QCD equation of state via the complex Langevin method

arXiv:2203.13144
Particle Physics Seminar
ETH Zürich and University of Zürich

Felipe Attanasio ${ }^{1}$, Benjamin Jäger ${ }^{2}$ and Felix Ziegler ${ }^{3}$
25/10/2022
${ }^{1}$ Heidelberg University
${ }^{2}$ University of Southern Denmark (SDU)
${ }^{3}$ The University of Edinburgh

Overview

1. The QCD phase diagram
2. The Sign problem
3. The complex Langevin method
4. Numerical results
5. Conclusion and plans

The QCD phase diagram

Sketching the QCD phase diagram

Sketching the QCD phase diagram

Sketching the QCD phase diagram

Sketching the QCD phase diagram

Sketching the QCD phase diagram

Mapping out the QCD phase diagram

- experiment: heavy-ion collisions LHC, RHIC, FAIR
- theory: lattice QCD or functional methods
- finite μ_{B} restricts conventional lattice Monte Carlo simulations substantially \rightarrow SIGN PROBLEM

Status of the QCD phase diagram from lattice QCD

Our plan for lower T and higher μ_{B}

Lattice QCD at finite chemical potential

$$
\begin{aligned}
& Z[T, \mu]=\int_{S U(3)^{\Omega}} \mathcal{D} U \exp \left(-S_{\text {eff }}[U ; T, \mu]\right), \\
& \mu=\mu_{B} / 3, T=\frac{1}{a N_{t}}, \Omega=N_{t} N_{s}^{3} . \\
& \text { In this talk: } \\
& \Omega=32 \times 24^{3}=1769472
\end{aligned}
$$

Euclidean action

$$
S_{\mathrm{eff}}[U ; T, \mu]=-N_{f} \log (\operatorname{det} M[U ; T, \mu])+\frac{\beta}{3} \sum_{x, \rho<\sigma} \operatorname{Tr}\left[\mathbb{1}-\frac{1}{2}\left(U_{x, \rho \sigma}+U_{x, \rho \sigma}^{-1}\right)\right]
$$

A closer look at the fermion matrix

FARBE SPIN QUARK

$M_{x y}[U ; T, \mu]=(4+m) \delta_{x y}-\frac{1}{2} \sum_{\nu}\left[\Gamma_{\nu} e^{\mu \delta_{\nu, 0}} U_{x, \nu} \delta_{x+\hat{\nu}, y}+\Gamma_{-\nu} e^{-\mu \delta_{\nu, 0}} U_{x-\hat{\nu}, \nu}^{-1} \delta_{x-\hat{\nu}, y}\right]$,

$$
\Gamma_{ \pm \nu}=1 \mp \gamma_{\nu}
$$

- μ renders $S_{\text {eff }}[U ; T, \mu]$ complex
- no conventional Monte Carlo sampling applicable
- How bad is the sign problem?

$$
\begin{aligned}
& \text { For } U \in S U(3) \\
& \qquad \begin{aligned}
M[U ; T, \mu]^{\dagger} & =\gamma_{5} M\left(-\mu^{*}\right) \gamma_{5} \\
\operatorname{det} M\left[U ; T,-\mu^{*}\right] & =(\operatorname{det} M[U ; T, \mu])^{*}
\end{aligned}
\end{aligned}
$$

The Sign problem

A solvable sign problem?

Toy model for a free theory

$$
\begin{aligned}
S[x ; \lambda] & =\frac{x^{2}}{2}+i \lambda x, \quad \lambda \in \mathbb{R} \\
Z[\lambda] & =\int_{\mathbb{R}} d x \exp (-S[x ; \lambda])=e^{-\lambda^{2} / 2}
\end{aligned}
$$

In the figure: $\lambda=3$

A solvable sign problem?

$$
\begin{aligned}
\rho(x ; \lambda) & =\exp (-S[x ; \lambda]) \\
\sigma(x ; \lambda) & =\exp (-i \operatorname{Im}(S[x ; \lambda]))
\end{aligned}
$$

Try to save MC sampling via phase reweighting

$$
\langle O(x)\rangle_{R}=\frac{1}{Z_{R}} \int_{\mathbb{R}} d x O(x)|\rho(x ; \lambda)| \quad Z_{R}=\int_{\mathbb{R}} d x|\rho(x ; \lambda)|
$$

In the figure: $\lambda=3$

A solvable sign problem?

- Perform phase reweighting, i.e. a Monte Carlo estimate of

$$
Z[\lambda]=\sqrt{2 \pi}\langle\sigma(x ; \lambda)\rangle_{R}
$$

- samples are drawn from $|\rho(x)| \Rightarrow$ exponentially hard problem.

A solvable sign problem?

In QCD cost of phase reweighting increases exponentially with the space-time volume Ω.

Average phase

$$
\langle\sigma\rangle_{\mathrm{PQ}} \propto \exp \left(-\Omega\left(F-F_{\mathrm{PQ}}\right)\right)
$$

$F\left(F_{\mathrm{PQ}}\right)$ is free energy of the full (phase-quenched) theory.

Ideas to face the sign problem

In QCD cost of phase reweighting increases exponentially with the space-time volume.

reweighting, Taylor expansions, imaginary μ, dual formulations, density of states, complex Langevin, Lefschetz thimbles, flowed manifolds,... De Forcrand, PoS LAT2009, Alexandru et. al., Rev.Mod.Phys. 94 (2022), Attanasio, Jäger, FPGZ, Eur. Phys. J. A 56 (2020), Guenther PoS LAT2021

The complex Langevin method

The complex Langevin method in a nutshell

Stochastic Quantization Parisi and Wu in Sci. Sin. 24483 (1981)

- Evolve fields in fictitious time θ (Langevin or computer time)
- Langevin equation

$$
\frac{\partial \phi(x, \theta)}{\partial \theta}=-\frac{\delta S}{\delta \phi(x, \theta)}+\eta(x, \theta)
$$

- S is the Euclidean action (≥ 0) and η a Gaussian white noise field
- stationary solution of the associated Fokker-Planck equation is the equilibrium distribution e^{-S}
- observable expectation values

$$
\langle\mathcal{O}\rangle=\lim _{\theta_{\max } \rightarrow \infty} \frac{1}{\theta_{\max }-\theta_{\text {therm }}} \int_{\theta_{\text {therm }}}^{\theta_{\max }} \mathcal{O}(\theta) d \theta
$$

The complex Langevin method in a nutshell

- Analytic continuation in the field variables, Parisi, Phys. Lett.

```
B, 131 (1983)
```

- extending stochastic quantization from $\operatorname{SU}(3)$ to $\mathbb{S} \mathbb{Z}(3, \mathbb{C})$.

- S is a meromorphic action
- η Gaussian white noise
- θ fictitious time

The complex Langevin method in a nutshell

Langevin equation

$$
\frac{\partial \phi}{\partial \theta}=-\frac{\delta S}{\delta \phi}+\eta
$$

- mathematical foundations and criteria of correctness, see Seiler et.al., Phys. Lett. B723 (2013),
Nishimura et.al., Phys. Rev. D 92 (2015),
Attanasio, Jäger, FPGZ, Eur. Phys. J. A 56 (2020),
Scherzer et. all, Phys. Rev. D 101 (2020)

Lattice QCD with complex Langevin

Discretized complex Langevin equation with finite step size ϵ

$$
\begin{gathered}
U_{x, \nu}(\theta+\epsilon)=\exp \left[i \epsilon \lambda^{a}\left(-D_{x, \nu}^{a} S+\eta_{x, \nu}^{a}\right)\right] U_{x, \nu}(\theta), \\
\left\langle\eta_{x, \nu}^{a} \eta_{y, \rho}^{b}\right\rangle=2 \delta_{x, y} \delta_{\nu, \rho} \delta_{a, b}, a=1, \ldots, 8 .
\end{gathered}
$$

Fermionic drift term
$-D_{x, \nu}^{a} S_{F}=N_{f} \operatorname{Tr}\left[M^{-1} D_{x, \nu}^{a} M\right]$

Stabilizing the complex Langevin evolution

Unstable directions in $S L(3, \mathbb{C})$ require to stabilize the $C L$ process in numerical simulations.

Recipe:
(1) Adaptive step size Aarts et. al., Eur. Phys. J. A 49 (2013)
(2) Gauge cooling: exploit enlarged gauge freedom: move back to $S U(3)$ by minimizing the unitarity norm $\operatorname{tr}\left[\left(U U^{\dagger}-1\right)^{2}\right] \geq 0$ Seiler et. al., Phys. Lett. B 723 (2013)
(3) Dynamic stabilization: keep CL trajectory close to $\operatorname{SU}(3)$ by minimizing imaginary part of the gauge field, caveat: non-holomorphic modification of the drift term but disappears as $a \rightarrow 0$
Attanasio and Jäger, Eur. Phys. J. C 79 (2019)

Numerical results

Lattice setup

- $\beta=5.8, \kappa=0.144, V=24^{3}, a \approx 0.06 \mathrm{fm}$ Del Debbio et. al., JHEP 02 (2006)
- $N_{f}=2$ Wilson fermions $\left(c_{S W}=0\right)$
- $m_{\pi} \approx 480 \mathrm{MeV}, m_{N} \approx 1.3 \mathrm{GeV}$
- temperature range: $N_{t} \in\{64, . ., 4\} \leftrightarrow T \in\{50, . ., 850\} \mathrm{MeV}$
- We have data for a quark chemical potential range:

$$
\mu \in\{0, . ., 6500\} \mathrm{MeV}
$$

- For EOS results focus on $\mu_{B} \in\left[0,1.8 m_{N}\right]$ and $T \in[50,200] \mathrm{MeV}$
- fermion matrix inversion: eoCG

Lowest pion mass and temperatures for $\mu \neq 0$ so far.

Lattice setup

- $\beta=5.8, \kappa=0.144, V=24^{3}, a \approx 0.06 \mathrm{fm}$ Del Debbio et. al., JHEP 02 (2006)
- $N_{f}=2$ Wilson fermions $\left(c_{S W}=0\right)$
- $m_{\pi} \approx 480 \mathrm{MeV}, m_{N} \approx 1.3 \mathrm{GeV}$
- temperature range: $N_{t} \in\{64, . ., 4\} \leftrightarrow T \in\{50, . ., 850\} \mathrm{MeV}$
- We have data for a quark chemical potential range:

$$
\mu \in\{0, . ., 6500\} \mathrm{MeV}
$$

- For EOS results focus on $\mu_{B} \in\left[0,1.8 m_{N}\right]$ and $T \in[50,200] \mathrm{MeV}$
- fermion matrix inversion: eoCG

Lowest pion mass and temperatures for $\mu \neq 0$ so far.

Sanity check

Extrapolation of CL results and comparison with HMC

Deconfined phase

Confined phase

Observables

Polyakov loop (confinement - deconfinement transition)

$$
P=\frac{1}{3 V} \sum_{\vec{x}} \operatorname{Tr}\left\langle\prod_{\tau} U_{(\vec{x}, \tau), \hat{0}}\right\rangle
$$

Quark density

$$
\langle n\rangle=\frac{1}{\Omega} \frac{\partial \log Z}{\partial \mu}
$$

Phase diagram on large scales

Phase diagram on large scales

CG iterations

Unitarity norm

Confinement - deconfinement transition

Phase structure at hadronic scales - baryon density

Silver Blaze phenomenon, T. Cohen, Phys. Rev. Lett. 91 (2003)

- at $T=0$ expect no μ dependence in thermodynamic observables for $0 \leq \mu \leq m_{N} / 3$
- grey line indicates $\mu=m_{\pi} / 2$
- Phase-quenched and full theory very different in range $m_{\pi} / 2<\mu<m_{N} / 3$, severe cancelations of the integrand.

Phase structure at hadronic scales - baryon density

Silver Blaze phenomenon, see T. Cohen, Phys. Rev. Lett. 91 (2003)

Equation of State

Pressure equation of state $\Delta p\left(\mu_{B}, T\right)$ (left) and energy density (right),

$$
\Delta p\left(\mu_{B}, T\right)=\int_{0}^{\mu_{B}} d \mu^{\prime}\left\langle n\left(\mu^{\prime}, T\right)\right\rangle
$$

Conclusion and plans

Conclusions and ToDo list

Result

- first step towards low temperatures and physical pion mass: indications of the Silver Blaze phenomenon found.
- predictions for the QCD equation of state at densities $n \sim 15 n_{0}$ where n_{0} is the nuclear density
- Found that EoS gets stiffer as T decreases.

Future plans

- refined mapping of the confinement and chiral transitions, finite size scaling \rightarrow critical endpoint (?)
- finer lattices and improved actions (Wilson clover)
- including the strange quark ($2+1$ flavour simulations)
- better solvers for the fermionic inversion
- improvements of systematics related to the CL method (step size extrapolation), criteria of correctness, boundary terms, ...

Quarks in a small box

- $V=8^{3}, T \approx 100 \mathrm{MeV}$
- on the lattice expect plateau behaviour of the quark number (H. Matsuoka and M. Stone, Phys. Lett. 136B (1984)
- quantitative agreement between our dynamically stabilized simulations and such based on gauge cooling only (higher pion mass), see PhD thesis by M. Scherzer, Heidelberg, 2019

PRELIMINARY

Examining criteria of correctness

- exponentially decaying histogram of the drift K indicates that CL method works correctly
Nishimura et.al., Phys. Rev. D 92 (2015)
- We find well localized distributions.

Examining criteria of correctness

- exponentially decaying histogram of the drift K indicates that CL method works correctly
Nishimura et.al., Phys. Rev. D 92 (2015)
- We find well localized distributions.

Examining criteria of correctness

- exponentially decaying histogram of the drift K indicates that CL method works correctly
Nishimura et.al., Phys. Rev. D 92 (2015)
- We find well localized distributions.

Examining criteria of correctness

- exponentially decaying histogram of the drift K indicates that CL method works correctly Nishimura et.al., Phys. Rev. D 92 (2015)
- We find well localized distributions.

Examining criteria of correctness

- exponentially decaying histogram of the drift K indicates that CL method works correctly
Nishimura et.al., Phys. Rev. D 92 (2015)
- We find well localized distributions.

