
Universität Zürich

Using a feed forward neural
network to identify Drell-Yan

events at the LHCb experiment

Author
Thomas Neuer

Supervisor
Prof. Nicola Serra
Andreas Weiden

Zurich, August 2018

Abstract

A study of the application of feed-forward neural networks to the
signal-background separation for the Drell-Yan process qq̄ → µ−µ+ is
performed. Data from proton-proton collisions collected at the LHCb
in 2012, corresponding to a total integrated luminosity of about 2 fb−1

at a centre-of-mass energy of
√
s = 8 TeV is used. The results are

compared with a conventional method using a χ2 template fit and
boosted decision trees (BDT). It was found that the neural networks
yielded slightly better results than the BDT, independent of the used
features, and comparable results to the χ2 fit.

Contents

1 Introduction 2
1.1 LHC . 2

1.1.1 LHCb experiment . 3
1.2 The Standard Model of particle physics 5
1.3 The Drell-Yan process . 6

1.3.1 Backgrounds . 8

2 Data 9
2.1 Features . 10

2.1.1 Isolation . 10
2.2 Selection . 12
2.3 Preprocessing . 14

2.3.1 Train-Test-Validation split 18
2.3.2 Principal Components Analysis 19

3 Neural Network algorithms 21
3.1 Parameters & Hyperparameters 22
3.2 Loss functions . 23

3.2.1 Gradient Descent . 24
3.3 Backpropagation . 25
3.4 Activations . 26
3.5 Preventing overfitting . 28

3.5.1 Regularization . 28
3.5.2 Dropout . 29

4 Results 30
4.1 Training . 30
4.2 Transverse features . 32
4.3 Isolation features . 33
4.4 Comparison . 34

4.4.1 Boosted decision trees 34
4.4.2 χ2 template fit . 35
4.4.3 Systematic uncertainties 37

5 Discussion 38

6 Outlook 38

i

A Appendix 40
A.1 Autoencoder . 40
A.2 Applied cuts . 42
A.3 Number of instances . 43
A.4 Absolute results for χ2 template fit 44
A.5 More complete list of results 45
A.6 Feature importance . 47

References 48

1

1 Introduction

1.1 LHC

The Large Hadron Collider (LHC) is a high-energy particle accelerator
at CERN in Geneva. The ring-tunnel of the proton-proton synchrotron is
situated more than 100 m below the ground. It has a circumference of more
than 27 km and includes more than 9500 liquid-helium-cooled superconduct-
ing magnets. Figure 1.1 shows a sketch of the LHC accelerator chain. As
two equally charged particles are collided, the LHC houses two beam pipes,
which are kept at an ultra-high vacuum of the order 10−10 mbar. Particle
beams consist of a few thousand particle bunches, each containing about
1011 protons. The centre-of-mass energy (

√
s) at the LHC started in 2010

at 900 GeV, but has been increased gradually to the final design energy of√
s = 14 TeV. The data used in this thesis was taken in 2012 with a centre-of

mass energy of 8 TeV.

Figure 1.1: The CERN Accelarator chain [33].

The protons are collided at four collision points within the accelerator
pipes at a rate of 40 MHz, one collision every 25 ns. The results of the
interactions are measured by four big experiments. Two of them are huge
general purpose detectors called CMS (Compact Muon Solenoid) and ATLAS
(A Toroidal LHC Apparatus), designed to measure particles along both beam
directions with a large angular coverage around the interaction point. ALICE
(A Large Ion Collider Experiment) has another goal in mind: the study of
heavy-ion collisions in order to produce a quark-gluon plasma. Similar

2

conditions are believed to have existed a fraction of a second after the Big
Bang before quarks and gluons bound together to form hadrons and heavier
particles.

1.1.1 LHCb experiment

The Large Hadron Collider beauty (LHCb) experiment is the fourth large
experiment at the LHC and is mainly concerned with B-physics, which is the
study of particles containing the bottom quark (also known as beauty quark,
see figure 1.3). The LHCb experiment, unlike the other three experiments,
has no cylindrical symmetry around the interaction point, as can be seen in
figure 1.2.

Its angular coverage in θ is approximately 30 to 300 (250) mrad in the

Figure 1.2: Schematic side view of the LHCb experiment. Collisions take
place at the interaction point and are then measured by the one sided detector
arm[35].

bending (non-bending) plane [21], corresponding to a pseudorapidity η
between 2 and 4.5, where

η = − log

[
tan

(
θ

2

)]
. (1.1)

The particles produced at the interaction point in forward direction tra-
verse several detector layers. These detectors measure different properties
of the particles, often with multiple redundancy. The detector consists of a
precise tracking system (vertex locator (VELO), Tracker Turicensis (TT),
Magnet and straw tube detectors T1-T3), measuring the trajectory and

3

hence momentum component transverse to the magnetic field as well as the
charge of the particles [22]. Several types of charged hadrons and leptons
are differentiated via a measurement in the two Ring-imaging Cherenkov
detectors (RICH 1/2). Candidates for hadrons and charged leptons as well as
photons are differentiated using a system of pre-shower (PS) and silicon-pad
detectors (SPD), electromagnetic calorimeter (ECAL) and hadronic calorime-
ter (HCAL). Muons can traverse all calorimeters and are detected in the
Muon system (M1 in coincidence with M2-M4).

Vertex locator
The Vertex Locator (VELO) of the LHCb experiment consists of a silicon

strip detector surrounding the proton-proton collision point. It is designed to
precisely measure the particles trajectories immediately after being produced
and determine the vertex they originated from. It consists of 21 modules,
each with two silicon microstrip sensors. During data taking, the inner edge
of detector is only 8 mm away from the beam [21].

Muon system
The muon stations M1-M5 serve the purpose of detecting high transverse

momentum particles including a measurement of the particles position. M1
is stationed before the calorimeter system for a better transverse momen-
tum (pT) resolution while the other stations are in the outer regions of the
LHCb. Mostly muons are able to penetrate through the electromagnetic and
hadronic calorimeter as they are minimally ionizing particles (MIPs) over
a wide range of momenta. Therefore they leave the cleanest signal of all
elementary particles in the detectors. The spatial resolution is diminished
the further away the detector is positioned from the interaction point, as
more area can be covered with a detector of lower granularity.

Magnet
The dipole magnet consists of two saddle shaped aluminium coils inside

an iron yoke and is operated at environment temperature. The field created
by the magnet has its main component along the y-axis. In the z-direction
the field has a large gradient, resulting in a field of less than 2 mT inside the
RICH envelopes but an overall bending power of 4 Tm. The magnet deflects
charged particles in the positive or negative x-direction (coordinate system
as defined in figure 1.2) allowing the determination of the charge of a passing
particle based on the observed curvature. To minimise systematic effects,
the polarity of the magnetic field can be reversed. Data taken with the two
different polarities are assigned to the ”magnet-up” or the ”magnet-down”

4

dataset, depending on the direction of the field’s y-component.

Trigger
The Trigger has a hardware and multiple software stages. The hardware

trigger is called level zero trigger (L0) and it reduces the rate to about 1 MHz.
It evaluates information from the calorimeters and Muon system. The trigger
fires if one or more pre-defined conditions, called trigger lines, are satisfied. In
this thesis, the cuts based on muon information are important, see table 3 for
a summary of trigger conditions. At this rate the whole detector information
can be read-out and used in the software stage. If at least two muons in a
collision pass the trigger conditions, the event is saved and further processed.
In the next step, the software trigger, called High Level Trigger (HLT),
implements at first a partial event reconstruction in order to reduce the rate
to 43 kHz (HLT1). Then a more complete event reconstruction algorithm, a
Kalman-Filter, is used in the final stage of the trigger system. If more than
two muons are triggered, one of which comes from some background source
(see chapter 1.3.1), all possible combinations of muons are saved as different
events.

1.2 The Standard Model of particle physics

The Standard Model (SM) is a collection of quantum field theories, using
local gauge invariance as the fundamental axiom. It includes all known
forces except gravity and explains the interaction of spin-1/2 fermions via
the mediation of spin-1 vector bosons. The dynamics are fully determined
from the Lagrangian in eq. (1.2) and the principle of least action.

LSM = Lfermion + Lgauge + LY ukawa + LHiggs[30], (1.2)

where

• Lfermion: kinetic term for fermions

• Lgauge : kinetic term for gauge bosons

• LY ukawa : mass terms for fermions

• LHiggs : Higgs term

A list of all particles contained in the SM is shown in figure 1.3. For clarity
the different colours for quarks and the corresponding antiparticles are not

5

shown. So far the Standard model has withstood every experimental test.
Especially in the sector of Quantum Electrodynamics, the quantum field
theory of electromagnetism, the agreement between theoretical predictions
and experiment are of an unprecedented precision. The final ingredient of

Figure 1.3: The Standard Model of particle physics. All of the quarks
additionally come in three different colours (red, green and blue). For every
particle there is a corresponding anti-particle with opposite quantum numbers
[34].

the Standard Model was found experimentally in 2012 with the discovery
of the scalar Higgs boson [16, 17], which is a crucial prediction of the Higgs
mechanism. It describes the process of spontaneous symmetry breaking of
the SU(2) vacuum state, needed to obtain a consistent description of the
massive fermions and vector bosons (W±, Z), while keeping the gluons and
photon massless.

1.3 The Drell-Yan process

The Drell-Yan process describes the electroweak quark/anti-quark annihila-
tion mediated by a neutral vector boson, so either the photon or the Z-Boson
[1]. Several particle/anti-particle final states are possible, but in the fol-
lowing only the di-lepton, specifically the di-muon, final state is considered.
Those final state particles are most easily detected and differentiated from

6

other elementary particles at the LHCb experiment. Figure 1.4a shows the
corresponding (tree-level) Feynman diagram. Theoretical predictions are
available up to next-to-next-to-leading order (NNLO) [2].

(a) (b)

Figure 1.4: (a) Tree-level Feynman diagram of the Drell-Yan process. In
a pp or pp̄ collision, a quark/anti-quark pair interacts via the weak or
electromagnetic force to produce a muon/anti-muon pair [38]. (b) Parton
distribution function of the constituents of a proton. One can see that a
large proportion of the moment is carried by sea-quarks and soft gluons [37].

For theoretical predictions the parton distribution function (pdf) of
the protons is needed. As the Drell-Yan process involves one anti-quark,
in a proton-proton collision one sea anti-quark needs to participate in the
interaction. All the valence quarks, which form a proton, are quarks, not anti-
quarks. The LHCb experiment measures particles in the forward direction
and at a high rapidity. Therefore the momenta of the interacting quarks
need to be highly asymmetric, meaning that one has to carry a large fraction
of the proton’s momentum (called x), while the other has to have a small x.
While the pdf has already been constrained by previous experiments (HERA,
Tevatron, see figure 1.4b), the low x region is still not well explored. Therefore
the measurement and analysis of this process at the LHCb experiment allows
for new constraints of the low momentum region of the pdfs.

7

1.3.1 Backgrounds

The signature of the Drell-Yan process considered in this thesis is the di-muon
final state, identified by the Muon system of the LHCb experiment. These
muons should originate directly from the primary vertex (PV) and should
be highly isolated (see section 2.1.1). But other processes can imitate this
behaviour and are therefore considered background [22]. Some of those are:

1. Pions or kaons can decay into muons in flight (π± → µ±νµ± or K± →
µ±νµ±γ) or they themself can punch through the calorimeter system
into the Muon system, therefore being misidentified as a muon.

2. Heavy-flavour hadrons can decay semi-leptonically producing a muon
(e.g. B± → Xµ±), which is then possibly combined with another muon
in the event.

3. The Drell-Yan process qq → τ+τ− → µ+µ−νµνµντντ is considered as
a background.

In this thesis only background from the second source was considered. For
more information on how the background sample was obtained and its
measured properties, see section 2.2

8

2 Data

The data used for training the machine learning algorithm is composed of a
signal and background dataset.

The signal (sg) was obtained from Monte Carlo simulation of the Drell-Yan
process via the standard software PYTHIA 8 for simulating the particle
interaction momentum space. GEANT4 was used in order to simulate the
interaction of the elementary particles with the detector material of LHCb.
The background (bg) sample was obtained directly from data of the LHCb
measurements in 2012 at a centre-of-mass energy of

√
s = 8 TeV. The heavy

flavour background sample was selected by performing a cut on the quality
of the reconstructed Z0 end-vertex χ2

Z0 > 15. This property measures the
quality of the reconstructed di-muon candidate, since for signal events both
muons need to come from the same point. A low value meaning that both
tracks originated with high probability from the same point, while a high
value indicates that at least one muon originated from a secondary process,
such that our background sample is rather clean.

For the final evaluation, a dataset from the 2012 run at the LHCb at√
s = 8 TeV is used, with a cut χ2

Z0 < 5. This dataset has contributions from
both signal and background. The dataset serves for the final application
of the feed forward neural network and the following comparison to the χ2

template fit commonly used. A comparison of both the training dataset
(simulation and clean background) and the evaluation dataset is shown in fig
2.1.

All datasets also exist with both polarizations of the magnet, as described
in 1.1.1, respectively. In a perfect and symmetric detector such an operation
should leave the final result unchanged. They are often used to account for
detector asymmetries and inefficiencies during the run. This is an important
aspect in the LHCb experiment, because of its many asymmetry measure-
ments.
In the following thesis the training and calibration of the neural networks
was done with the upward polarization of the magnet exclusively. The final
algorithm was then also applied to the downward polarization data to check
for the validity of the analysis, as those samples are statistically independent
and of almost equal size.

9

Figure 2.1: Comparison of the evaluation dataset and the training data for
the reconstructed mass.

2.1 Features

Different properties of the particles are measured in the detectors of the LHCb
experiment. An incomplete overview over the used features is given in table
1 and table 2. Some of these properties are given in different representations,
meaning redundant information. For example the particle momentum is
given in different coordinate systems (normal euclidean space px, py, pz or
spherical coordinates pT , η, φ). The isolation features served as a high level
baseline.

2.1.1 Isolation

One special high-level feature is called the isolation. It is calculated by
summing up the transverse momentum of particle tracks within a cone
around the seed track and subtracting the transverse momentum of particles
within a smaller cone of radius r, see figure 2.2.

The transverse momentum in the inner cone is subtracted to account
for Bremsstrahlung photons in the vicinity of the particle in question. The
transverse momentum of those originally belonged to the signal muon and
did not originate from secondary vertices. This feature was determined for
each muon and finally the larger of the two isolation values was used during
training.
As the name suggests this feature measures the isolation of a particle, being
zero for fully isolated muons. As the signal muons in a Drell-Yan process
are produced without other particles being involved and at a high transverse

10

Table 1: Description of the most important features used in the analysis,
resulting in 1057 features in the transverse case. The number of features
originates from 6 muon measurements, the number of tracks and the track
measurements. The maximal number of tracks per event was chosen to be
150 (see section 2.2), resulting in 1050 features for the non-muon tracks. The
track features therefore are an array of tracks, originating from the same
primary vertex as the Drell-Yan candidate.

Feature (Transverse) Explanation

muminus PT, muplus PT Transverse momentum of the triggering muons
muminus TrEta, muplus TrEta Polar angle of the triggering muons
muminus TrPhi, muplus TrPhi Azimuthal angle of the triggering muons
nTracks Number of tracks reconstructed for the event
tracks PT Transverse momentum of the remaining tracks
tracks eta Polar angle of the remaining tracks
tracks phi Azimuthal angle of the remaining tracks
tracks IP Impact parameter, minimal distance of

extrapolated tracks from the primary vertex
tracks IPCHI2 Quality of reconstructed impact parameter
tracks charge Charge of the measured particles
tracks isMuon Muon indicator

Table 2: Description of the most important features used for the base line fit
using the isolation variable.

Feature (Isolation) Explanation

muminus PT, muplus PT as above
muminus TrEta, muplus TrEta as above
max Iso Maximal isolation value chosen from

both signal muons.
max MINIP Maximal impact parameter chosen from

both signal muons

11

Figure 2.2: Schematic calculation of the isolation. The inner cone accounts
for Bremsstrahlung photons which are not a contamination but part of the
signal [31].

momentum we expect them to be well-isolated. Muons originating from
background processes like combinatorial (= random) backgrounds or particle
decays (i.e. B → µνµγ) are often accompanied by remains of the secondary
vertex.
The isolation is a high-level feature which is often used in the analysis of
electroweak processes to differentiate background from signal. The deep
learning approach of this thesis should test an alternative using only low
level features in order to make faster decisions and using less input from the
analysts. However, using the isolation has been shown to work well in this
kind of problem and is hence used as a baseline comparison.

2.2 Selection

The selection of events is an important step, as it influences all further anal-
ysis of the data and application of the neural networks. The most important
cuts and the reason for their application are summarised in table 3. Most
of these selections are performed to reduce the background and the large
statistics at the LHCb experiment.
However, one of those features needs further explanation, as it was added
specifically because of the requirements of the feed-forward neural network
approach.

Number of tracks
The trigger for this analysis requires at least two signal muons with

opposite sign coming from a primary vertex but naturally, due to the debris

12

Table 3: Preselection cuts performed on the data. The starred properties (*)
were cut by the trigger before the offline analysis. About 56% of the data
passed the remaining selection.

Cut Description Reason

∗pT > 3 GeV Transverse and absolute Boost in one direction,
∗p > 10 GeV momentum of the muon obtained due to selection of

from tracker measurements. high energy events.

∗2 < η < 4.5 The rapidity is a measure Fully instrumented
of the direction of the particle, region of the LHCb
equivalent to the usage of the experiment.
polar angle Θ.

∗P (χ2
tr) > 0.001 After applying the Kalman filter Only reasonably

the probability of the track reconstructed tracks
coming from a certain vertex are used for analysis.
can be obtained.

mµµ > 10 GeV/c2 The invariant mass of the Imprecise simulation in low
mµµ < 120 GeV/c2 di-muon system obtained from energy spectrum. Barely any

energy and momentum measurements. statistics for high energy.

HitsSPD ≤ 600 Multiplicity of the event, High multiplicity events
number of hits in the silicon are not well simulated.
pad detector.

nTrack ≤ 150 Number of reconstructed tracks See description
(=particles) in the event. The two in text
signature muon tracks are excluded.

min(IP) < 1000 Minimal distance of the This value should be
reconstructed from the primary small, and such a high value
vertex. Signal events are expected for the impact parameter
to come directly from the PV. indicates an overflow.

13

of the collision, there are a lot more particles produced in hadron-hadron
collisions. The number of reconstructed tracks per event is called ntracks. Of
course, the number of those tracks is not fixed, but statistically distributed.
As many neural network types require a fixed size of the input vector over all
instances (=training examples), only a fixed amount of tracks can be used
for this algorithm. Therefore, the length of the tracks’ properties (pT , η, φ,
minimal impact parameter, χ2

IP , charge and muon identifier, see table 2) in
every event is truncated to 150 identified particles after sorting by transverse
momentum pT . This number was chosen as it results in a reasonable amount
of input features, while leading to almost no loss of events (see table 7 in the
appendix). Events with less than the required amount of tracks are filled
with zeros for the features pT , η, φ, minimal impact parameter and χ2

IP . For
the charge (∈ {−1, 0, 1}) the filler-value was negative two. For the muon
identifier (∈ {0, 1}) a filler-value of negative one was chosen.

2.3 Preprocessing

Preprocessing the data is an important and often necessary step before ap-
plying any machine learning algorithm. Often the two major steps involved
are cleaning and scaling the data [6].

Cleaning
Data cleaning consists of removing missing or meaningless values/features

and outliers which would make it harder for the algorithm to learn useful
relations. The dataset used in this study was already very pure due to
considerable pre-processing, so data cleaning was mostly concerned with
equalizing all instance lengths and filling missing values in the tracks vari-
ables, as explained at the end of the previous chapter. Also the performed
cuts described in the previous chapter were part of the data cleaning process.

Scaling
As the name suggests scaling is used in order to make different features

more comparable to each other. Some features have intrinsically higher
values than others, for example transverse momentum pT ∈ [0,∞) but
Q ∈ {−1, 0, 1}. It may then be difficult for many algorithms to compare
features with these vastly different ranges of values without proper scaling.
Two prominent techniques of scaling were applied on the dataset used for
this work.
The first being a log-transformation. It is calculated on features with a range
[0,∞) using the equation

14

f logi = log(fi + 1), (2.1)

where f is the original feature and f log is the transformed one. A ”+1” is
added to improve the properties of the transformation, mainly the faithful
mapping of zero to zero and a continued positive range of the new feature.
As seen in figure 2.3, the log-transformation greatly improves the behaviour
of the feature distributions.

(a)

(b)

(c)

(d)

Figure 2.3: Comparison of some features before (left) and after (right)
performing a logarithmic transformation.

The second technique is called standardization. The transformed feature
is calculated by

f standi =
fi − 〈f〉√
〈f2〉 − 〈f〉2

, (2.2)

15

where 〈f〉 indicates the mean over all values of the feature f. The main
advantages of this technique are:

1. the new feature is unitless in a sense that it is now given in units of
standard deviations away from the mean and

2. the mean of the new feature is zero and its standard deviation is one.

The result of this transformation is shown in figure 2.4.

16

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.4: Most important processed features used during training.

17

2.3.1 Train-Test-Validation split

A common problem for many machine learning algorithms is called overfitting.
It describes the tendency of a model with a large amount of parameters to
be too sensitive to its input, meaning that if the input is slightly changed,
the model might change drastically, see figure 2.5. In other words, the model
does not only fit a useful relation between input and response, but also the
statistical fluctuations leading to a loss in generalization.

Figure 2.5: Showing the effects of an underfitted, good and overfitted model
[36].

As described in chapter 3, the amount of parameters in a neural network,
especially in deep learning, is huge and therefore these models tend to overfit
the data. In order to monitor this tendency one of the most common practice
is to split the data into three parts [15]:

1. Training data (∼65%): The algorithm learns all relations on this data
and performs its optimization using these instances.

2. Validation data (∼15%): After convergence, different scores measuring
the quality of the model can be calculated on this sample. This will
result in a good estimate of the model’s generalization capability as
it has not seen this sample during training. In most problems many
different models are fitted, so these scores allow for comparison of the
different models.

3. Test data (∼20%): There are often al lot of hyperparameters (for
example parameters tuning the optimization algorithm) for every model.
Often the best initial configuration of these hyperparameters is far
from obvious, therefore some sort of (randomized/sparse) grid search
needs to be performed. The danger is, that these hyperparameters

18

overfit the validation data and their scores. Hence, the test data is a
completely independent dataset which can be used to assess the quality
of the final model, chosen according to the scores on the validation set
and evaluate its generalization power.

The opposite effect is called underfitting and is mostly due to overly
constrained and inflexible models. This problem is less pressing and rarely
an issue in deep learning and other modern machine learning techniques.

2.3.2 Principal Components Analysis

As mentioned earlier, neural networks contain a lot of free parameters which
need to be learned. One way to reduce the amount of these parameters is to
reduce the number of features, as this allows for the usage of smaller networks.
However, information is precious in every machine learning algorithm and loss
of content should be kept at a minimum. To accomplish this, a dimensionality
reduction technique can be applied. A popular method is called Principal
Components Analysis (PCA). This corresponds to a rotation of the data
into a lower dimensional space [10, 7]. It involves the diagonalization of a
distance matrix and a following projection on the

Figure 2.6: Result of the principal components analysis. The explained
variance of the data is given as a function of the dimensions used. The
red line on the far right indicates that with 354 features about 99% of the
variance can be explained. The other pairs drawn are (209, 0.95) and (160,
0.9)

eigenvectors, called the principal components. In figure 2.6 the analysis
of the PCA performed on the training data is shown.

The explained variance (
∼
= inverse of lost information) is given as a

function of the number of principal components used in the rotation of the
vector space. It is worth mentioning, that with only about a third of the

19

input features the explained variance is still kept at 99%.
A major disadvantage of this method is the difficulty to interpret the new
features. Sometimes a deeper meaning of the new representation can be
found after thorough analysis of the effects of the dimensionality reduction,
but often this meaning is blurred and hard to apprehend.
Neural networks with and without the usage of the principal components
analysis were used during training to evaluate the loss of information. Less
features are preferred in deep learning as it may greatly improve the speed
of the algorithm.

20

3 Neural Network algorithms

Neural networks are a machine learning algorithm first introduced in the
1950’s as a simplified model which can be implemented mathematically.
However, they were not effectively used until the 1980’s [27, 9]. With
increase in computing power and affordability of fast hardware, like GPU’s,
they became more and more popular. Nowadays they are generally accepted
to be one of the most powerful and flexible machine learning algorithms,
mastering tasks from standard classification and regression to highly complex
problems of image recognition and speech processing, hence being able to
deal with spatial as well as temporal data. The type of neural networks used
in this thesis are called feed forward neural networks, as the data used in
this thesis had no temporal structure. A schematic view of a feed-forward
neural network is shown in figure 3.1.

Figure 3.1: Schematic view of a shallow one layer network, with five nodes,
and four input features [32].

It is a supervised machine learning algorithm, meaning that for every
training example (=̂ instance), there exists a true label. In the problem at
hand the goal is to differentiate between signal and background. A feed
forward neural network consists of an input layer, taking the measured
properties (=̂ features) as input, several hidden layers and an output layer,
predicting the class label of an instance. As there always needs to be an
input and output layer, the stated number of layers usually refers to the
number of hidden layers.
Every layer consists of nnodes nodes. The prescription for every layer in a
neural network is given by

21

a
(l)
i = f

(l)
i

(
z

(l)
i

)
≡ f (l)

i

n(l−1)∑
j=1

W
(l)
ij · a

(l−1)
j + b

(l)
i

 , (3.1)

where a
(l)
i is the output of the ith node in the lth layer, f

(l)
i is called

an activation function, n(l−1) is the number of nodes in the previous layer,

W
(l)
ij the weight matrix, a

(l−1)
i the output of the previous layer and b

(l)
i is its

bias. The weight matrix and bias are learned during training, the activation
function is a hyperparameter chosen according to the problem, see section
3.4 for more information.

3.1 Parameters & Hyperparameters

One of the greatest advantage as well as disadvantage of a neural network is
the immense number of parameters and hyperparameters. The great number
of parameters, including weights and biases, allows for very flexible and
complex models, simultaneously being more prone to overfitting the data.
There exists methods in order to prevent this, but the effectiveness strongly
depends on the data. Some of these methods are described below.

Table 4: Summary of the parameters used in the neural network algorithm.

Parameters

Symbol Description

wlij weight in the lth layer of the ith node for the jth feature.

bli bias in the lth layer of the ith node.

nlayer number of layers for the whole network structure.

nlnodes number of nodes for the lth layer.

Hyperparameters are parameters which control not the size of the model
itself but rather parameters used for algorithms within the model, one of the
most important being the learning rate, see section 3.2.1. They need to be

22

separately tuned for every fixed structure of a network in order to obtain
the best model possible.
An overview of the most important standard parameters and hyperparameters
is given in table 4 and table 5.

Table 5: Summary of the hyperparameters used in the neural network
modelling. The most important ones are explained further below.

Hyperparameters

Symbol Description

init(~β) initialization method of the weights and biases.

f l(·) activation function of the lth layer.

pldrop Dropout probability of the lth layer.

o(~α) Optimizer o with parameters ~α, including the learning rate.

L(y, p;λreg) Loss function of the target and prediction
with possible regularization terms.

sbatch number of instances used per loss calculation.

nepochs maximum number of epochs for the network to be trained. One
iteration over the whole dataset in batches is called epoch.

3.2 Loss functions

The loss function L, often referred to as cost function or error function,
measures in some way the distance between the prediction and the known
truth. It’s main properties are

L (~yi, ~oi) ≥ 0 and L (~yi, ~oi) = 0⇔ ~yi = ~oi ∀i, (3.2)

23

where ~yi is the true label of the ith instance and ~oi its predicted output
by the network. So the loss is a positive function of the known labels and
the prediction, being zero only if all the predicted labels are equal to the
truth. The goal is therefore the minimization of that loss.
There are several popular loss functions [28], two of them being

• quadratic loss: L (~yi, ~oi) =
∑

i (‖~yi − ~oi‖)2

• cross entropy for K-class classification:

L (~yi, ~oi) =
1

n

n∑
i=0

K∑
j=0

(
y

(j)
i log

(
o

(j)
i

)
+ (1− y(j)

i) log
(

1− o(j)
i

))
.

Both loss functions satisfy equation (3.2) as can easily be checked by the
reader. The algorithm learns by minimizing the loss function iteratively until
a minimum is found.

3.2.1 Gradient Descent

Gradient Descent is an algorithm trying to minimize a function by moving
in the direction of the steepest descent. In the case of the neural network
(and many other machine learning techniques), the minimum value of a loss
function L needs to be obtained. As shown in equation (3.2), the loss is
a function of the known label and the prediction of the algorithm. The
true label will not change during training and can therefore be considered
a constant parameter, not a variable. The prediction ~oi of instance i is a
function of the model parameters. Those need to be updated iteratively in
order to obtain a minimum. Its update rule is

~βn+1 = ~βn − α∇L(~βn) n = 0, 1, 2..., (3.3)

where ~βn is the vector of all model parameters (weights and biases) at
step n and α is called the learning rate or step size. Its influence on the
convergence of the Gradient Descent algorithm can be seen in figure 3.2. The
weights at step n = 0 can be initialized in various ways and may influence
the behaviour of the optimization algorithm [14].

However, as it turns out in praxis it is much more efficient to calculate
an approximate gradient using a small part of the data, called batch, instead
of the exact gradient calculated from all data. The result is called Stochastic
Gradient Descent (SGD), as it is not ensured that every step brings one

24

Figure 3.2: Schematic application of Gradient descent with a learning rate
which is too small (left) and to large (right) [41].

closer to the minimum but it is only true on average, over a large number
of steps. Still, this version of the algorithm converges much faster in most
applications. One then iterates over all batches (usually of size 32, 64, 128,...)
and then starts a new training iteration, called an epoch.
In real world applications, more sophisticated algorithms than the one stated
in equation (3.3) are used for the minimization, including regularization
terms, momentum estimates and decay rate schedulers, which lower the step
size when approaching a minimum.
The currently most popular among these is called Adam (Adaptive momen-
tum estimate), which implements all of the stated improvements [24].

3.3 Backpropagation

Backpropagation is the mathematical method explaining how to calculate
the central quantity in equation (3.3): the gradient of the loss function [3].
It is given by four equations [27].

δN ≡ ∇zNL = ∇aNL ◦ f ′(zN) (3.4)

δl = ((W l+1)T δl+1) ◦ f ′(zl) (3.5)

∇blL = δl (3.6)

∂L

∂(W l)jk
= al−1

k δlj , (3.7)

(3.8)

25

where δl is the error calculated in layer l (= 1, ..., N), al (zl) is the vector
containing the output of all nodes in layer l after (before) applying the
activation function, f ′(x) is the derivative of the activation function resulting
in one output per node, W l is again the weight matrix of the corresponding
layer and bl is its bias. The operation ” ◦ ” is the Hadamard product defined
as

~a ◦~b =


a1

a2
...
an

 ◦

b1
b2
...
bn

 =


a1 · b1
a2 · b2

...
an · bn

 . (3.9)

All four equation (3.4)-(3.7) are a direct consequence of the chain rule
of derivatives and can be calculated using equation (3.1). The first two
equations (3.4) and (3.5) state a formula to calculate the error in the last
layer and how to propagate it backwards to previous layers (hence the name:
backpropagation). Equations (3.6) and (3.7) then relate these errors to the
derivatives with respect to the weights and biases. Exactly these derivatives
are needed in the calculation of the next Gradient Descent step, see again
equation (3.3).

3.4 Activations

Activation functions are one of the most important hyperparameters used
in neural networks. The activations are the non-linear functions applied
on every node after multiplying the input with the weights and adding the
bias. It is essential for the learning procedure that these activations are non-
linear functions as linear functions would result in a simple neural network
imitating the results from classical multivariate linear regression and making
it impossible to learn complex relations between features. A comparison of
the most important ones and their derivatives is shown in figure 3.3. While
the sigmoid, given by [26]

σ(x) =
1

1 + e−x
(3.10)

was the first activation function being used in bigger, successful neural
networks, its importance in modern applications has faded. The most used
activations today implement the hyperbolic-tangent (tanh), calculated as

tanh(x) =
ex − e−x

ex + e−x
(3.11)

26

or the rectified linear units (relu), given by

relu(x) = max(0, x). (3.12)

Two version called Lrelu and elastic linear unit (elu), improved in certain
aspects, are given by

Lrelu(x) =

{
0.01x x < 0

x x ≥ 0
(3.13)

elu(x) =

{
exp(x− 1) x < 0

x x ≥ 0.
(3.14)

The last layer in classification problems often features a special activation
function, called softmax function, given by

si(~x) =
exp(xi)∑K
k=1 exp(xk)

for K classes. (3.15)

This function transforms not only the output of one node, but uses all
nodes as input to return a single number for every node in the layer. Its
main advantages are that

1. the output lies in the interval [0, 1] and

2. the sum over all outputs is equal to one.

These properties allow for the output to be interpreted as a probability
mass function. Therefore, the value in the ith output node can be interpreted
as the probability of the instance belonging to class i. Additionally, the
output of the softmax in the last layer of the network is especially well-suited
for the cross entropy loss. The combination of those two was used during
training of all feed-forward neural networks.

As mentioned earlier, the backpropagation is a successive use of the chain
rule of derivatives and hence it is only natural in neural network modelling
that the derivative of the activation function is not less important than the
activation itself [4]. As the chain rule dictates to multiply the derivatives
of functions, the advantage of the tanh function over the sigmoid becomes
obvious. The derivative of the sigmoid drops to small values quickly which
slows down the learning process of the network.
The advantage of the rectified linear units is twofold. First its derivative for
x > 0 is always unity, resulting in no disadvantageous effects in the chain rule
[19]. Second, it is much faster to compute than any of the other activation
functions, speeding up deep networks, especially during training.

27

(a) Activation functions (b) And their derivatives

Figure 3.3: Functional form of the most common activation functions and
their derivatives. Note that all activations belonging to the ”relu-family” are
identical in the positive half of the abscissa

3.5 Preventing overfitting

In section 2.3.1, the problem of overfitting was briefly summarized. As neural
networks easily contain hundreds of thousands or even millions of parameters,
while training on approximately the same amount of instances, methods to
prevent overfitting need to be implemented [13, 18]. This helps the network
to generalize to unseen data.

3.5.1 Regularization

This method is not exclusive to the field of neural networks but can be used
in any algorithm where the goal is the minimization of a loss function.

L′ = L (~yi, ~oi) + λLreg = L (~yi, ~oi) +

{
λ
∑

i |βi| LASSO[5]

λ
∑

i β
2
i Ridge[29]

, (3.16)

where β are the coefficients of the model, corresponding to the weights
and biases in the neural network and λ is the regularization parameter. Hence
the regularization term penalizes a higher value for the weights and biases.
This, in return, tends to lower the variance of the model. In applications
the Ridge-regularization often turns out to be more restrictive than LASSO,
setting more parameters to zero. The latter is a more continuous function of
the regularization parameter λ. Often a mixture of these two is implemented,
called Elastic Net [8].

28

3.5.2 Dropout

Dropout is a technique exclusively used in neural network modelling [23].
As the name suggests, it involves the random de-activation of several nodes

Figure 3.4: Applying dropout to a layer of a neural network [39].

during one training epoch, as schematically seen in figure 3.4.
The goal is to make the nodes of the network more independent from each

other. One can imagine this process as training a different neural network
at each epoch which are then combined into a final result. Dropout usually
slows down convergence, but improves generalisation [27].

29

4 Results

4.1 Training

During training a lot of different models and hyperparameters were used
in order to find the optimal configuration to classify the data and gain
insights into the problem. As there are a lot of training instances (much
more than most computers’ RAM can handle), some of them could easily
be neglected such that there is an equal number of signal and background
instances in the training set. Thus, the problem of class imbalance, meaning
that an algorithm has a good accuracy if classifying all instances in the most
prominent class, was evaded. This would render the accuracy an ineffective
evaluation metric. Most networks were then trained on 200’000 instances
from each signal and background. A sign in support of the assumption, that
this is enough for the network to learn all significant relations, is shown in
figure A.3 in the appendix.

Table 6: Incomplete list of the results for seven neural networks using different
structures and features. The last network uses the calculated isolation of
the muons. The first column refers to the network structure, each element
representing the number of nodes in a hidden layer, the second refers to the
used activation function, the third indicating the Dropout percentage per
layer, the fourth the number of features and the last indicating if Principal
Components Analysis was used.

#Nodes Act. Drop[%] #Features PCA Accuracy[%]

[100, 100, 50] Elu 0 1057 False 90.13

[100, 100, 50] Elu 0 354 True 89.52

[750, 500, 500] Elu 0.5 354 True 89.10

[750, 500, 500] L. Relu 0 354 True 89.10

[100, 100, 50] Elu 0 71 True 89.70

[750, 500, 500] tanh 0 1057 False 88.41

[6, 6, 5, 5, 4, 4, Elu 0 6 False 97.61
3, 3, 2]

As mentioned in chapter 2, various features are given in redundant form
and should not be passed together, for example the equivalent set of coordi-

30

nates (px, py, pz) in Cartesian space and (pT , η, φ) in spherical coordinates.
Different combinations of features were tried, but as it turned out the best
combination is composed of the features described in table 1, from now on
called transverse features. Those, and the isolation baseline features in 2, are
the only ones for which the results are shown in the main text. Many different
networks were then trained in order to find the best possible constellation
of parameters and hyperparameters for these feature sets. The structure of
some of the best is summarized in table 6. A more complete table is shown
in the appendix in table 8.
These networks are then compared using the validation data and the final
model is then applied to the real world data in order to compare it to other
methods like boosted decision trees and the χ2 template fit.
After analysing and fine tuning the neural network parameters it was found
that a certain accuracy (∼ 85%) can be obtained with nearly any reasonable
network structure meaning there is an obvious pattern in the data which can
easily be learned. But to obtain an accuracy 5% better than this baseline
is still an important task as this reduces the error by 33% (only having 10
instead of 15 misclassification in 100 examples).

(a) Development of the accuracy. (b) Development of the loss.

Figure 4.1: Development of some important evaluation metrics on training
and validation data for one of the trained neural networks.

The training progress of one of these networks is shown in figure 4.1.
As expected, the training accuracy increases steadily while the training
loss decreases. However, the validation loss and accuracy flatten out faster
than for the training set, which means that the network practically stops
generalizing to unseen data but rather finds a function which fits the noise,
showing the effect of overfitting.

31

This result was obtained at the end of this study, after fine tuning most of
the hyperparameters and regularizations, hence the early stopping of the
network after about 35 epochs.
As table 6 shows, many network structures give a rather good accuracy.
The last network in the table has by far the largest accuracy with the least
amount of features. The explanation is that during training of this network
the information about the isolation was used which served as a baseline
comparison.

4.2 Transverse features

In figures 4.2 and 4.3 the results of the best neural net using transverse
features are shown. The neural network is able to classify most of the
examples under the Z0 peak as signal, whereas it is more difficult to classify
events in the low energy region. The same behaviour is observed for other
algorithms as well.

(a) Density prediction per mass bin
using transverse features.

(b) Predicted signal/background
fraction per mass bin.

Figure 4.2: Prediction on the validation data using the best neural network
with the transverse features.

In figure 4.3a the separation of background and signal in the final node is
shown. A perfect network trained on ideal data would yield a plot with two
isolated peaks, one for the background being at one and the other for signal
at zero. The ROC [11] is shown in the same figure on the right and shows
the true positive rate as a function of the false positive rate. The dotted
blue diagonal shows the baseline of a network which just classifies by random
guessing.
The error per class was estimated by dividing the number of falsely classified

32

examples by the total number of examples predicted in this class. For the
estimation of the signal error, for example, the number of events in one of
the light blue bins of figure 4.2a is divided by the number of events in the
corresponding dark and light blue bins.

(a) Predicted class value (0=back-
ground, 1=signal).

(b) Error on prediction for the vali-
dation set

Figure 4.3: Separation power and error of a trained network using the
transverse features.

As expected, it is very low in the high mass bins under the Z0 peak and
increases to the lower mass ranges where the background is dominant.

4.3 Isolation features

The same analysis as before was done by using the six isolation features,
including the transverse momenta and rapidity for both signal muons as well
as the maximum value of the isolation and impact parameter for either of
the muons. This resulted in figure 4.4.

This result shows a better separation compared to figure 4.3a using the
transverse features. Also the ROC-AUC is almost at its maximal value of
one.
One should also keep in mind that training on the isolation features allows
for a much smaller network (compare 6 input features to 1057), resulting in
a much lower training time as well as a much lower consumption of precious
RAM. The isolation network could easily be trained on any PC while training
on the transverse features almost certainly requires the usage of a computing
cluster or a cloud, providing at least 30GB of RAM.

33

(a) Predicted class value (0=back-
ground, 1=signal).

(b) Error on prediction for the vali-
dation set

Figure 4.4: Prediction on dataset using isolation features.

4.4 Comparison

The results of the main algorithm used in this thesis, being neural networks,
was finally compared to other (machine learning) algorithms. First to boosted
decision trees as implemented by the popular python library XGBoost v0.70.
The second is a χ2 template fit using the isolation variable.

4.4.1 Boosted decision trees

The boosted decision tree algorithm implements a specialised variant of the
classical decision tree [20]. Its main application is in constructing several
dozens or hundreds of smaller decision trees, each time giving a higher weight
to misclassified examples. The overall prediction is obtained by taking a
weighted average over all outputs from the trees.

BDTs are highly popular in modern data science as often they are
computationally very efficient and highly flexible. Another advantage is, that
the importance of each feature can easily be estimated, see figure A.6 in the
appendix. The optimal neural network using transverse features obtained
in this study was then compared to the BDTs, increasing the number of
features from one to 1057. The result is shown in figure 4.5. One can see
that the neural network is ahead of the BDTs for any number of features.
However, it should be noted that the BDT algorithm was not optimized via a
grid search of hyperparameters and only the default values of XGBoost v0.70
were used [25].

34

Figure 4.5: Comparison to the boosted decision trees using XGBoost v0.70.

4.4.2 χ2 template fit

This technique is taken as baseline and compared to the best neural network
using the transverse and isolation features. The differences of the results are
shown in figure 4.6 and figure 4.7. The absolute results are shown in figures
A.4 and A.5 in the appendix.

Figure 4.6: Difference of the predicted fraction per mass bin of the χ2

template fit and the best neural network using the transverse features. The
background difference is shifted slightly to the left for better visibility.

35

Figure 4.7: Difference of the predicted fraction per mass bin of the χ2

template fit and the best neural network using the isolation features. The
background difference is shifted slightly to the left for better visibility. The
errors are too small to be drawn for most mass bins.

The errors on the difference were propagated using

σ∆ =
√
σ2

1 + σ2
2 − 2 · ρσ1σ2, (4.1)

where σ1 is the error on the χ2 fit, σ2 is the error using the neural
networks and ρ is their correlation coefficient.
The errors on both techniques are not uncorrelated as they were performed
on the same dataset. So for the new error the correlation was set ρ = 1
resulting in

σ∆ = |σ1 − σ2| , (4.2)

The different methods result in a comparable estimation of the signal
fraction in the highest mass bins, where the signal is the dominant contri-
bution. However, in the lower mass bins the methods yield vastly different
predictions. One source of this discrepancy might be the absence of other
background sources in the training set. In this thesis the network was only
trained to discriminate between heavy flavour background and Drell-Yan
signal, whereas there is of course every sort of background in the data sample

36

used for final comparison with the χ2 fit.
Another reason for the different results could be, that the Monte Carlo sample
does not sufficiently resemble reality. Hence when the network is exposed to
true signals in the data it might not recognize it due to significant differences
in the training and evaluation data. It should be noted that all common
algorithms have trouble classifying events in the low energy, background
dominated mass bins.

4.4.3 Systematic uncertainties

It was mentioned in section 2 that also ”magnet-down” data and simulation
with opposite magnet polarity are available. The difference in the predicted
fraction is shown in figure 4.8. This provides a useful check of consistency
and indicates that both datasets can interchangeably be used during training,
providing a much larger dataset.

Figure 4.8: Difference in ”magnet-up” and ”magnet-down” polarization
prediction. The background fraction is shifted to the left in x-direction for a
clearer representation. One can see that the difference is well below 5% in
all mass bins.

For the propagation of the error equation (4.1) was used, setting the
correlation ρ = 0 as the two datasets are statistically uncorrelated. This
results in

σ∆ =
√
σ2

1 + σ2
2. (4.3)

37

5 Discussion

This thesis could successfully show that neural networks are an appropriate
tool for the task of separating heavy-flavour background from Drell-Yan
signal qq̄ → µ+µ−. Feed-forward neural networks can obtain an overall
separation accuracy of about 90%, easily more in the high mass bins under
the Z0 peak.
It can be expected that networks perform equally well on other background
contributions given enough data and time for calibrating the model parame-
ters. Therefore, neural networks, including more sophisticated models like
recurrent and convolutional neural networks, should be investigated to obtain
even better results. They provide a good alternative to methods for which a
more sophisticated data preparation and phenomenological understanding of
the data is necessary. The difficult task is to obtain a good training sample
for all background and signal sources, which may be a hard task. However,
once they are available in high quality, neural networks are a very efficient
way of performing the task of classification, even fast enough to be used in
trigger decisions.

6 Outlook

Following the success of the usage of the simple feed forward neural network
different neural networks can be employed. Further interesting steps would
include

1. the use of more sophisticated neural networks, for example convolutional
neural networks after applying some transformation to the data ideally
generating meaningful pictures.

2. Combining several different machine learning techniques into one esti-
mator, called ensemble method.

3. classifying all different sources of background or applying the technique
to another process.

If one or more of these tasks can be successfully solved they provide a
new way to deal with the high statistics at the LHC, which will be even more
important after finishing the high luminosity upgrade.

38

Acknowledgements

First and foremost I want to thank Prof. Nicola Serra for providing me with
support and expert knowledge throughout this thesis. I also want to thank
Andreas Weiden, who supervised me during the whole process and provided
useful insights, whenever a problem arose.
I also want to thank the Physics Department of the University of Zurich
providing a great infrastructure of computing power which I could use during
my Bachelor thesis.
Lastly I want to express my gratitude towards Jonas Eschle who helped me
through useful discussions, guidance and outstanding patience while teaching
me the basics of machine learning and statistical analysis.

39

A Appendix

A.1 Autoencoder

Another different technique, also belonging to the class of neural networks,
is an unsupervised learning algorithm called autoencoder. Unsupervised
learning means, that no labels are needed in order for the network to learn.
The general structure of an autoencoder is shown in fig A.1 [12]. It consists of
an encoder part, normally reducing the number of dimensions and a decoder
part which maps the low dimensional representation back to the input. This is
then considered a regression problem in contrast to the previous classification
task.

Figure A.1: Schematic view of an autoencoder, trying to map the input onto
itself after reducing the number of dimensions [40].

Therefore an appropriate regression loss, like mean squared error (mse)
or mean absolute error (mae) has to be used. Additionally, the data was
not only standardized, but also normalized such that all its values lie in the
interval [-1, 1] with tanh(·) activation functions.
In an attempt to find new patterns in the data, the number of input dimen-
sions was subsequently reduced to only two dimensions such that the data
can easily be visualized. The solution for signal and background is shown in
figure A.2.

Some patterns are visible along certain vertical and horizontal lines

40

Figure A.2: Two dimensional representation of the validation data of the
transverse features after training.

whereas the central region of the plot is populated rather by signal than
background. Unfortunately, the interpretation of the lower dimensional data
is difficult and there exists no unique method to make sense of these patterns.
As the reconstructed mass of the di-muon system was believed to be one of
the major function to be reconstructed by a network the patterns were split
along those lines and the reconstructed mass plotted in a histogram in an
attempt to show that the network groups events with similar mass together.
Unfortunately this turned out not to be true and further research would
need to be done to make sense of these patterns.

41

A.2 Applied cuts

Table 7: Performed cuts on simulation and background sample for upward
magnet polarization. Very similar results to the low % level are obtained for
the downward polarization.

Monte Carlo

Cut Instances Exclusion %

— 1998901 — —

Z0 MM <120k 1998901 0 0.00

Z0 MM >10k 1967305 31596 1.58

nSPDHits <600 1958344 40557 2.03

nTrack <150 1958344 40557 2.03

Y <4.5 1958344 40557 2.03

Y >2 1958326 40575 2.03

minus CHI2 >0.001 1956737 42164 2.11

plus CHI2 >0.001 1955098 43803 2.19

minus MINIP <1000 1954955 43946 2.20

plus MINIP <1000 1954845 44056 2.20

Heavy Flavour background

Cut Instances Exclusion %

— 2418377 — —

Z0 MM <120k 2418377 0 0.00

Z0 MM >10k 1677998 740379 30.61

nSPDHits <600 1351201 1067176 44.13

nTrack <150 1351099 1067278 44.13

Y <4.5 1351088 1067289 44.13

Y >2 1336099 1082278 44.75

minus CHI2 >0.001 1335015 1083362 44.80

plus CHI2 >0.001 1334144 1084233 44.83

minus MINIP <1000 1333960 1084417 44.84

plus MINIP <1000 1333808 1084569 44.85

42

A.3 Number of instances

Figure A.3: Accuracy vs. number of instances used during training. The
accuracy on the training set is close to 100% for very few instances as
the network is complex enough to describe this low number of features
(i.e. overfitting). The learning curve saturates at around 100’000 examples.
Therefore it was reasonable to assume that 400’000 instances, 200’000 from
each background and signal, are enough.

43

A.4 Absolute results for χ2 template fit

Figure A.4: Comparison in absolute fraction of the χ2 template fit in the
best neural network using the transverse features.

Figure A.5: Comparison in absolute fraction of the χ2 template fit in the
best neural network using the isolation features.

44

A.5 More complete list of results

#Nodes Act. Drop[%] #Features PCA Accuracy[%]

[100, 100, 50] elu 0 1057 False 90.13
[100, 100, 50] elu 0 354 True 89.52
[20, 20, 10] elu 0 354 True 89.38
[100, 100, 50] elu 0.5 354 True 89.41
[100, 100, 50] elu 0 354 True 89.5
[750, 500, 500] elu 0.5 354 True 89.1
[750, 500, 500] selu 0.5 354 True 89.18
[750, 500, 500] elu 0 354 True 89.21
[750, 500, 500] selu 0 354 True 89.19
[750, 500, 500] elu 0 354 True 89.19
[750, 500, 500] leaky 0 354 True 89.1
[750, 500, 500] leaky 0.5 354 True 89.11
[750, 500, 500] selu 0 1057 False 88.9
[750, 500, 500] tanh 0 1057 False 88.41
[20, 20, 10] tanh 0 1057 False 88.46
[20, 20, 10] tanh 0 354 True 88.42
[750, 500, 500] tanh 0.5 354 True 88.21
[750, 500, 500] tanh 0 354 True 88.2
[20, 20, 10] tanh 0.5 354 True 88.24
[10, 5, 5] tanh 0 354 True 88.21
[750, 500, 500] elu 0 1057 False 88.83
[10, 10, 10] tanh 0 354 True 88.14
[50, 20, 10, 5] tanh 0 354 True 88.04
[100, 100, 50] tanh 0 1057 False 87.82
[100, 100, 50] tanh 0 354 True 87.72
[100, 100, 50] tanh 0.5 354 True 87.67
[750, 500, 500] leaky 0 1057 False 87.61
[100, 100, 50] elu 0 71 False 89.72
[100, 100, 50] elu 0 54 False 89.7
[100, 100, 50] elu 0 43 False 89.66
[100, 100, 50] elu 0 38 False 89.32
[100, 100, 50] elu 0 33 False 89.19
[100, 100, 50] elu 0 28 False 89.1
[100, 100, 50] elu 0 27 False 89.07
[100, 100, 50] elu 0 24 False 88.9

45

[100, 100, 50] elu 0.2 22 False 88.71
[100, 100, 50] elu 0.3 17 False 88.46
[750, 500, 500] tanh 0 1057 False 87.69
[750, 500, 500] tanh 0 1057 False 87.91
[750, 500, 500] tanh 0.5 354 True 87.21
[750, 500, 500] tanh 0 1057 False 87.43
[750, 500, 500] tanh 0 354 True 85.83
[1500, 750, 750, 500, 500] tanh 0 1057 False 86.75
[750, 500, 500] tanh 0 354 True 86.26
[750, 500, 500] tanh 0 1057 False 87.61
[750, 500, 500] tanh 0 1057 False 87.48
[750, 500, 500] tanh 0.3 354 True 87.56
[1500, 750, 750, 500, 500] tanh 0.5 1057 False 87.95
[1500, 750, 750, 500, 500] relu 0.5 1057 False 79.21
[1500, 750, 750, 500, 500] tanh 0 1057 False 85.86
[750, 500, 500] relu 0 1057 False 65.54
[1500, 750, 750, 500, 500] tanh 0 354 True 85.85
[750, 500, 500] relu 0 1057 False 85.74
[750, 500, 500] relu 0 354 True 85.15
[1500, 750, 750, 500, 500] relu 0.5 1057 False 83.86
[1500, 750, 750, 500, 500] relu 0 354 True 83.96

46

A.6 Feature importance

Boosted decision trees are able to give a very intuitive estimate of the feature
importance by counting the number of a times a feature has been cut on
during training of the algorithm. The better a feature is for separating
background and signal the more often it is used to split the data.

m
um

in
us

_P
T

m
up

lu
s_

PT
m

um
in

us
_T

rE
ta

m
up

lu
s_

Tr
Et

a
tra

ck
s_

IPC
HI

20
tra

ck
s_

IPC
HI

21
tra

ck
s_

IPC
HI

22
tra

ck
s_

PT
2

tra
ck

s_
PT

0
tra

ck
s_

IPC
HI

23
tra

ck
s_

PT
1

tra
ck

s_
IP0

tra
ck

s_
IPC

HI
24

tra
ck

s_
PT

3

nT
ra

ck
tra

ck
s_

IPC
HI

26
tra

ck
s_

IPC
HI

25
tra

ck
s_

PT
6

tra
ck

s_
IP1

tra
ck

s_
PT

5

tra
ck

s_
PT

4
tra

ck
s_

isM
uo

n0
tra

ck
s_

IPC
HI

27
tra

ck
s_

IPC
HI

21
1

tra
ck

s_
IPC

HI
28

tra
ck

s_
IP2

tra
ck

s_
isM

uo
n1

tra
ck

s_
IPC

HI
29

tra
ck

s_
PT

7

tra
ck

s_
IP5

0

20

40

60

80

100

120

F-
sc

or
e

116
113

32 31

24 23
21

19 19 18 17
15 14 14 13 13

11
9 9 9 9 9 8 8 7 7 7 6 5 5

Instances: 300000, Accuracy: 87.14, ROC AUC: 0.873, Time: 639.501

Figure A.6: Feature importance as obtained by XGBoost v0.70.

The most important feature (according to XGBoost) are the transverse
momenta of the muons, supposedly because they can be used to partly
reconstruct the mass of the di-muon system.

47

References

[1] S.D. Drell, T.M. Yan (1970), ”Massive Lepton-Pair Production in
Hadron-Hadron Collisions at High Energies”, Phys. Rev. Lett. 25, 316,
pp. 316-320

[2] I.R. Kenyon (1982), ”The Drell-Yan process ”, Reports on Progress in
Physics, V45, I11, pp. 1261-1315

[3] D.E. Rumelhart, G.E. Hinton, R.J. Williams (1986), ”Learning repre-
sentations by back-propagating errors”, Nature volume 323, pp. 533–536

[4] H.N. Mhaskar, Micchelli (1993), ”How to Choose an Activation Func-
tion”, Proceedings of the 6th International Conference on Neural Infor-
mation Processing Systems, pp. 319-326

[5] R. Tibshirani (1996), ”Regression Shrinkage and Selection via the Lasso”,
Journal of the Royal Statistical Society. Series B (Methodological), Vol.
58, No. 1, pp. 267-288

[6] D. Pyle (1999), ”Data Preparation for Data Mining”, Morgan Kaufmann
Publishers, Inc.

[7] L. I. Smith (2002), ”A tutorial on Principal Components Analysis”,
http://www.iro.umontreal.ca/∼pift6080/H09/documents/papers/pca tutorial.pdf,
retrieved March, 2018

[8] H. Zou, T. Hastie (2004), ”Regularization and variable selection via the
elastic net”, R. Statist. Soc. B, Vol. 67, Part 2, pp. 301–320

[9] B. Widrow (2005), ”Thinking About Thinking: The Discovery of the
LMS Algorithm”, IEEE Signal Processing Magazine Vol. 22, Issue 1, pp.
100-106

[10] J. Shlens (2005), ”A Tutorial on Principal Component Analysis”, Sys-
tems Neurobiology Laboratory, University of California at San Diego,
vol. 82

[11] T. Fawcett (2006), ”An introduction to ROC analysis”, Elsevier, Vol 27,
Issue 8, pp. 861-874

[12] G. Hinton, R. Salakhutdinov (2006), ”Reducing the dimensionality of
data with neural networks”, Science, pp. 504-507

48

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.25.316
https://doi.org/10.1038/323533a0
https://www.jstor.org/stable/2346178?seq=1#page_scan_tab_contents
http://www.iro.umontreal.ca/$\sim $pift6080/H09/documents/papers/pca_tutorial.pdf
https://web.stanford.edu/~hastie/Papers/B67.2%20(2005)%20301-320%20Zou%20&%20Hastie.pdf
https://ieeexplore.ieee.org/document/1407720/
https://www.sciencedirect.com/science/article/pii/S016786550500303X
https://www.ncbi.nlm.nih.gov/pubmed/16873662

[13] Y. Bengio (2009), ”Learning Deep Architectures for AI”, Foundations
and Trends in Machine Learning V2 I1, pp. 1-127

[14] X. Glorot, Y. Bengio (2010), ”Understanding the difficulty of training
deep feedforward neural networks”, Proceedings of Machine Learning
Research, vol. 9, pp. 249-256

[15] K. K. Dobbin, R. M. Simon (2011), ”Optimally splitting cases for training
and testing high dimensional classifiers”, BMC Medical Genomics

[16] ATLAS Collaboration (2012), ”Observation of a new particle in the
search for the Standard Model Higgs boson with the ATLAS detector at
the LHC”, arXiv:1207.7214, Phys.Lett. B716, pp. 1-29

[17] CMS Collaboration (2012), ”Observation of a new boson at a mass of
125 GeV with the CMS experiment at the LHC”, arXiv:1207.7235, Phys.
Lett. B 716, pp. 30

[18] J. Bergstra, Y. Bengio (2012), ”Random Search for Hyper-Parameter
Optimization”, JMLR, pp. 281-305

[19] R. Pascanu, T. Mikolov, Y. Bengio (2013), ”On the difficulty of training
Recurrent Neural Networks”, arXiv:1211.5063

[20] R.E. Shapire (2013), ”Explaining AdaBoost”, Empirical Inference, pp.
37-52

[21] LHCb Collaboration (2014), ”LHCb detector performance”,
arXiv:1412.6352

[22] N. Chiapolini, U. Straumann, J. Anderson, K. Müller (2014), ”Low-Mass
Drell-Yan Cross-Section Measurements with the LHCb Experiment”

[23] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov
(2014), ”Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”, JMLR 15

[24] D. Kingma, J. Ba (2014), ”Adam : A method for stochastic optimization”,
arXiv:1412.6980

[25] T. Chen, C. Guestrin (2016), ”XGBoost: A Scalable Tree Boosting
System”, arXiv:1603.02754

[26] P. Ramachandran, B. Zoph, Q. V. Le (2017), ”Searching for Activation
Functions”, arXiv:1710.05941

49

https://dl.acm.org/citation.cfm?id=1658424
https://dl.acm.org/citation.cfm?id=1658424
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
https://brb.nci.nih.gov/techreport/Dobbin-SampleSplitting.pdf
https://arxiv.org/abs/1207.7214
https://arxiv.org/abs/1207.7235
http://www.jmlr.org/papers/v13/bergstra12a.html
https://arxiv.org/abs/1211.5063
https://link.springer.com/chapter/10.1007%2F978-3-642-41136-6_5
https://arxiv.org/abs/1412.6352
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1603.02754
https://arxiv.org/abs/1710.05941

[27] M. Nielsen (2017), ”Neural Networks and Deep Learning”,
http://neuralnetworksanddeeplearning.com/index.html

[28] K. Janocha, W.M. Czarnecki (2017), ”On Loss Functions for Deep
Neural Networks in Classification”, arXiv:1702.05659

[29] L.E. Melkumova, S.Y. Shatskikh (2017), ”Comparing Ridge and LASSO
estimators for data analysis”, Elsevier, Vol. 201, Pages 746-755

[30] A. Gehrmann-De Ridder (2018), ”The Standard Model of Electroweak
Interactions”, ETH, p. 49

Figures

[31] Z. Wan, J. Conway, A. Anastassov, F. Ratnikov, (2004),
”High Mass Di-Tau Analysis and Search for Z’ ”, https://www-
cdf.fnal.gov/physics/exotic/r2a/20041014.ditau zprime/

[32] K. M. Fauske (2006), ”Example: Neural network”, Texample.net

[33] M. Vretenar, G. Bellodi, R. Garoby, F. Gerigk, K. Hanke, A. M. Lom-
bardi, S. Maury, M. Pasini, C. Rossi, E. Z. Sargsyan (2007), ”LINEAR
ACCELERATOR DESIGNS FOR THE UPGRADE OF THE CERN
PROTON INJECTOR COMPLEX (LINAC4, SPL)”, Design Study

[34] D. Fehling (2008), ”The Standard Model of Particle Physics: A Lunch-
box’s Guide”, The Johns Hopkins University

[35] B. Schmidt (2009), ”The LHCb detector-Global Status”, LHCb Collabo-
ration

[36] A. Bhande (2011), ”What is underfitting and overfitting in machine
learning and how to deal with it.”, Medium

[37] L. A. Harland-Lang, A. D. Martin, P. Motylinski, R.S. Thorne,
(2014), ”Parton distributions in the LHC era: MMHT 2014 PDFs”,
arXiv:1412.3989

[38] S. Farid, (2016), ”Search for New Physics Beyond the Standard Model”,
PhD Thesis

[39] A. Budhiraja (2016), ”Dropout in (Deep) Machine learning”, Medium

50

http://neuralnetworksanddeeplearning.com/index.html
https://arxiv.org/abs/1702.05659
https://www.sciencedirect.com/science/article/pii/S1877705817341474
https://www-cdf.fnal.gov/physics/exotic/r2a/20041014.ditau_zprime/
https://www-cdf.fnal.gov/physics/exotic/r2a/20041014.ditau_zprime/
http://www.texample.net/tikz/examples/neural-network/
https://www.researchgate.net/figure/Scheme-of-the-CERN-Accelerator-Complex-Another-motivation-for-the-reconstruction-of-the_fig1_238074462
https://www.researchgate.net/publication/228462707_The_LHCb_detector-Global_Status
https://www.researchgate.net/publication/228462707_The_LHCb_detector-Global_Status
https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76
https://arxiv.org/abs/1412.3989
https://www.researchgate.net/figure/1-Feynman-diagram-of-the-Drell-Yan-process-at-tree-level-a-quark-and-antiquark-of_fig7_321038192
http://srdas.github.io/DLBook/GradientDescentTechniques.html

[40] A. Dertat (2017), ”Applied Deep Learning - Part 3: Autoencoders”,
Towards Data Science

[41] S. Varma, S. Das (2018), ”Training Neural Networks”, DeepLearning

51

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
http://srdas.github.io/DLBook/GradientDescentTechniques.html

	Introduction
	LHC
	LHCb experiment

	The Standard Model of particle physics
	The Drell-Yan process
	Backgrounds

	Data
	Features
	Isolation

	Selection
	Preprocessing
	Train-Test-Validation split
	Principal Components Analysis

	Neural Network algorithms
	Parameters & Hyperparameters
	Loss functions
	Gradient Descent

	Backpropagation
	Activations
	Preventing overfitting
	Regularization
	Dropout

	Results
	Training
	Transverse features
	Isolation features
	Comparison
	Boosted decision trees
	2 template fit
	Systematic uncertainties

	Discussion
	Outlook
	Appendix
	Autoencoder
	Applied cuts
	Number of instances
	Absolute results for 2 template fit
	More complete list of results
	Feature importance

	References

