Particle theory in the precision era

"Before I came here I was confused about this subject. Having listened to your lecture I am still confused. But on a higher level." — E. Fermi

Leonardo Bonino, Weijie Feng & Gaia Fontana

Why are we not satisfied with the **Standard Model**? • Uncertainties in fundamental parameters $(m_W, m_Z,$

 α_S , ...)

•Open questions (neutrino masses, hierarchy problem, ...)

New physics may be hidden in small deviations \rightarrow Precise Standard Model predictions needed

Precision physics at the Large Hadron Collider (LHC): how to describe a proton-proton collision? Factorisation formula $d\sigma \sim \sum_{a\,b} f_a \otimes f_b \otimes d\hat{\sigma}_{ab}$

 f_i parton distribution function (PDF)

Focus on partonic cross-section $d\hat{\sigma}_{ab}$

- •Perturbative QCD: expansion in strong coupling constant $\alpha_S \sim 0.1$
- •Thousands of Feynman diagrams → amplitude techniques
- •Infrared divergences in loop and phase space integration \rightarrow antenna subtraction

 $d\hat{\sigma}_{ab} = d\hat{\sigma}_{ab}^{LO} + \alpha_S d\hat{\sigma}_{ab}^{NLO} + \alpha_S^2 d\hat{\sigma}_{ab}^{NNLO} + \alpha_S^3 d\hat{\sigma}_{ab}^{N^3LO} - \alpha_S^{NNLO} + \alpha_S^{NNLO} +$

Find out more about us!

Amplitude techniques

- •Number of diagrams grows fast with perturbative order
- Hard computer algebra problems! (Mathematica, Maple, FORM)
 - -Reduction of integrals to a basis with integration by parts identities
- -Special functions appear: Polylogarithms, Elliptic Polylogarithms, ...

Find us in Irchel Y36 K-floor

- •Hundreds of particle combinations
- • $10^5 10^6$ CPU hours \rightarrow supercomputers
- •Comparison with accelerator data (LHC, LEP, ...)
- •Reduced theoretical uncertainties 🗸
- •Hints of New Physics?

Antenna subtraction

Construct **subtraction terms** which mimic divergent behaviour to achieve **numerical** cancellation of divergences

$$d\hat{\sigma}_{ab}^{NLO} = \int_{n} [d\hat{\sigma}_{ab}^{V,NLO} - d\hat{\sigma}_{ab}^{T,NLO}] + \int_{n+1} [d\hat{\sigma}_{ab}^{R,NLO} - d\hat{\sigma}_{ab}^{S,NLO}]$$

→ Monte Carlo integration in code NNLOJET (Fortran, Maple, FORM, C++, Python)

