

Double-perovskite La₂NiMnO₆ thin films grown by RF sputtering

Umar Bashir¹, Gabriele De Luca¹, Claribel Dominguez², and Marta Gibert¹

¹Institute of Physics, University of Zurich, Switzerland.

²DQMP, University of Geneva, Switzerland.

La₂NiMnO₆ double perovskite

- La₂NiMnO₆ (LNMO) is a ferromagnetic insulator with $T_c \sim 280 \text{ K [1]}.$
- Magnetoresistance and magnetocapacitance are observed near RT [2].
- Ferromagnetic coupling is predicted by Goodenough-Kanamori-Anderson rules

Super exchange interaction

$$Ni^{2+} = d^8 (t_{2g}^6 e_g^2), M_{Ni} = 2.0 \mu_B$$

 $Mn^{4+} = d^3 (t_{2g}^3, e_g^0), M_{Mn} = 3.0 \mu_B$

For ordered LNMO films, $M_s = 5 \mu_B/f.u$ is expected

700°C

800°C

Film deposition

The films are grown by off-axis RF magnetron sputtering

Optimized growth conditions for La₂NiMnO₆ films on SrTiO₃ (001)

Tensile strain (ε) LNMO/STO (001) = 0.61%

- Thickness = 12-15 nm
- Growth pressure = 0.18 mbar
- Ar: O_2 ratio = 1:1

XRD fittings indicate lattice parameter $c \approx 3.85 \text{ Å}$ STO(002)

High crystalline quality nearly independent from growth temperature

units)

Intensity (arb

LNMO(103)_{pc} peak compatible with $c \approx 3.85 \text{ Å}$

All films are in-plane latticematched to the substrate

AFM images indicate that surface topography is highly affected by growth temperature

Growth temperature is an important parameter to control saturation magnetization

M(T) curves show a Curie temperature close to 280 K

Towards strain tuning...

Compressive strain (ϵ) LNMO/LAO (001) = 2.37%

XRD fittings suggest a lattice parameter $c \approx 3.95 \text{ Å}$

LNMO(002)_{pc}

Surface topography is not completely optimized

Magnetic Field (T) Saturation magnetization (measured at 5K) \approx 5 $\mu_{\rm B}$ /f.u.

Outlook and references

- High quality La₂NiMnO₆ films were grown on STO(001) substrates by off-axis RF sputtering
- Growth temperature is a fundamental parameter to maximize the saturation magnetization
- Influence of epitaxial strain on the magnetic and structural properties of the LNMO films will be further investigated
 - [1] K. Asai et al. J. Phys. Soc. Jpn. 67, 4218 (1998)
 - [2] N. Rogado et al. *Adv. Mater.* **17**, 2225 (2005)