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Abstract

In this thesis work we will investigate R
D

= B(B→Dτ ν )

B(B→Dµν )
and the form factors that enter the B → Dµν decay

width, since their precise determination is of crucial importance for both theoretical estimates and experimental
measurements of the aforementioned ratio. After reviewing the theoretical tools of Heavy-Quark Effective Theory, we
updated the theoretical estimate of the upper bound on the value of the vector form factor f

+
at zero recoil obtaining

a result of f
+

(q
2

max
) ≤ 1.159± 0.024.

In the second part of this work we elaborate on the Bourrely-Caprini-Lellouch parametrization for the form factors,
and we implement it in a fitter whose performance will be first tested on a infinite resolution data sample. In perfect
resolution conditions the ratios of the parameters of the form factors can be retrieved with sensitivity of 0.56% and

8.82 % for the vector and the scalar form factor respectively, in a 2× 10
6

events sample.

In the last part we will be simulating the LHCb detector resolution, and correct for the effect of bin migration by
means of the unfolding techniques. In this case the relative error on the ratio between vector form factor parameters

ratio raises to 1.06% while it increases to 24% in a 2× 10
6

events sample collected in the worst resolution condition.
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I. INTRODUCTION

One of the most interesting phenomena reported by particle physics experiments in the last few years are the
numerous hints of Lepton Flavour Universality (LFU) violations observed in semileptonic B decays. The very recent

LHCb result on the LFU ratios R
µe

K
(∗) [2] and R

τ µ

D
(∗) [3] are the last two pieces of a seemingly coherent set of anomalies

which involves different observables and experiments. So far, not a single LFU ratio measurement exhibits a deviation
with respect to the Standard Model (SM) abode the 3σ level. However, the overall set of observables is very consistent
and, once combined, the probability of a mere statistical fluctuation is very low.

The evidences collected so far can naturally be grouped into two categories, according to the underlying quark-level
transition:

• deviations from τ /µ (and µ/e) universality in b → c`ν charged currents ([3] - [5])

• deviations from µ/e universality in b → s`` neutral currents ([2] - [6])

In both cases the combination of the results lead to an evidence around the 4σ level for LFU violating contribution
of non-SM origin, whose size is O(10%) compared to the corresponding charged- or neutral- current SM amplitudes.
One of the puzzling aspects of the present anomalies is that they have been observed only in semi-leptonic B decays
and are quite large compared to the corresponding SM amplitudes [1].

On the contrary, no evidence of deviation from the SM has been seen so far in the precise (per-mil) tests of LFU
in semi-leptonic K and π decays, purely leptonic τ decays, and in the electroweak precision observables. The most
natural assumption to address this apparent paradox is the hypothesis thet the NP responsible for the breaking of
LFU is coupled mainly to the third generations of quarks and leptons, with a small mixing with the light generations [1].

This hypothesis also provides a natural first-order explanation for the different size of the two effects, which compete
with a tree-level SM amplitude in charged currents, and with a suppressed loop-induced SM amplitude in neutral
currents, respectively.

In this work we will focus on semi-leptonic B decays, and in particular on the ratio

R
D

=
B(B → Dτ ν)

B(B → Dµν)
(1)

The theoretical estimate of R
D

within the SM relies dominantly on the hadronic form factors f
+

(the vector form

factor) and f
0

(the scalar form factor). For both, precise lattice QCD results have recently been published [24]. In
addition, Zero-Recoil Sum Rules (ZRSR) results can be used to complement the lattice QCD results. According to
[24] the SM prediction for R

D
is:

R
SM

D
= 0.300± 0.008 (2)

On the experimental side, measurement of R
D

have been published by both BaBar [3] and, more recently, by Belle

[7],

R
BaBar

D
= 0.440± 0.058± 0.042, R

Belle

D
= 0.375± 0.064± 0.026 (3)

Combining the two results and normalizing them to the SM, leads to [8]:

∆R
D

=
R
exp

D

R
SM

D

− 1 = 0.35± 0.17 (4)
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A similar effect has been observed also in the R
D
∗ ratios [3]. Combining the two deviations, which are compatible

with a enhancement of semileptonic b → cτ ν transitions over b → cµν ones, the discepancy with respect to the SM
raises to about 4.1σ [10].

This work is structured as follows: in the first section a review of the calculation of the differential decay width
is done, which is followed by analysis of the methods of HQET and their theoretical tools to investigate the form
factors. An introduction to the Zero-Recoil Sum Rule calculation is done, and the value at Zero Recoil of the vector
form factor is updated with recent values for quark masses and for the parameters of the heavy quark expansion.

Of the existing parametrizations of the form factors the Bourrely - Caprini - Lellouch (BCL) is investigated in
detail and the coefficients for the weak unitarity bounds test are calculated. This parametrization is used to test a fit
sensitivity to the scalar form factor in the hypothesis of perfect resolution and efficiency.

Subsequently LHCb resolution is simulated through Monte Carlo data, and the techniques of linear inverse ill-posed
problems such as unfolding, are applied to give an estimate of the sensitivity to the parameters that describe the form
factors in BCL parametrization, given the LHCb detector performances.

II. B → Dµν DIFFERENTIAL DECAY WITDTH

In a generic NP scenario without right-handed neutrinos that preserves LFU, a coupling from this decay to the
scalar, vector and tensor operators can be described via [11]

Leff
=
G
F√
2
V

cb

[
(cγ

µ
b)(`

L
γ
µ
`

L
) + g

V
(cγ

µ
b)(`

L
γ
µ
`

L
) + g

S
(µ)(c b)(`

R
`

L
) + g

T
(µ)(cσ

µν
b)(`

R
σ
µν
ν

L
)
]

+ h.c. (5)

Where the dimensionless couplings g
V,S,T

∝ m2

W
/m

2

NP
where m

NP
being the NP scale. As can be verified from eq.

(20) of [11] the NP decay width for the process B → Dµν depends on the scalar, vector and tensor form factors and
the NP couplings, thus a model independent direct measurement of the scalar and vector form factors could further
constrain the magnitude of those couplings,

A. Dynamics

In order to calculate the amplitude for this decay in the SM framework, it is useful to work in an Effective Field
Theory that does not contain the W boson. The Standard Model flavour changing vertex is replaced by a local
four-fermion operator O

L
for the transition b → c`ν , where ` denotes a charged lepton ` = e, µ, τ . The Lagrangian

is the following:

Leff
=
G

F√
2
V

cb
[ψ̄

c
γ
µ
(1− γ

5
)ψ
b
][ψ̄

l
γ
µ
(1− γ

5
)ψ
ν
] (6)

The differential decay amplitude then reads:

dΓ =
1

2m
B

|M|2 dΦ
3

(7)

Where M is the amplitude for the given process and dΦ
3

is the three-body phase space. To leading order in α
EW

M factorises as the product of the hadronic and leptonic currents, and choosing the phases that would arise from
the time reversal operation on the hadronic states so that the form factors are real, the square of the matrix element
yields

|M|2 ∝ Hµ
H
∗ν
L
µ
L
∗
ν

(8)

Where
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H
µ

= 〈D(p
′
)
∣∣∣ψ̄c

γ
µ
ψ

b

∣∣∣B(p)〉 = f
+

(q
2
)

(p+ p
′
)
µ −

m
2

B
−m2

D

q
2 q

µ

+ f
0
(q

2
)
m

2

B
−m2

D

q
2 q

µ
(9)

with p
µ

and p
′µ

representing the four-momenta respectively of the incoming B and D outgoing mesons,

and q
µ

= (p− p′)µ.

∑
spins

L
µ
L
∗
ν

= 2[(q̄ + q)
µ
(q̄ − q)

ν
+ (q̄ + q)

ν
(q̄ − q)

µ
− g

µν
(q̄

2 − q2
)]

In the above f
+

(q
2
) and f

0
(q

2
) are the two form factors, vector and scalar respectively, that can only depend on

the unique Lorentz invariant quantity one can build with the four-vectors of the problem, q
2
. Note that the pseudo-

vector current in the hadronic part of the matrix element has been neglected, on account of parity conservation of QCD.

As far as the leptonic current is concerned, q̄ represents the sum between the four momenta of the outgoing leptons,
and it’s totally antisymmetric part has been neglected since it vanishes when contracted with H

µ
H
∗ν

, being the latter
a totally symmetric tensor in it’s two indices.

B. Phase space and differential decay width

The Lorentz invariant phase space element (LIPS) for this process can be written as

dΦ
3

= − 1

64π
3

√
λ

4m
2

B

1−
m

2

µ

q
2

 d(cosθ)dq
2

(10)

Where λ is defined as

λ(q
2
,m

2

B
,m

2

D
) = (q

2 −m2

B
−m2

D
)
2 − 4m

2

B
m

2

D

And θ is identified as the polar angle between the spatial components of the charged lepton four-momenta and the
spatial components of the D (or as well of the B) meson four-momenta in the leptons’ centre of mass frame. Note
that one is able to integrate over the azimuthal angle ϕ of the charged lepton in the centre of mass frame, since both
the B and the D mesons do not hold any polarization information. Since the isotropy hypothesis holds, one can set
ϕ = 0.

The differential decay width, as a function of q
2
, reads [23]:

dΓ

dq
2 (B → D`ν

`
) =

η
2

ew
G

2

F

∣∣∣Vcb|2mB

√
λ

192π
2

1−
m

2

`

q
2

2  λ

m
4

B

1 +
m

2

`

2q
2

 |f
+

(q
2
)|2 + (1− r2

D
)
2 3m

2

`

2q
2 |f0

(q
2
)|2
 (11)

The factor η
ew

= 1+α/πln(m
Z
/m

B
) ' 1.0066 [9]. In case of massless leptons the f

0
contribution becomes irrelevant

and it is in the scope of this work to verify at which extent muons can be considered as massless, in the measurement
of the decay width, at present LHCb detector capabilities. In order to do so, first we need to review the most updated
theoretical previsions for such form factors to which we will dedicate the following sections.
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III. THE ZERO-RECOIL SUM RULE

A. Ingredients:

Sum rules in QCD allow to infer information on hadronic parameters such as decay constants, transition form
factors, with correlation functions of quark currents. In order to do so, one makes use of three key elements [12]:

• Correlation functions of local quark currents:

In the simplest case the two-point correlation function is formed by two quark-antiquark current operators of
the form:

〈0|T{q
i
(x)Γ

µ
q
j
(x)q

j
(0)Γ

ν
q
i
(0)}|0〉

This is a function of the 4-momentum transfer between the currents and, in the region of large momentum
transfers, it represents a short distance fluctuation of the qq fields. In such region the gluon exchanges are
suppressed by a small QCD coupling and the propagation of q and q at short distances is asymptotically free.

• Operator Product Expansion (OPE):

OPE of the correlation function of the previous point is worked out, providing an analytical expression for

the correlation function at q
2
> 0 with a systematic separation of short and long distance effects, the former

being described by Feynman diagrams, while the latter are encoded by universal parameters related to non
perturbative QCD dynamics. In the case of two-point sum rules, these parameters are the averaged local
densities of the QCD vacuum fields, the condensates, whose contributions in the OPE are suppressed by powers
of 1/m

n

q
allowing to truncate the series at some maximal power.

• Hadronic dispersion relations:

Optical theorem and unitarity condition are used to link the imaginary part of the correlation function in terms
of the sum and/or integration over all intermediate hadronic states with quantum numbers of the quark currents.
In this way a link between perturbative QCD and hadrons is established and the resulting relation between the
OPE expression and the hadronic sum is called ”QCD sum rule”

B. The Heavy-Quark Expansion: an introduction

One of the tools that will be needed in order to perform a systematic expansion of the two-point correlation function
which stands at the core of the zero-recoil sum rule is an effective theory that allows its OPE. This tool is heavy-quark
effective theory.

In analysing the strong interactions of hadrons containing heavy quarks, it’s convenient to work in an EFT that
naturally separates the scales of the processes through Λ

QCD
[13]. Roughly speaking Λ

QCD
∼ 0.2 GeV and quarks

fall naturally in two classes: light quarks such as the u, d and s and heavier quarks like c, b and t, the latter being
to heavy to form bound states. For heavy quarks the effective coupling constant α

s
(m

Q
) is small, implying that on

the length scales comparable to the Compton wavelength λ
Q
∼ 1/m

Q
the strong interactions are perturbative and

behave like the electromagnetic interactions. In fact, the quarkonium systems made up by two heavy quarks, whose
size is of order λ

Q
/α

s
(m

Q
) << R

had
, are very much hydrogen-like [13].

Systems composed of a heavy quark and other light constituents have a size determined by R
had
∼ 1/Λ

QCD
∼ 1fm,

and the typical momenta exchanged between the heavy and the light degrees of freedom are of order Λ
QCD

. The

heavy quark is surrounded by a strong interacting cloud of light quarks, antiquarks and gluons but the fact that
λ
Q
<< R

had
leads to simplifications. Soft gluons are not hard enough to resolve the quantum numbers of the heavy

quark, therefore the light degrees of freedom are blind to flavour (mass) and spin orientation of the heavy quark, they
experience only its colour field.
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It follows that, in the limit m
Q
→∞, hadronic systems which differ only in the flavour or spin quantum numbers of

the heavy quark have the same configuration of their light degrees of freedom [13]. This observation provides relations
between the properties of heavy mesons such as B, D, B

∗
and D

∗
. These relations result from some approximate

symmetries of the effective strong interactions of heavy quarks at low energies: for N
h

heavy-quark flavours, there is a
SU(2N

h
) spin-flavour symmetry group, under which the effective strong interactions are invariant. The configuration

of light degrees of freedom in a hadron containing a single heavy quark with velocity v does not change if this quark
is replaced by another heavy quark with different flavour or spin, but with the same velocity.

Heavy-quark symmetry is an approximate symmetry of an effective theory, which is a good approximation of QCD
in a certain kinematic region, the symmetry breaking corrections being powers of 1/m

Q
and in order to study them

systematically it is necessary to cast the QCD Lagrangian for a heavy quark, into a form suitable for taking the limit
m
Q
→∞.

C. The Heavy-Quark Expansion

As compared with most effective theories, in which the degrees of freedom of a heavy particle are removed completely
from the low energy theory, the Heavy-Quark Effective Theory (HQET) is special in that it’s purpose is to describe
the properties and decays of hadrons which do contain a heavy quark. Hence it’s not possible to remove the heavy
quark completely from the effective theory. What is done is to integrate out the ”small components” in the full
heavy-quark spinor, which describe the fluctuations around the mass shell. In order to do this one singles out the
part of the QCD Lagrangian for a heavy quark:

L
HQ

= Ψ̄
Q

(i /D −m
Q

)Ψ
Q

+ (12)

The field operator Ψ
Q

defined as:

Ψ
Q

=

∫ d
3
p
Q

(2π)
4

1√
E
Q

[
a(x)u

Q
(x)e

−ipQx + a
†
(x)v

Q
(x)e

+ipQx
]

where a, a
†

are creation and annihilation operators, and u
Q

, v
Q

are the heavy quark spinors while p
Q

is the

momentum of the heavy quark Q. Any momentum is represented by p
Q

, although dominant contributions come from

those p
Q

which come from semiclassical approximation, i.e. the ones which satisfy dispersion relations or are ~ distant

from it.
By rephasing the aforementioned field one gets:

Ψ̃
Q

= e
imQv · xΨ

Q
=

∫ d
3
p
Q

(2π)
4
√
E
Q

[
a(x)u

Q
(x)e

−i(pQ+mQv)x
+ a
†
(x)v

Q
(x)e

+i(pQ−mQv)x
]

(13)

Now let’s consider p
µ

Q
= m

Q
v
µ

+ k
µ

such that
∣∣kµ∣∣ = O(Λ

had
) ∀µ, note that this choice of is not unique, one

option is that it can be chosen as the velocity of the external hadron. Interactions of the heavy quark with light
degrees of freedom change the residual momentum by an amount ∆k ∼ Λ

QCD
, but the corresponding changes in the

heavy-hadron quark velocity vanish as Λ
QCD

/m
Q
→ 0. By defining the two projectors:

P± =
1± /v

2
(14)

And by the use of standard spinor relations in momentum space one can easily see that P
+
u
Q

(m
Q
v) = u

Q
(m

Q
v)

and P−uQ(m
Q
v) = 0. Similar relations hold for v

Q
. Such relations receive corrections of O(1/m

Q
) when considering

the residual momentum k
µ
. It is then straightforward to decompose the heavy quark field operator respectively in

the large and small components:
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h
v
(x) = P

+
Ψ̃
Q

(x) and H
v
(x) = P−Ψ̃

Q
(x)

Such that Ψ̃
Q

(x) = h
v
(x) +H

v
(x) . Substituting the latter expression in the QCD Lagrangian one finds:

L
HQ

=
(
h̄
v

+ H̄
v

)
(i /D − 2P−mQ

)(h
v

+H
v
) (16)

Note that up to this point, full QCD hasn’t been left yet and no approximations were applied to the Lagrangian.
By noting that any four-vector can be decomposed as: Dµ = (v · Dvµ +Dµ⊥), one can see that terms appearing in the

QCD Lagrangian of the form h̄
v
(i /D)h

v
can be decomposed along the components of the four-velocity v

µ
obtaining

terms of the form:

h̄
v

(
i /D⊥ + i(v · D)/v

)
h
v

And by noting that terms such as i /D⊥hv are equivalent to P−i /D⊥hv one can make use of the orthogonality relations
associated to P± to rewrite L

QCD
as:

L
HQ

= h̄
v
i(v · D)h

v
+ H̄

v
i(/D⊥)h

v
+ h̄

v
i(/D⊥)H

v
− H̄

v

[
i(v · D) + 2m

Q

]
H
v

(17)

The first term being the kinetic term of a massless mode of the heavy quark field while the last representing the one
of a massive 2m

Q
quark. These will be the heavy degrees of freedom that will be eliminated in the construction of the

effective field theory. The fields are mixed by the second and third term which describe pair creation or annihilation
of heavy quarks and antiquarks. On a classical level, the heavy degrees of freedom H

v
can be eliminated by using the

Euler-Lagrange equations:

∂
µ

[
∂L
∂
µ
H̄
v

−
∂L

∂(∂
µ
H̄
v
)

]
= 0 (18)

Thus we obtain

(iv · D + 2m
Q

)H
v

= i /D⊥hv

which can be formally solved to give:

H
v

=
1

2m
Q

+ iv · D
i /D⊥hv

By substituitng the latter expression in equation (17) one obtains the Lagrangian:

L
HQ

= h̄
v

(
iv · D + i /D⊥

1

2m
Q

+ iv · D
i /D⊥

)
h
v

(19)

Which contains the inverse derivative operator, thus introducing an integration at all possible locations which makes
the L

QCD
non-local. In momentum space, derivatives acting on h

v
yeld powers of the residual momentum k, which is

much smaller than m
Q

. Hence, the non-local effective Lagrangian 17 allows for a derivative expansion:

L
HQ

= LHQET

mQ→∞
+

∞∑
n=1

LHQET

n (20)
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FIG. 1. In the vertex V
µ,a
mQ→∞, γ

µ
is replaced by the velocity v

µ
, while the propagator for a heavy quark has a pole for v⊥k

[13]

being

LHQET

(0),mQ→∞
= h̄

v
(iv · D)h

v
and LHQET

(n)
=

1

2m
Q

h̄
v
i /D⊥

(
− iv · D

2m
Q

)n−1

i /D⊥hv

By use of the identity:

/D⊥ /D⊥ = D2

⊥ + σ
µν

(g
2
G
µν
)

(22)

with σ
µν

= i
2

[
γ
µ
, γ
ν]

and G
µν

= ig
s

[
Dµ,Dν

]
one finds that [13]:

LHQET

(1)
= h̄

v
(iv · D)h

v
− 1

2m
Q

h̄
v
(iD⊥)

2
h
v
−

g
s

4m
Q

h̄
v
σ
µν
G
µν
h
v

+O(1/m
2

Q
) (23)

In the limit m
Q
→∞ only the first term remains

LHQET

(0),mQ→∞
= h̄

v
(iv · D)h

v
(24)

this is the effective Lagrangian of HQET which, when compared with the full QCD one gives rise to the Feynman
rules of fig.II:

D. Heavy Quark Spin-Flavour Symmetry

When studying the symmetries of this Lagrangian (24) one can see that there appear no Dirac matrices, thus
interactions of the heavy quark with gluons leave its spin unchanged. In fact if we introduce a set of spin operators:

S
(i)

=
1

2
γ

5
/v/e

(i)
(25)

Where e
(i) · e(j)

= −δ
ij

and e
(i)

= 0 ∀i, is a basis of spacelike components for the velocity v, one can verify by Dirac

anticommutation that they obey the SU(2) algebra:
[
S

(i)
, S

(j)
]

= iε
ijk
S

(k)
. An infinitesimal SU(2) transformation

h
v
→ (1 + d~θ · ~S)h

v
leaves (24) unchanged. If one considers the 1/m

Q
terms appearing in in the effective Lagrangian

(23), the first term

O
kin

=
1

2m
Q

h̄
v
(iD⊥)

2
h
v

11



is the gauge-covariant extension of the kinetic energy arising from the residual motion of the heavy quark, in other

words the term 〈B|h̄
v
(iD⊥)

2
h
v
|B〉 tells us how much of the B meson energy is given by the Brownian motion of the b

quark in B. This operator does not violate Heavy Quark Spin Symmetry [14]. The second operator is the non-Abelian
analogue of the Pauli interaction [13], which describes the chromo-magnetic coupling of the heavy-quark spin to the
gluon field

O
chromo

=
g
s

4m
Q

h̄
v
(σ
µν
G
µν

)h
v
→ −

g
s

m
Q

h̄
v
(~S · ~B

c
)h
v

where the i-th component of the chromomagnetic field ~B
c

is given by B
i

c
= − 1

2ε
ijk
G
jk

and ~S is the spin operator
defined in (25) [13]. The expectation value 〈B|O

chromo
|B〉 6= 0 since the light degrees of freedom have a net light

quark flavour quantum number of 1 and thus I = ± 1
2 . This term is the first breaking the Heavy Quark Spin-Flavour

Symmetry.
Another symmetry of the HQET Lagrangian (24) arises since the mass of the heavy-quark does not explicitly appear

in the Lagrangian. For N
h

heavy quarks moving at the same velocity v, eq. (24) can be extended by writing

L(0)

∞ =

Nh∑
i=1

h̄
i

v
(iv · D)h

i

v

This Lagrangian is invariant under rotations in flavour space. When combined with the spin symmetry, the sym-
metry group is promoted to SU(2N

h
) which is called the heavy-quark spin-flavour symmetry group [13].

E. Loop corrections and reparametrization invariance

Equation (23) has been derived at tree level. Including loop corrections changes the Lagrangian to [14]:

L(1)

eff
= h̄

v
(iv · D)h

v
+

1

2m
Q

h̄
v
(iD⊥)

2
h
v

+ a(µ)
g
s

4m
Q

h̄
v
σ
µν
G
µν
h
v

+O(1/m
2

Q
) (26)

The tree level matching with equation (23) implies that:

a(m
Q

) = 1 +O[α
s
(m

Q
)]

The µ dependence of O
chromo

is canceled by the µ dependence of a(µ). In the leading logarithmic approximation
[14]:

a(µ) =

[
α
s
(m

Q
)

α
s
(µ)

]9/(33−2Nq)

where N
q

is the number of light quark flavours. Loop effects do not change the coefficient of the heavy quark kinetic

energy term due to reparametrization invariance. As previously stated , the choice of the residual momentum v
µ
, the

heavy-quark four-velocity is not unique, being p
µ

Q
= m

Q
v
µ

+ k
µ

and |k| ∼ Λ
QCD

<< m
Q

. A small change in v
µ

of

the order of Λ
QCD

/m
Q

will be compensated by a change in the residual momentum:

v
µ → v

µ
+

1

m
Q

ε
µ

produces a change in k
µ

of k
µ → k

µ − εµ

One can see that being v
2

= 1, v · ε = 0 up to orders O(1/m
2

Q
). In addition, since the heavy-quark spinor h

v
must

preserve the constraint /vhv = h
v
, the variation of the heavy-quark spinor δh

v
under a change in the heavy-quark

four-velocity by an amount ε
µ
/m

Q
must satisfy:

12



(1− /v)δh
v

=
/ε

m
Q

h
v

(28)

A suitable ansatz for a change in h
v

is δh
v

= /ε
2mQ

h
v

since /vδhv = −δh
v

and (28) is satisfied. Note however that this

solution is not unique, we have chosen the one that preserves the norm of the i(v · D) term of the effective Lagrangian
and other choices are equivalent to the above by a redefinition of the fields [14].

It can be shown that the L
HQET

= L(0)
+ L(1)

+ ... is invariant under the combined changes:

v
µ → v

µ
+

1

m
Q

ε
µ

and h
v
→ e

iε · x
(

1 +
/ε

2m
Q

)
h
v

the prefactor e
iε · x

causing a shift in the residual momentum of k
µ → k

µ − εµ. Thus the L
HQET

= L(0)
+ L(1)

+ ...

is reparametrization invariant [14]. This would not be the case if the coefficient of the O
kin

deviated from 1, there
can be no radiative corrections to O

kin
as long as the theory is regularized in a way that preserves reparametrization

invariance and dimensional regularization is such a regulator, since the arguments made hold in n dimensions.

F. HQET Applications: heavy to heavy transitions

The elastic scattering of a B meson, B(v) → B(v
′
) induced by a vector current coupled to the b quark can be

described in the HQET framework through the following hadronic matrix element:

1

m
B

〈B(v
′
)|b

v
′γ
µ
b
v
|B(v)〉 = ξ(v · v′)(v + v

′
)
µ

(30)

Where b
v

and b
v
′ are the velocity dependent heavy-quark fields of HQET. In the limit of m

b
→∞, the form factor

can only depend on v · v′, reflecting the fact that, as the velocities become more and more different, the probability for

an elastic transition decreases. Thus in this limit, the dimensionless probability function ξ(v · v′), named Isgur-Wise

function [14], describes the transition. No term proportional to (v− v′)µ appears in (30) since contracting the matrix

element for the transition with such term must give zero given that /vb
v

= b
v

and b
v
′ /v
′

= b
v
′ and the conventional

normalization of HQET meson states [14]

〈B(v)|B(v
′
)〉 = 2v

0
(2π)

3
δ

3
(~v − ~v′) (31)

When writing the above matrix element in terms of an elastic form factor F
el

(q
2
) depending only on the momentum

transfer q
µ

= (p− p′)µ one finds

〈B(m
B
v
′
)|b

v
′γ
µ
b
v
|B(m

B
v)〉 = F

el
(q

2
)(p+ p

′
)
µ

(32)

where p
(i)

= m
B
v

(i)
. When compared with (30) one finds that:

F
el

(q
2
) = ξ(v · v′) , q

2
= 2m

2

B
(1− v · v′)

Because of current conservation the elastic form factor is normalized to unity at q
2

= 0, which implies the normal-

ization of the Isgur-Wise function at v · v′ = 1. This reflects the intuitive argument that the probability for an elastic

13



transition is unity if there is no velocity change between the two states, and since v = v
′

implies that the final-state
meson is at rest in the intial-meson rest frame, this point is referred to as zero-recoil limit.

Heavy-quark symmetry can be used to replace the b quark with a c in the final-state meson, therefore turning the
B meson into a D meson, then the scattering process become a weak decay process. In the infinite mass limit, being
the replacement b

v
′ → c

v
′ a symmetry transformation of the effective Lagrangian, the matrix element is still defined

by the same function ξ(v · v′)

〈D(v
′
)|c

v
′γ
µ
b
v
|B(v)〉 =

√
m

B
m

D
ξ(v · v′)(v + v

′
)
µ

But in general the matrix element of a flavour-changing current between two pseudoscalar mesons is described by
two form factors which are conventionally referred to respectively as vector and scalar form factor

〈D(p
′
)|cγµb|B(p)〉 = f

+
(q

2
)(p+ p

′
)
µ

+ f
0
(q

2
)
m

2

B
−m2

D

q
2 q

µ
(35)

Thus in the limit of m
b
,m

c
→∞ or equivalently at zeroth order in 1/m

b
, 1/m

c
, HQET establishes a link between

the Isgur-Wise function and the form factors, by comparing eq. (??) and eq. (35), one can see that

f
+

(q
2
) =

m
B

+m
D

2
√
m

B
m

D

ξ(w) and f
0
(q

2
) =

(m
B

+m
D

)
2 − q2

2(m
B

+m
D

)
√
m

B
m

D

ξ(w)

Where w = v · v′ and q
µ

= (p− p′)µ. From the equations above one can see that the two form factors are equal at

q
2

= 0. This equality is valid at all orders of 1/m
b
, 1/m

c
. Moreover, the normalization of the Isgur-Wise function at

w = 1 (i.e. at zero-recoil) implies the normalization of the vector form factor at q
2

max
= (m

B
−m

B
)
2

[13]

f
+

(q
2

max
) =

m
B

+m
D

2
√
m

B
m

D

(37)

This upper bound for the vector form factor receives non-perturbative corrections through a systematic expansion
in 1/m

B
which is provided within the framework of the zero-recoil sum rule. In order to do so let’s define the time

ordered product: [15]

t
µν

= −i
∫
d

4
xe
−iq · xT {b(x)Γ

ν†
c(x); c(0)Γ

µ
b(0)} (38)

Where Γ
µ

are the correct Dirac structures for a purely left-handed weak vertex. Γ
µ

= γ
µ
(1 − γ5

). The T
µν

is
defined as in [15]

T
µν

(v · q) =
1

2m
B

〈B|tµν |B〉 (39)

It’s imaginary part is related to the hadronic tensor appearing in eq. (8) by the optical theorem which takes the
form [15]

H
µ
H
∗ν

= 2 ImT
µν

(40)

The tree-level nonperturbative expansion in 1/m
b

is set up by looking at the Feynman Diagram in fig. (III F). The

double line denotes the Green function of the charm quark propagating in the background field of soft gluons in the

B meson. By rephasing the fields b(x)→ e
−imb (v · x)

b
v
(x), the momentum operator of the b-quark becomes

14



FIG. 2. Tree level diagram for the hadronic tensor in inclusive semileptonic decays [13]

p
b

= m
b
v + iD (41)

With the term iD playing the role of the ’residual’ momentum. Thus we write

t
µν

= −i
∫
d

4
xe
−iq · x

e
imb (v · x)T {b

v
(x)Γ

ν†
c(x); c(0)Γ

µ
b
v
(0)} (42)

The phase factor from the rephased b-quark field combines with the c-quark propagator to yeld the background-field
charm propagator [15]

t
µν

= −i
∫
d

4
xe
−iq · x

e
−i(mbv−q+iD) · xT {b

v
(0)Γ

ν†
c(0); c(0)Γ

µ
b
v
(0)} (43)

S
BGF

=
1

/p+ i /D −m
c

with p
µ

= m
b
v
µ
− q

µ

For semileptonic processes at tree level, one only needs to multiply the S
BGF

by the appropriate Dirac matrices

for the left handed current. A calculation of the OPE series to order 1/m
n

b
requires an expansion of S

BGF
to the n

th

order in the covariant derivative iD according to [15]

S
BGF

=
1

/p−mc

+
1

/p−mc

(−i /D)
1

/p−mc

+
1

/p−mc

(−i /D)
1

/p−mc

(−i /D)
1

/p−mc

+ . . . (45)

The covariant derivatives do not commute in general, and the above expansion takes care of their ordering. The
first term of this expansion corresponds to operators of dimension 3 in the OPE and takes care of corrections of zeroth
order 1/m

b
to T

µν
. They are calculated by evaluating the structure

bγ
µ
(1− γ5

)
1

/p−mc

γ
ν
(1− γ5

)b (46)

Which by the use of the hadronic matrix elements of the operators, [14]

〈B|bγµb|B〉 = 2p
µ

B
= 2m

B
v
µ

〈B|bγµγ5
b|B〉 = 0

(47)

15



The second one being zero due to parity conservation of strong interactions, give the zeroth order in the expansion
of T

µν

T
µν

(0)
=

2

∆

[
2m

b
v
µ
v
ν − gµν(m

b
− v · q)− (q

µ
q
ν

+ q
ν
q
µ
)
]

(48)

Where ∆ = m
2

b
−m2

c
+ q

2 − 2m
b
(v · q)

It is important to note that equations (47) are exact, there hasn’t yet been the transition to the HQET fields. The
second term of the expansion (45) will yeld terms of order 1/m

b
to T

µν
. By evaluating the structure

T
µν

(1)
= − 1

∆
2 bγ

µ
(1− γ5

)/p(i /D)/pγ
ν
(1− γ5

)b (49)

For the vectorial current, one will encounter terms of the form

〈B|bγµ(iDν)b|B〉 (50)

When including 1/m
b

corrections to the relationship between QCD and HQET operators, dimension 4 and dimen-

sion 5 operators appear in the expansion, to order α
0

s
[14]

b(x) = e
−imbv · x

(
1 +

i /D
2m

b

)
b
v
(x) (51)

Recalling eq. (26) one can write the operator matching condition that links QCD and HQET to 1/m
b

bγ
µ
(iDν)b = b

v
γ
µ
iDνb

v
+b

v

(
− i
←−
/D

2m
b

)
γ
µ
(iDν)b

v
+b

v
γ
µ
(iDν)

(
i /D

2m
b

)
b
v
+i

∫
d

4
xT {b

v
γ
µ
iDµb

v
(0);L

1
(x)} (52)

To this order the heavy-quark expansion contains O
4

and O
5

HQET operators. It can be shown that O
4

operators
do not contribute to this expansion, being those of the form

〈B|b
v
(iDµ)b

v
|B〉 = Av

µ
(53)

By contracting this structure with v
µ

and by the use of the equations of motion of HQET i(D · v)b
v

= 0 one finds

that A = 0
The time-ordered product appearing in (52) is evaluated by noting that

i

∫
d

4
xT {b

v
v
µ
iDνb

v
(0);L

1
(x)} = Xv

µ
v
ν

(54)

Which by repeated contraction with v
µ

yields

i

∫
d

4
xT {b

v
(iD · v)b

v
(0);L

1
(x)} = X (55)

At order α
0

s
eq. (55) is evaluated by the use of

(D · v)S
HQET

(x− y) = δ
4
(x− y) (56)
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Yielding

X = 〈B(v)|L(0)|B(v)〉 = 〈B(v)|b
v

(D⊥)
2

2m
b

b
v
|B(v)〉+ g

s
〈B(v)|b

v

σ
αβ
G
αβ

4m
b

b
v
|B(v)〉 (57)

Adopting the same notation as in [16]

µ
2

G
=

1

2m
B

〈B|b i
2
σ
µν
G
µν

b|B〉 , µ
2

π
=
−1

2m
B

〈B|b(iD⊥)
2
b|B〉 (58)

The X coefficient of (57) can be evaluated to give

1

2m
B

X =
µ

2

G
− µ2

π

2m
b

The second and third terms of (52) are evaluated by noting that:

b
v

(
i /D⊥
2m

b

)
γ
µ
(iDν⊥)b

v
+ b

v
γ
µ
(iDν⊥)

(
i /D⊥
2m

b

)
b
v

= b
v

[
iD{µ⊥ iD

ν}
⊥

2m
b

+
ig
s

4m
b

σ
µ

α
G
αν

]
b
v

(59)

The first of the terms on the r.h.s of the above equation can be decomposed in Lorentz covariant structures as
follows

〈B|b
v
iD{µiDν}b

v
|B〉 = Y (g

µν − vµvν) (60)

Since it must vanish when contracted with either v
µ

or v
µ

due to equations of motion of HQET. By contraction
with the metric tensor eq. (60) yields

〈B|b
v
(iD⊥)

2
b
v
|B〉 = 3Y (61)

From which one can write

1

2m
B

Y = −
µ

2

π

3
(62)

Analogously

〈B|b
v
σ

µ

α
G
αν

b
v
|B〉 = Z(g

µν − vµvν) (63)

due to the identity b
v
σ

µ

α
v
µ
b
v

= 0 [14].

From which we derive

1

2m
B

Z =
2

3
µ

2

G
(64)

So, at order 1/m
b

one can write:

T
µν

(1)
= T

µν

(0)
+ T

µν

(1)
(65)

Where
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T
µν

=
−2p

2

∆
2

[
2

3

(
µ

2

π
− µ2

G

m
b

)
v
µ
v
ν

+
1

3

(
µ

2

π
− µ2

G

m
b

)
g
µν

]
(66)

Eq. (39) can be alternatively expanded by inserting a complete set of hadronic intermediate states in the time-
ordered product. By defining the operator J

µ

(i)
(x) = cΓ

µ

(i)
b(x) where i = V,A corresponds repectively to the vector

and axial-vector current, the time ordered product is expanded as follows:

T
µν

i
=
∑
X

1

2m
B

∫
d

4
x
[
e
i(pB−pX) · x〈B|Jµ

(i)

†
(0)|X〉〈X|Jν

(i)
(0)|B〉θ(x

0
)

− e−i(pB−pX) · x〈B|Jν
(i)

(0)|X〉〈X|Jµ
(i)

†
(0)|B〉θ(−x

0
)

(67)

Where the matrix elements have been shifted to the same point by the use of

〈B|Jµ(x)|X〉 = 〈B|Jµ(0)|X〉ei(pB−pX) · x
(68)

And its conjugate. The sum over the intermediate states is now independent of x, so the integral can be evaluated
in the B rest frame by making use of the integral representation of the Heaviside theta function as in [14]

θ(x
0
) =

1

2πi
lim
δ→0

∫ +∞

−∞

e
−iwx0

w + iδ
(69)

yielding

T
µν

i
=
∑
Xc

1

2m
B

〈B|Jµ
i

†
(0)|X

c
〉〈X

c
|Jν
i

(0)|B〉
m

B
− E

Xc
− (v · q)

(2π)
3
δ

3
(~q + ~p

Xc
)

+
∑
Xcbb

〈B|Jν
i

(0)|X
cbb
〉〈X

cbb
|Jµ
i

†
(0)|B〉

E
Xcbb

−m
B
− (v · q)

(2π)
3
δ

3
(~q − ~p

Xcbb
)

(70)

Where the first summatory includes resonant states, while the second contains inelastic contributions. Introducing

the variable ε = m
b
− m

c
w + (v · q), where w is the scalar product of the four-velocities v and v

′
of the B and D

mesons respectively.
Passing to the zero recoil limit and contracting with g

µν
, eq. (70) yields

T
µ

i µ
=

1

2m
B

(ε− (E −m
c
))

(2π)
3
δ

(3)
(~q + ~p

D
)|〈B|Jµ

i
(0)|D〉|2

ZR
+

∑
resonant Xc 6= D

+
∑
inel

(71)

It is found that in the case of a D pseudoscalar meson as a final state only the vector current J
µ

V
contributes to the

ZRSR, due to parity invariance of QCD interactions.

The zero-recoil sum rule is obtained by equating two representations of the contour integral

I
n

=
−1

2πi

∮
ε=|εM |

dε ε
n
T
µ

µ
(72)
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Where |ε
M
| is some arbitrary parameter chosen in such a way that only the components of the sum (71) that we

are interested in are taken into account, leaving out the resonances situated at higher energy. In our case 0 < ε
M
<

m
D
−m

D
∗ .

Moreover it is interesting to note that, using the decomposition of (35) the ZRSR directly constrains only the scalar
form factor being

|〈B|Jµ
V

(0)|D〉|2
ZR

= (m
B

+m
D

)
2|f

0
(q

2
= q

2

max
)| (73)

although the literature [17] relates the ZRSR to the value of f
+

(q
2

= q
2

max
). The two representations coincide when

the f
0

is expressed in terms of f
+

through the Isgur-Wise function (36). This choice has a historic motivation: since

the ZRSR for the B to D transition was at first motivated by the measurement of |V
cb
|, the interest on f

0
grew when

the R
D

(∗) discrepancies where first measured and an better estimate of f
0

to evaluate the size of the τ contribution

to the ratio was needed.

G. Results for the Sum Rule at Zero Recoil

The literature [17] lists non-perturbative corrections up to O(1/m
3

b
) and perturbative corrections up to O(α

s
).

F
+

=
2(m

B
m

D
)
1/2

m
B

+m
D

f
+

(q
2

max
) ≤ ξpert

V
(µ)−

µ
2

π
− µ2

G

4

(
1

m
c

− 1

m
b

)2

−
ρ

3

D
− ρ3

LS

4

(
1

m
c

+
1

m
b

)(
1

m
c

− 1

m
b

)2

(74)

where ξ
pert

µ
of eq. (27) of ([17]) includes the order O(α

s
) to the vector current.

A fit to the various kinematic moments of the inclusive B → X
c
`ν yields [18]

m
kin

b
(1GeV) = (4.561± 0.021) GeV , m

kin

c
(1GeV) = (1.092± 0.020) GeV ,

µ
2

π
(1GeV) = +(0.464± 0.067) GeV , µ

2

G
(1GeV) = +(0.333± 0.061) GeV ,

ρ
3

D
(1GeV) = +(0.175± 0.040) GeV , ρ

3

LS
(1GeV) = −(0.146± 0.096) GeV ,

(75)

whose central values have been used as an input to evaluate ξ
pert

V
(µ = 1GeV ). The errors on ξ

pert

V
are assessed by

varying the scale 0 ≤ µ ≤ 2GeV

ξ
pert

V
(µ = 1GeV ) = 1.038

0.021

−0.011
(76)

We obtained the upper limit on f
+

(q
2

max
) from a gaussian fit run on a 10

6
events sample, obtained by normally

variating the input parameters listed in (75) and the ξ
pert

V
found in (76). The fit is displayed in figure (3).

The obtained value of upper bound to f
+

at the zero recoil kinematic point is

f
+

(q
2

= q
2

max
) ≤ 1.159± 0.024 (77)

with the meson’s masses used as input listed in table (I).

If we compare this result with the most recent Latice QCD results of [24] , f
+

(q
2

max
) = 1.1775(45), which is

calculated using the central values for the Lattice QCD parameters and a normal variation of the errors listed in the
paper, we find that the latter saturate the zero-recoil sum rule upper bounds, leaving almost no room for inelastic
contributions.
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f_+(q^(2)max)
Entries  1000000
Mean    1.159
Std Dev    0.02417

 / ndf 2χ  121.8 / 108
Constant  0.0±  16.5 
Mean      0.000± 1.159 
Sigma     0.00002± 0.02417 
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Mean      0.000± 1.159 
Sigma     0.00002± 0.02417 

FIG. 3. Fitted value of f+(q
2

= q
2
max) from a 10

6
events sample generated from normal variation of parameters in (75, 76).

TABLE I. Values for the mesons masses used to calculate (77)

Type Mass (GeV) Ref

mB 5.279 [19]

mD 1.870 [19]

IV. THE BCL PARAMETRIZATION

A. The z-expansion

The parametrization of the form factors f
B→D

+,0
(q

2
) has been the subject of intense investigation, motivated in

particular by the need to extrapolate the information obtained in a restricted q
2

to the whole q
2

range since lattice

QCD calculations and the zero-recoil sum rule are limited to the highest q
2

values. The knowledge of f
+

and f
0

in

the whole kinematic range m
2

µ
≤ q2 ≤ (m

B
−m

D
)
2

allows for the calculation of R(D).

The BCL parametrization was originally introduced in [22] in order to model-independently describe the form
factors involved in the transition B → π`ν. It consists of a systematic expansion which incorporates the constraints
of analitycity, unitarity and crossing symmetry. By an analogue approach, one can obtain a parametrization for the

f
B→D

+,0
(q

2
) by exploiting the pole structure and positivity of the correlator (39).

In the case of semileptonic B decays q
2

ranges from m
2

`
to (m

B
− m

D
)
2

but the form factors can be continued

analytically in the q
2

complex plane. They have a cut at q
2

=(m
B

+m
D

)
2

and various lower lying poles corresponding

to B
c

resonances with the appropriate quantum numbers [23]. By adopting the same notation as in [22] the following

variables are defined:
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s = q
2

= (p− p′)2
, s

+
= (m

B
+m

D
)
2
, s− = (m

B
−m

D
)
2

z(s, s
0
) =

√
s

+
− s−√s

+
− s

0√
s

+
− s+

√
s

+
− s

0

(78)

Where z(s, s
0
) conformally maps the q

2
plane cut for q

2 ≥ s
+

onto a unit disk |z(s, s
0
)| ≤ 1 in the z complex

variable, such that z(s
+
, s

0
) = −1 and z(∞, s

0
) = 1. The arbitrary parameter s

0
< s

+
determines the point of q

2

mapped onto the origin in the z plane, i.e. z(s
0
, s

0
) = 0.

With the choice s
0

= s− = (m
B
−m

D
)
2

as in [23] the range of variation of z is 0 ≤ z ≤ 0.0644 and the point of

zero recoil is at z = 0.

Alternatively s
0

can be chosen in such a way that |z
min
| = |z

max
|, which in the limit of massless leptons reads

s
0

= s
m

= s
+
−N(s

+
−s−) where N = (1+r

D
)/(2

√
r
D

). With this prescription |z
max
| is minimized to |z

max
| ∼ 0.032.

The form factors can thus be expanded as in [23]:

f
+

(q
2
) =

1

1− q2
/m

2

+

k=N+∑
k=0

a
k
z(s, s−)

k
, f

0
(q

2
) =

1

1− q2
/m

2

0

k=N0∑
k=0

b
k
z(s, s−)

k
(79)

Where m
+,0

are the masses of the lowest lying B
c

resonances in the vector and scalar channels, their values and

the corresponding references are listed in table (II). This terms embed the distant poles at q
2

= m
2

+,0
. No further

resonances below threshold are considered relevant to this expansion [23].

TABLE II.

Type Mass(GeV) Ref

1
−

6.329(3) [19] [20]

0
+

6.716 [21]

Analyticity implies that near threshold

Re f
+

(q
2
) ∼ c1

+
+ c

2

+
(s− s

+
)

where c
1

+
and c

2

+
are constants. Moreover, angular momentum conservation imposes the behaviour

Im f
+

(q
2
) ∼ (q

2 − s
+

)
3/2

near threshold. Since the threshold s
+

is mapped onto the point z = −1 and (z + 1) ∼ const.× (q
2 − s

+
)
1/2

, f
+

near
z = −1 can be written as

f
+

(z)|
z=−1

= c
1

+
+ c

2

+
(z + 1)

2
+ i const× (z + 1)

3

And must satisfy [22]:

[
df

+

dz

]
z=−1

= 0 (80)
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By plugging eq. (80) in eq. (79) one can express the N
th

+
order parameter of the vector form factor expansion as a

function of the remaining N
+
− 1 parameters obtaining the relation [22]:

a
N+

= − (−1)
N+

N
+

N+−1∑
k=0

(−1)
k
ka

k
(81)

Another constrain on the parameters of this expansion derives from the equality f
+

(0) = f
0
(0), (see eq. (36)),

which, when plugged in eq. (79) constrains the N
th

0
parameter of the scalar form factor as:

b
N0

=

N+−1∑
k=0

a
k

[
z
k−N0

0
− (−1)

k−N+
k

N
+

z
N+−N0

0

]
−
N0−1∑
k=0

b
k
z
k−N0

0
(82)

Where z
0

= z(0, s
0
). From the above relations it follows that:

f
+

(q
2
) =

1

1− q2
/m

2

+

N+−1∑
k=0

a
k

[
z
k − (−1)

k−N+
k

N
+

z
N+

]

f
0
(q

2
) =

1

1− q2
/m

2

0

N0−1∑
k=0

b
k

+ z
N0

N+−1∑
k=0

a
k

[
z
k−N0

0
− (−1)

k−N+
k

N
+

z
N+−N0

0

]
−
N0−1∑
k=0

b
k
z
k−N0

0

 (83)

In principle any quantity depending on the two form factors, when those are expanded respectively to the N
th

+
and

N
th

0
order, would contain N

0
+N

+
+2 free parameters, which are reduced to at most N

0
+N

+
by the implementation

of the above constraints. Moreover, the way those constraints are implemented is not unique, as long as the constraints
are fulfilled at all orders of the expansion.

B. Unitarity Bounds

The main advantage of the BGL class parametrizations, such as the BCL parametrization, is that its coefficients
can be explicitly constrained by unitarity bounds. Since the correlator (39) is a sum of positive contributions, the
assumption that it is saturated by BD intermediate states, unitarity and crossing symmetry guarantee that the
coefficients of the BGL expansion:

f
+

(q
2
) =

1

B
+

(s)φ
+

(s, s
0
)

∞∑
k=0

ã
k
z(s, s

0
)
k

f
0
(q

2
) =

1

B
0
(s)φ

0
(s, s

0
)

∞∑
k=0

b̃
k
z(s, s

0
)
k

(84)

Are upper bounded by:

∞∑
k=0

ã
2

k
≤ 1,

∞∑
k=0

b̃
2

k
≤ 1 (85)

Where the Blaschke factors B
+,0

(s) = z(s,m
2

+,0
) embed the poles that lie above the semileptonic domain of the

B
c

vector and scalar resonances below threshold; and the outer functions φ
+,0

(s, s
0
) reflect the way in which the

form factors enter the dispersive integral (eq. (2.7) of [23]). Their normalization is set to depend on the q
2

derivatives
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of the longitudinal and transverse component of (39), evaluated at q
2

= 0 in order to give the unitarity bound the
form (85).

The unitarity condition (85) can also be expressed in terms of the coefficients a
k

and b
k

of eq. (79). By comparing
representations (79) and (84), we have for the vector form factor [22]:

∞∑
k=0

ã
k
z
k

= Ψ
+

(z)

N+∑
k=0

a
k
z
k

(86)

Where [23]

Ψ
+

(z) =
B

+
(z)φ

+
(z, s

0
)

1− s(z)/m2

+

depends both on z and s
0

and is analytic in |z| < 1. Thus it can be expanded around z = 0 as:

Ψ
+

(z) =

∞∑
k=0

η
+

k
z
k

(87)

By inserting this expansion in (86) the following equation is obtained [22]:

ã
n

=

min[N+,n]∑
k=0

η
+

n−kak, n ≥ 0 (88)

Which, when inserted in (85), gives an upper bound for the coefficients of the BCL parametrization that reads:

N+∑
j,k=0

A
j,k
a
j
a
k
≤ 1, A

j,k
=

∞∑
n=0

η
+

n
η

+

n+|j−k| (89)

It follows from the definition that A
i,j

= A
j,i

, A
i,(i+j)

= A
0,j

and A
i,i

= A
i+1,i+1

for 0 < i < N
+
− 1.

By virtue of these properties it will suffice to determine A
0,i

for i < N
+
− 1. Similar relations hold for the scalar

form factor and one can define B
i,j

in a similar fashion as for the vectorial case. Including the masses of the first

vectorial and scalar resonances at B
c
(1
−

) and B
c
(0

+
) of table and by the use of the outer functions as expressed in

[23] in this work we calculate the values for A
0,i

and B
0,j

and they are listed in Table (III).

TABLE III. Values of the first five coefficients Ai,j and Bi,j , the summation over n is performed up to n = 20

s0(GeV
2
) A0,0 A0,1 A0,2 A0,3 A0,4 A0,5

s− 0.0199 -0.0037 -0.0122 0.0051 0.0018 -0.0011

sm 0.0168 -0.0034 -0.0101 0.0046 0.0012 0.0009

s0(GeV
2
) B0,0 B0,1 B0,2 B0,3 B0,4 B0,5

s− 0.2920 -0.1698 -0.0376 0.1189 -0.0873 0.0438

sm 0.2594 -0.1552 -0.0250 0.1021 -0.0811 0.0447

While in principle the choice of s
0

= s
m

, by reducing the range in z forces a faster convergence of the z-expansion,
for the rest of the work we have chosen s

0
= s− in order to be consistent with the parametrization of [24], since no

appreciable change in sensitivity of the fit has been noticed.
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C. Upper bound on error from series truncation

Unitarity bounds allow one to derive an upper limit on the remainder of expansion (83). For the vectorial form
factor, for example, by writing the remainder of the expansion as:

δf
+

(q
2
) =

1

1− q2
/m

2

+

∞∑
k=N++1

a
k
z
k

(90)

Eq. (86) can be used to express each coefficient a
k

as:

a
k

=

k∑
j=0

η̃
+

k−j ãj , k ≥ 0 (91)

where the η̃
j

are the coefficients of the expansion:

1/Ψ
+

(z) =

∞∑
j=0

η̃
+

j
z
j

(92)

By the use of the Cauchy inequality we can write an upper bound for the a
th

k
term of the expansion in terms of the

coefficients ã
k

and η̃
k

as:

|a
k
| ≤

 k∑
j=0

η̃
+

j

2
k∑
j=0

ã
2

j

1/2

, k ≥ 0 (93)

That can be simplified by using the first of (85)

|a
k
| ≤

 k∑
j=0

η̃
+

j

2

1/2

(94)

Which establishes an upper bound for the remainder (90) in terms of calculable quantities:

|δf
+

(q
2
)| ≤ 1

|1− q2
/m

2

+
|

∞∑
k=N++1

 k∑
j=0

η̃
+

j

2

1/2

|z|k (95)

As observed in [22] this upper bound can be made sufficiently small for a certain N
+

on |z| < 1. This follows from

the analyticity of 1/Ψ
+

(z) inside the disk |z| < 1. Therefore, although the Taylor coefficients η̃
+

j

2
increase with j, the

increase is such that the sum {
∑k

j=0
η̃

+

j

2}1/2|z|k can be made arbitrarily small for a certain N
+

and |z| < 1.

V. THE FIT

A. Method

Now that a parametrization of the form factors has been introduced, our goal will be to establish if, with the
present LHCb detector capabilites, the scalar form factor can be measured directly from data, and if yes with how
much sensitivity. As a first study, perfect resolution is assumed, while a realistic reconstruction efficiency and finite
momentum resolution are introduced in chapter (VI).
The current values for the coefficients of the BCL expansion for the scalar form factor of the B → D`ν transition

f
0
(q

2
) are obtained exclusively from Lattice QCD and the latest results are listed in [24]. The fit strategy consists of

the following steps:
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1. Generate several data samples with known parameters

2. Fit to the differential decay width probability density function (which, from now on, will be referred to as PDF)
to retrieve the parameters the sample was generated with.

3. Perform statistical analysis of the retrieved parameters

B. Monte Carlo generation

Though the m
2

`
factor multiplying f

0
would favour the B → D`ν channel as far as the sensitivity to its parameters

is concerned, the low statistic and the deteriorated resolution due to the missing neutrinos’ energy makes this an
unviable strategy at hadron facilities. On the other hand, the muon channel is characterised by a strong suppression

of the scalar form factor, but the number of collected events (presently O(10
6
)), which will grow during RUN II phase,

could compensate for such suppression. In this chapter we’ll first try to determine how much statistic is needed to
determine the form factors parameters from the B → D`ν channel in the hypothesis of perfect resolution.

The Monte Carlo data is generated with an accept/reject procedure: a random q
2

between the lower and higher
kinematic endpoints is given by the TRandom3() pseudo-casual ROOT number generator and it is accepted if the

value of the PDF (96) with known parameters of table (IV) at such random q
2

is lower than some threshold deter-
mined from the PDF itself. The dataset is then stored and distributed in histograms composed by different number
of samples and in several binning schemes as in table (V).

At this stage of the analysis the samples are still collected in the hypothesis of perfect detector efficiency. An
example of a histogram generated through this method is represented in figure (4).

1

Γ(B → Dµν)

dΓ(B → Dµν)

dq
2 (96)

The fit to the parameters of f
+

andf
0

in the BCL parametrization will be performed in several binning schemes
and number of events for each sample, being our aim to estimate the relative influence of these fit conditions on the
error to the fitted parameters. The different fit conditions are listed in table (V).

TABLE IV. List of the parameters used for the generation of MC samples, as presented in [24]

f+ a0 a1 a2

0.836(29) -2.66(52) -0.07(2.96)

f0 b0 b1 b2

0.647(29) 0.27(30) -0.09(2.94)

TABLE V. Different fit conditions: for each number of samples, all the bin configurations have been fitted

# of bins 14 20 40 60 80

# of events per sample ( · 10
6
) 0.5 1 2 3 4

C. Configuration of the fit

The script used to fit is TMinuit [25] and was implemented through a python script which has been iterated on
several samples. The fit method used in this analysis is the chi-square minimization. In order to check for the fit
stability and the uniqueness of the minimun, for each sample two fits have been performed: one in which the fitted
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FIG. 4. MC generated sample of 10
6

events for the differential decay width B → Dµν with form factors parameters listed in
[24]

parameters were initialised at the same arbitrary value (0.1) and are set unbounded, while the following in which
parameters have been initialised to the results of the previous fit and bound between ±4 times the absolute value
of the parameters from the previous fit results. After running this test, the fit resulted stable and the minimum unique.

The function used to fit is the normalized differential decay rate (96) which, by inserting the form factors
parametrization as in (83), and integrating on the kinematic z-variable will yeld a PDF whose shape will de-
pend on the form factors’ parameters. Note that the PDF shape is invariant if the all form factors’ parameters are
rescaled by a constant. As a consequence of that, the fit is only sensitive to ratios of BCL parameters, if no further
input on the form factors’ overall normalization is provided. Thus the fitting function will be of the form:

1

Γ(1, ã
1
, . . . , ã

N+
; b̃

0
, b̃

1
, . . . , b̃

N0
)

dΓ(1, ã
1
, . . . , ã

N+
; b̃

0
, b̃

1
, . . . , b̃

N0
)

dq
2 (97)

Where ã
k

= a
k
/a

0
and b̃

k
= b

k
/a

0

It is instructive to note how the shape of the width changes when including either both or only the vector form
factor in eq. (96) also by computing the ratio of the PDFs shapes.

dΓ

dq
2

without f0
dΓ

dq
2

with f0

(98)

it is found that the differences are of order percent, as shown in fig (5).

When performing the fit of (97) with the form factors (83) expanded to N
+

= 3 and N
0

= 2, TMinuit encounters

difficulties in fitting the higher order free parameters ã
2

and b̃
1
. Since the fitter is not sensitive to their variation,

its attempt to minimise chi-square with respect to their variation pushes them to the boundaries or yields results
compatible with zero, this has a deteriorating effect on the determination of the error on the other parameters the fit
is sensitive to. So we have decided to expand the form factors to order N

+
= 2 and N

0
= 1, which fixes the parame-

ters ã
2

and b̃
1

to be a function of the remaining free parameters ã
1

and b̃
0

of the fit, by means of relations (81) and (82).
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FIG. 5. Comparisons of the PDFs for the B → Dµν decay width when including either only the vector form factors or both,
5(b) displays their ratio

The error due to this order truncation can be estimated by the use of (95). We calculated that for the two form
factors amounts to the value shown in fig. (6).

FIG. 6. Error estimate due to series truncation of the form factors as in (83)

This plots shows that this systematic error affects the determination of both form factors parameters, especially at

low q
2
, but while on the vector form factor the absolute error due to the series truncation is of order per mille, the

one on the scalar form factor is of order percent.
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D. Fit results with perfect resolution hypothesis

An exemplifying group of fit results is presented in this subsection. The group of figures (7) shows the fit and the
corresponding residuals in four different fit conditions.
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(c) Fit results of a 5× 10
5

events sample plotted in 14 bins
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(d) Fit results of a 2× 10
6

events sample plotted in 20 bins
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(g) Fit results of a 3× 10
6

events sample plotted in 60 bins
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(h) Fit results of a 4× 10
6

events sample plotted in 80 bins

FIG. 7. Fit results in several fit conditions, the samples where generated through MC generation with an accept/reject
method.
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(a) Results of the pull test on 100 samples of 5× 10
5

events in 14 bins
(b) Results of the pull test on 100 samples of 2× 10

6

events in 20 bins

(c) Results of the pull test on 100 samples of 3× 10
6

events in 60 bins
(d) Results of the pull test on 100 samples of 4× 10

6

events in 80 bins

FIG. 8. Different pull tests run on some of the fit conditions listed in fig. (7), each of which is listed below the pull plot.
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By executing a pull test on 100 fit iterations on statistically independent samples in each binning scheme and
number of events, we can check the performance of the fitter script. The pull tests for the fit configurations of the
samples shown in fig. (7) are shown in fig. (8).

For each bin, the theoretical function to be compared with the histogram value, was averaged several times in order
to compare a better estimate of the function with the MC data in the chi-square minimizing function, simulating a
finer binning even when the number of bins in which the histogram is plotted is low. While this choice is not different
from averaging the value of the function at the bin edges where the slope of the function with true parameters as
input is constant, it provides better sensitivity to the deviations from constant slope where those are important to

retrieve the true parameters, i.e. at low and high q
2

as can be seen from fig. (5). We will refer to the number of times
per bin the function was averaged with the term ”finer” binning.

The inputted value in the events generation for ã
1

is given by the ratio of a
1
/a

0
as given in table (IV) which

amounts to ã
1

= −3.182, while for b̃
1

it is given by the ratio of b
0
/a

0
of the same table, which amounts to ã

1
= 0.774.

Lattice QCD results ([24]) estimate of ã
1

has a relative error of ∼ 20% while it is reduced to ∼ 5% as far as b̃
0

is
concerned. Those values will have to be compared with the fit results of tables (VI) and (VII) respectively.

The scaling of the error on the fitted parameters with the number of events is shown in the plots of fig. (10), while
varying the bins number but fixing the events number per samples influences the errors on the fitted parameters as
shown in fig. (11)

As far as the σ of the gaussian fitted from the pulls of the fit iterations is concerned, it shows an overestimation
of the error which amounts up to 10% in low binning schemes. Moreover, we noted that the fit exhibits a small
bias on the average value of the pulls which becomes more important when fitting at a low binning scheme. This
in turn translates in a slight under/overestimation of the fitted values with respect to the real ones the data was
generated with. This effect is found to be (at least) influenced by the finer sampling of the fitting function we
adopt. In order to quantify this influence and verify it’s dependence with the number of times per bin the fit
function was averaged, we executed four pull tests at a low binning scheme (14 bins) with a fixed number of events

in the sample (2×10
6
) but varying the number of further bin partitioning. The variation of the bias is shown in fig. (9).

The bias tends to decrease as the averaging of the fit function per bin becomes finer. The number of times the
function gets averaged in one bin is upper bound by machine precision and cannot be set too large otherwise the fit
would loose sensitivity to the parameters, thus an optimal per bin finer partitioning of 300 is chosen as a compromise
of computing time and low biased results. A numerical study on the machine precision needed to reach zero bias
would be one way to further investigate this result. In any case this difficulty could be overcame for example by the
use of a variable partitioning of the fit function evaluation, made finer only where the PDF changes it’s first derivative.

Tables (VI) and (VII) list the average values of ã
fit

1
− ãMC

1
and b̃

fit

0
− b̃MC

0
together with their root means square

ã
fit

1,rms
and b̃

fit

0,rms
, respectively.

TABLE VI. Average value of ã
fit
1 − ãMC

1 and root mean square of ã
fit
1 in the different fit conditions

〈ãfit1 − ãMC
1 〉, ã

fit
1,rms # of ev.ts ×10

6

0.5 1 2 3 4

# of bins

5 0.050, 0.061 0.044, 0.044 0.046, 0.039 0.036, 0.021 0.035, 0.020

14 0.025, 0.040 0.018, 0.030 0.014, 0.020 0.015, 0.016 0.014, 0.015

20 0.020, 0.039 0.013, 0.028 0.010, 0.020 0.010, 0.015 0.009, 0.014

40 0.015, 0.038 0.007, 0.027 0.006, 0.020 0.005, 0.015 0.005, 0.013

60 0.013, 0.037 0.006, 0.027 0.005, 0.020 0.004, 0.015 0.003, 0.014

80 0.013, 0.037 0.006, 0.027 0.004, 0.019 0.003, 0.014 0.003, 0.014
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(a) Finer partitioning = 100 (b) Finer partitioning = 200

(c) Finer partitioning = 300 (d) Finer partitioning = 500

FIG. 9. Results of the pull test on the same 100 MC samples composed by 2×10
6

events in 14 bins, each of the pulls is executed
with a finer averaging of the fit function, while keeping the bin width constant. The finer partitioning of the fit function of
each pull is shown in the caption. The µ of the gaussian is progressively shifting towards zero indicating a decreasing bias.
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TABLE VII. Average value of b̃
fit
0 − b̃MC

0 and root mean square of b̃
fit
0 in the different fit conditions

〈b̃fit0 − b̃MC
0 〉, b̃

fit
0,rms # of ev.ts ×10

6

0.5 1 2 3 4

# of bins

5 0.029, 0.215 0.018, 0.183 0.035, 0.169 -0.025, 0.115 -0.015, 0.107

14 -0.026, 0.140 -0.006, 0.109 -0.007, 0.076 -0.003, 0.066 -0.003, 0.055

20 -0.021, 0.124 -0.009, 0.094 -0.006, 0.068 -0.002, 0.059 -0.003, 0.047

40 -0.020, 0.115 -0.017, 0.084 -0.005, 0.064 -0.007, 0.057 -0.005, 0.047

60 -0.033, 0.110 -0.023, 0.086 -0.007, 0.067 -0.007, 0.058 -0.005, 0.047

80 -0.035, 0.108 -0.023, 0.085 -0.010, 0.066 -0.006, 0.059 -0.007, 0.050

Both errors on parameters scale correctly as 1/
√
N when increasing the number of events in the fit sample, and

tend to decrease while increasing the number of bins the sample is distributed into, as seen in fig (10). In those plots
the superposed red line is a fit to the function

f(x) = p
0

+ p
1
x

1/2

In order to retrieve the value under which the error on the parameter extracted from the fit can not decrease, even
at infinite number of events.

The effect of error decrease with the increase of bins number, keeping fixed the number of events, is not as pro-
nounced as expected, this is most likely due to the fact that in this case we kept the finer binning constant throughout
the bin variation. This trend can be verified by looking at fig. (11). The extra line of 5 bins is indicative of at which
lower binning threshold the rms on the parameters starts to become too large, or the fitter yields a result incompatible
with the real one.

It is interesting to observe how for ã
0

a lower binning scheme causes ã
1,rms

∼ 〈ãfit
1
− ãMC

1
〉 and thus several times

the fitter yields a value for ã
fit

1
at at least 1σ from the real value, while increasing the bins number has a consistent

influence on lowering the value of 〈ãfit
1
− ãMC

1
〉, especially at a high number of events. On average the extracted

values of b̃
0

behave in a somewhat different way: the rms is halved when passing from 5 to 14 bins, especially at a
high number of events, but remains always compatible with the value the samples where generated with.
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MC
1 with respect to the # of events

per sample, 60 bins

 / ndf 2χ  1.907 / 3
p0        0.00776± 0.01397 
p1        0.01088± 0.09995 

# of events (x10^6)
0 0.5 1 1.5 2 2.5 3 3.5 4

b0
_r

m
s/

b0
_M

C

0

0.05

0.1

0.15

0.2

0.25

0.3
 / ndf 2χ  1.907 / 3

p0        0.00776± 0.01397 
p1        0.01088± 0.09995 

b0_rms/b0_MC 60bins

(f) Scaling of b̃
fit
0,rms/b̃

MC
0 with respect to the # of events

per sample, 60 bins

FIG. 10. Scaling of the relative error on the parameters given a fit with fixed bins number but variable number of events per

MC sample. The parameter and the bins number are listed in each caption, the superposed fit function is f(x) = p0 + p1x
1/2

.
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FIG. 11. Scaling of the relative error on the parameters given a fit with fixed number of events per MC sample, but variable
number of bins. The parameter and the number of events are listed in each caption.

While for ã
1

the mean over the fit iterations of the difference between fitted parameter value and the input one

decreases as the number of bin increases, it is not the case for b̃
0
. Nevertheless in most cases the mean value of

b̃
fit

0
− b̃MC

0
is compatible with zero or at less than two sigmas from it, except for the 5×10

5
and 1×10

6
events samples

which exhibit a growing bias when increasing the bins number. This could be the effect of the bias noted before, but

in no case the mean value of b̃
fit

0
− b̃MC

0
is greater than the error on the fitted parameter. The plots showing the

scaling of the mean values of the fitted parameters with the bins number variation are shown in fig. (12)
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FIG. 12. Scaling of b̃
fit
0 − b̃MC

0 averaged over 100 fit interations, with respect to the variation of the number of bins.

The study of the fit in different conditions allows us to conclude that in perfect resolution and ideal efficiency
conditions, both form factors can be resolved from the B → Dµν decay, even though with different sensitivity. They
can both be accessed in a model independent way through a fit to an arbitrarily normalized PDF which allows to
determine ratios of parameters that describe the form factors in the BCL parametrization.

As far as f
+

(q
2
) is concerned, the ratio ã

1
= a

1
/a

0
could be measured, given a sample of 2× 10

6
events distributed

in 14 bins, with a sensitivity of around 0.56 %. The sensitivity to the ratio b̃
0

= b
0
/a

0
would amount to 8.82 % given
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the same fit conditions. Both sensitivities have been corrected by subtracting a 10% to their values given the error
overestimation of the pulls as shown in fig. (8).

From those values, and comparing with the Lattice QCD results [24], we can conclude that, in perfect resolution

condition the value of the ration ã
1

can be retrieved with 20 times better sensitivity even with as low as 5×10
5

events
while it is not the case for the scalar form factor parameters ratio which, in 14 bins can, with the same number of
events, be retrieved with roughly 3 times worse sensitivity than the Lattice QCD simulation, when including the error
from the series truncation as expressed in (95).

VI. DEALING WITH THE RESOLUTION

A. The unfolding method: introduction

LHCb [26] is one of the four main experiments at the Large Hadron Collider (LHC); its main goal is the study of
CP-violation and rare decays of beauty and charm hadrons. In proton-proton collisions bb and cc pairs are produced
mainly through gluon fusion and quark-antiquark annihilation with the two incident partons having very different
momenta in the laboratory frame, for this reason the bb and the cc pairs are preferentially produced around the
beam axis in the same forward or backward direction, as shown in fig. (13). The LHCb detector is thus built as a
single arm forward spectrometer covering the pseudorapidity range 2 < η < 5, where η = −ln

(
tan θ2

)
. A schematic of

the LHCb detector can be seen in fig. (14)

FIG. 13. Simulated bb production angles in pp collisions at
√
s = 7 TeV. The region highlighted in red is the LHCb

acceptance and θi are the angles from the beam directions [26]

In this chapter we will deal with the finite detector resolution in order to give an estimate of the sensitivity to the
form factors’ parameters in more realistic data simulation. Due to the presence of a missing neutrino, the measure-

ment of the visible products of the decay energies and momenta relate to q
2

through a second order equation, giving
a twofold ambiguity on which is the correct solution to accept. This, and the finite detector resolution, combine in a

net effect of event migration between bins, which causes the q
2

of an event to be attributed to a different value from
the true one. This effect is also referred to as data ”smearing” in literature.
Moreover we will take into account the limited acceptance of the detector, which consists of the probability to observe

an event. The acceptance is typically lower than 1 and depends on the kinematic variable q
2
.
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FIG. 14. Schematic of the LHCb detector [26].

In order to correct for those effects, the unfolding procedure is developed. Mathematically the relation between the
distribution f(x) of the true variable x, to be determined in an experiment, and the measured distribution g(y) of
the measured quantity y is given by the integral equation [27]:

g(y) =

∫
dx A(y, x)f(x) (99)

Which is a Fredholm integral equation of the first kind. The resolution function A(y, x) represents the effect of the
detector. The problem to determine the distribution f(x) from the measured distributions g(y) is called unfolding
[27] and it consists of an inverse problem. It requires the knowledge of the resolution function A(y, x), i.e. the effects
of limited acceptance and finite resolution. If we represent the distributions by histograms, the resolution function
becomes a matrix and equation (99) can then be represented by the matrix equation

y
meas

= A x
true

(100)

which has to be solved for the vector x
true

, given the measured vector y
meas

. The vector y
meas

with n entries
represents a histogram of the measured quantity y

meas
, and the distribution f(x) is represented by a histogram

of the vector x
true

with m entries. The transition from x
true

to y
meas

is described by the n − by − m matrix A
whose elements a

ij
are the probabilities of observing an entry in bin i of histogram y

meas
, while its true value was

generated in bin j of histogram x
true

. Note that an additional row of the matrix has to be considered, namely
a

0j
. It consists of the number of events that were generated in bin j but failed detection, divided by the total num-

ber of events generated in bin j. Thus the row a
0,j

encodes information on the reconstruction efficiency of the detector.

Since the resolution function A(x, y), or the matrix A is not known analytically, it is recovered from the statistical
analysis of a Monte Carlo simulation of the response of the detector g

MC
(y), based on some assumed input distribution

f
MC

(x)

g
MC

(y) =

∫
dx A(y, x)f

MC
(x) (Monte Carlo Simulation) (101)

and thus is also statistically limited. Standard methods for the solution of integral equations or linear equations
can not be used in this case [27].
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B. Simulation of the resolution: building the unfolding matrix

In this subsection, the process of building the unfolding matrix A through MC simulation is presented. The
measurement process can be schematized in 3 phases:

• An event with q
2

MC
is generated with perfect resolution.

• Some of the MC generated events are rejected according to LHCb acceptance criteria.

• If the event passes the selection, it is reconstructed with two values of q
2
. The measured value will coincide

with the correct solution in q
2

measured
= q

2

correct
in the hypothesis of non ambiguity between the two solutions,

otherwise q
2

measured
= q

2

rec
and one of the two reconstructed solutions will be chosen according to some arbitrary

selection criteria.

The tuples used for extracting the resolution information are two and independently generated. They are gener-

ated by EvtGen and the LHCb simulation software. The first contains the MC simulated values of q
2

with perfect

resolution over the whole kinematic range and solid angle, while the second contains the values of q
2

with perfect

resolution that pass LHCb acceptance selections and the corresponding pairs of values of reconstructed q
2

smeared by
finite detector resolution. Although the data used to extrapolate resolution information is generated with differently
parametrized form factors, this won’t affect our resolution study since we’re only considering ratios of widths and
reconstruction related probabilities.

Four distributions of dΓ/dq
2

can be plotted, and can be seen in fig. (15). The decision criteria used to choose

between the two q
2

solutions in fig. (15(d)) is related to the decay time of the D meson. It is found in fact that 62%

of the times, the lower of the two reconstructed q
2

value is the correct solution when the decay-time of the D meson
in the laboratory frame is greater than some threshold. A longer decay time in the laboratory frame corresponds to

a greater Lorentz boost given to the D meson and consequently to less q
2

available to the lepton pair in the decay.

Ratios of the differential decay widths of fig. (15) give an estimate of the per bin efficiencies, and are plotted in
fig. (16). Fig. (16(a)) represents the efficiency due to LHCb acceptance cuts while fig. (16(b)) takes into account the
reconstruction efficiency of an accepted event. Since not for all events a real solution of the second order equation in

q
2

exists due to detector resolution, some of the accepted events are discarded. Fig. (16(c)) is the overall efficiency
and represents the product of the two efficiencies described above. Given an overall efficiency of 56 % a sample with
N entries will tipycally contain half of them.

The resolution information is then extracted from the second tuple where the detector response for an event
passing the LHCb selection cuts is simulated.The number of rows and columns of the unfolding matrix are resolution

dependent. In our case we chose a 30 × 14 matrix. If the correct q
2

solution was known, the typical σ is of order

0.8 GeV
2

(VI B), and when lowering the number of bins from 30 to 14 the value of σ/binwidth decreases from ∼ 2.2
to 1. The same matrix configuration is used for the case in which the ambiguity holds. In this case the typical σ is
roughly doubled with respect to the previous case and thus we expect lower unfolding performances.

In order to build the unfolding matrix each q
2

MC
and its corresponding reconstructed q

2

reco
are stored in a 2-D

histogram; its i, j-th bin content is divided by the total number of q
2

MC
of the j-th bin and the result is assigned to

the a
i,j

-th element of A. In addition to this process, 30 histograms are built by storing the value ∆q
2

= q
2

reco
− q2

MC

for each bin to which q
2

MC
belongs. The plots resulting from this first analysis are shown in fig. (17), while in fig.

(VI B) the histograms of ∆q
2

for 4 sample bins are displayed. The root mean square of this difference is collected and
plotted in the histogram of fig. (18).

As can be noted from fig. (VI B) the ∆q
2

mean value differs from zero, shifting gradually from an overestimation

of the reconstructed value of q
2

with respect to it’s true value, to its underestimation. Moreover the shape of such
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FIG. 15. Four different stages of the shape of the decay width, from generation to measurement, plotted in 30 bins

histograms is asymmetric, especially for the q
2

with the solution ambiguity at high q
2
, which suggests a deteriorated

resolution close to the kinematic endpoint. This can be verified by looking at fig. (18): while for the no ambiguity

in q
2

case (blue line) the resolution is roughly independent on q
2

and stable on average at 0.8 GeV
2
, it grows almost

linearly in q
2

from 1.5 to 2.2 GeV
2

for the case of ambiguity between the solutions (red line). Due to poor statistics

in the last bins, the last 5 histograms of ∆q
2

where summed and their rms has been set to the same value.
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FIG. 17. Scatter plots for the tuples from LHCb simulation software, plot in fig. (17(i)) represents the case in which the
correct solution is known while the one in fig. (17(j)) displays the case in which the decay time of the D meson is used as a
choice criterium
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FIG. 18. Dependence on q
2

of the root mean squares of the histograms of fig. (VI B) which model detector resolution. The

red solid curve represents the case of q
2

solution chosen with the τD criterium, while the blue curve represents the case of non
ambiguity between the two solutions

Now that the detector response has been modelled, we can produce several smeared histograms that simulate

the reconstructed distributions both in case of known or guessed q
2

correct solution, and an unfolding matrix with
arbitrary statistics. The followed procedure to build the unfolding matrix and the smeared histograms is analogous
to the one described above:

• A q
2

value is taken from the dataset of the previous infinite resolution analysis.

• A random generated number between 0 and 1 is compared with the binned acceptance efficiency of (16(a)), and

the q
2

value is accepted if such number is lower than the efficiency value of the corresponding bin.

• A random number is generated between 0 and 1 and determines the accept/reject criterium when compared to
the binned reconstruction efficiency of (16(b)). If this number is lower than the efficiency of the corresponding

bin, the q
2

value is smeared by adding to its value a random value taken from the corresponding bin resolution
PDF of (VI B). If the smeared value is still inside the kinematic boundaries, it is stored. In case we are building

the unfolding matrix the original MC q
2

is also stored.

The described process is iterated to obtain several samples like the ones displayed in fig. (19) and the matrices
of (20). The produced samples are data-like, they will be used to simulate the measurement process with arbitrary
statistics and as an input for the unfolding procedure. The matrices calculated through the process described above
now have enough statistics to unfold samples containing a high number of events.
Moreover, the information on the elements a

0,j
is stored separately, since it consists of the probability of an event to

be accepted by LHCb cuts but to be reconstructed with invalid or imaginary q
2

value, it will be used in the unfolding
procedure.
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FIG. 19. Examples of histograms of datalike collected q
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samples. The effect of bin migration changes the shape of the PDF
deteriorating the estimate of the form factors parameters in a fit
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FIG. 20. Scatter plots generated in this work, plot in fig. (20(a)) represents the case in which the correct solution is known
while the one in fig. (20(b)) displays the case in which the decay time of the D meson is used as a choice criterium
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C. Unfolding as an ill-posed problem

The problems inherent to unfolding can be discussed in a simple special case, assuming a resolution matrix A with
some smearing of data into nearest neighour bins as in [28].

A =
1

2

(
1 + ε 1− ε
1− ε 1 + ε

)
(102)

with 0 ≤ ε ≤ 1 determining the ”quality” of the detector: ε = 1 means an ideal detector with response matrix
equal to the identity matrix, while small ε corresponds to a poor detector, almost unable to distinguish the two bins.
The measurement process is now simulated by multiplying matrix (102) over the true distribution x

true
, resulting in

the measured histogram y
meas

as in (100).
In this example efficiency is ideal, so that no event escapes the detector (the sum of elements in each column equals

1), thus the A matrix should represent a rotation matrix which when applied to the true distribution won’t change
its euclidean norm.
However it is interesting to note that detA = ε and the deviation of ε from one represents the deviation of the
unfolding matrix A from orthogonality. This can be seen in the dependence of the norm of the vector y

meas
on ε

which can be written as:

||y
meas
|| = 1

2

√
2
(

1 + ε
2
)(

x
2

true,1
+ x

2

true,2

)
+ 4

(
1− ε2

)
x

2

true,1
x

2

true,2
(103)

Which shows norm conservation of the vectors after matrix multiplication only in case ε = 1.

If we suppose now that the apparatus described by matrix (102) has been used to measure numbers of events in a
two-bin histogram, with corresponding covariance matrix V

y
given by purely statistical errors in independent entries

y
1

and y
2
:

y
meas

=

(
y

1

y
2

)
, V

y
=

(
y

1
0

0 y
2

)
(104)

Since the inverse matrix A
−1

exists for any ε 6= 0, the unfolded vector x
true

can be obtained by matrix inversion
[28]:

x
true

=
y

1
− y

2

2ε

(
1

−1

)
+
y

1
+ y

2

2

(
1

1

)
(105)

If all components of the r.h.s. of equation (105) are statistically significant and if ε is too small, the system (100)
can be solved without any problem. But if ε is small the problem becomes ill determined, and when in addition
the r.h.s. is affected by measurement errors, the exact solution does not make any sense. In this case conventional
methods of solving linear systems do not work [28].

D. Least Squares Method

The solution of system (100) represents the numerical solution of the following least square problem [28]

n∑
i=1

(∑m

j=1
A
ij
x
j
− y

i

σ
i

)2

= min (106)
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Where we omitted the subscripts true and meas in favour of readability, and σ
i

represents the error with which
the i − th component of y is known. Eq. (106) can be cast in a more general matrix form, valid also in case the
covariance matrix V

y
is not diagonal, it reads:

(Ax− y)
T
V
−1

y
(Ax− y) = min (107)

This equation is minimized by those y that satisfy [27]:

(A
T
V
−1

y
A)x = (A

T
V
−1

y
)y

Cx = b
(108)

Where C = A
T
V
−1

y
A is a symmetric matrix and consists of the unfolding A matrix reweighted by the measurement

errors, while b = A
T
V
−1

y
y. The product of the matrices A

#
= (A

T
V
−1

y
A)
−1
A
T
V
−1

y
is called pseudo-inverse. The

solution x is a linear transformation of the measurement vector y, which allows for standard error propagation that
reads [27]:

V
x

= A
#
V
y
A

#T
= C

−1
(109)

Although the estimator x̂ = A
#
y with E[y] = Ax is unbiased being

E[x̂] = A
#
E[y] = (A

#
A)x = x, with A

#
A = I (110)

The solution x presents large unwanted flutctuations [27]. In order to better understand the problem it is instructive
to perform singular value decomposition (SVD) on the reweighted unfolding matrix C. Being C a symmetric matrix,
it’s singular value decomposition will be of the form:

C = U Λ U
T

Where U is an orthogonal matrix whose columns are the eigenvectors u
j

and Λ is a diagonal matrix of eigenvalues

λ
i

in non increasing order, i.e. λ
1
≥ λ

2
≥ · · · ≥ λ

n
≥ 0. If all λ

i
> 0 the inverse C

−1
exists and it can be decomposed

as:

x = C
−1
b = UΛ

−1/2
(

Λ
−1/2

U
T
)
b = UΛ

−1/2
c, where c =

(
Λ
−1/2

U
T
)
b

The measured vector y has been transformed to c whose covariance, V
c
, is by construction the identity matrix.

The vector c is referred to as vector of Fourier coefficients [27] since its components c
j

represent the projection of the

rotated y vector over the eigeinvectors u
j

of matrix U . The solution x can be decomposed as a sum of eigenvectors

of U as in [27]:

x =

m∑
j

1√
λ
j

c
j
~u
j

with c
j

=
1√
λ
j

(u
T

j
b) and V

x
= UΛU

T
(111)
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Fourier coefficients which are uncompatible with zero within one sigma (σ
cj

= 1 ∀j) are referred to as significant,

while the presence of non-significant ones can make a dominating contribution to the solution x if the eigenvalues λ
i
’s

are small.

In the case of the unfolding matrices of fig. (20), which from now on will be referred to as A
corr

(20(a)) and A
tD

(20(b)) respectively, the eigenvalues of the SVD are plotted in fig. (21). In both cases they decrease up to 3 orders
of magnitude, although the Fourier coefficients, which are shown in fig. (22), have a different number of significant
components. In both cases their number is lower than the dimension of the unfolded vector, thus the summatory
of eq. (111) should be truncated to k < m which, being lower the rank of V

x
makes it a singular matrix and thus

impossible to use to fit correlated data with the chi-square mnimization method. The number k to which the series
in (111) is sample dependent and here is chosen as the number of the first Fourier coefficient lower than 2.

The corrected covariance matrices of the two unfolded solutions (each for each unfolding matrix simulating a

different performance in resolution) for a sample of 2× 10
6

events are shown in fig 23. They show a high bin to bin
correlation, and the average over the bins of the bin correlation coefficient defined as in [27]

ρ
j

=

√
1−

[
(V
x
)
jj
· (V −1

x
)
jj

]−1

(112)

Yelds a value of ρ
corr

avg
= 0.795 for the A

corr
case, and a higher ρ

tD
avg

= 0.922 for the A
tD

case. The unfolded widths

for two 2× 10
6

events samples, each one in a different resolution condition, are presented in (unfoldedwidths):
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FIG. 21. List of the singular values of the reweighted unfolding matrices for the two resolution cases

E. Regularization techniques: second derivative

The complete solution of eq. (111) leads to an oscillating solution. This spurious oscillatory component is suppressed
using some a priori knowledge about the solution. Technically this can be achieved by adding the regularization
term to the expression to be minimized ([28],[27]). In this work we will be incorporating assumptions about the size
and the smoothness of the solution. In order to do so, we will add to eq. (107) a curvature limiting requirement [28]:

(Ax− y)
T
V
−1

y
(Ax− y) + τL

T
Lx = min (113)

Where L is a matrix which implements the sum of the squares of the second derivatives of the unfolded distribution
x [28], and τ is an arbitrary scalar regularization parameter to be determined. In order to implement the square of
the discretised second derivative:
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FIG. 22. List of the Fourier coefficient of the projection of the measurement vector on the eigenvectors of U
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FIG. 23. Correlation matrices of the unfolded vectors calculated as in (111) with a truncated summation

∑
i

[
(x
i+1
− x

i
)− (x

i
− x

i−1
)
]2

(114)

the choice of L is:

L =



−1 1 0 0 . . . 0

1 −2 1 0 . . . 0

0 1 −2 1 . . . 0
...

. . .
...

... 1 −2 1

0 . . . 1 −1


(115)

Adding the extra term (τL
T
Lx) to eq. (108) will suppress solutions x having large curvatures.

Recovering the previous notation, eq. (113) becomes[27]:

(C + τL
T
L)x = b (116)
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(b) Case of guessed solution using tD

FIG. 24. Unregularized unfolding method, two samples of 2× 10
6

events are shown in the two resolution conditions

Two simultaneous SVDs cast equation (116) in a form analogous to (111) [27]:

x = (R
T

)
−1

(I + τS)
−1

(R
−1

)b (117)

Where R is an orthogonal matrix, and S is a diagonal matrix, both built from the simultaneous decompositions of

L
T
L and C. If it wasn’t for the regularization parameter, the solution (117) would be formally the same as (111).

The factor (I + τS) is referred to as filter factor [27] while c = (R
−1

)b are the new fourier coefficients. There is no
generally accepted and unique method to determine the regularization parameter τ , but since it explicitly appears in
the covariance matrix of the unfolded vector x, it can be chosen to minimise the average correlation between bins of
eq. (112)

As expected, this choice of tuning of the τ -parameter makes it dependent on the sample to unfold. Given a sample
to unfold, the arithmetic and the geometric means over the measured bins of eq. (112) are calculated for a wide

range of τ values and the ones that minimises both is chosen. In the case of a 2 × 10
6

sample the plots of the
curves for the average correlation coefficient as a function of the regularization parameter are shown in fig. (25). The
inversion matrix (116) is calculated and the covariance matrix of the unfolded solution is derived through standard
error propagation, and represented in fig. (26).

An example of two unfolded differential decay widths, in the two resolution conditions, after second derivative

regularization is presented in fig. (27). The plotted histograms contain 2 × 10
6

events and have been corrected for
the reconstruction efficiency of fig (16(b)) which stands for the binned efficiency for an event to pass LHCb cuts but

to fail reconstruction due to invalid q
2

solution (either immaginary or out of the kinematic boundaries). The two
unfolded distributions are characterized by a less significant oscillatory component as compared to the unregularized
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(a) Correct solution in q
2

known (b) Ambiguity on the correct solution in q
2

FIG. 25. Variation of the global correlation coefficient (112) with the magnitude of the τ regularization, parameter. Each of
the resolution conditions is listed below the plot.

(a) Correct solution in q
2

known (b) Ambiguity on the correct solution in q
2

FIG. 26. Covariance matrix of the regularized unfolded vector x. Each of the resolution conditions is listed below the plot

case, and the errors associated to their entries is reduced although it still differs of a factor 2.5 in the two resolution
cases.

F. Fit results with finite resolution hypothesis

The unfolding procedure is iterated on groups of 100 samples, each group containing samples of an different number
of events, all plotted in histograms of 14 bins. The obtained histograms are successively corrected for LHCb geometric
and kinematic acceptance of fig. (16(a)). The results are finally fitted with a python script based on TMinuit(). The
chis-square minimization function has been changed to take into account bin-to-bin correlations, i.e. in the case of
non-diagonal covariance matrix, according to [29]

χ
2

= ∆
T
V
−1

x
∆ (118)

The pulls for the correct q
2

resolution case are presented in fig. (28), while the ones for the ambiguity in the q
2

solution case are displayed in fig. (29).

The pull tests present the same µ deviation at more than one sigma from zero indicating the some bias has been
introduced in the unfolding process; This effect is seen as the number of events grows, together with the appearance of
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(b) Case of guessed solution using tD

FIG. 27. Regularized unfolding method, two samples of 2× 10
6

events are shown in the two resolution conditions

a tail indicating that the fitted value excesses the data, introducing the bias. This effect is seen especially prominent

for the case of solution ambiguity, 2× 10
6

events. In all cases the errors attributed from the fitter to the parameters
is underestimated, the amount of this effect growing with the number of events, up to reaching a 40% value in the

ambiguity case when fitting a 2× 10
6

events sample.

Two exemplificative plots of the fit results, with their relative pulls are shown in fig (30), while the results of the
iteration of the fit, with analogous notation as the one introduced in table (VI) and table (VII) are listed in (VIII)
and (IX). In order to compare the results with the perfect resolution ones, the parameters have been listed under the
effective number of events each sample is composed by, and scaled by the standard deviation of the pull data in order
to take into account the error underestimation.

TABLE VIII. Average value of ã
fit
1 − ã

MC
1 and root mean square of ã

fit
1 with different number of events per sample. The first

row corresponds to non ambiguity of the correct q
2

solution, while the second row indicates the choice of correct solution based
on the D meson decay time

〈ãfit1 − ãMC
1 〉, ã

fit
1,rms # of ev.ts ×10

6

0.25 0.5 1 1.5 2

# of bins

14 0.042, 0.067 0.031, 0.046 0.022, 0.036 0.015, 0.035 0.023, 0.033

14 0.052, 0.085 0.038, 0.069 0.027, 0.049 0.021, 0.045 0.028, 0.040
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(a) Pull test on 100 samples of 0.25× 10
6

effective events in 14 bins, correct solution known
(b) Pull test on 100 samples of 0.5× 10

6

effective events in 14 bins, correct solution known

(c) Pull test on 100 samples of 1× 10
6

effective events in 14 bins, correct solution known
(d) Pull test on 100 samples of 2× 10

6

effective events in 14 bins, correct solution known

FIG. 28. Different pull tests run on the fit, with fit conditions listed in figure with correct solution known
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(a) Pull test on 100 samples of 0.25× 10
6

effective in 14 bins, solution ambiguity
(b) Pull test on 100 samples of 0.5× 10

6

effective events in 14 bins, solution ambiguity

(c) Pull test on 100 samples of 1× 10
6

effective events in 14 bins, solution ambiguity
(d) Pull test on 100 samples of 2× 10

6

effective events in 14 bins, solution ambiguity

FIG. 29. Different pull tests run on the fit, with fit conditions listed in figure with solution chosen using the D decay-time
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TABLE IX. Average value of ã
fit
1 − ãMC

1 and root mean square of ã
fit
1 with different number of events per sample. The first

row corresponds to non ambiguity of the correct q
2

solution, while the second row indicates the choice of correct solution based
on the D meson decay time

〈b̃fit0 − b̃MC
0 〉, b̃

fit
0,rms # of ev.ts ×10

6

0.25 0.5 1 1.5 2

# of bins

14 -0.041, 0.127 -0.050, 0.139 -0.077, 0.116 -0.074, 0.096 -0.077, 0.0817

14 -0.040, 0.150 -0.040, 0.136 -0.052, 0.136 -0.037, 0.095 -0.040, 0.105

(a) Fit of sample of 2× 10
6

events in 14 bins, correct solution known
(b) Fit of sample of 2× 10

6

events in 14 bins, correct solution guessed using tD
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(d) Pull test on the above fit

FIG. 30. Fits run in different resolution conditions

The corresponding scaling of the fitted parameters is shown in fig (31) with a fit executed in an analogous fashion
as in the plots of perfect resolution (10).
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FIG. 31. Scaling of the relative error on the parameters given a fit with fixed bin number but variable number of events per
MC sample.

VII. CONCLUSIONS

As far as the ratio ã
1

is concerned, the present detector resolution shows good sensitivity, and its extraction from a
fit of the differential decay width could improve its value yielding up to 12 times better estimate of its value comparing

to the Lattice QCD value [24], if a sample of 1 × 10
6

events is collected, in case of q
2

solution guessed from the D
decay time. The sensitivity would improve to 1% if the correct solution was known.

Moreover, with this simulation we can conclude that a model independent measurement of the ratio between the
vector and the scalar form factor parameters, b̃

0
, at the present LHCb detector performances would need more than

2× 10
6

events, even in case of knowing which is the correct solution of q
2
. This would in turn make possible a model

independent measurement of R
D

at LHCb since the scalar form factor contribution is decisive for the B → Dτ ν decay

width.

Although the error on the fitted ã
0

shows an irreducible component due to the non compatibility of the p
0

parameter
with zero at less than 1σ in both cases, they approximatively show a good behaviour with the increase of the number

of events, especially in case of correct solution in q
2

is known. This is not the case for the b̃
0

parameter whose scaling
does not decrease with the number of events, in both resolution cases.

This could be due to a bias introduced by the unfolding procedure. In order to investigate if this effect is of
systematic nature, one could test the closure of the folding/unfolding procedure used in this work by executing it on
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different resolution models and fit functions. Alternatively, one could run the same procedure on a higher number of
samples, each one with higher number of events, in order to reduce the statistical fluctuations of b̃

0,rms
and verify if

at some number of events per sample the error on b̃
0

vanishes.

The parameters of Lattice QCD value [24], or the results from the ZRSR, could be used as an input for the fit to fur-
ther constrain the overall normalization of the width, but at the price of rendering the measurement model-dependent,
and, in the case of the ZRSR, it could only be done after a more precise estimate of the inelastic contributions to the
value of f

+
(0).
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