method that also works for the occupied bands of non-Hermitian Hamiltonians?

What needs to be taken into account is that the eigenvectors of non-Hermitian matrices are
in general not orthonormal, and therefore many of the proofs do not work anymore. Most
probably, one has to work with left and right eigenvectors, maybe one could define

drn — <uﬁm’¢k‘uﬁn> , (I1.212)

with the left eigenvectors ‘uﬁm> and the right eigenvectors ‘u§m>

11.10.3. Winding of Wilson Loops in the Occupied Bands

One question to adress is whether it is possible to prove that if the Wilson loop spectrum within
the occupied subspace shows no winding, the bands correspond to a band representation. This
statement can be phrased in two ways:

e If the Wilson spectrum shows no winding, the occupied bands are a band representation.

e If the occupied are not a band representation, the Wilson loop spectrum has non-trivial
winding.
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First, it was observed in a few instances that the Wilson loop before a split was exactly the
overlay of the Wilson loop after a split using a \i/k. This happened on the one hand for the two
band case described in section but also when using a ij constructed based on Wyckoff
position 1b to split the occupied bands of H2(4). If it were possible to prove that there is always
a zzk that splits the bands and leaves the Wilson loop eigenvalues unchanged, this could be a
pathway towards a proof.

11.11. Final Remarks

In the first part of the thesis, we have seen a quite universal method to construct gauges that
respect specific conditions concerning smoothness of projectors and the action of symmetries.
The method allows for a variety of different permutation patterns as sewing matrices and
enforces smoothness if there is a well-defined gap. In comparison to the method proposed by
Alexandradinata et al.|131] the main advantage of our method is that also n-cycle permutations
with n > 2 can be constructed.

This method allows to characterise which atomic limit an occupied set of bands belongs to, by
connecting it to the results of Kooi et al.[130] and their symmetry-indicator invariants. It is
a mathematically easier method compared to the quite complicated parallel transport method
by Kooi et al. and can be implemented straight-forwardly and easily. We are therefore now
able to distinguish the obstructed atomic limit 1b\i§ @ 10|, g from the trivial atomic limit.

Furthermore, we analysed in detail the behaviour of the Uy band structures of Hamiltonians
with TRS and C4 symmetry.
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IlLA. Explicit Constructive Proof for the Existence of a SO in a
Case with TRS and C; Symmetry

In this section, we prove for TRS and Cy-symmetric systems that if there is a smooth and
symmetric gauge, then we can construct a 1/1 that is TRS and Cy-symmetric and smooth. This
is a direct constructive proof.

To prove the existence of an 121( that fulfills the conditions on symmetry and analyticity, we
assume that there is a gauge |uy) that is smooth and respects all our symmetries. Such a
gauge could for example be constructed along the lines of the method proposed by Winkler,
Soluyanov and Troyer[147]. According to Alexandradinata et al.|131] the gauge exists if the
bands correspond to a BR. As a consequence, for this gauge the states are orthonormal, the
sewing matrices block-diagonal, and the gauge is smooth over the whole closed BZ. Due to the
smoothness and the completely fulfilled symmetry requirements (block diagonal TRS and Cy4
sewing matrices), the sectors |uy) can be uniquely assigned to the Cy symmetry sectors. We
refer to the states in the e*™/4 sector as [vf!) and to those in the e*37/4 as |wi"). We define
the matrix-valued function

b= V2 o) (vl = V2w (wi]. (I1.213)

At the points I and M, this matrix is obviously identical to 74 +TL because r [v}) = V2 [v}) =
(e“’r/4 + e*”/‘l) log) = (7“4 + ri) |vi) and analogously for M, |wy).
The next step is to prove that Py is smooth, gapped, Hermitian, and TRS and Cy-symmetric.

IlLA.1. Smoothness and Gap

Smoothness [y is smooth because the |v)!) and |wy) are smooth, by assumption.

Gap Since the eigenvalues are basis independent, we can without any limitations use the basis
spanned by [v!) and |w?). In this basis, U7 = (ul?| By |ull) is diagonal with eigenvalues £+/2.

o

Therefore the ¥ band structure is completely flat and gapped.

ILA.2. Symmetries

Hermiticity Hermiticity means that for any |¢) and |n)

{0, Bxn) = (B, m) - (I1.214)

Only the first term is explicitly evaluated as

(0, Bicm) = <|90>7V52 \vﬁ><vﬁ!n>> = V2 (pluf) (uitln)

n

I (11.215)

(B m) = <\/§Z [uid) (uit| o) !n>> = V2 (uiiln) (plu) ,

which proves our claim. The other term follows analogously.
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Cy symmetry We want to prove that

B! = Bri < Bk = BrkF (11.216)
Sy Rl = Jw) (W] = > [V (Wil F =D [wi) (Wi #
n n n n

This statement is true because it is true for every |vp), |wit) and |s), where |s) are vectors in
the unoccupied subspace. These vectors together form an orthonormal basis. We exemplify
this using ‘vll(>:

Py o) (il o) = 7 L) (it o) = D [0 (0l 7 [vie) = D lwhae) (whal # [oge) -
n n n n
This term can be simplified using the fact that the expressions with the projectors always act
as identities on their respective subspaces and give 0 otherwise. With this simplification the
term is reformulated as
Plog) —0=7

vi) — 0, (11.217)

which exemplifies the truth of the statement. The proof for the other terms is analogous.

TRS We have to prove that

TAT ' =Bk Thi = B-iT (I1.218)
TS ool = T3 fugwil = 37 o) (0] T = 37 [y ) (| T

The proof of this is analogous to the one for Cy symmetry.

11.B. Explicit Proofs for the Block-(Off-)Diagonality of Sewing
Matrices

In this section we present a few unnecessarily complicated proofs to show that certain sewing
matrices become block-(off-)diagonal if we construct a smooth and symmetric gauge using
certain specific st. Much easier proofs for these statements are presented in the main part of the
thesis (cf. section. The proofs in the following demonstrate directly that certain vectors
in the new basis [by) = >, vy, |uy’) are orthogonal to vectors at symmetry-transformed k
space positions after being themselves subject to the symmetry transformation. They therefore
show that certain elements of sewing matrices are zero. To show this, we first present a few
useful lemmas. All of these proofs refer to the case with TRS and C4 symmetry. The proofs
are analogous to similar proofs in Appendix A of Ref. [75].

11.B.1. Lemmas

First, a connection between the eigenvalues and eigenvectors of ¥ and a bra-ket expression.

. . o 1 SN .
Uik = Kk nUkn & g v Vi = /@k,nvﬁfn = E <uﬁl‘wk’uk> Vg = <uf{”‘wk bﬁ>
! !

bﬁ> (11.219)

m ml,7
’%kﬂ"bvk,n = <uk ‘wk
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Secondly, the proof that the rotation sewing matrix E{(”" = (b |r[by) is unitary. For this we
first express D in terms of D" = (u'fy |r|uy):

> L ] A I i1
DR = Bl i) = 3 ol (uduerfek) vk = 3 vl Dt (11.220)

u ]
This can then be used to prove the unitarity of D:

- ~ In . .
! (01)" = 3 (S ittt ) (- o

l aa bb

- ZZZURI{W k Uﬁ,l”%kn Bbs lb{*l - szka k URk n.DbCH< (11221)
aa
= Z Z URk vak n (5mn -

=l (A In S
Dr (Dk> = by < Dy D} =1 (I1.222)

Here, the unitarity of the Cy sewing matrix D, already known from Ref. [75], is used.

11.B.2. Proof that the C, Sewing Matrix D is Block-Diagonal

We continue with the proof that the Cy sewing matrix D is block-diagonal. This proof follows
along the lines of equations A6 to A8 of Schindler et al.[75], but is more involved due to
the added complexity encountered dealing with special subspaces of the occupied space. The
central element of the proof is that

™A = Z 6% D™ [Kaen — KRikam] = 0. (I1.223)

Due to the fact that |b;, ) form a basis of the occupied space and the gap, which ensures that
belonging to different Cj-spaces, the latter term [kk ,, — KRk,m| is always nonzero for different

U bands. This ensures that Dﬁm is block-diagonal. The proof goes as follows.
A= |bhi) DR [ricn — Kricm] = Y D) D™ kien — Z 0% D™ K Riems
m m
= Kkt |bk) — Z K Rrk,m [Vik) (ORk|T|0K) - (I1.224)

= Facar bR) = Z eV | e ) (D710
ml

Then we apply equation [[1.219 <f<;k7nv{2n = <u{(”‘wk)bﬁ>>, to obtain

& = st |0) — 3 (ot e B ) [ ) (0l IR (11.225)
ml

We observe that > |b, ) (b | is a projector on the occupied subspace at the rotated position.
We know from Ref. [75] that sewing matrices only connect states from the occupied/unoccupied
subspace with each other. The projector therefore acts as an identity
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A = kg pr|by) — Z <u§%k’1[13kr‘bﬁ> ‘u%k> . (11.226)
!

Using that rzzkrT = @ZRk = mzk = zszr, we obtain

A = Ky 1 |bg) — ’I”ZTT ‘ule> <u%k‘m;k
!

bﬁ> (11.227)
is obtained. To proceed, we define another sewing matrix ) through
k) = D ) | v ) = D i) Qi (I1.228)
m m
@ is unitary, since
ml i In m|..t|,.1 l n
ZQk (Qk) = <Uk ‘7’ ‘uRk> <uRk‘T’uk> = 677171 (11229)
l
Setting this into the main equation, we obtain
o = racr [0) = D0 D i) QY QR (uil
I m m

= Kkl |bg) — 7 Z lug") Lnl (QL) " <U?‘¢k
Imm

bi)

be),
(I1.230)
= Kkl |bg) — 7 Z lug’) <uﬁl‘wk)bﬁ> = Kknl |bg) — 7 Z |uK’) Kk Vkns

= Kkt |bg) — TEkn |bk) = 0.
This proves that
> V) D™ [Rien — KRim] =0 (I1.231)
m

and therefore that D is block-diagonal.
This is because the |b}, ) are orthonormal, which means that each of the elements of the sum
can be evaluated seperately, which implies that

D" [Kaen — KRiem) = 0, (11.232)

which proves the block-diagonality. O

11.B.3. Proof that the C;, Sewing Matrix is Block-Diagonal

The proof of the block-diagonality of the TRS sewing matrix largely follows the same lines as
the proof for the Cy sewing matrix, with a slight complication due to the antiunitary nature
of the time reversal operator.

The time-reversal sewing matrix is defined as

B = (07| o) = (00| [b) (11.233)
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The corresponding operator on the original states, before applying \il, is
B = (uy | Tlug) = (u™y |7 K|ug) - (11.234)
TRS has the properties
T=71K T 1=7=@K) = Kt (11.235)
In order to prove the block-diagonality of B, we want to prove that

B=>[07) BL" [Kin — fiokean] = 0. (I1.236)
We procede as
B =Y |67 BE" [Faen — Fotem] = Y |07 BE ki — 3 [075) BE™ 6 tem,
= Fin 3 BE 07 = S0 BE Kk,
= acn D (75 TI0R) [B75) = D [075) Bk sem,
= aen S0 GPTIE) — 37 0 BE e, (11.27)

— Kk,nT|b71:> - Z Blr(nn'%—k,m ‘br—nk> = ’{k,nT|bﬁ> - Z R—_k,m ‘bilk> <ka‘T}bﬁ> 3
m m
T (o) = s 3 o) 5T
m m 7
In order to arrive at the next step, we use the Hermiticity of \I/ﬁm We get
B=T (Z K n Vi, yum) > hkm? ‘uj_ k> (o™ | T5) (11.238)
m mj
After that, we use equation [[I.219] to remove the v-components
B=T (Z <u{f‘¢k
m
and continue by using that |b;) span the occupied subspace

B =T (Z (w2 |t i) \um) =3 (i) [ ) (11.240)
m j

1) ) = 3 (i) I

ul k> , (I1.239)
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and then using that TikT_l = 12_1( & 'Tzljk = 1,!01_1(7' and perform a few manipulations

B=T (Z <u’1? Ui bﬁ> ]u{ﬁ) —T7T7 ! Z <Uj_k‘7szk7-‘bﬁ> ’U]_k> 7

m .

T (Z <u$ e bﬁ> |u{?>> T (KTT (Z <uj_k‘z/3_kT‘bﬁ> )uﬂk>)) . (IL.241)

J

=T (Z (uie o o) |u1?>> ~T| 3 (o

bﬁ> Tt ‘u{k> ,

to obtain
b KT uly ) | (I1.242)

B=T <Z <U?’¢k bﬁ> |Uf<n>> -T ZW
m J

In order to continue from here onwards, we make some helper calculations to elucidate the
effects of the complex conjugation. These helper calculation are partly in component repre-
sentation instead of the bra-ket formalism.

(s i) = (oot = (] ()
= (| P ) = (@ ) by

= W: (@ ) T by, (11.243)

We also observe that

(@077 = (1) =17 o) = Sl 1 o)

}
= i) OpY = (Z <UL”!O{Z”*> . (IL.244)

m

This then allows us to find
75 T2 lin\ —j * 7 In ] * T T 7 n
(0 [Tt = @ )T i = ( (@07 ) b
\ T
_ (Z (| oglf*) Y bRy =D (ul| O e [bfr) . (I1.245)

m m

We then continue with the main calculation, using these helpful expressions, obtaining

B="T (Z <U?’¢k‘bﬁ> |U?>> -T ZZ (ui OﬁLj*ﬂ;k o) Of{j )ui{>) |
gl

m m

(11.246)

—T(wak\bﬁwum)ﬁ S°S 08 ()™ (il ) |
Im

m
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then using the unitarity of O]"", which can be proved as
S o (Olﬁ)]m = <u{(‘KTT’u{k> <uj_k‘7'K‘u{{”> = S, (11.247)
J J

to get

® =T (z (i i) \um) -7 (Z St (| e 1) \uL>> ,

lm

(11.248)
=T (Z (w2 o o) \um) -7 (Z (uf?] e ) !uﬂ"‘>> =0.
Thus we have proved that
> b7 B [Kan — Fiem) = 0. (I1.249)
As before, this implies that )
B{(rm [Hk,n — Iﬁ,kﬂn] =0 (11.250)

and this implies that the BIT” is block-diagonal.

11.B.4. Further Splitting of Pairs of Bands

This section deals with two bands that cannot be further split with a ik that satisfies 7'1;1{7'71 =
U_i. In this case we break the 7-symemtry maximally and define ¥y such that T 7 ! =
—%Z—k- In the case of two bands, the T-sewing matrix is then off-diagonal and 7 maps one
band onto the other.

The off-diagonality of the sewing matrix follows from the symmetric Wannier splitting theorem

[131, p. 17].

Alternatively, it can be proved as follows. First, we examine the matrix \I/Km = <u’l?‘wk
for different k. We use that the occupied occupied space spanned by |u}') at k is spanned by

r|uy) at Rk as well as T |uy') at —k, and that the eigenvalues of \I/ﬁm are independent of the
choice of |u}"). First, we observe that

<u’1§k’1/33k’u%k> = <u?’rTm;krTr’uﬁ> = <uﬂ1’¢k‘uﬁ> = \i/Rk = \i/k, (I1.251)

and for r = ro, ) )
U_y = Uy, (I1.252)

which implies that the eigenvalues at k and —k are the same. Secondly, we realise that
(u b autsc) = = () rr BTt () = — (G ) 9 (uf))”
- <u{3‘wk‘uﬁ> _ <uﬁ‘¢k‘u{(”> — U = 9L (I.253)

using that 7 = 7K, 7! = K7! and the Hermiticity of \i/k. Because the eigenvalues of a
matrix and its transpose are the same, the eigenvalues of W_j are minus the eigenvalues of
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Ty Together with equation this implies that the bands have the C,, symmetry of the
involved 1/011{ and that the eigenvalues of Ty appear in real pairs +x,,, if we have C5 symmetry. If
we only have C5 symmetry, the bands are C'5-symmetric and inversion symmetric with respect
to the origin of the BZ. We now compare this with the situation in the previous proof of
block(-off)-diagonality, taking the changes due to the different properties of 1/31{ into account.
The only change to the proof appears in equation where a minus appears in front of
the second term. Following everything through, we get

BY™ [k + Fiotem] = 0. (I1.254)

For m = n, the term [kk , + K_k ] is nonzero, therefore B™" has to vanish. On the contrary,
for m # n, the term [k + K_xm] = 0 and therefore the B™" does not have to vanish. This
proves the off-diagonality of the sewing matrix. For the case of C5 symmetry, the required
condition of the PSO-band structure is that it does not intersect zero at any point in the BZ.
In other words, as Alexandradinata et al.[131] already observed , the T operator carries us
from one band to the other.

11.C. Perturbation of \ifk Instead of zﬁk

In this paragraph, we’ll have a look at the effect of perturbatlons of Uy.. More premsely, we’ll
have a short look at what happens if we directly perturb \I/k instead of perturbmg wk In

principle, it’s possible to perturb Uy instead of wk, because for a perturbation z/;k = 1/)1{ + 5@[)1{,
the corresponding perturbation of \I’fn is <uﬂ1‘5wk‘uﬁ> The problem with this term is that it

is dependent on the gauge choice for |uy'). If, like it is usually the case, the |u}) do not form a

smooth gauge, the <u{f‘51/1k uﬁ> is expected to dependent in a discontinuous way on k. This

makes the construction of a good perturbation of Uy rather complicated, since constant terms
as well smooth terms are normally forbidden. It is therefore much easier to perturb vy instead
of \I’k.

In order to show the effects, we depict in Fig. the effect of a relatively big random
Hermitian perturbation of \i/k to the time reversal symmetric Hamiltonian HéQ) (k,t = 0.2),
where Uy was calculated using &k =1y + rl. The perturbation is neither TRS nor Cjy-
symmetric, ‘E)ecause this figure only serves to show that the continuity of the gauge is lost by

perturbing Wy,.

I1.D. Calculation of Wilson Loop in Occupied ¥ Bands Without
Diagonalisation

One question one might ask is whether it is possible to obtain something similar to the Wilson

One way to do this is to work directly with eigenstates of the full occupied subspace. This
can for example be done as follows. We first define the eigenvector [v™) as the eigenvectors of

loop in the occupied ¥ bands without having to diagonalise the PSO \Ilﬁm = <uﬁ7’ )

QLF. These eigenvectors come in two groups, at least in the case of @Zp ~oTry+ TL those with
negative and those with positive real part of their eigenvalues. To look at one of the quantities
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Figure 11.43.: ¥ band structure and Wilson loop spectrum of H§2) (k,t = 0.2) with a quite
strong Hermitian (but not TRS or Cy-symmetric) perturbation to ¥y (not to
1x). Continuity is lost.

we're interested in, we choose for example, the |v™) with negative eigenvalues. We then define

the Wilson loop
1

Wi, = [T E50 (I1.255)
=N

NOCC
Fliilvr;flyamn = <Um (Z uﬁz7ky)><uz}zz»k9) )

Now the arguments of the biggest two eigenvalues of W happen to show the same winding
behaviour as the one seen before with the diagonalisation of Uy. But this is not always the
case, and also does not seem to be reliable, as seen from the two plots in Fig. [[T.44] On the
left-hand side, the figure shows this method applied to Hy = H2(4) (k,t = 0.2). There it works
nicely, as the arguments of the bigger two of the four eigenvalues show exactly the winding
behaviour as seen also with diagonalizing V. On the right-hand side, the method is applied to
Hy = H2(4) (k,t=-0.2)+ %a4 folds With ay fo1q given in equation Appendix In this
case, the fourfold winding behaviour seen when diagonlizing Uy is not reproduced. Therefore,
we conclude that this method can in general not be applied.

with

v"> . (11.256)
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Figure I1.44.: “Wilson loop spectrum” of Wy, for H{Y (k,t = 0.2) (Hyx = H{" (k,t = —0.2) +
%a4 fold ), respectively, when using a method that uses direct projection into the

subspace of r4 + 7“1 with eigenvalues with negative real part.
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I1l. Symmetry Indicator Invariants for
Non-Hermitian Topological Materials

111.1. Abstract

In this work, symmetry indicator invariants for non-Hermitian Hamiltonians are described.
In 1D with a point gap, the 1D winding number wip is determined modulo 2, in presence
of pseudo-inversion symmetry (ZHyZ ' = HT_k), using a symmetry indicator. In presence of
inversion symmetry wip vanishes. In 2D with a line gap, the symmetry indicator invariants that
are already known from Hermitian physics and allow for a determination of the Chern number
are also valid for non-Hermitian systems. In 3D, symmetry indicators allow the determination
of the 3D winding number modulo 2 (4; 8) in presence of pseudo-inversion (pseudo-inversion
and TRST; pseudo-inversion, TRST and C4 symmetry, respectively). If inversion symmetry is
present, wsp vanishes. In presence of TRS and pseudo-inversion symmetry, we can detect the
nontrivial Zsy phase using a symmetry indicator invariant, instead of relying on the Chern-
Simons invariant CS3 with a specific gauge.

111.2. Introduction

In recent years, interest in the topological behaviour of non-Hermitian systems has been grow-
ing. While the topological properties of regular Hermitian Hamiltonians have already been
investigated for a few decades[1H13] and there has been tremendous progress in understanding
their physical behaviour as well as their topological classification[26], little interest had been
paid to non-Hermitian system. This is due to the fact that regular quantum mechanical sys-
tems always possess a Hermitian Hamiltonian. By introducing loss or resistance, or by taking
into account electron-electron interactions|88, (100, |120H129|, Hermiticity-breaking terms can
be added to a Hamiltonian. The resulting systems then show a behaviour that is distinctly
different from Hermitian system in a topological phase, for example by showing a skin effect,
which means that all the modes in a non-Hermitian system all shift towards one side of a
sample, instead of a having only O(1) boundary localised modes like in Hermitian physics|88),
107}, 1109, 111} |112} 122 |128].

Currently, when striving to understand the topology of a concrete system, the approach is to
calculate topological invariants, e.g. Chern or winding numbers, that are defined in terms of
Brouillon zone (BZ) integrals. These calculations are computationally expensive. Therefore,
in this part of the thesis, we propose to calculate symmetry indicator invariants, similar to
those already being used to detect nontrivial topological phases in Hermitian systems, spear-
headed by Fu et al.[154] and then extended, for instance, by Hughes et al.[37] and Fang et
al.|41]. These invariants can be calculated knowing the symmetry eigenvalues of space group
symmetries at high symmetry points of the BZ. We extend the concept of symmetry indicator
invariants to some non-Hermitian systems with specific symmetries.

The structure of this part is as follows. In section the general properties of non-Hermitian
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Hamiltonians are described. Different internal symmetries and space group symmetries are ad-
dressed and how they generalise the symmetries known from Hermitian physics. Furthermore,
we define a pseudo-inversion symmetry. Next, the mapping between a Hamiltonian and its
Hermitian double Hamiltonian and the flattening of Hamiltonians is described. The types of
gaps that can appear in non-Hermitian systems, point and line gaps, are detailed. Subse-
quently, in section the winding number for 1D systems with point gap is analysed using
a symmetry indicator in presence of inversion and pseudo-inversion symmetry. In section
we use symmetry indicators to shed light onto the Chern number in two-dimensional systems
with conventional inversion or rotational symmetry. We then turn to 3D systems. In section
[11.6] we first analyse the 3D winding number wsp in the presence of inversion and pseudo-
inversion symmetry using symmetry indicators. We also take into account reciprocity (TRS')
and Cy-symmetry to obtain more information on wsp. Secondly, the non-trivial phase in the
non-Hermitian AZ class AIl is analysed using a symmetry indicator invariant in presence of
pseudo-inversion.

111.3. General Properties of Non-Hermitian Systems

Non-Hermitian Hamiltonians do not possess many useful properties used in Hermitian physics
to calculate properties of systems, like orthonormal eigensystems. In this section, we describe
the spectrum, gaps and symmetries of non-Hermitian Hamiltonians.

I11.3.1. Spectrum and Eigenspace of Non-Hermitian Systems

Non-Hermitian sytems, unlike Hermitian system, do not need to be diagonalisable and there-
fore do not necessarily have an eigenbasis. However, the number of matrices that cannot be
diagonalised is vanishingly small, and thus we assume that the Hamiltonians we look at can
be diagonalised everywhere except from a subset with vanishing measure G C BZ = T¢.

In general, the eigenvectors of non-Hermitian Hamiltonians are not orthonormal.

H(k) |pn(k)) = En(k) |pn(k)) with (om(k)len(k)) # dmn- (IL.1)
Instead, the eigenvectors of H(k) and HT(k) # H(k) fulfill biorthogonality[95 117]. This

means that if

H (k) [pn(k)) = En(k) [on(k)) and

(I11.2)
H'(k) [xn(k)) = Ej (k) [xn (k)
hold, then
<Xm(k)|90n(k)> = Omn and
> lea(k) Cen(k)] = 1 (IL3)
Furthermore, the Hamiltonian has the spectral decompositon
H(k) = En(k) [on(k)) (xn (k)| (IIL.4)

Many quantities known in Hermitian physics, like the Wilson loop, can also be calculated
using the right eigenvectors |pn(k)) and left eigenvectors |xn(k))[105, 155, [156]. For the
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Figure IIL.1.: Overview over different types of gaps. In panel a), the conventional gap of a
Hermitian Hamiltonian is depicted. The light blue areas are where the eigenvalues
are found. Between the two areas, there is a gap (in red). In panel b), the
spectrum of a non-Hermitian Hamiltonian with point gap is shown in light blue.
The gap is indicated by the point E,. The dark blue ring at absolute value 1 are
the eigenvalues of the unitary projection of the Hamiltonian. Any non-Hermitian
Hamiltonian with point gap can be deformed to a unitary matrix with eigenvalues
of absolute value 1 (unitary flattening). Panel c) shows a real line gap. There
is a line gap and the Hamiltonian can be flattened such that all the eigenvalues
become +1 (Hermitian flattening). In panel d) the spectrum of a Hamiltonian
with imaginary line gap is depicted. In this situation, the eigenvalues can be
flattened to +i]95].

Wilson loop, the projector known from Hermitian systems is simply replaced by the projector
for non-Hermitian systems,
Pk)= Y |en(k)) (xn(®), (IIL5)
neocce.
where we assumed a line gap and thus a distinction of “occupied” and “unoccupied” eigenstates
is possible.

111.3.2. Gaps in Non-Hermitian Systems

The eigenvalues of Hermitian Hamiltonians are real, therefore the definition of a gap is unique.
A gap is an energy Eg such that there is no momentum k € BZ with an eigenvalue of Hy
equal to E¢, as shown in Fig. [[II.1p). If the Hamiltonian is non-Hermitian, its eigenvalues are
not restricted to the real axis. The definition above therefore cannot be applied anymore. In
non-Hermitian Physics, we distinguish two types of gaps (cf. Kawabata et al.|95]):

1. Point gaps are energy values E, € C. We define that Hy has a point gap if there is no
crystal momentum k € BZ such that Hy has eigenvalue E,. In this case the Hamiltonian
can be flattened such that all eigenvalues are of unit absolute value. This situation is
depicted in Fig. [[1I.1b).

2. Line gaps are lines through the complex plane that are not intersected by the spectrum
of the Hamiltonian. For the topological classification, one distinguishes between real and
imaginary line gaps. The spectrum of Hamiltonians with real line gaps can be flattened
to £1 (depicted in Fig. ); the spectrum of Hamiltonians with an imaginary line gap
can be flattened to +i (depicted in Fig. [ILIJ).

98



The topological classification depends on the type of gap and on the internal and crystalline
symmetries.
For any non-Hermitian Hamiltonian H (k) we define its Hermitian double as

_ H(k)
Hy(k) = (HT(k) ) . (I11.6)
If there is a vector @ = (1, d2) with Hy(k)d = 0, then this also implies that
H(k)i@; =0 and H'(k)d; =0. (IT1.7)

Therefore gaplessness of Hy(k) w.r.t. Eg = 0 implies gaplessness of H (k) w.r.t. £, = 0.

111.3.3. Symmetries in Non-Hermitian Systems

In this subsection, internal and space group symmetries of non-Hermitian systems are treated.

111.3.3.1. Internal Symmetries

Unlike in Hermitian systems, there are more than the 10 Altland-Zirnbauer internal symmetry
classes|25] in non-Hermitian physics. The Hamiltonians are instead grouped into the 38 internal
symmetry classes described by Kawabata et al.[95]. For non-Hermitian physics, we get H # H
and HT # H*. Therefore, many of the symmetry classes known from Hermitian physics split
into several symmetry classes when allowing non-Hermitian terms. For example, the Hermitian
symmetry class AIl is generalized to the non-Hermitian symmetry classes AIl and AIIT. The
internal symmetries that appear in non-Hermitian physics are the following and their conse-
quences for right (left) eigenvectors |, (k)) (|xm(k))) with H(k) [om(k)) = En(k) |[om(k))
(HT (1) [om (K)) = B2, (K) [ (K))), are:

e Time reversal symmetry (TRS):
ToH (k)T = H(—k) with T, 77 = +1 (I11.8)

For an eigenvector |¢,,(k)) with eigenvalue E,, (k), |pm(—k)) = TLK |om(k)) is an eigen-
vector at —k with eigenvalue E,,(—k) = E¥ (k). This implies that at time-reversal
invariant momenta (TRIMs) the eigenvalues appear in complex-conjugate pairs.

e Particle hole symmetry (PHS):
C_HT(k)C=! = —H(—k) with C_C* = +1 (I1.9)

If [xm(k)) is a left eigenvector with eigenvalue E¥,, then |p,,(—k)) = C_ |xm(k))" is a
right eigenvector at —k with eigenvalue E,,(—k) = —E,, (k). Therefore, at TRIMs, the
eigenvalues come in pairs of +E,, (k).

e “2nd” time reversal symmetry, reciprocity (TRST):
CiHT (k)C' = H(—k) with C4C} = +1 (I11.10)

lom(=k)) = Cy |xm(k))" is an eigenvector of H(—k) with the same eigenvalue E,, (k).
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e “2nd” particle hole symmetry (PHST):
T-H (k)T = —H(—k) with T, T} = +1 (IIL.11)
lom(—k)) = T_ |pm(k))™ is an eigenvector of H(—k) with eigenvalue E,,,(—k) = —E¥, (k).
e Chiral symmetry (CS):
THI (KT = —H(k) with T2 = +1 (111.12)

If |xm(k)) is a left eigenvector of H(k) with eigenvalue E,,(k) (i.e. HI(k)|xm(k)) =
E’ (k) |xm(k))), then |pm(k)) = I'|xm(k)) is an eigenvector of H(k) with eigenvalue
En (k) = —EJ, (k).

e Sublattice symmetry (SLS):
SH(k)S™! = —H(k) with S = +1 (I11.13)

If |om (k)) is a right eigenvector of H (k) with eigenvalue E,, (k), then |pp (k) = S |om(k))
is also a right eigenvector of H(k), but with eigenvalue —FE,, (k).

e Pseudo-Hermiticity:
nHI k)™t = —H(k) with n® = +1,np =7, =1 (I11.14)

is a special variant of chiral symmetry, with the added condition that n must be Hermi-
tian.

Mapping from internal symmetries of the Hamiltonian to the internal symmetries of its
Hermitian double Hamiltonian If we have a non-Hermitian Hamiltonian # in one of the
38 symmetry classes, then we can determine which AZ symmetry class Hq belongs to. Hq is

defined as 0 o
Hak = [y "0

The internal symmetries of H imply the following symmetries of Hq:

T.

(I11.15)

e TRS of H implies that Hq has TRS with 7 = { T ]
+

PHS of H implies that Hq has PHS with C = [C C_}

TRS' of # implies that Hq has TRS with 7 = [ c Cﬂ.
+

PHS' of H implies that Hq has PHS with C = [T— T ]

CS of H implies that Hy has SLS with S = [r F].

100



e SLS of H implies that Hq has SLS with S = [S S]'

e Pseudo-Hermiticity of H implies that Hq has SLS with § = L] 77].

Furthermore, H4 always has SLS with

1 0
S = [0 _1} . (IT1.16)
This means that the only allowed AZ classes for Hq are AIII, BDI, DIII, CII and CI. Moreover,
the existence of SLS together with TRS (PHS) implies PHS (TRS). Altogether these relations
determine whether certain symmetries are present. In a concrete case the resulting AZ class of
the Hermitian double depends on commutation relations between the symmetries of H. If we
look for example at a non-Hermitian Hamiltonian H in real AZ class Al, then the Hermitian
double has TRS, SLS and PHS with 7;12 = +1 and 8% = +1, which means that it is either in
AZ class BDI or CI. 73 commutes with Sy, therefore Hq is in AZ class BDI as

sd’rd—TdSﬁ[l _1] [ﬂ TJ_[ﬂ TJ [1 —1]

= {T* } - {T* } =0 = C}=384TaSqTqa = S3T¢ =1, (IIL17)
T T
where we used that
Cq = SaT4 (IT1.18)
because
SaTaH;(k) (SaTa) ' = SaHa(~k)S;' = —Ha(-k). (I11.19)

It is possible to proceed analogously for the other 37 non-Hermitian internal symmetry classes.

111.3.3.2. Space Group Symmetries

In Hermitian physics, space group symmetries are unitary operators acting on the Bloch Hamil-
tonian as

S’HkST = Hsk (I11.20)

with s as representation of the symmetry on the orbitals and S is its action on crystal momenta.
In non-Hermitian physics, HT # H, so there are two possibilities to generalise a symmetry of
a Hermitian system to non-Hermitian physics:

e A real symmetry acts as in regular Hermitian physics

sHis' = Hsk. (111.21)

e A pseudo-symmetry connects the Hamiltonian with its adjoint

SHLST = Hor < sHys' = Hgk. (I11.22)
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If a system has a real symmetry and k = Sk, the symmetry commutes with the Hamiltonian.
This allows for a joint diagonalisation of the symmetry and the Hamiltonian, which is not in
general possible for pseudo-symmetries.

Both real and pseudo symmetries imply that the Hermitian double Hq4(k) also carries the same
space group symmetry:

e If the Hamiltonian has a real symmetry sHiys' = Hgy then Hq is symmetric with

84 = [S s] and Sd'Hd(k)SS = Hq(Sk). (I11.23)

e If the Hamiltonian has the pseudo-symmetry sHys! = ’Hgk, Hq is symmetric with
Sq = L S] and sde(k)sz = Ha(Sk). (II1.24)

Inversion and pseudo-inversion A system is inversion-symmetric if there is a unitary operator
7 with Z? = +1 such that
THWT ' = H_y. (I11.25)

The inversion symmetry on the Hermitian double Hamiltonian is then represented as

T
Tq = ( I) . (I11.26)
If Hy instead fulfills
TH I P =H . (II1.27)

it carries pseudo-inversion symmetry, which leads to an inversion symmetry of the Hermitian
double with

T, = <z I) . (IT1.28)
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111.4. One-Dimensional Systems

In this section, one-dimensional non-Hermitian systems with a point gap are treated. The
winding numbers for odd-dimensional systems (d € 27 + 1) are

n! _ 2n+1
Wont1 = Tr [H 'dH . I11.29
2T i)t (20 + 1)] /Bzd | ) (TI1.29)

These invariants have their origin in the Z winding number of Hermitian systems with chiral
symmetry[26]. These are treated, for example, in the review by Chiu et al.[26]. There, these
winding numbers are equivalently expressed in terms of the Q matrix given by Qk =1- F,
where Py is the projector into the occupied subspace at k. If any Hermitian H (k) has chiral
symmetry, H and Q can be expressed as

H(k) = <DT()(k) b (()k)> Q(k) = <qT(()k) q%‘)>. (I11.30)

The winding numbers for the Hermitian system are then given by

Von+1 [Q] = / Woan+1 [Q] )
BZ%x MPD

, (IT1.31)
(=)™l (0 il C1 2041
want1 [q] = A Tr [(q dq) } :
where d + D is odd. For (d, D) = (1,0) and (3,0), resp.,
v = 2L dk'Tr [q_lﬁkq] ,
™
dk (I11.32)
vy = / sz T [(a0ua)(a Dua)(a ™ Dpa)]
BZ

D is a quantity connected to the co-dimension of defects, and therefore does not matter in
our case, i.e. it is zero. These winding numbers from Hermitian physics also classify the non-
Hermitian Hamiltonians with point gap and Z classification in AZ classes A and AIIT.

In 1D, the winding number is

—+m
wip = / ﬁak Indet (H(k) — E), (I11.33)

_x 2m

where E is the midgap energy (cf. Ref. [96]). This quantity can also be expressed as

wip = —i / Iy [Q(k)] with Q(k) = [H(k) — E] "' 0, [H(k) — E], (I11.34)
Bz 27

with BZ = [—m, m)[100].

In the following, we study this winding number in presence of inversion symmetry. The final
result of this endeavour is presented in Table below. It lists the symmetry indicators we
found for 1D systems. If s is a real symmetry, s denotes the corresponding pseudo symmetry
with sHy5 ! = Hgk. Ak,j is the 7*" inversion eigenvalue at the TRIM k within the occupied
bands of the Hermitian double Hamiltonian.
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Int. Sym. | Point Group | Gap (L / P) | H / Hq Symmetry indicator
- T P
- A P

- w1Dp — 0
Hy (_1)1111]3 = sze{O,W}JEOCC. /\k,j

Table ITI.1.: Symmetry indicators for non-Hermitian 1D systems.

111.4.1. (Pseudo-)Inversion Symmetry

If the Hamiltonian is inversion-symmetric, wip vanishes. To prove this, we first observe that
inversion symmetry implies that in any dimension

IQ;(K)I ™" =T [H(k) — E] ™" 04, [H(k) — E] T
=T[H(k) — E| ' T7'I0,,T'T[H(k) — E]T7' = [H(~k) — E]' 0, [H(~k) — E]
= —Qj(~k). (I1.35)
This can then be used to evaluate wip
=—1 %r =—1 %r 1= %r— —
wip =i [ STQ) =i [ G [IQMT] =i | ST -Q(-k)

dk - -
= +i/ —Tr [Q(k‘)} = —wWip =~ wWiD = 0 with k£ = —k. (111.36)
BZ 27

This shows that wip vanishes. O
Therefore, we do not consider this case any further.

If H (k) instead carries pseudo-inversion symmetry, wip is not always vanishing. In this case, we
can use the connection between the eigenvalues of the Wilson loop and the inversion eigenvalues.
This connection is described in the review of Chiu et al.[26]. For v; = wip the property is

rivila] _ 2miCS:[A] (I11.37)

with the first Chern Simons invariant CSy

] ]
CSy[A] = Q.Az/ TrA:Tr[/ .A]. I11.38
= [ o= [ Inu-inlf (11.38)
This then yields
eminld = o= Tfoz 4] = det e Joz A = det W, (II1.39)

which holds in the specific gauge Ay = (1/2)q(k)dq' (k) and is expressed in terms of the Wilson
loop W in the occupied bands of the Hermitian double Hamiltonian (cf. [137] for a definition
of the Wilson loop).

Since both W and v are gauge-independent, the invariant wip = v; can be directly expressed
via the determinant of the Wilson loop, with the expression for the Wilson loop from Ref. [137].
We use the mapping between inversion eigenvalues and Wilson loop eigenvalues from Ref. [140],
and the mathematical fact that the product of the eigenvalues of a matrix is its determinant. In
presence of inversion symmetry, det W = £1. The Wilson loop eigenvalues are either 1, -1, or
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appear in complex conjugate pairs with absolute value 1. The eigenvalues 1 do not contribute
to the determinant and the complex conjugate pairs cancel each other. Therefore, only the
eigenvalues —1 can flip the sign of det W. If the number of —1 eigenvalues is odd, det W = —1,
in contrast if it is even, det W = +1. We therefore want to prove that if the number of negative
inversion eigenvalues is odd, then also the number of negative Wilson loop eigenvalues is odd.
In order to do this, we look at the values of the quantities {ny(ktrim), ns, ks, Es}- na (KTRIM)
are the multiplicities of positive and negative inversion eigenvalues at the TRIMs. ng is the
smallest of these multiplicities, ks is the momentum at which this smallest multiplicity occurs,
and & is the inversion eigenvalue for which the smallest multiplicity occurs. Alexandradi-
nata et al.[140] show that the spectrum of W consists of [n(y)(ks + 7) — ns] eigenvalues —&s,
[n(,)(kzs + 7) — ng| eigenvalues +&;, and ng pairs of complex-conjugate eigenvalue pairs.

The following cases show that if the number of negative inversion eigenvalues, expressed as
n_(m) +n_(0), is odd, then the Wilson loop has a negative determinant.

First, we start with the case ns = ny(0), ks = 0, £& = +1. In this case, the number of negative
eigenvalues of W is given by

ni(m) —ng(0) = ny(m) + ny(0) —2n4(0) € 2Z + 1, (II1.40)

because n_(m) +n_(0) € 2Z + 1 implies that ny(7) + ny(0) € 2Z + 1.
Next, we look at the case ny = n_(0), ks = 0, & = —1. The number of negative Wilson
eigenvalues is given by

n_(m) —n_(0) =n_(m) + n_(0) —2n_(0) € 2Z + 1. (I11.41)

Next, we look at the case ng = ny(m), ks = m, {&& = 1. The number of negative Wilson
eigenvalues is given by

n4(0) —ng(m) =ng(0) + ny(m) — 2n4(m) € 2Z + 1. (I11.42)

As a last step, we look at the case nyg = n_(w), ks = 7, & = —1. The number of negative
Wilson eigenvalues is given by

n_(0) —n_(m) =n_(0) +n_(m) —2n_(m) € 2Z + 1. (I11.43)

These cases show that an odd number of negative inversion eigenvalues implies an odd number
of negative —1 Wilson loop eigenvalues, showing that

o= ] Mg (I11.44)
ke{0,m},j€0cc.

which completes our proof. O
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111.5. Two-Dimensional Systems

In even spatial dimensions d = 2n for systems with line gap, a good topological invariant is
the n'" Chern number, defined as|95]

_ 1y a1 (i) .
O = (%) /BZTr = = Saari (2W> /B T [Qr(don)’™] (IT1.45)

with the non-Hermitian versions of the Berry curvature F and the @ matrix r. The non-
Abelian Berry connection and Berry curvature are defined as

Aim (k) = (x1(k)|Ocom (k) - dk (II1.46)
and
F=dA+ A%
Fim = (k)] (1 — > len(k)) <Xn(k)!> [om (k) = (a(K)[ (1 = Pr) lom(k)) (IIL47)
neocc
with
Pr= Y lenk)) (xn(k)|. (I11.48)
neocc
The @ matrix is given by
Qr=1-2Pg. (I11.49)
We find the first Chern number )
1
C) = o /BZ Tr [F]. (IT1.50)

The first Chern number gives a Z classification of two-dimensional phases with line gaps. The
Chern number is the same, independently of whether it is calculated using left and right eigen-
states, or only left or only right eigenstates|[157].

Systems in the non-Hermitian AZ class A (without any internal symmetries) indeed have a
Z topological classification[95]. Such systems with a line gap can be flattened to Hermitian
Hamiltonians with eigenvalues £1[95]. If this can also be demonstrated while respecting the
symmetries, we obtain an easy proof for the validity of the symmetry indicators known from
Hermitian physics for the non-Hermitian case. The description of the Hermitian flattening can
be found, for example, in Ref. [95]. It consists of two step:

1. First, the Hamiltonian can always be written as

Er(k)

H(k) = R(K) Eak) ) R(k)"., (IIL51)

En(k)

where Ry is the matrix with the eigenvectors of H (k) as column vectors. We then flatten
the spectrum of H (k) to reduce the eigenvalues to 1. We do this by simply continuously
moving all eigenvalues on one side of the line gap to +1, and all eigenvalues on the other
side to —1. The result is a non-Hermitian matrix with eigenvalues £1, still respecting
the symmetries.
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2. In a second step, the matrix is hermitised by changing R(k) — Ug(k), where Ur(k) is a
unitary matrix defined as

1/2
R(k) = Ap(K)Ur(k)  with Ap(k) = [R(k)RT(k)} . (I11.52)

In this expression, the square root of R(k)R(k) is given through
2
R(k)R!(k) = V (k) (Mk) 3 ) Vi)
— [ROR! (1) v (Al(k) ) )VT (k). (IIL53)

This is possible because R(k)R(k) is positive definite. Ur(k) can then be calculated
using Ugr(k) = Ap' (k)R(k). The deformation R(k) — Ug(k) is performed by moving all
Ai — 1, which implies that Ar(k) = 1, and therefore only Ugr(k) remains.

111.5.1. Hermitian Flattening and Rotational Symmetry

In this section, we prove that the procedure described in the previous section maintains the
rotational symmetry at every step along the path from the non-Hermitian Hamiltonian to its
Hermitian projection. We only have the look at the part acting on the eigenstates, because
the move to eigenvalues £1 can obviously be executed in a Cj,-symmetric way.

The path of Hy (k) is a function
Hy(k) : ¢ € [0,1] — H,(k) (I11.54)
given by the path followed by A;(p, k), which is, for instance,
Ailp, k) = Ni(k) + ¢ (1= \i(k)). (ITI1.55)
In the following, we will prove that
roHy(K)rh = H,(Ryk) V. (I11.56)
If H(k) is rotationally symmetric,
raH(k)rl = H(R,k) < rH(k) = H(RK)r,, (I11.57)

which translates into the condition that if ‘u@ is an eigenvector of H (k), then r, ’u@ is an
eigenvector of H(R,k). This then implies that

R(R,k) = r,R(k)
— R(R,k) = Ar(R,kK)Ur(R,k) = rR(k) = 1y Ar(K)rl r,Ugr(k). (IIL58)

On the other hand,

Ar(Rok) = [RORIOR (R = 1V (K) (Al(k) ) ) Vi (k) (IT1.59)
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S0 we get

AR (Rnk) =r,AR (k)T};,

(I11.60)
Ur(RpK) = roUgr(K).

Setting all this together, taking into consideration that all ¢ dependence is within Ag(p, k),
and that this dependence does not change eq. |[11.60], we can write

090 = ratol10) (1) R0 = ran(el0Ua9 (1) UR09AG ek
= DR (i, K)r Uk (K) (1 1) U (6)rhrn AT (0, )

= Al U (1) URRIONR! (0. 710 = H(o),
(IIL61)

which proves that H,(k) remains rotationally symmetric along the flattening path.

Topological invariants do not change under smooth transformations that respect the symme-
tries. Thus as the path for the flattening respects the symmetries and maintains smoothness,
the topological invariants of the Hamiltonian before and after Hermitian flattening are the
same. Respect of internal symmetries was shown by Kawabata et al.[95].

If the Hamiltonian has rotational symmetry or inversion symmetry, we can write at the high
symmetry point (HSP) k* of the BZ that

sH(k*) — H(k*)s =0, (I11.62)

with a symmetry operator s. s can be an inversion or rotation symmetry operator. Inversion
is equivalent to a Co rotational symmetry, but always with Z? = +1. Because H(k*) com-
mutes with the unitary symmetry operator, the joint eigenvectors have the property that the
eigensectors of different symmetry eigenvalues are orthogonal to each other. We observe, using
that the columns of R(k) are eigenvectors of r,,, that

(rR)ij(k) = a;Rij(k) and (R'(k)r}) e = (raR(K))i; = o Ry (k). (I1.63)

We can therefore write

(TR(k)RT(k)rT) — a;Ri;(k)a’ Ri, (k) = Rij(K) Ry (k) = (R(k)RT(k)) . (IIL64)

ik I ik

which then implies
[A%(K), 1] = |[ROQRN(K),ra| = RO R ()r — RO R! (k) = 0
& R(k)R'(k) — rR(k)RT(k)r] = 0. (IIL65)
From this we get the identity

108



Int. Sym. | Point Group | Gap (L / P) Symmetry indicator

- 7 L (_1) HkETRIMs,]GOCC Aj (k)

- Ca L (=1 = TTieoee. G(DGX)G(Y )G(M)
- C4 L ) ic = Hneocc fn( ) ( ) r: (Y)

- Cs L 27 = 000 (~1)70:(T)0:(K)0:(K')
- Co L % = [iegee, (=) m(D)0: ()G (K)

Table II1.2.: Symmetry indicator invariants to limit the allowed values for the Chern num-
ber[37][41] in 2D with line gap.

which then leads to
rUr(k) = rA5' (k)R(k) = AR' (k)rR(k) (I11.67)

and we finally evaluate it only for the first column, getting
roiigr = AR (k)™ = AR (k)87 = Blig, (I11.68)

with the rotational eigenvalue 31 of the first column vector of R(k). This calculation shows
that the column vectors of Ug(k) are eigenvectors of r,, with the same eigenvalues as the origi-
nal joint eigenvectors of H(k) and r,. Therefore, we can calculate the symmetry eigenvalues of
the Hermitian projection by evaluating the symmetry eigenvalues of the original Hamiltonian.

This means that the flattening procedure does not change the symmetry eigenvalues at the
HSPs. We further know that the topological invariants are unchanged. Therefore, any sym-
metry indicator invariant can be calculated in the Hermitian flattened system by using the
symmetry eigenvalues of the non-Hermitian system. Also, the symmetry indicator from the
Hermitian case works in the non-Hermitian case as well. The symmetry indicators, as found
by Fang et al.[41] and Hughes et al.[37], are listed in Table

In this table A;(k) is the jth inversion eigenvalue at k, ¢ is the Cs eigenvalue, £ the Cy eigen-

value, § the C3 eigenvalue, and 71 the Cg eigenvalue. F is given by C5 = (—1)F".
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111.6. Three-Dimensional Systems

This chapter dedicated to the symmetry-indicated topological classification of 3D non-Hermitian
systems. Two aspects are treated:

1. Determination of the 3D winding number wsp using symmetry indicators in presence
of space group symmetries, for systems are in class A and AIIf. In class A, no internal
symmetries are present, in class AIIT, a TRST symmetry is present. In these classes, there
is a Z topological classification with invariant w3D whose value can be constrained
using symmetry indicators.

2. In non-Hermitian AZ class All, there is a topological Zs classiﬁcation. A symmetry
indicator invariant for this classification in presence of pseudo-inversion symmetry is
presented. This invariant is easier to calculate than the invariant currently used, the
Chern-Simons invariant CS3 in a special gauge.

111.6.1. Model of the Exceptional Topological Insulator

In the whole chapter, we will base our discussion on a model taken from a paper by Denner et
al.[100] about Exceptional Topological Insulators (ETIs). Therefore, this section starts with a
short discussion of the ETIT model.

111.6.1.1. Hamiltonian and Symmetries

The model for the ETI|100] is given as

H(k) = Z coskj — M | 00 + A Z sin k1,0
j:x7y7z ]:x7/y7z
+ [sinary + cosat,] (B - o) 4+ id100.  (II1.69)

The spectra of this Hamiltonian for A =1, § = 0.5 and M = 2, 2.5 and 3 are shown in Fig.
For this set of parameters, the gap closes at M = 2.5; at this value the system transitions from
the non-trivial ETI-phase with a point gap around £, = € = 0 to a trivial phase without point
gap around E, = ¢ = 0. The Hamiltonian has pseudo-inversion symmetry with Z = 7,0¢. The

Im(e) Im(e) Im(e)
i N\ Y =,
,15-"‘64 .‘1‘“ . 204 f ":‘.l_.,hl “’,&} 30.4 :..f,v,"
355 -ty R sy, ST 1t PR,
. e 37e R PYiies. PRI 7
0.2 Lo, ‘}w @ 0.2 e iy 0.2 =
I . ST S A A e P
2 ;;, § RO s -2 2 -;s, Re(e) 4 2 > i 4y O
_b“““% ; : %M s e 22 S R i1,
SFaaets 0.2 N SPanet-02 apsf 20 o
g S TR S aet " e
T, et Y P L ] peV:
g VAR e~ S~
(a) M =3.0 (b) M =25 (c) M =20

Figure II1.2.: Spectrum of the ETI with periodic boundary conditions for A =1, § = %, M =2,
2.5, 3. On the left, the ETI-phase, in the middle the transition between the ETI-
phase and the trivial pahse, on the right in the trivial phase.
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Figure II1.3.: Band structure of the Hermitian double Hamiltonian of the ETI Hamiltonian
model by Denner et al.[100] for A = 1, § = 0.5, M = 3 on the plane (kg, ky, 7).
The band structure is gapped.

Hermitian double of H is defined as

0 H(k
Ha(k) = [HT o ¢ >] (II1.70)
Hq has an additional sublattice symmetry (SLS) with the symmetry representation S
SHa(k)S™! = —Hq(K), S = [7000 0 ] . (II1.71)
0 —m00

The spectrum of the Hermitian double Hamiltonian on the plane (k,,k,,m) is shown in
Fig. The pseudo-inversion of H becomes a normal inversion symmetry of Hg4:

[g ﬂ [”HTO(k) %((Jk)} E ﬂ - [IH(()k)I IHTo(k)Z} = [”H(Ek)T H(a k)}. (ITL.72)

In addition, the ETI-Hamiltonian happens to have a TRS' symmetry (reciprocity) with C4 =
Tooy. This symmetry leads to a TRS of the Hermitian double represented by

[ Togy} . (I11.73)
ToOy

111.6.1.2. Topological Classification

The ETI with or without TRS' symmetry has a Z x Z3 classification. Such non-Hermitian 3D
systems with point gaps are characterised by two different types of invariants. Firstly, there
are three weak 1D invariants for the three crystallographic directions|100] (for the Z?), given
by

3
wip,j = —1 /B , (Zﬁk)?)Tr Qi(k)] € Z (I11.74)

and secondly an intrinsically 3D integer winding number invariant (for the remaining Z clas-
sification)
d*k
w3p = — 7€¢jkTI‘ [Ql(k)Q](k)Qk(k)] e 7. (11175)
B

7 247'('2
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Nonzero wip ; implies the appearance of non-Hermitian skin effect[106} (107]. If wsp = £1 and
wip,j; = 0V, the system is in the ETI phase[100].

The 3D invariant is inherited, similarly to the 1D invariant, from an invariant for Hermitian
systems with chiral symmetry. The corresponding invariant, v, is also the winding number of
the Hermitian double. Expressed in the style of Chiu et al.|[26], it is written as

Pk, _ _ -
V3 :/ me“ PTy [(q 1aﬂq)(q 13,,q)(q 18pq)]. (IT1.76)
BZ

This quantity is directly connected to the magnetoelectric polarisability and the “6” angle, as

0 = 2 Jozs WAl = 2miCSsIA] — pyrg (4] = ¢™3ld — 9 mod 27 = mu3[g] mod 2.

(IIL77)
The Chern-Simons (CS) form Qs is given by
1 2
- T A3 I1I.
Q3(A) G2 T [.Ad.A—i— 3.A } , (IT1.78)

which holds in the specific gauge Ax = (1/2)q(k)dq' (k)[26].

Thus we can easily characterise the topology of a system by calculating wip ; and wsp. But
these calculations are computationally costly. Therefore symmetry indicator invariants that
can be calculated using only eigenstates at the high-symmetry points would be preferable.

111.6.2. Symmetry Indicators for wsp and wip

The properties of wip ; are inherited from the 1D case. Without loss of generality, we study
w1p,z in a cubic BZ. It is

, d*k [ dkydk. [ dk, 4
Wipz = —i /BZ WTr [Q:(k)] = /(2@;)2 <—z/1D . ﬁTr [Qj(k)]) . (I11.79)

-~~~

w1D

The expression in the brackets is the 1D winding number in one dimension. Because the system
is gapped, the 1D invariant cannot change as function of the momenta &, and k.. If wi;p would
change, this would imply that the bulk gap is closed at the point (k,, ky) where wip changes.
Together with the quantisation of wip, we observe that wip, can be evaluated by evaluated
along any line in k, direction. If we choose a high symmetry line, the symmetry indicators

from section [[II.4.1] can be applied.

Therefore, we are mostly concerned with the 3D invariant wsp. This section is structured as
follows: First we describe why systems with real inversion symmetry have vanishing wsp. In
the remainder of the section, we are concerned having systems with pseudo-inversion symmetry.
First we look at systems with only pseudo-inversion symmetry, then at systems with pseudo-
inversion and TRS! symmetry, and finally at systems with pseudo-inversion, TRST and Cj4
symmetry. For all these cases, symmetry indicator formulae are provided.

111.6.2.1. Real Inversion

If a system obeys inversion symmetry, which means that

THWI ' =H (111.80)
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then
wWiD,; = 0 and w3p — 0. (IH.81)

wip,j = 0 follows from the 1D calculation, see section On the other hand, for the 3D
invariant, we obtain

3
win == [ S anTrQuR)Q (k)Qu (K,

2472
/ Bk - B »
g2 Gk T ZQi (k)T IQ; (k)1 IQx(K)T ],
d3k (I11.82)
+/BZ o2 Ciak I [Qi(—k)Q;(—k)Qr(—FK)],
3k
/ 247 QEU’fTr Qi ( )Q](k)Qk(k)] = —wsp,
which directly implies that
wsp = 0. (I11.83)

111.6.2.2. Pseudo-Inversion

The more interesting case for us is the one with pseudo-inversion symmetry, defined as
TH I ' =H . (II1.84)

In this case, both wip and wsp can be nonvanishing. wip ; is obtained like in the 1D case (cf.
section [[I1.4.1]). The symmetry indicator formula is

wip; mod 2= [T Menheinp, mod2 (IIL85)

neocc.

where the Ay, is the n™ inversion eigenvalue in the occupied bands of the Hermitian double
Hamiltonian at the TRIM k, and k; is the unit vector in k; direction.

wsp is obtained as

. . M1 _
= (—1)wsp with - = > (nf —ny) €. (I11.86)

keTRIMs

=

First, we show that &' is integer. We assume that we start with a system having only +1
inversion eigenvalues. If we flip one of them, we have u; — u; — 1, if we flip two of them, we
have that u1 — pu; — 2. We study the gap of the Hermitian double Hamiltonian under flipping
of inversion eigenvalues. If we flip only one of the eigenvalues, and if it was gapped before, we
change the Chern-Number of the Hermitian double one of two opposite planes. The change of
the Chern number from one plane to the other requires a gap closing|38|. This is depicted in
Fig.

If the gap of the Hermitian double closes, the gap of the H (k) closes as well. Therefore it is
not allowed to flip only one eigenvalue; thus we have to change two at once, which changes
by two. Therefore & € Z. We also know that 5 is a topological invariant from Ref. [36]. It
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Figure IIL.4.: If the overall number of negative inversion eigenvalues is odd, the Hamiltonian
is gapless. This can be seen by looking at the Hermitian double, starting with
an even number of negative eigenvalues. Then the parity of the Chern number
of two high symmetry planes (orange planes) in the BZ is the same, because the
number of inversion values is either odd on both planes or even on both planes. If
we flip one inversion eigenvalue, the Chern number on one of the planes changes.
The change of the Chern number from one plane to the other necessitates a
gap closure. Another way to see this is by looking at the invariant wip. We
know that for the system not to show a skin effect, wip has to vanish along all
the edges of the cube in the figure. If we flip an eigenvalue, wip necessarily
becomes nonvanishing along three lines, which is forbidden. Thus, flipping only
one inversion eigenvalue is forbidden.
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Figure II1.5.: Inversion eigenvalues of the Hermitian double Hamiltonian of the ETI model by
Denner et al.|[100] in the topologically nontrivial phase with wsp = 1. We indicate
the number of negative and positive inversion eigenvalues at the TRIMs.

remains to show that (—1)%1 = (—1)wsp,

Fig. shows the inversion eigenvalues of the Hermitian double of the ETI model by Denner
et al.[100] in the nontrivial phase with wsp = 1. Using these eigenvalues, we can evaluate p;/2
to be

1 7 x4
Bt > (o —mp) = Z =7 = (~1)/2= 1= (—1)wp, (IIL87)
keTRIMs

Therefore, we conclude that in this specific example the symmetry indicator invariant indeed
works.

To prove this connection, we take an in-depth look at the magnetic polarisability in inversion-
symmetric insulators. Such systems have been studied from a symmetry indicator point-of-view
by Hughes et al.[37] and Turner et al.|38]. Wang et al.[158], Hosur et al.[159] and Deng et al.[31]
have studied chiral systems and their properties in detail from a more practical perspective
of numerics and tight-binding models. Topological insulators with inversion symmetry were
studied by Turner et al.|160] from the point of view of their entanglement spectrum. The main
result we use from Turner et al.[38] is that the magnetoelectric polarisability is, for systems
with zero Hall conductance, given by the symmetry indicator formula

gzl ) (ITL.88)

keTRIMs

where n,(k) is the number of negative inversion eigenvalues in the occupied bands at k. This
formula holds if the Hall conductance vector Gy is zero. The allowed values for the vector
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can be limited using the symmetry indicator formula

NOCC
e2CHi = H H Ak ie{z,y,z}. (IT1.89)
KETRIMs

k-R;=0

The Hall conductance vector components are even or odd multiples of 27w. This means that
the Hall conductance is non-zero if there is a plane with an odd number of negative inversion
eigenvalues. If there is such a plane, we can find a line along one of the edges of the plane
with an odd number of inversion eigenvalues. Along this line, wip # 0. This entails that
the condition wip = 0 is already a sufficient condition to establish that the Hall conductance
vector components must be even multiples of 27. Using equation [[IL.77] we obtain, under
condition of vanishing Hall conductance, that

e%ﬂ 2 keTrims Mo(k) — eiG = emV3[‘ﬂ _— i(ZkETRIMs ”O(k)) — (_1)w3D. (111‘90)

As Y rerrivs Mo(k) is always even for insulators, this gives a well-defined expression for wsp,
which coincides with the former expression, by looking at

Z'(ZkeTRIMs "1:) — (fl)%(ZkGTRIMs n;) — (fl)%(ZkETRINIs n;_ni)(fl)%(ZkeTRIMs NOCC)
= (—1)%(ZkETRIMs "I_”;)(_l)(%NOCC) = (_1)%(ZkETRIMs "I‘”;), (I11.91)

This reasoning proves that the symmetry indicator invariant indeed works, given vanishing
Hall conductance of the Hermitian double. There is another approach to this issue, based on
surface Hamiltonians and their eigenstates. In the following we will describe this point of view
as well.

Argumentation using surface Hamiltonians We know that the Hermitian double Hamilto-
nian is an axion insulator[63, [161] (as it has inversion symmetry) with an additional chiral
symmetry (SLS symmetry).
In principle, an axion insulator without chiral symmetry has hinge states, which stem from
surface states that are gapped out[63]. If there is an additional chiral symmetry, gapping out
the surface states is forbidden, and therefore there are surface states forming a Dirac cone.
This axion insulator can be detected using the symmetry indicator invariant by Ono et al.[36],
1.
We will now make this more concrete by calculating the surface states of the ETI given by
Hamiltonian in eq. This surface Hamiltonian should then be gapless and and there
should be no allowed constant mass term that gaps it out.
Before proceeding, we will haphazardly choose a surface Hamiltonian and show that it cannot
be gapped out. More concretely, if we have a surface Hamiltonian with a Dirac-like kinetic
part

Hiin(kz, ky) = kaTo00 + kyTo0y, (IT1.92)

where 7 stands for the side of the sample, and o for the local degree of freedom. This Hamil-
tonian has inversion symmetry with Z = 7,00 and sublattice symmetry with S = 7y009. A
mass term that gaps out the Hamiltonian has to anticommute with the kinetic term, it has
to anticommute with sublattice symmetry and it has to commute with inversion symmetry.
Furthermore, it has to be local. The only term fulfilling all the symmetry requirements is

/Hmass(kza ky) = MTx00. (11193)
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This term is not local, and is therefore no allowed mass term. This shows that if there is a
gapless Dirac cone-like state on the surface, it cannot be gapped out. The symmetry indicators
in the Hermitian class AIII are the same as in class A[36], in principle one gets, with inversion,
a Z,4 classification through the symmetry indicator pi. Since we have already showed that
that only even uq are allowed, we get a Zs classification. For p; = 2, a system in class A
would be a HOTI with chiral hinge modes. These chiral hinge modes come into existence by
gapping out the surface states. Due to CS, these chiral hinge modes are forbidden in class
AIIl, and the only allowed phases are those with either a gapless surface state or a gapless
bulk|36]. Since we assume a gapless bulk, the surface must be gapless. Thus, we have written
down an argumentation for the existence of a gapless surface state for odd puq /2.

It is known that the number of gapless surface states of the Hermitian double Hamiltonian
is in one-to-one correspondence to w3p[100]. Thus, we get that wsp mod 2 is obtained by
calculating p1/2 mod 2.

In the next paragraph, we will make this argument more precise by explicitly calculating the
surface Hamiltonian of the Hermitian double of the ETI Hamiltonian by Denner et al.[100].

More precise version using the surface Hamiltonian To make the argument using the sur-
face Hamiltonian more precise, we try to derive it from the bulk Hamiltonian. The Bulk
Hamiltonian can be expanded in small k as

Hp(k) = (3—M)mo0+ X > kimeo; + idre00, (I11.94)
j:z,y,z

where we set B = 0. If § = 0 and M = 3, the Hamiltonian is gapless. We then calculate
the surface Hamiltonian of the Hermitian double and show that it cannot be gapped out. The
methodology of this procedure is based on Schindler[162].

The linearised Hermitian double of Hp is given by

Hpa(k) = (3= M)nemoo0 + A Y kjneTe0; — 00y 7200, (IIL.95)

J=,y,2

The system is topologically nontrivial with wsp = +1 for M =3, § = %, therefore this case is
studied. The sign of § determines the sign of wsp, the spectrum is gapless for § = 0. Therefore,
in order to look at a x-dependent transition from the trivial to the non-trivial phase, M is
varied. For M = 3, the system is in a non-trivial phase with point gap around E = 0 (compare
Fig. [[II.2). For M = 3 — 4, this gap closes and the spectrum is gapless. At M < 3 — 4, the
system is again gapped, but with a line-gap, such that wsp w.r.t. E, = 0 vanishes. Therefore,
we look at an z-dependent Hamiltonian, with fixed § = %, A = 1and a varying M (z) = %—mx.
For small negative (positive) z, the system is in the topological (trivial) phase, respectively.

So, we look at the Hamiltonian
Hpa (k) L + + ;2 + E k L (IT1.96)
, =|=+mzx —i— ; ) —— . .
Dd 9 NzeT200 o NaeTxOy = N T2 O 9 ThyT200

Reordering and writing it out as Hyq'(k) |[¥) = 0 to get boundary states with zero energy, we
find at ky = k. = 0 that

0 1
iT]meUm% ‘\Ij> = 5 (nxTzUO - nmiUO) |\IJ> + MxNT.00 ’\II> . (11197)
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We search for zero-energy surface states at k, = k. = 0. To this end we use the ansatz
W) = e 0% |y (IT1.98)
with a constant vector |¥(). Putting this in the differential equation [[I1.97| from above, we get

1
inxTzUx(zax + B)eamQJrﬁz |\IIO> = 5 (nxTzUO - nyTxUO) eaxQJrﬁm |\IIO> + m$77$720'06a$2+5x ‘\IIO>

. 1
A WlacTzUx(2ax + 5) ‘\I/(]) = 5 (nxTzUO - nyTzUO) |\IIO> + MxnzT,00 ‘\I/0> . (IH'99)

We observe that the solutions of this equation are given by the intersection of the kernel of
20, Te0p — MNzT,09 With the kernel of Bin, .0, — %(7717200 — 1nyT2z00). [ and « are free
parameters, but we would like that o < 0 for reasons of normalisation. For a kernel to be
nontrivial, the determinant of the matrix must vanish. Therefore, first, we solve the equation

det (2ain, 750, — mn,Ts00) = (m? —40%)" =0 — a == (ITT.100)
Then we choose a = —7 to find
0 0 —1q 0
0 0 0 —1i
0 0 0 1
. 0 0 1 0
Ker (—ming, 7,0, — mn,T,00) = < Sltol: ol lo > (I11.101)
0 —i 0 0
0 1 0 0
1 0 0 0
and
0 0 0 i
0 0 i 0
0 0 0 1
. 1 0 0 1 0
Ker <6“717'1033 D) (anzUO - 771/7—100)> = < ol 1=illol’'lo > (111'102)
—1i 0 0 0
0 1 0 0
1 0 0 0
for § = 0. The intersection of these two spaces is given by
{(~4,i,-1,1,0,0,0,0)",(0,0,0,0,—i,—i,1,1)T) . (I11.103)
So we have
—1q 0
i 0
-1 0
1 1 1 1 1 0
U1 (2)) = ype ama” 0 and [Ua(2)) = 4pe ama’ il (I11.104)
0 —1
0 1
0 1
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The surface Hamiltonian is then given by the matrix elements of Hpgy (k) in the basis of

{|¥1(2)), |¥2(x))}
0 Ak, — ik,
Mot (T, by, k) = (4(ky k) (ky 0 )> = 4dkyo, + 4k,0y x kyop + k.oy.  (111.105)

This Hamiltonian has the sublattice symmetry S = o,, which can be obtained from S,,,
(U (2)|Sa|¥n(z)). There is no allowed mass term because there is no allowed Hermitian term
that anticommutes with & and the kinetic part of the Hamiltonian. L,
There are also two-additional zero-energy states of Hpgy with an z-dependence e 2™% %,
These states are artefacts of the choice of z-dependence of M (z) = 5 — mz, which means that
‘Hpr passes twice from the topological to the trivial phase: at M = 5/2 and M = 7/2. These
states can therefore be discarded.

The fact that the surface Hamiltonian of the Hermitian double cannot be gapped out entails
that there are surface states with vanishing energy. These surface states can be analysed
using symmetry indicator invariants (cf. Ref. [36]). The concrete calculation here has shown
that these states indeed stem from an ETI with wsp = +1 and that the number of gapless
surface states is equal to |wsp|. By topology, this then also applies to other systems with the
same symmetries that can be smoothly transformed to this Hamiltonian while respecting the
symmetries.

111.6.2.3. Pseudo-Inversion and TRS

In this section, systems with TRS' and pseudo-inversion symmetry are treated. An example
of such a system is the one described by the ETI Hamiltonian (cf. Eq. . Symmetry
indicators then allow a Z4 determination of wsp. If wsp = +2, we get a state with two Dirac
cones on each surface, immune to being gapped out by constant mass terms. In the following,
we argue, using a surface Hamiltonian argument, that indeed the addition of TRS' gives us a
more complete tool to determine wsp.

A TRS' symmetry of the Hamiltonian implies a TRS of the Hermitian double Hamiltonian,
which appears in addition to the already existing Z and S symmetries. We first write down an
argument using an invented surface Hamiltonian for the Hermitian double. We want to show
that a surface Hamiltonian with two gapless states (a double Dirac cone) cannot be gapped
out. If the surface of a system is in addition TR-symmetric, we have, for example,

Hyin (ke ky) = kep.7204 + kyp.T.0y (II1.106)
with the symmetries
T = potooyK
T = poT00 (II1.107)
S = poTy00.

In this situation a potential mass term has to commute with 7 and Z and anticommute with
S and the kinetic part. The only terms fulfilling the symemtry requirements are

Hmass(kxa ky) = MpoT=z00,
/Hmass(k;xa ky) =MpzTz00, (111108)

Hmass(k:r:a ky) = MPyTxO .-
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Figure IIL6.: Inversion eigenvalues of the Hermitian double of TRS-doubled ETT model by
Denner et al.|100].

Unfortunately, these terms are non-local, so they cannot serve as mass terms. The fact that
a mass term is forbidden shows that there is indded a Z4 symmetry indicator, which allows
the determination of the number of gapless surfaces states. As the number of gapless surface
states of the Hamiltonian and its Hermitian double are identical, and as in addition wsp gives
the number of gapless surface states, we get a Z, characterisation of wsp. Next, we show that
we get an analogous result by starting with the ETI Hamiltonian.

Surface states of the Hermitian double Now, we study the doubled ETT with TRS', such
that wsp = 2. This Hamiltonian is given by

H = Hert ® HeTI- (HI.109)

The inversion eigenvalues of this Hamiltonian are depicted in Fig. and numerically we
can check that it has wsp = 2. Using the inversion eigenvalues, we evaluate the symmetry
indicator as

7x8
L S (nf —ng) = Z —14 — wsp mod 4= % mod 4. (I11.110)
keTRIMs

This is in agreement with the claimed Z4 determination of w3p using this symmetry indicator.
We now calculate the surface states of the Hermitian double. We start by expanding H in
small momenta around k = 0; we get

HDd(k) = (3 — M)’I]wpoTzUo + A Z k’jnmpoTxUj — (5?7yp07'x00. (HI.lll)

J=x,y,%

120



We then look at the phase transition around M = % with § = % and A = 1. Furthermore, we
use = as a real space variable. Then, we obtain

1 .0 1
Hpa (k) = <2 + mx) NepoT=00 + | i NepoTa0s + > kinepotzoj | = S1yp0T200.

. 2
J=y2
(II1.112)
Searching again for the zero-energy states with the ansatz |¥) = 0+ |Wo), we get o = =2
and f € {—1,0,+1}. The vectors with 5 = 0 are then given by
Uy (z)) = e 57" (—i,4,-1,1,0,0,0,0,0,0,0,0,0,0,0,0)" ,
|Wy(z)) = e~ 2% (0,0,0,0,—4,i,—1,1,0,0,0,0,0,0,0,0)” (IL113)
\\Ifg(x»:e%12(00000000,1,1,— 10000)T '
|Wa(x)) = =57 (0,0,0,0,0,0,0,0,0,0,0,0,i,i, 1, 1)
The surface Hamiltonian has then the form
0 0 (ky +ik.) 0
- 0 0 0 (ky + ik-)
/Hsurf(xv ky> kz) = —4e (ky . ’Lk‘z) 0 0 0
0 (ky — iks) 0 0

X kyTp00 — komyoo, (I111.114)

if we only use the states centred at x = 0 (i.e. = 0). The symmetries on the surface are then
time reversal symmetry with
T = TyOy (III.115)

and sublattice symmetry with
S = T,00. (IT1.116)

There is no constant mass term 7,0, that anticommutes with § and with the kinetic term
and that commutes with 7. Therefore the surface cannot be gapped out, and the symmetry
indicator invariant indeed works.

111.6.2.4. Pseudo-Inversion, TRS' and C;

Next, we evaluate the case where the Hamiltonian has an additional Cy symmetry. The concrete
symmetrisation for our model is described below. If we start with the Hamiltonian Hgr1(k),
then we get the C4 symmetric Hamiltonian as

H(k) = Heri(k) © riHpr (RK)ra @ ri*Her (R2k)r? @ ri* Hur (RPk) 7. (IT1.117)
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Figure II1.7.: Inversion eigenvalues of the Hermitian double of the Cy-symmetrised ETT model
by Denner et al.[100].

This Hamiltonian has four times the dimension of Hg7r and has the symmetries

T4
- T4
r4 = 4 ;
T4
) (IIL.118)
IT=1,Q017T,
T = 14 KT,

which act as
FH (k)| = H(Rik),
TH(K)ZI" = HI(~k), (II1.119)
FHT (k)7 = H(-k).

The symmetries are constructed using the operators with dimensionality of Hgr1, Z = 7,00,

T = 190y and
ei7r/4
e—iﬂ'/4
ry = sin . (IT1.120)
6—3i7r/4

The choice of r4 is quite arbitrary, as long as it fullfills 7’2 = —1,Zis—74Z = 0 and 77— 7K =
0. The Hamiltonian has wsp = 4 and its inversion eigenvalues are shown in Fig. [[T1.7]
A symmetry indicator for the doubled Hamiltonian is (cf. Ref. [33]),

A =K1 — 2Ky, (I11.121)
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where

1 _
Fi=7 Z (”l—t_”k)

keTRIMs

and

1 ; 4
= g 3 Y € vitha = 1,057
2\& keK, «

and
K4 ={(0,0,0), (m,m,0),(0,0,7), (7,7, m)}

for primitive lattice systems, as well as
K, =1{(0,0,0),(0,0,27), (7,7, —m), (7,7, 7)}

for body-centred systems.
The claim here is then that

A mod 8 =k1 —2k9 mod 8 =w3p mod 8.

If we evaluate this invariant on our example Hamiltonian H(k), we get

1 _ 16 x 7
/{121 Z (nI—nk): 1 = 28,
keTRIMs

H4:0,
— A:H1—2/€4:28,

(111.122)

(111.123)

(111.124)

(111.125)

(I11.126)

(I11.127)

where we used that at all k € K4 each Cy eigenvalue e/*, o € {1,3,5,7} appears four times.

Thus, the symmetry indicator formula holds for this example.

In order to prove that it holds in general, we look at the surface Hamiltonian of the Hermitian

double Hamiltonian.

Surface states of the Hermitian double First, we expand the Hamiltonian for small k and

then double it. For that, we expand it around k =0 at B = 0.

Heri(k) = (6 + mx) .00 + A Z kjTpoj 4+ i6T200.
j:x7y7z

The Cy-symmetrised expression is then

Heoert = (0 +mz) A+ A Z kT +idA

J=T,y,2
with
A = (1,00) ® 7‘1 (1200) 14 ® 7‘12 (T.00) 72 @ rjis (T.00) 75,
Ly = (120:) ® 7“1 (Ta0y) T4 @ 7“12 (—T02) T3 @ 7"13 (—Te0y) 7,
Iy = (1p0y) @ 7‘1 (—Tp02) T4 ® 7’12 (—Te0y) T2 @ 7“13 (Twoz) T
T, = (120.) ® 1) (1202) 14 ® 112 (1202) 13 @ 1) (100.) 7,
A = (1500) ® rl (T200) T4 ® T:EQ (To00) T3 @ r}lg (T200) 3.

123

(111.128)

(111.129)

(111.130)



The Hermitian double Hamiltonian, expressed as a function of k = (k;, ky, k.) is then

Ha(k) = (6 + ma;) Aq + MeaTad + My Tya + MeoTog — 6A, (IT1.131)
with
Ad = Nz & A7
F:ch =Nz & Pam
Lya = 1. @ Ty, (IT1.132)
I.q= Nz & r.,
Ag=mny®A

and z; € {z,y,z}.
We now solve the equation at k, = k., = 0, which is

[(5 + ma) Aq + Alaq (—ii) - 5Ad] |W(z)) = 0. (111.133)

With the ansatz |¥(z)) = e®®*+5% |Wg), we get
(6 + maz) Aqe®® 5% W) — iAT4q ((2ax + B)eosi+ha |\Ifo>) — S AGeT BT ) = 0, (IT1.134)
which is equivalent to
(6Aq — 6Aq — iBAT4a) [To) + (mzAq — 2idaalsq) [¥o) = 0. (II1.135)

Subsequently, we search for the intersection of the kernels of (6443 —dAq—ifAq) and (mAq —
2iAal';q). The kernels are nontrivial if « = £m/2\ and g € {0,4+26/\, —20/\}. We presume
that A > 0 and § > 0. Therefore, « = —m/2\ and the intersection of the kernels is empty for
B = 26/A. We use the values for § = 0, because the states for § = —2J/\ merely stem from
our choice of m(x). The vectors |¥(x)) are

|Uy(z)) = e 2% (—i,4,—1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)7,
|Ws(z)) = e~ 27°(0,0,0,0,1,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)7,
|W3(z)) = e~ 27°(0,0,0,0,0,0,0,0,i, — —1,1,00000000000000000000)T
|Wy(z)) = e~ 277 (0,0,0,0,0,0,0,0,0,0,0,0, — —1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)7,
|Ws(2)) = e 2x*” (0000000000000000,1,1,— —1,0,0,0,0,0,0,0,0,0,0,0,0)7,
[We(z)) = e 23%°(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,—1, 1, —1 —100,0,0,0,0,0,0)T,
1W,(2)) = e 23%°(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, — 1,-1,0,0,0,0)T,
|Wg(z)) =e ﬂw(0000000000000000000000000000,1, 1,-1,-1)T.
(I11.136)
By evaluating
Heount (T, Ky k2 )mn = (Ui (2)|Ha | Vo (2)) (I11.137)
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we get

m 2

Hourt(z, by, k) = —4Xe” X7 X
0 0 0 0 ky + ik, 0 0 0
0 0 0 0 0 ky + ik, 0 0
0 0 0 0 0 0 ky + ik, 0
0 0 0 0 0 0 0 ky + ik,
ky — ik, 0 0 0 0 0 0 0
0 ky—ik. 0 0 0 0 0 0
0 0 ky — ik, 0 0 0 0 0
0 0 0 ky — ik, 0 0 0 0

m .2

= *4)\6_7z (kiyngOO'[) - ka&yCOO'O) . (111138)

This surface Hamiltonian has a sublattice symmetry with S = £,{yo9 and time-reversal sym-
metry with 7 = §,(p00. In this case, there is also no constant mass term that would meet the
conditions

7J7Llfnass<k)7—Jr - %mass(_k) = 07
SHmass(k)ST + /Hmass(k) = Oa (111139)
,Hsurf(k)/Hmass(k) + /Hmass(k)/Hsurf(k) =0.
Therefore we conclude that the surface degeneracies cannot be gapped out.
Repeating the same procedure in y yields
Howt(ko,y, ks) = Ahe™ 3 x
0 0 0 0 ky — ik, 0 0 0
0 0 0 0 0 ky — ik, 0 0
0 0 0 0 0 0 ky — ik, 0
0 0 0 0 0 0 0 ky — ik,
ke + ik, 0 0 0 0 0 0 0
0 ky + ik, 0 0 0 0 0 0
0 0 ky + ik, 0 0 0 0 0
0 0 0 ky + ik, 0 0 0 0
— e XY (kp&Cooo + ko£yCoo0),  (111.140)

with TRS with 7 = i§,(po¢ and sublattice symmetry with & = £.(po0. It is again impossible
to find a mass term compatible with the conditions laid down in eq. [[II.139
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The procedure in z direction yields

Heurs(biz, by, 2) = 20e™ 3% x
0 0 0 0 ky — ik, 0 0 0
0 0 0 0 0 ky — ks 0 0
0 0 0 0 0 0 ky — iky 0
0 0 0 0 0 0 0 ky — ks
ky + ks 0 0 0 0 0 0 0
0 ky + ks 0 0 0 0 0 0
0 0 ky + ks 0 0 0 0 0
0 0 0 ky + iky 0 0 0 0

m 2

=2 e 2% (kxfygoo'g +k3y§xgoo'g) . (111141)

This surface Hamiltonian has r4, 7 and S symmetries, whose matrix representations are given
by

S - fZCOOU?
T = —§,C000,
0 % 0 0 0 0 0 0
0 0 e 0 o 0 0 0
_3ix
00 0 e 0 0 0 0 (I1L.142)
P 0 0 O 0 0 0
T4 = 3im
0 0 0 0 0 e 0 0
0 0 0 0 0 0 et 0
o 0 0 0 0 0 0 ef
0 0 0 0 €% 0 0 0

There is again no allowed constant mass term of the form ,(, 0., that satisfies all the conditions
from equation Interestingly, it is not necessary to make any use of fourfold rotational
symimetry.

This shows that the symmetry is indeed a Zg invariant for wsp. Further this calculation has
showed that a H with wsp = 4 indeed corresponds to a system with four gapless surface states
that can be analysed with the symmetry indicator invariant in eq.

Calculating the invariant using SVD The symmetry indicator invariant can also be calcu-
lated without using the Hermitian double Hamiltonian, but instead using the Singular Value
Decomposition (SVD) of the Hamiltonian

H(k) = Uk)2(k)VT(k), (I11.143)

where U and V are unitary and X is a diagonal matrix with non-negative real entries. Any
matrix can be decomposed in this form.
Then

H(k)V (k) =Uk)S(k), Hk)UKk)=V(k)S(k), (111.144)
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which implies that

AT R g AT R

The corresponding matrix whose eigenvalues allow us to calculate the invariant are

Toce (k) = Jli {_UV(':’;T B ﬂ [_?/(('2)] \}5 = —% [V(k)TIU(k;) + U(k)TIV(k)} . (I11.146)

The only advantage is that instead of having to calculate the eigenvectors of Hq at the TRIMs,
we can calculate Iocc.

111.6.3. Symmetry Indicators for Class All

In this section Hamiltonians carrying pseudo-inversion symmetry and TRS with complex con-
jugation are studied. They belong to the non-Hermitian AZ class AIl. Consequently, there are
two unitary operators 7 and Z such that

THZ" = H' | with 7% = +1,

(IIL.147)
THET! = H_y with 77% = —1.

The Hermitian double Hamiltonian has PHS, TRS, SLS and inversion symmetry and is in
symmetry class CII. According to Schnyder et al.[29], Dirac cones on the surfaces of insulators
in class CII are at least twofold degenerate. Thus, the Hermitian double of a non-Hermitian
insulator in class AII in its topologically nontrivial phase has an even multiple of two surface
Dirac cones. Such surface states can be detected with the symmetry indicator invariant (33,
as the symmetry indicators in AZ classes AIl and CII are the same[36].

But first, before continuing, we study the invariant wsp with TRS. wsp is always defined with
respect to a point gap energy E,. Because TRS implies that energies appear in pairs (£, E;),
we assume that E, is real. @Q;(k) then has the property that

TQ;f(k)TT =7

(H(K) = B,) " 0y, (HK) ~ Bp)] 7,

= [(H(0) - B) 7| ey rir[(H (k) - B, (IT1.148)

= (H(-k) - B;) " (rop, 7 ) ( (—k) — E)
= (H(-k) = B}) "' 0, (H(-K) = B}) = ~Q;(-K),

using that F, = E} and [( (k) — Ep)_l} = (H*(k) - E;)fl. For wsp, we can then find the
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identity

d3k
wip = [ S TQi9Q,(0Q 9]

&’k s
= | e [Qi09Q;09Q300)]

¢’k O ()0 (1)t
/BZ Y. S5 €ijk T [TQ (k)7'7Q; (k)T TQ (k)T } ,

5 (111.149)
a3k \ \ )
Sk T [(—QF (=K))(~Q; (—k)) (- Qi(=k))] ,

gy
s

3
= +/ 261 k2ewkTr [Q ( )Q]( )Qk(k)] — _wap.

ek T Q102 (1@ (k).

Using that wsp is a winding number and therefore has to be real, we obtain the result
wsp = —w3p — wsp = 0. (IT1.150)

Thus, it is shown that the winding number wsp is not able to serve as an invariant for the
Zy classification present in the symmetry class AIl with point gap[95]. According to Kawa-
bata et al.[95], the right invariant to use is the Zs invariant for chiral Hermitian systems in
class CII. This invariant, also referred to as the second descendant of the winding number[26],
is the Chern-Simons invariant with with a specific gauge choice[26]. It is calculated in terms
of the Hermitian double Hamiltonian. The Chern-Simons invariant CSs is

CS3 = Q3 with Q3(A) = 1o [AdA + 2A3] : (I11.151)
Bzd 872 3
in terms of the Chern-Simons curvature Q3. To obtain the invariant for class CII, the gauge
condition
/ Tr [(XdXT)ﬂ =0 (II1.152)
OBZ3 ),
has to be enforced, where X (k) = (u!,...,u™,v!, ..., v") is the unitary matrix formed by the
eigenstates of the Hermitian double Hamiltonian. 8BZ‘11 /2 s half the BZ, and obtained by
limiting one of the crystal momenta, e.g. k., to only run between 0 andw. The Zs invariant
is trivial for even CSs and nontrivial for odd CSs. Due to the gauge condition, it is quite
cumbersome to evaluate it, and since CS3 is a BZ integral it is anyway computationally costly.
Therefore, we propose to use a symmetry indicator invariant instead.

To investigate this type of system more in detail, we study a doubled version of the ETI model
by Denner et al.[100]. The original ETT Hamiltonian by Denner et al.[100] is

Hj(k) = > coski| =3 oo+ > sin(ki)7oq + SiTeo0, (I1L.153)

i€{z,y,2} i€{z,y,z}

with M =3, A=1and B =0.
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Figure I11.8.: Inversion eigenvalues of the Hermitian double of the time reversal doubled Hamil-
tonian H7, based on the ETT Hamiltonian by Denner et al.|100].

The Hamiltonian is then doubled to obtain

H k
Hr(k) = Hyy (k) & H_y (k) = | 01720 Hor i) (ITL.154)

Hy (k) has wsp = 0 and its symmetries are
1. a pseudo-inversion symmetry ZHr(k)Z~! = H;-(—k) with

Z = poT;00, (IT1.155)

2. and a TRS 7H3(k)7" = Hy(—k) with

T = pPaT00y. (IT1.156)

The Hamiltonian Hy carries all the sought symmetries.
Its Hermitian double has an additional sublattice symmetry, and the representations of the
symmetries are

Zgq = mpoT:00,
Td = M0PzT00y; (IT1.157)
Sd = 1:p0T000-
These operators are indeed compatible with the Hermitian AZ class CII. In the nontrivial
phase, it has the inversion eigenvalues depicted in Fig. and the symmetry indicator is

u1/2 = 2. This is compatible with the claim that the system is in the topologically nontrivial
phase for odd p;/4. Furthermore, we checked numerically that indeed wsp = 0.
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Due to the fact that /2 = 2, taking into account the correspondence between the Hermitian
double and the non-Hermitian Hamiltonian, there need to be gapless surface states. Therefore,
we expect a phase with two gapless surface states. To further investigate the surface of this
system, we take four steps:

1. Study the surface states of the Hermitian double Hamiltonian.

2. Study the system in a slab geometry with open boundary conditions (OBC) in one
direction. We check that the system is indeed gapless.

3. Check quite generically for two-band Hamiltonians with TRS that there cannot be a
point- or line-gap in the spectrum of a linearized non-Hermitian Hamiltonian.

4. Furthermore, deliberate briefly about the properties of exceptional points that might
arise on the surface.
111.6.3.1. Surface States of the Hermitian Double

We study the linearised Hermitian double Hamiltonian, given by

Ha(k) = (8 + mzx) nypoT200 + A Z kinzpoTa0; — 01y p=T200. (IT1.158)
je{z,y,z}

Setting k, = k. = 0, we have to solve
(k) [¥(z))
0
= (0 + max) nypor.00 |V (2)) + AMepoTu0s <Z&E> |W(x)) — dnyp.mw00 [¥(z)) =0 (II1.159)

using the ansatz e***+5% [y, This leads to the equation

(5 + mx) 77$p07_z(706ax2+/8x ‘\I/O> - i)‘nzp(]'rzgz (2043: + 6) eax2+ﬁa: ‘\IIO>
— 8y paTro0e™ I W) = 0 &
(MmangpoT200 — 20N poT204) |Wo) + (0N2p0T200 — BiANepoTeoz — 0Ny p=T200) [¥o) = 0.

(I11.160)
The relevant values of « and 5 are « = —m/2X and 5 = 0. Repeating the procedure seen in
the previous secton [[T[.6.2.2] we obtain the eigenstates
]\111(17»:6_%1’2(— ,—1,1,0,0,0,0,0,0,0,0,0,0,0,0)T,
|Wo(x)) e n e’ (0,0,0,0,4,i,—1,—1,0,0,0,0,0,0,0,0)7, (IT1.161)
|Ws(z)) = e ax e’ (0,0,0,0,0,0,0,0,i,i,—1,—1,0,0,0,0)7,
|Wy(x)) = e ne’ (0,0,0,0,0,0,0,0,0,0,0,0, —i,4, —1,1).
The surface Hamiltonian is
0 0 ky + ik, 0
_mg2 0 0 0 ky — ik,
Hourt (2, by, kz) = —4re™ 2 ky —Olkz . f . 8 y 8 (111.162)
y T IRz

= —Are 3 (ky€uCo — k26,C.) -
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This Hamiltonian has SLS with & = £.(p and TRS with 7 = #£.(y. Therefore, the only
symmetry-allowed constant terms are

Humass = §1C1a
Hmass = ;
&6 (IT1.163)
Hinass = £1C3a
Hinass = §2€0‘

All these terms do not anticommute with the surface Hamiltonian. Therefore, no allowed mass
term exists for the surface of the Hermitian double Hamiltonian. This further implies that the
Hamiltonian itself must also have zero-energy surface states.

111.6.3.2. Slab Spectrum

In this paragraph, the behaviour of the system Hp (k) from the point of view of its slab
spectrum is described|[100]. The slab spectrum is calculated as follows: First, one defines a
Hyop(k1, k2) as

1 i 27 2m
Hiop(h: k1, k2) = 7 > e Hr(k ky ko), key = (0.7 L-D7}  (IL164)
k€kpy

The slab Hamiltonian is then defined as

Hyop(0, k1, k2), for 1 = j,
Hslab(kh k?g)ij = Hhop(l, k‘l, kg) for ] =9+ 1, (111.165)
Hhop(—l,kl,k‘g) fori=7+1.

This matrix of matrices is flattened to get a matrix of complex numbers. The spectra of the
Hamiltonian H7 with periodic boundary conditions and Hgj,, with open boundary conditions
are depicted in Fig. [[II.9] With periodic boundary conditions, the spectrum has a point gap.
With open boundary conditions this gap is filled. It must be stressed that in the OBC case,
the eigenvalues at Im(e) = 0 do not stem from one mode that spans over the whole BZ. Instead
these states stem from four TRIMs, from k* = (0,0), (7, 0), (0, 7), (7w, 7). The eigenvalues near
the edge, with Re(e) € ((—6,—3.96) U (3.96,6)), are from k* = (m, 7). The eigenvalues with
real part Re(e) € ((—3.96,—1.9) U (1.9, 3.96)) are from k* = (7,0) and k* = (0, 7). The eigen-
values with real part Re(e) € (—1.9,1.9) are from k* = (0,0).

Now, from the plot with open boundary conditions, one might get the impression that new
gaps open below and above the line at Im(e) = 0. This impression is misleading, as can be
verified by looking at Fig. that shows the OBC plot zoomed in by a factor of 10000
around k = 0 (k € (— 15855 —i—ﬁ)%. It can be seen clearly that the gap closes, though it
seems that the eigenvalues approach the real axis only exponentionally slowly.

After having established that the spectrum itself is gapless, the next step would be to show
that no perturbation of H7 that is compatible with 7 and pseudo-inversion can open a gap.
This has been checked: it is indeed impossible to open a gap by adding a perturbation to
the bulk Hamiltonian, though often the crystal momentum for which the gap closes is quite
hard to find. If a constant mass term added to Hy has the form p,7,0y, the allowed values
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Figure II1.10.: Spectrum of H7 with open boundary conditions in the area near k = 0.

for (1, v, \) are {(0,0,0),(0,3,0),(1,0,0), (1,3,0), (2,0,0), (23,0, (3,0,1), (3,0,2), (3,0,3), (3,3,1),
(3,3,2), (3,3,3)}. If instead the constant mass term has the form ip,7,0y, the allowed values
of (1, v, \) are {(0,1,1), (0,1,2), (0,1,3), (0,2,0), (1,1,1), (1,1,2), (1,1,3), (1,2,0), (2,1,1), (2,1,2),
(2,1,3), (2,2,0), (3,1,0), (3,2,1), (3,2,2), (3,2,3)}. All of these possibilities were checked and
none of them lead to the appearance of a gap. This was done without and with a B-Field of
form Hp = cos(a) Y, p3m30; + cos(a)p3oo; with a = m/2 and o = 0.

The eigenvalues that fill the gap and reach the point e = 0 are often away from (kg,k,) =
(0,0). As an example, the PBC spectrum of Hy with an added magnetic field 0.01Hp and a
perturbation of the form 0.15p1790¢ is shown in Fig. The gap remains open. Fig. [IL.12]
shows the OBC spectrum of the same Hamiltonian both in the whole BZ as well as in the
region (—7 /10, +m/10)? around the origin. In the plot of the region around the origin, we can
see that the gap is actually closed.

111.6.3.3. Precise Calculations in 2-Band Systems
In this section, we try to model the surface of such an insulator. To this end we simply assume

a “Dirac-like” two-band Hamiltonian with linear dispersion that is compatible with TRS.

Surface states by assuming a form of 7 We study the surface Hamiltonian, respecting time
reversal symmetry with complex conjugation with the representation

T =ioykK. (IT1.166)
We can then write the kinetic part of the Hamiltonian around a degeneracy as

ikjoo and kjo vl € {x,y, z}. (IT1.167)
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Re(e)
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Figure III.11.: Periodic boundary condition spectrum of a perturbed Hy.

Figure II1.12.: Slab Hamiltonian spectrum of a perturbed Hy. On the left, the whole BZ, on
the right only an excerpt of size (— /10, 4+7/10)? around the origin of the BZ.
We can see that the gap is closed.
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Figure II1.13.: Real (left) and imaginary (right) part of the band structure of Hyi,. No gap is
present.

Figure I11.14.: Real (left) and imaginary (right) part of the band structure of Hyi, + 09. No
gap is present.

We therefore write down the local 2-band Hamiltonian
Hkin(k) = kyo: + k‘yiO'o. (111.168)

This is the TRS-compatible doubling of the surface states with dispersion k; + ik, appearing
in the ETI (cf. Denner et al.[100]). The real and imaginary band structure of this Hamiltonian
are depicted in Fig. TRS allows constant mass terms of the form ioj, for j € {x,y, 2},
and og. To get a feeling for the band structures of these surface Hamiltonians, we plot the real
and imaginary part of the eigenvalues as functions of k = (k,, ky) for the four different allowed
mass terms. In none of the cases any gap appears. Figure shows the band structure
with a og-mass. Figures [[IL.15] (IT1.16] [[I1.17) show the band structure with a mass of form

oy (ioy, i02).

Precise thinking about why there cannot be a point- or line-gap To think precisely about
why a point or line gap cannot exist, we solve the eigenvalue problem of the surface Hamiltonian
exactly. Our surface Hamiltonian is characterised by the 12 real parameters o = (o, &), B* =

(8, B) and 4 = (7°,7), which act as prefactors to the allowed kinetic terms Ulljin = (o, gkin)

and 0% = (07%%, 6™%F). The allowed terms are
5™ = 0y, o' =0y, 0y =0y, 03" = o, (IT1.169)
and

of = oy, o =g, okt = 5, oxn =g (I11.170)
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Figure III.15.: Real (left) and imaginary (right) part of the band structure of Hyi, + i0,. No
gap is present.

Figure II1.16.: Real (left) and imaginary (right) part of the band structure of Hy, + ioy. No
gap is present.

Figure I11.17.: Real (left) and imaginary (right) part of the band structure of Hyi, + i0,. No
gap is present.
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The two-band Dirac Hamiltonian is then, in full generality, given by
H(ky, ky) = kool o™ + kyBlog™ + o™, (II1.171)

with summation over repeated indices. The eigenvalues of this Hamiltonian are

B =" + ik, +i8%, £ \/ (ks + Bk, + 7). (I.172)

Non-existence of a line gap First, we want to prove that there is no real line gap. To do
this, we prove that there are states continuously from oo real part to —oo real part. We study
k,; = 0 and obtain

ky=0,k, =0 — B =7"%i|y,
0 - (IT1.173)
kip = 0, ky — %100 — B, ~if kyiQkylﬁ‘.
Here, we see that F covers the real range [yp, co] and E_ covers the real range [—o0, 7). This
means that there is no line gap parallel to the imaginary axis.
To gain further insights, we explicitly show that for any £/ € R we can find a (k;, k) with this
eigenvalue. The energies appearing in the spectrum are eigenvalues of the Hamiltonian

ol +ia? —ad +ial

Brrif B =i P4 ind iyl 2
+ ky < Bl + 252 _53 + ’LBO + Z’)’l _ 72 ,_YO - ’L"}/3 . (111174)

We can write an equation for the eigenvalues E = x + iy + 7, which is

3, .0 1 .2
’H(kx,ky)zkx<a +iad ol —ia )

+ 2ia kg — 20 kyy — a#a“ki — 200, kg ky — Byﬁ“k:;
+ 2id - kg + 216 - Tky + 28k x — 28%,y
+ 77+ (z+iy)* =0. (I11.175)

Setting y = 0, looking at states with zero imaginary value, we get states on the real axis. Then
we can first solve the condition that Re(0) = 0 and Im(0) = 0. This yields the two equations

(%2 4+ @ - F)kx + (8% + 5 - F)ky =0 (IIL.176)
for the imaginary part and
Y7 — opakl = 2008 kaky — BuBtk; + 2* =0 (IT1.177)

for the real part. For generic parameters, we get

kg (I11.178)

and by setting this into equation

,-_},’2 + 332
B S L L\ - S \2’
(4G ~ "Bz + (@(F-7) - Al@- 7)) + (867 - a0 7)
which yields a solution because it is a positive quantity under a square root. To check that it

really works, we have to ensure that that the cases for which the denominator in Eq.
vanishes are also covered. If 3% + -7 = 0, then there are two cases:

ky =+ (111.179)
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LI =0=43- 4, the denominator vanishes for all z and we have (az + @ - 7)k, = 0.
If the first term vanishes, k, is arbitrary. This means that the system of equations is
underdefined, and there is a solution for k,, k, such that we get x. This follows from the
fact that the paralleloid spanned by equation cuts through the zero plane: for
ky =k, =0, it is at 2% + 7 - 7, for k, = 0,k, — oo (or vice versa), it drops to —oc. The
only exception to this is if a, = 8, = 0, which would not be a Dirac-like Hamiltonian,
so it can also be excluded. If the second term vanishes, then k, = 0, and the remaining
equation becomes 7 - 7 + z? = ﬁuﬁ“kg, which also has real solutions.

2. If B% # 0, the problem only arises for one very specific value of . Therefore, by continuity,
there is no issue.

Thus, for any real Energy E = x+4Y, there is a corresponding k = (k;, k,) with eigenvalue E.
This excludes the possiblity of having a real gap, as long as we have a Dirac-like Hamiltonian
that is not a constant matrix.

Arbitrary prefactors The next step is to contemplate how the spectrum away from the
real axis looks like. To do so, the energy spectrum with constant real part is studied, with
E =xz+iy++" € C. The values for (ky, k,) are then given as functions of the parameters o/,
6", v* and x,y. Within the formula, a square root expression arises, which limits the allowed
values of x,y. Therefore we can write

km = Fx(x,y,oc“, 6“77“7“377 Y, aﬂ’ ﬁﬂ’vl‘)%
ky = Fy(xv Y, aﬂ’ BM>’7Ma f(xayv aﬂ’ﬁli’,ylﬁ))’

where f limits the range for y at fixed x. It is given by

(I11.180)

!
|
o}
o
sy
2
+
Q1
=21
S
Sy
8
|
QL
s

P =4y ((a°F - Fo? ' fa® - §-7(8° - 5

— 4 (=(8'd -7 = a"F-7)? = ((a°F - @)z — (@F -7 — - 7))

For fixed z it has the form

§ = \/Const; — Constay?, (II1.182)

which yields the maximum imaginary value. As a result, we can directly calculate the (k. ky)
for all the values of y between 0 and ymax = +/Consty/Conste. Ymax is a smooth function of
its parameters. This implies that there cannot be any point gap.

Simple Hamiltonian from the beginning For the sake of completeness, we return to the
beginning of this section and study the case of the very specific kinetic part given by

,Hkin(k;vv ky) = kpo, + i/{?yao, (111.183)
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to which we add an arbitrary mass term of form
Hunass (K, ky) = yH02. (I11.184)
The eigenvalues of this Hamiltonian are given by the equation
0=yl — k2 — k2 — 2902 + 2% + 2i(1°ky — v ks — ky2). (IT1.185)
Setting z = = + iy with x,y € R, we obtain
K2 =7+ —2)% = (ky —y)? and — v ky + (4° — 2)(ky — y) = 0. (II1.186)

To check for which values of (z,y) there is a solution (ky, k), we first look at the case (1° —xz) #
0. Then we have

k _ ks 1 Y k2 =72 4 (40 — )2 111.187
y—y—voi_x:> + N z=7 +( —2). (IIL.187)

2
Since <1 + ( W(Yix) > # 0, the equations yield two real solutions k;, each of which permits a

calculation of k. On the other hand, if v° — z = 0, we get the two equations
k2 =7% — (ky —y)? and — 'k, = 0. (IT1.188)
We choose k,; = 0 in order to satisfy the second equation, and get
(ky —y)* = 72 (I11.189)

This equation can be solved for k, for any choice of y. Therefore, we get the result (k;, k,) =
(0,5 £ 7))

Thus, we have shown that for every point on the complex plane we can find a momentum
(kz, ky) such that the Hamiltonian has the complex number E = x + iy as its eigenvalue.

Case of Two Exceptional Points The case of two Exceptional Points (EPs) can be modelled
with the 2-band Hamiltonian

H(ks, ky) = kzop + kyo, + 0. (I11.190)

This is an interesting situation because we know from Ref. [100] that one of the possible surface
states of an ETI is a state with an EP. Physically, one of the possible expected states of a time
reversal doubled ETT is therefore a state with two EPs.

The band structure of the Hamiltonian is depicted in Fig. [[T[.18] and its complex spectrum
in Fig. [[II.19, There are two Exceptional Points at k = (0,£1). At the EP at k = (0, 1),
there is only one eigenvector, (—%, %), with eigenvalue 0. This non-existence of two distinct
eigenvectors signals that it is indeed an EP. The same phenomenon also appears at k =
(0,—1). Expressed as a generic Hamiltonian, the parameters are o' = 1, 83 = 1, v = 1 (cf.
equation . For simplicity, we omit ¢0,, which we are allowed to do since it is anyway
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Figure II1.18.: Real (left) and imaginary (right) part of the band structure of the Hamiltonian
in eq. [l11.190| with two Exceptional Points at k = (0, £1).

Im(€e)
3

Figure I11.19.: Complex spectrum of the Hamiltonian [[11.190| with two Exceptional Points. The
spectrum is gapless, but does not reach every point in the complex plane.

a symmetry-allowed mass. Now, we check whether k,o, + ky0. can be gapped out by adding
an arbitrary mass. The equations for k;, ky, given the eigenvalue F = x + 1y, are

vuv“—ki—k§—2’yom+w2—y2:0,

(I11.191)
—7'ke —7*ky =% + 2y = 0.
As we know that 4! ~ 1, we can solve the second equation for k,, which is
1
k, = ol (zy — Ay — 73]%) . (I11.192)
This can then be used to calculate k,, given as
N -~ 0 _ )2
ky =+ VI T+ 00— ) (I11.193)
1 (3)?
RChE
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— K

I'(kp)

Figure I11.20.: Paths around two Exceptional points situated at le and —le, which are
mapped onto each under time reversal.

if y = 0, which always yields a result. If y # 0, we get
3 04,3 1
Y'r =y ()
b= T Y e e V8 )
with g(z,4,7") = (') + (*))* + (PP + (1)) + (%' =~'2)?  q194)
+ (" =) = ()P + (P + (¥ — 2)*)y?
= Const| — Constng.

Due to the positivity of these constants, the spectrum is gapless, and therefore the two EPs
represent a surface state protected against being gapped out.

111.6.3.4. Surface Exceptional Points and their Discriminant Numbers

In this section we study Exceptional Points from the point of view the discriminant num-
ber[163], which is an integral quantity that counts the number of EPs in the area encircled by
a closed path. It is given by
v(kl) = — }'{ dk - Vy In Disc[H] (k) (I11.195)
(ki)

T oon
with
Discp[H](k) = [ [ [Ei(k) — E;(k)]*. (I11.196)
1<j
Here, k', is the location of the Ith degeneracy (here Exceptional Point) and I'(k},) is a path
around it. If l/(le) does not vanish, it guarantees the stability against a gap opening of the
degeneracy encircled by the path. In the following, the behaviour of this invariant under

time reversal is studied. If there is an eigenstate |u) at k with eigenvalue Ej;(k), there is an
eigenstates 7/ |u) at —k with eigenvalue Ef (k). The discriminant at —k is

Discp[H](~k) = [ ] [Ef (k) — E(k)]* = (Discg[H] (k)" (111.197)

i<j
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The contour integral around —k D is
i

v(—kp) = o

7{ dk - Vi In Disc[#](k), (II1.198)
L(—k}p)

where T'(=k.,) is the path around the EP at —kl,. If T'(kl,) : ¢ — k(¢) is the path around ki,
then T'(—kl,) is given by t — —k(t) (situation depicted in Fig. [[11.20). If I'(k%)) has positive
mathematical direction, I'(—k') has as well. Explicitly evaluated, we get

v(—Kkb) = dk - Vi In Discp[H] (k)

2m Jr(a)
. 1 _

_ [ k)
2 Jo ot
. 1

_ i dtf?(k(t))
2m Jo ot

_ v dk - Vi [In Discg[H] (k)]*
27 F(le)

= —v(kp).

where we used in the last line that the integral as whole is imaginary, and therefore the complex
conjugation acts by flipping the sign. This means that if there is an EP at +k!,, there is also
an EP at —le with flipped discriminant number. In other words, Exceptional Points in time
reversal symmetric systems appear in pairs at momenta +kp, and since they have opposite
discriminant numbers, they can be annihilated by bringing them together. Therefore the state
with two EPs is not a separate phase, but can be continuously transformed into a state with
Dirac-cone-like degeneracies.

: v—k(t) In DiSCE [’H](*k(t))

(I11.199)

- Vi) [In Discp[H] (k(¢))]"

111.6.4. Summary Table

In the following, all the symmetry indicators for 3D systems are collected in table Here,
/\i is the i*" inversion eigenvalue of the Hermitian double at k. nljf is the number of +1
inversion eigenvalues of the Hermitian double at k. nj is the number of eem/4) Cy eigenvalues
of the Hermitian double at k.

Int. Sym. | Point Group | Gap (L / P) || H / Hq Symmetry indicator

- T P - wip,j = 0

- 7 P H, (1105 = TTicoee WX,

- T P - wsp =0

- T P Hy ( 1)wsp = (-1 )i Cwerrivs (1 —n5c)

- T P Hy (—1)wsp = ( )l Swerrivs (14— )

TRST T P Hy JWSD — 1 DkeTRIMs (nie —muc )

TRSt _’Z', Cy P Hy ( z7r/4)w3D _ ( z7r/4) T Zkerrivs (i~ )
X (—i )2f 5 keny 2a €O Ung

TRS T P - wsp =0

TRS T P Hy (—1)CSs = (_1)§ Crerris (1~ )

Table II1.3.: Symmetry indicator invariants for 3D non-Hermitian systems.
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111.7. Outlook

The approach of using symmetry indicator invariants to detect nontrivial topological phases can
be extended to more non-Hermitian AZ classes. One could simply graze through all the classes
listed in Ref. [95]. Furthermore, one might also be able to detect non-Hermitian topological
phases that go beyond the classification in this table, requiring space group symmetry to pro-
tect their surface states. These would then be non-Hermitian topological crystalline insulators.

111.8. Final Remarks

In this part, some symmetry indicator invariants for non-Hermitian were presented. In 1D,
the 1D winding number wip for systems with point gap can be determined up to modulus 2
using a symmetry indicator invariant in presence of pseudo-inversion symmetry. In presence of
inversion symmetry, wip vanishes. In 2D, when there is a line gap and conventional rotation or
inversion symmetry, the symmetry indicator invariants known from Hermitian systems can be
used. In 3D, the allowed values of the 3D winding number wsp can be limited using symmetry
indicator invariants in presence of pseudo-inversion symmetry. In presence of pseudo-inversion,
it can be determined modulo 2, in presence of pseudo-inversion and TRS! modulo 4, and
in presence of pseudo-inversion, TRST and C; symmetry modulo 8. If a system has TRS
symmetry, the classification is Zs. In presence of pseudo-inversion symmetry, we are able to
detect the non-trivial phase using a symmetry indicator invariant.
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IVV. General Conclusion

In this thesis, two aspects of topological matter in presence of space group symmetries were
elucidated. In the first part, the focus was on OAL of C4 symmetric spin-orbit coupled 2D
materials. A method to construct highly symmetric gauges, the projected symmetric operator
method, was in detail analysed and its applications to the problem are showed.

This method, together with the invariants by Kooi et al.[130], represent an easy method to
determine to which band representation a set of occupied bands corresponds.

In the second part, symmetry indicator invariants for non-Hermitian Hamiltonians were treated.
In 1D and 3D, the values of the winding numbers wip ; and wsp were bounded using symmetry
indicator in presence of inversion, TRS' and Cy symmetry. In 3D in presence of inversion and
TRS symmetry, a new phase with two Exceptional Points or a degeneracy on the surface was
discovered. In 2D, the validity of symmetry indicators already known from the Hermitian case
was proven for the non-Hermitian situation. These symmetry indicators make the detection of
topologically nontrivial phases in non-Hermitian physics much easier. They could pave the way
to the development of many more symmetry indicator invariants for different non-Hermitian
phases, and thereby lead towards a systematic search for new non-Hermitian topological phases
using automatised searches.
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