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Measurement of the Zero-Crossing Point of AFB and S5 of B0→ K∗0µ+µ− at LHCb

Abstract

The decay B0 → K∗0µ+µ− is one of the most promising for the search of
New Physics at LHCb. It has several observables which are sensitive to
physics beyond the Standard Model and where theoretical uncertainties
are under control. One of them is the zero-crossing point of the forward-
backward asymmetry, AFB. Early measurements of the AFB by the B-factories
and CDF seemed to hint to a deviation from Standard Model predictions at
low q2, in particular to an opposite sign of the C7 Wilson coefficient. This
would have implied no zero-crossing in the AFB. This thesis discusses the
extraction of the zero-crossing point of AFB, which uses an empirical model
to fit the data. A crucial aspect in this measurement is the validation of this
fitting model. This is done by using a multidimensional unbinned good-
ness of fit method, which is described in details. Measurements of other
asymmetries sensitive to New Physics, that can be extracted with counting
experiment techniques, are also studied.
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Introduction

Since 2010 the LHC is running at energy of
√

s = 7 TeV and the experiments are col-
lecting data. One of the main goals of the LHC is the search for physics beyond the
Standard Model (SM), often referred to as New Physics (NP). The LHCb experiment
is investigating NP by performing measurements of Heavy Flavor particles, hadrons
containing charm and beauty quarks. One of the most promising decay for these
searches is the channel B0→ K∗0µ+µ−, which proceeds through a flavour changing
neutral current (FCNC). As FCNC transitions are only possible in the SM trough loop
or box diagrams, NP processes can enter at the same level as SM processes. In the
B0→ K∗0µ+µ− decay there are several angular observables, where theoretical uncer-
tainties are under control, and which are sensitive to NP. Specially the zero-crossing
point of the forward-backward asymmetry AFB, where form factor uncertainties can-
cel out (Ref. [23]). Other observables sensitive to NP are the Si asymmetries [23], in
particular the asymmetries S4, S5, S7 and S8 have never been measured.

This thesis describes the method used for the extraction of the zero-crossing point
of AFB, known as unbinned counting method [8]. In particular it focuses on the val-
idation of the empirical model used to fit the data. The goodness of the fit is mea-
sured with a point-to-point dissimilarity technique. Sensitivity studies for the mea-
surement of the observables S4, S5, S7 and S8 with counting experiment techniques
are performed. The extraction of the zero-crossing point of the asymmetries S4 and S5,
where form factor uncertainties cancel out (in the same way as for AFB), is also studied.

Outline: Chapter one gives a short overview of the LHCb experiment. In chapter
two the Standard Model is summarised and the decay B0 → K∗0µ+µ− is discussed
from the theoretical point of view. In chapter three the unbinned counting method,
used to extract the zero-crossing point of AFB is described. Sensitivity studies for the
measurement of S4, S5, S7 and S8 are performed and discussed. In chapter four is
described the multidimensional goodness of fit method. In chapter five the method
is applied to data and the results are discussed. In the last chapter the results of this
thesis are summarised. short summary and an outlook.
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1. The LHCb Experiment

The Large Hadron Collider (LHC) is a proton-proton accelerator and collider installed
in a tunnel with 26.7 km circumference at CERN, in Geneva. The LHC was operating
at the center-of-mass energy of 7 TeV during the years 2010 and 2011. The collider has
four collision points, where the four main experiments are located: ATLAS, ALICE,
CMS and LHCb. For this thesis 1 fb−1 of data, collected at LHCb during 2011 are
used.

The CMS and ATLAS experiments investigate a wide range of physics. One of their
main goals is the search for the Higgs boson, which was the only yet unobserved
particle of the SM. In July 2012, CMS and ATLAS observed a new particle with mass at
125 GeV/c2, compatible with being the Higgs boson (Ref. [9]). The ALICE experiment
investigates the quark-gluon plasma in heavy ion collisions.
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Figure 1: Correlation of the polar angle of the b and b quarks at LHC.

LHCb is the only LHC experiment dedicated to flavour physics. Its primary goal
is to search for NP by doing precise measurements of rare decays and CP violation in
beauty and charm hadrons. In the following a short description of the LHCb detector
is given.

1.1. The LHCb Detector

In proton-proton collisions beauty hadrons are mainly produced at small angles with
respect to the beam pipe (see Fig. 1). This justifies the geometry of the LHCb detector,
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1. The LHCb Experiment Measurement of the Zero-Crossing Point of AFB and S5 of B0→ K∗0µ+µ− at LHCb

which is a single arm forward spectrometer with an acceptance of η = 1.6− 4.9 1 (For
more detail see Ref. [1]).

Tracking System: The tracking system of LHCb is split up in stations upstream and
downstream of the dipole magnet. The vertex locator (VELO) and the Tracker Turi-
censis (TT) are located upstream of the magnet, whereas three planar tracking stations
(T1-T3) are placed downstream of the magnet. VELO and TT are build on silicon mi-
crostrip detectors. For the region close to the beam pipe of T1-T3 (Inner Tracker, IT)
silicon microstrip detectors are used. In the outer region of T1-T3 straw-tubes were
installed. The tracking system combined with the magnet is able to measure the mo-
mentum and the flight direction of the charged particles with a resolution of ∆p

p ∼ 0.5%
for particles in the momentum range 5∼100 GeV/c2.

250mrad

100mrad

M1

M3
M2

M4 M5

RICH2

HCAL
ECAL

SPD/PS
Magnet

T1-T3

¡

¢

£

¤

¥

¦

§

¨

©

TT

VELO

RICH1

Figure 2: Schematic overview of the LHCb detector. In the figure the different subdetectors are shown:
The vertex locator (VELO), the two Ring Imaging Cherenkov Detectors (RICH1 and RICH2),
the tracking stations (TT and T1-T3), the scintillator pad detector (SPD), the preshower (PS),
the electromagnetic calorimeter (ECAL), the hadronic calorimeter (HCAL) and the muon sta-
tions (M1-M5).[1]

Hadronic Particle Identification: For the separation of pions from kaons in selected
B hadron decays, the particle identification (PID) is fundamental. The muon system,
the calorimeters and the two Ring Imaging Cherenkov detectors (RICH) provide PID

1 η = -ln(tan(θ/2)), where θ is the angle between beam-pipe and momentum direction, [27]
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information. The muon system and the calorimeters are described in separate para-
graphs.

The RICH1, situated between the VELO and the TT, covers the low momentum
charged particles (p = 1-60 GeV/c) using aerogel and C4F10 as Cherenkov active mate-
rial (radiator). This means the light velocity in the material is lower then the velocity
of the particle which flight trough the material (v < c/n, n refraction index of the ma-
terial). The RICH2, situated between T3 and M1, covers the high momentum charged
particles (p = 15-100 GeV/c) using a CF4 radiator.

Both RICH detectors focus the Cherenkov light using a combination of spherical
and flat mirrors, which reflect the image out of the LHCb acceptance to the photomul-
tipliers.

Calorimeters: The LHCb calorimeter system has a classical structure of an electro-
magnetic calorimeter (ECAL) followed by a hadronic calorimeter (HCAL). The ECAL
is a sampling scintillator/lead structure read out by plastic wave length shifting fibers.
The HCAL is a sampling device consisting of iron and scintillating tiles, as absorber
and active material respectively. To reject background of soft neutral and charged pi-
ons Scintillating Pad Detector (SPD) and a Preshower (PS) are placed in front of the
ECAL.

Muon System: The muon system consists of five stations (M1-M5) placed along the
beam axis. Stations M2 to M5 are placed downstream of the calorimeters and are inter-
leaved with iron absorbers to select muons. M1 is placed between RICH2 and SPD/PS
to improve the pT measurement in the trigger. The detectors are based on Multi-wire
proportional chambers (MWPC), except for the inner region of station M1, where the
particle rate exceeds safety limits for ageing. In this region triple-GEM detectors are
used.

Trigger: The LHCb trigger system consists of three stages. The first stage is the
L0-trigger which is implemented in hardware and reduces the visible event rate from
12-15 MHz to 1 MHz. It selects events with large pT muons in the muon chambers
and large ET hadron, electron and photon clusters in the calorimeters.

The second stage (HLT1-trigger) performs a partial reconstruction of the event and
searches for a single track with high momentum, a large impact parameter with re-
spect to all primary vertices in the event, and a good track quality. In addition it uses
lifetime information to reduce the rate by a factor of ∼ 20.

The third stage (HLT2-trigger) uses the information of fully reconstructed events to
reduce the rate to∼ 3 kHz. All events passing the HLT2-trigger are saved to tape [31].
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2. Theory

This chapter gives an overview of the SM of particle physics. Furthermore it contains
the theory description of the decay B0→ K∗0µ+µ− and of the observables sensitive to
NP: AFB, S4, S5, S7 and S8.

2.1. The Standard Model

The SM of particle physics describes the elementary particles and their interactions
(electromagnetic, weak and strong). The particles consist of fermions (spin-1

2 ), gauge
bosons (spin-1) and the Higgs boson (spin-0).

The elementary fermions in the SM are the 6 leptons and the 6 quarks, each grouped
in 3 families (see Fig. 3). Non-elementary fermions and bosons are made of the 6
quarks, for example the proton and the neutron. Both are made of up- and down-
quarks. The proton, for instance, is composed by up-up-down.

The gauge bosons are the gauge mediators of the electroweak and strong forces; for
example, the photon transmits the electromagnetic force. The SM has 4 gauge bosons,
two are massless (photon and gluon) and two are massive (W and Z). The Higgs boson
is needed in the SM to break the electroweak symmetry and give mass to SM particles,
as observed experimentally.

Figure 3: Elementary fermions and gauge mediators of electroweak and strong force in the SM [36].

The electromagnetic force interacts via exchange of a photon, whereas the strong
force interacts via exchange of a gluon, and the weak force interacts via exchange of W
or Z bosons. The electromagnetic force describes the interaction between electrically
charged particles (charged leptons and quarks). The strong force is responsible for
holding composite fermions and bosons together. Only quarks interact strongly.
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The weak force couples to quarks and leptons, allowing changes of flavours: `− →
W− ν` and d→W− u. Since the quark mass eigenstates are not flavour eigenstates, the
weak interaction also allows changes between different quark families (e.g. b → W−

u). The transition amplitude, in the quark sector, is proportional to the CKM matrix
element |Vij|2. In the SM these transitions involve a change in the electrical charge.
Flavour transitions between quarks of the same electrical charge are only allowed in
the SM via loop processes (penguin and W box diagrams, examples are shown in Fig.
4). In the SM the transition involves two flavour changings, one between a family
and one inside the family. These processes are named FCNC, because the electrical
charge of the initial and final quark is the same. The CKM matrix and the measured
magnitudes are as follows [27]:

VCKM =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



=

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13



=

 0.97428± 0.00015 0.2253± 0.0007 0.00347+0.00016
−0.00012

0.2252± 0.0007 0.97345+0.00015
−0.00016 0.0410+0.0011

−0.0007
0.00862+0.00026

−0.00020 0.0403+0.0011
−0.0007 0.999152+0.000030

−0.000045



(1)

where sij = sin θij, cij = cos θij and δ is the phase responsible for all CP-violating phe-
nomena in flavour changing processes in the SM. The CP transformation combines
charge conjugation C with parity conjugation P. Gravitational, electromagnetic and
strong forces2 for example are CP conserving. The weak interaction violates C and P,
but CP is still preserved in most weak interaction processes. However the CP symme-
try is violated in certain rare processes as in neutral K decays and in B decays. The
phase δ is responsible for such violation.

From the CKM matrix it can be seen that transitions between families are sup-
pressed, most strongly transitions involving the third family.

2.2. New Physics search at LHCb

The observed Universe is composed almost entirely of matter and little or no primor-
dial antimatter. The symmetry between particles and antiparticles, firmly established
from collider physics, leads to the question why in the Universe this symmetry is bro-
ken. Several conditions, called Sakharov conditions, must be fulfilled to explain this
asymmetry, one of these conditions is CP-violation. However the CP-violation present
in the SM seems to be insufficient to explain the matter-antimatter asymmetry in our
Universe [32, 33].

2 CP conservation in strong interactions is known as the “strong CP puzzle”, since the most general Lagrangian in strong interaction
contains a term that violates CP. This term is experimentally compatible with zero.
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NP models have in general additional sources of CP-violation, which could have
played a fundamental role in the early phase of the Universe, generating the over-
abundance of matter with respect to anti-matter in today’s Universe. Therefore mea-
surements of CP-violation are promising probes for NP. In addition, over-constraining
the magnitudes and the phases of the CKM elements provides excellent sensitivity to
NP. Further measurements of rare decays, which are suppressed in the SM, can probe
NP since new heavy particles inside the loops can enter in competitions with the SM
contributions.

The search for physics beyond the SM can be conducted with two complementary
approaches: direct and indirect. Direct search means that new particles are looked for
as real particles, as mainly done by ATLAS and CMS. LHCb, instead, is well suited for
indirect searches. There, the experimental observations for specific decays are com-
pared to SM predictions, for example additional contribution from NP can increase
branching fractions with respect to SM predictions. In general the following require-
ments are needed for indirect searches:

– Theoretical errors on the observables need to be small in comparison to the variation
among the different models.

– The variation between different theoretical models should be large in comparison to
the statistical error for a dataset of realistic size.

Particularly interesting are processes where the SM contribution is suppressed. One of
the advantages of indirect searches is that they are sensitive to energy scales of about
200 TeV, which is much higher than the scale for direct searches [23]. With this indirect
approach LHCb has already constrained many NP scenarios (see Ref. [7, 6, 4, 11, 5]).
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2.3. Decay B0→ K∗0µ+µ−

The decay B0→ K∗0µ+µ− is a FCNC and has several observables that fulfill the pre-
vious conditions. Figure 4 shows the corresponding SM lowest order Feynman dia-
grams. The decay has four charged particles in the final state, where the K∗0 decays
into K+ and π−. The two leptons arise from loop diagrams via virtual photons or Z
bosons, or via the box diagram.
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d

b̄

d
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Figure 4: Feynman diagrams for the decay Bd → K∗0µ+µ− at lowest order in the SM.[25]

2.3.1. Kinematics

The B0→ K∗0µ+µ− decay is completely described by the three angles θl, θk, φ which
are illustrated in Fig. 5, and the invariant mass squared of the di-muon system, q2.
Let p denote the momentum vectors in the B0 rest frame, q the same in the di-muon
rest frame, and r in the K∗0 rest frame, where the K∗0 decays into K+ π−. Three unit
vectors are defined as follows:

ez =
pK+ + pπ−

|pK+ + pπ− |
, el =

pµ+ × pµ−

|pµ+ × pµ− |
, eK =

pK+ × pπ−

|pK+ × pπ− |
(2)

The angles have the following definitions:

cosθl =
qµ+ · ez

|qµ+ |
, cosθK =

rK+ · ez

|rK+ | (3)

and
sinφ = (eµ+ × eK+) · ez, cosφ = eK+ · eµ+ (4)
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Figure 5: Definition of the kinematic variables in the decay B0→ K∗0µ+µ−. For details see the text.

The angles are defined in the intervals

−1 ≤ cosθl ≤ 1, −1 ≤ cosθK ≤ 1, −π ≤ φ ≤ π (5)

For the B0 meson decay all the charges are conjugated. The kinematically allowed
region for the dilepton invariant mass squared is

4m2
µ ≤ q ≤ (mB −mK∗)

2. (6)

In words: for the B0, the angle θl is measured between the µ+ and the flight direction
of the B0 in the di-muon rest frame. The angle θk is measured between the K+ and the
flight direction of the B0 in the K∗0 rest frame. Finally the angle φ is measured between
the decay plane of K∗0→ K+ π− and the µ+ µ− plane in the B0 rest frame [25].

2.3.2. Observables

In this short section the theoretical description of the measured observables is given,
for further details see Ref. [17]. As introduced in the previous section, the decay
B0→ K∗0µ+µ− is completely described by the angles θl, θK, φ and q2. One obtains the
following differential decay rate for the B0:

d4Γ
d cos θ` d cos θK dφ dq2 =

9
32π

I(q2, θl, θK, φ) (7)

with

I(q2, θl, θK, φ) = Is
1 sin2 θK + Ic

1 cos2 θK +
(

Is
2 sin2 θK + Ic

2 cos2 θK

)
cos 2θl

+ I3 sin2 θK sin2 θl cos 2φ + I4 sin 2θK sin 2θl cos φ

+ I5 sin 2θK sin θl cos φ

+
(

Is
6 sin2 θK + Ic

6 cos2 θK

)
cos θl + I7 sin 2θK sin θl sin φ

+ I8 sin 2θK sin 2θl sin φ + I9 sin2 θK sin2 θl sin 2φ, (8)
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where the angular coefficients Ii are functions of q2. The lepton mass is neglected in
this expression. For the B0 a similar expression involving Īi coefficients can be written.
This allows us to build CP-averaged (Si) and CP-violating (Ai) observables:

Si = (Ii + Īi)/
d(Γ + Γ̄)

dq2 (9)

and

Ai = (Ii − Īi)/
d(Γ + Γ̄)

dq2 . (10)

This thesis will concentrate on CP averaged quantities. Measuring the corresponding
CP-asymmetries is experimentally more challenging, for example the detector- and
production asymmetry for particles and antiparticles must be determined.
One of the popular observables in the B0→ K∗0µ+µ− decay is the forward-backward
asymmetry, AFB. It is defined as:

AFB =

(∫ 1

0
−
∫ 0

−1

)
d cos θl

d2(Γ + Γ̄)
d cos θl dq2 /

d(Γ + Γ̄)
dq2 =

3
8
(2Ss

6 + Sc
6). (11)

In words: AFB can be defined as the difference between the number of events in the
forward direction (µ+ is emitted in flight direction of the B0 (cos θl >0)) and the num-
ber of events in the backward direction (µ+ is emitted in the opposite direction of the
flight direction of B0 (cos θl <0)) normalized over the total number of events. Figure
6 shows the prediction for the SM and different NP models. The asymmetry vanishes
at a well defined value of q2. This zero-crossing point, q2

0, is sensitive to NP. At lead-
ing order the dominant hadronic uncertainties, coming from the form factors, cancels
out leading to a small theoretical uncertainty. In the SM, the zero-crossing point is
predicted to be: q2

0 = 4.97+0.03
−0.03|FF

+0.09
−0.09|SL

+0.29
−0.27|SD GeV2/c4[22]3.

SM SUSY-I

SUGRA

SUSY-II

q2

q0
2

Figure 6: Theoretical expectation for AFB for the SM and different SUSY models, taken from [25]. In the
figure are shown the curves for leading order calculation. The zero-crossing point prediction
cited in the text corresponds to next-to-leading order calculation.

3 (FF) are the form factor uncertainties, (SL) are the uncertainties from the Λ/mb corrections and (SD) are the uncertainty from short
distance parameters (mt , mW and the µ-scale)
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AFB was first measured at Belle, BaBar and CDF. These measurements seemed to
hint to a deviation from the SM at low q2, in particular to a possible flipped C7 Wilson
coefficient with respect to SM predictions. This would have implied no zero-crossing
in the AFB [12, 19, 35]. The large increase in statistic at LHCb compared to Belle, BaBar
and CDF allows measurements with higher precision, and also measurements of ad-
ditional observables.

The twelve angular coefficients of Eq. 7 reduce to eight independent coefficients. In
addition to AFB and its zero-crossing point, the thesis concentrate on S4, S5, S7, S8 and
on their zero-crossing point [15, 20]. These observables can be measured by simple
counting experiments, using the following formulas:

S4 =
π

2

(∫ π/2

−π/2
−
(∫ −π/2

−π
+
∫ π

π/2

)
dφ

)(∫ π/2

0
−
∫ π

π/2
dθl

)(∫ π/2

0
−
∫ π

π/2
dθK

)
d4(Γ + Γ̄)

d cos θl d cos θK dφ dq2 /
d(Γ + Γ̄)

dq2 (12)

S5 =
4
3

(∫ π/2

−π/2
−
(∫ −π/2

−π
+
∫ π

π/2

)
dφ

)(∫ π

0
dθl

)(∫ π/2

0
−
∫ π

π/2
dθK

)
d4(Γ + Γ̄)

d cos θl d cos θK dφ dq2 /
d(Γ + Γ̄)

dq2 (13)

S7 =
4
3

(∫ 0

−π
−
∫ π

0
dφ

)(∫ π

0
dθl

)(∫ π/2

0
−
∫ π

π/2
dθK

)
d4(Γ + Γ̄)

d cos θl d cos θK dφ dq2 /
d(Γ + Γ̄)

dq2 (14)

S8 =
π

2

(∫ 0

−π
−
∫ π

0
dφ

)(∫ π/2

0
−
∫ π

π/2
dθl

)(∫ π/2

0
−
∫ π

π/2
dθK

)
d4(Γ + Γ̄)

d cos θl d cos θK dφ dq2 /
d(Γ + Γ̄)

dq2 (15)

The SM predictions for the different Si are shown in Fig. 7. The observables S4 and
S5 are particularly interesting since they both have a zero-crossing point, where form
factor uncertainties cancel out, similar to what happens with AFB. Figure 8 and 9 show
the predictions of various NP models for the different Si and Ai.
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Figure 7: The angular observables S4, S5, S7 and S8 in the SM as function of q2. The dashed lines are the
leading-order (LO) contributions and the thick solid lines are the next-to-leading order (NLO)
predictions. The blue band defines the total error for the NLO results, for details see [17].
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Figure 8: The theoretical prediction for S4 and S5, the blue band corresponds to the prediction of Si in
the SM. For more details see [17].
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Figure 9: The theoretical prediction for A7 and A8, the blue band corresponds to the prediction of Ai in
the SM. For more details see [17].

Page 20 University of Zurich, Physics Institute, August 10, 2012



3. The Unbinned Counting Method Measurement of the Zero-Crossing Point of AFB and S5 of B0→ K∗0µ+µ− at LHCb

3. The Unbinned Counting Method

Several observables in the decay B0→ K∗0µ+µ− are sensitive to NP and theoretically
clean. In this chapter the methods for the measurement of AFB, Si and their the zero-
crossing points are presented.

The full angular fit of the B0 → K∗0µ+µ− decay rate is done in six q2 bins. To
compare the results with earlier measurements from Belle, BaBar and CDF the same
binning scheme is used (Ref. [12, 19, 35]). The region 1-6 GeV2/c4 is favoured by theo-
rists, as it is far away from the photon pole at q2→ 0 and from the contributions from
c c resonances that would lead to large theoretical errors. In the SM the zero-crossing
point of AFB lays in the region 1-6 GeV2/c4. In Fig. 10 it is shown the result of AFB
from the full angular fit. For this result Eq. 7 was reformulated with the transforma-
tion, φ→ φ + π when φ < 0. This cancels out the terms depending on cosφ and sinφ,
reducing the number of free parameters in the fit. For additional details see Ref. [10].
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Theory Binned theory
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LHCb

Figure 10: Figure reproduced from Ref. [8], it shows the preliminary results of AFB from the angular fit,
as a function of q2. The data points include both statistical and systematic uncertainties. The
theory prediction is described in Ref. [21].

The zero-crossing point cannot simply be extracted by fitting the AFB curve since
the functional form of this curve is not exactly known and it depends largely on form
factors. Moreover this would be in contrast with the blinding procedure used for this
analysis. Therefore an alternative method was used: the unbinned counting method.

B0 → K∗0µ+µ− events are split up in two categories: forward (cos θl > 0) and
backward (cos θl < 0). The difference of these two terms, properly normalized is the
AFB. For experimental purpose Eq. 11 can be reformulated as:

AFB(q2) =

∫ 1
0

∂2Γ
∂q2∂cosθl

dcosθl −
∫ 0
−1

∂2Γ
∂q2∂cosθl

dcosθl∫ 1
0

∂2Γ
∂q2∂cosθl

dcosθl +
∫ 0
−1

∂2Γ
∂q2∂cosθl

dcosθl
. (16)
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An analogous strategy can be adopted for Si. While for AFB the dataset is split up
in the two categories forward and backward, according with Eq. 16, for the Si the
expressions are more complicated, but events can be classified according with their
sign in Eq. 12, 13, 14 and 15. The Si observables become:

Si(q2) =
IntP(q2)− IntN(q2)

IntP(q2) + IntN(q2)
, (17)

where the function IntP(q2) (IntN(q2)) is the event distributions for the positive (nega-
tive) category as a function of q2.

Summarizing: The q2 dependence is fitted separately for the two event categories.
The fit is performed in two dimensions: q2 and invariant mass of the B0; to separate
signal from background. Then the observables Si and AFB are calculated. This proce-
dure is unbiased and allows to verify the goodness of fit (see Sec. 4) before actually
computing the quantity of interest.

3.1. Forward-Backward Asymmetry

The procedure for the measurement of AFB and the Si is identical. The only difference
is in the definition of the positive and negative categories. In the next section the
method to extract the zero-crossing point of S4 and S5 is described in details. The
same method has been applied to the zero-crossing point of AFB (see Ref. [8]) and the
results are presented in Sec. 5.

3.2. Si Asymmetries

Here the application of the unbinned counting method to simulated events4 is de-
scribed step-by-step:
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Figure 11: Left: Simulated data for the positive category with fit superimposed. Right: Simulated data
for the negative category with fit superimposed.

4 LHCb simulation, using the package EvtGen.
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1. Split up: Events are split up in positive and negative category according to their
sign in the Si expression. For S5 this corresponds to:

IntP(q2) =
4
3

(∫ π/2

−π/2
dφ
∫ π/2

0
dθ`

∫ π/2

0
dθK +

∫ π/2

−π/2
dφ
∫ π

π/2
dθ`

∫ π

π/2
dθK

+

(∫ −π/2

−π
+
∫ π

π/2

)
dφ
∫ π/2

0
dθ`

∫ π

π/2
dθK

+

(∫ −π/2

−π
+
∫ π

π/2

)
dφ
∫ π

π/2
dθ`

∫ π/2

0
dθK

)
d4Γ

d cos θ` d cos θK dφ dq2 (18)

IntN(q2) =
4
3

(∫ π/2

−π/2
dφ
∫ π/2

0
dθ`

∫ π

π/2
dθK +

∫ π/2

−π/2
dφ
∫ π

π/2
dθ`

∫ π/2

0
dθK

+

(∫ −π/2

−π
+
∫ π

π/2

)
dφ
∫ π/2

0
dθ`

∫ π/2

0
dθK

+

(∫ −π/2

−π
+
∫ π

π/2

)
dφ
∫ π

π/2
dθ`

∫ π

π/2
dθK

)
d4Γ

d cos θ` d cos θK dφ dq2 (19)

2. Fit: The second step is the extended maximum likelihood fit for the q2 dependence
of each data category, positive and negative. The integrals above are performed
over the angles, while the two functions IntP and IntN sill depend on q2. These
functions are fitted with Chebychev polynomials. It is empirically found that the
third order is the lowest that allows to describe the data. This has been verified in
Monte Carlo (MC) and data with the goodness of fit test discussed in Sec. 4. The
fits are shown in Fig. 11.

3. Combine: The last step consists of the combination of the functions IntP and IntN.
Since the result of the fit is a probability density function (p.d.f.), they need to be
properly normalized, according with the formula:

Si =
NP · PDFP(q2)− NN · PDFN(q2)

NP · PDFP(q2) + NN · PDFN(q2)
(20)

where the PDFP (PDFN) is the fit p.d.f. for the positive (negative) category and
the NP (NN) is the corresponding number of events. Fig. 12 shows the result of
this procedure which can be compared with the prediction in Fig. 7. S7 and S8 are
indeed very small and the small bias observed is much smaller than the present or
near-future experimental sensitivity.
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Figure 12: The figures show the Si curves for simulated events. S4 and S5 are in good agreement with
SM predictions. S7 and S8 wiggle around zero, but the small bias is negligible compared to
experimental sensitivity. For more details see the text.
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3.2.1. Consistency Test

In this section a consistency check is described. The goal of this test is to check if the
method works for smaller samples with a number of events corresponding to what
expected for 1 fb−1 at LHCb. At LHCb 1 fb−1 corresponds roughly to 1000 recon-
structed B0 → K∗0µ+µ− signal events. In other words the average of the results of
several 1 fb−1 pseudo-experiments should be compatible with the input curve. This
test was performed with and without simulated background.

For this study “toy”-MC samples, generated according with SM expectations are used.
The signal mass distribution is generated using a Gaussian p.d.f., while the q2 distribu-
tions (for positive and negative categories) are generated with third order Chebychev
polynomials. The background is generated with an exponential p.d.f. for the mass
distribution and second order Chebychev polynomials for the q2 distributions. The
coefficients of the polynomials for the signal and background q2 distributions are ex-
tracted form the LHCb simulation, that uses the package EvtGen. The mean and the
sigma of the signal mass distribution was fixed using the full LHCb simulation, that
uses GEANT4 to simulate the interaction with the detector material. The exponential
p.d.f. for the invariant mass distribution for the background is extracted using the
sidebands of the B0 invariant mass, which consist of the region 5150-5220 MeV/c2 and
5350-5800 MeV/c2.
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Figure 13: B0 invariant mass and q2 distributions for the positive category (top) and for the negative
category (bottom). Fit example for one 1 fb−1 sample. The blue curve is the total signal and
background. The red curve is only signal and the black dotted line is the background only.
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The procedure for the consistency test is as follows:

1. 10000 datasets are generated for signal only and including background.

2. The unbinned counting method is applied, fitting the q2 distributions and the in-
variant mass. Fig. 13 shows the fit result for one particular pseudo-experiment.

3. The zero-crossing point is calculated in the region 1-6 GeV2/c4 (see Sec. 3.2.2).

4. For a given q2 value an histogram is filled with the measured Si for the 10000 pseudo
experiments (an example for q2 = 3 GeV2/c4 is shown in Fig. 14). This is repeated
for several q2 values in the range 1-6 GeV2/c4. The histograms are fitted with a
Gaussian function. The sigma and the mean of these Gaussians are plotted for the
different q2 values in Fig. 16 and Fig. 17 (right). The mean of the Gaussian is com-
pared to the input value in Fig. 16 and Fig. 17 (left).
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Figure 14: Gaussian fit to the output of 10000 toy experiments for S5, for q2 = 3.0 GeV2/c4.

Assuming the SM, the expected experimental resolution will be enough to have a mea-
surement of S5 not compatible with zero in the q2 range 1-6 GeV2/c4, whereas this is
not the case for S4, S7 and S8. In conclusion the method is consistent and unbiased
in all cases, with and without background. The sensitivity study of the zero-crossing
point of the observable S4 and S5 is presented in the next section.
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Figure 15: Input curves for S4, S5, S7 and S8 used for the consistency test.
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Figure 16: Left: Comparison between the mean of 10000 toy experiments and the input value for sev-
eral q2 values, for the observables S4 and S5. Right: The expected 68% confidence level and
the most probable value for 10000 toy experiments is shown for S4 and S5.
Discussion: From the plots on the left it can be seen how the mean of the 10000 toy experi-
ments is consistent with the input curve. The only small discrepancy can be seen close to the
boundaries. From the corresponding plots on the right it can be seen that the fit to the poly-
nomials becomes unstable close to the boundaries. Since the S4 zero-crossing is close to the
lower boundary, we expect difficulties in the extraction of this observable. See next section.
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Figure 17: Left: Comparison between the mean of 10000 toy experiments and the input value for several
q2 values, for the observables S7 and S8. Right: The expected 68% confidence level and the
most probable value for 10000 toy experiments is shown for S7 and S8.
Discussion: The plots on the left show a small bias in the measurement of the observables S7
and S8. However as can be seen from the sensitivity plot on the right, this bias is negligibly
small compared to the expected experimental resolution.
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3.2.2. Zero-Crossing Point Extraction

The zero-crossing point is calculated with the rootFinder algorithm, which uses a bisec-
tion method (see App. A). The two observable S4 and S5, which have a zero-crossing
point in the SM, are considered in this section.

In Fig. 15 it can be seen that the zero-crossing points for S4 and S5 are close to the
low q2 boundary. From the sensitivity study, as shown in Fig. 16, it can be expected
that some of the pseudo-experiments will show no or multiple zero-crossing points. In
the case where multiple zero-crossing points are found, the lowest in q2 is chosen. The
additional zero-crossing points, at high q2, come from fluctuations of the polynomials,
as the fit is not stable close to the boundaries.

Based on these issues the rootFinder method is built as follows: First it only allows
curves which have an odd number of zero-crossing points. Then the whole q2 range is
splitted up in subranges with an odd number of zero-crossing points. For the lowest
subrange the bisection method is used to compute the zero-crossing point. This pro-
cedure is tested with the same data samples used for the consistency test in Sec. 3.2.1.

Probability of finding one zero-crossing point:
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Figure 18: Zero-crossing point distribution for S4 (left) and S5 (right), from 10000 toy experiments. For
S4 approximately 5600 toy experiments have only one zero-crossing point and for S5 approx-
imately 7200 toy experiments have only one zero-crossing point.

For each toy-experiment the zero-crossing point is calculated. The distribution of zero-
crossing points for the different toy experiments is shown in Fig. 18. Assuming the
SM, the probability to measure only one zero-crossing point is about 72 % for the S5
observable, for a dataset consisting of 1000 events. For S4 the probability is 56%. The
second peak in Fig. 18 (left) comes from the worse sensitivity of S4 at the edge of the
range. This means, in some cases the S4-curve has only one zero-crossing at high q2

values. This was expected from the sensitivity study (see Fig. 16).

This study shows that the zero-crossing point of the asymmetry S5 can be measured
at LHCb with a dataset corresponding to roughly 1 fb−1, while the extraction of the
zero-crossing point of the asymmetry S4 requires larger statistics. The method here
described and validated can be applied to data. It is foreseen that the measurement of
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the Si observables and of the zero-crossing point of S5 will be performed at LHCb in
the near future. At time of writing all these observables are still covered by the blind-
ing procedure adopted in the experiment and not yet accessible in the signal region.

Error estimation for the zero-crossing point:
As the zero-crossing point is measured with the bisection method it is complicate to
calculate the statistical uncertainty. Therefore the bootstrapping method is used [24].
This method uses a re-sampling technique to estimate the 68% confidence interval.
Schematically, first is taken the dataset of N events,

d = {−→Ω 0,
−→
Ω 1, ...,

−→
Ω N−2,

−→
Ω N−1}

and then create a new, re-sampled dataset form it of the size, d1. The total number of
events are varied according with a Poisson distribution. For the re-sampling dupli-
cated events are allowed, e.g.:

d1 = {−→Ω 0,
−→
Ω 0, ...,

−→
Ω N−2,

−→
Ω N−1}

where event ’0’ appears twice and event ’1’ is omitted from d1. The unbinned counting
method is performed on each re-sampled dataset to extract the zero-crossing point,
leading to a distribution of zero-crossing points. The resulting distribution is used to
estimate the 68 % confidence interval on q2
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Figure 19: Zero-crossing point distribution for S4 (left) and S5 (right) for one particular experiment,
using the bootstrapping method. The 68% confidence level is indicated by the red region for
S5.

The result of the bootstrapping for S4 and S5 is shown in figure 19 . It could be
seen that for S5 the crossing is well separated from the lower end of the q2 range.
This is not the case for the observable S4, as can be seen in Fig. 19 left. Moreover the
distribution shows a second peak around the q2 upper bound, due to a bad behavior
of the polynomial near boundaries.

Page 31 University of Zurich, Physics Institute, August 10, 2012



4. Goodness of Fit Test Measurement of the Zero-Crossing Point of AFB and S5 of B0→ K∗0µ+µ− at LHCb

4. Goodness of Fit Test

Multidimensional analysis, as used in this thesis, often involve performing an un-
binned maximum likelihood fit of a p.d.f. to data. This method is powerful but the
maximum likelihood value cannot be used to determine the goodness of fit (g.o.f).

Instead a common practice in physics is to bin the data and compute a χ2 value. If
the bin size is too small the goodness of fit is overestimated with the χ2 method. If
the bin size is too large it would be impossible to compare the finer structure of the
fit p.d.f with the data [39]. Furthermore a binning of data always results in a loss of
information. Therefore unbinned g.o.f methods are preferred for multidimensional
problems.

This chapter first gives an overview on the terminology of g.o.f methods and after-
ward describes the g.o.f method that was used for the analysis of the Si and AFB: the
point-to-point dissimilarity. Furthermore the method is tested with different fit p.d.f.

4.1. Terminology

Goodness of fit tests are basically hypotheses tests. The H0 hypothesis is then the case
where the fit p.d.f. describes the given data sample and the H1 hypothesis is the case
where the fit p.d.f. does not describe the data sample. The fit p.d.f. is then rejected
if the calculated p-value is smaller then the significance level5 α, which is set in most
cases to α = 0.05. For this α the hypothesis H0 is rejected at 95 % confidence level. Two
terms are needed for the hypothesis test:

– Test statistic: For a g.o.f method a test statistic, T, quantifies the agreement between
data and the test p.d.f. For the most common definition a large value of T corre-
sponds to a worse level of agreement, however this is not a universal property. The
most familiar test statistic is the χ2-test.

– p-value: For the case where larger T values corresponds to worse level of agreement
the p-value is defined as follows:

p =
∫ ∞

T
g f0(T

′)dT′. (21)

f0 denotes the true p.d.f. of the data and g f0(T
′) is the probability density function

for the test statistic under the assumption that f0 corresponds to the fitted p.d.f. f .
Thus the p-value is the probability of finding a T-value corresponding to a worse
agreement of f to f0 then the observed T-value.
For the case where f0 corresponds exactly to the fit of the data, g f0(T

′) is uniform
distributed between zero and one.

5 The significance level indicates Type I error: the probability that a decision to reject the null hypothesis will be made when it is in fact
true and should not have been rejected.
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It should be mentioned that a p-value greater than the significance level does not im-
ply that the H0 hypothesis is true, it only states that the fit p.d.f. is not distinguishable
from the true p.d.f. with the given amount of data [39, 40].

4.2. Point-to-Point Dissimilarity Method

The electrostatic energy built from a positive and a negative charge distribution is min-
imal if the two charge distributions coincide. This behaviour can be used to formulate
a statistical expression which is minimum if the two statistical distributions agree. If
one of the samples is a generated MC sample from a fit p.d.f. and the other sample are
the data points, then this method can be used to build a goodness-of-fit test.

4.2.1. Physical Motivation

The potential energy φ of a continuous charge distribution ρ(x) is described as follows:

φ =
1
2

∫
dx
∫

dy
ρ(x)ρ(y)
|x− y| . (22)

This quantity will be positive unless ρ(x) ≡ 0 with φ = 0, whereas the total charge is
fixed to zero ∫

dxρ(x) = 0. (23)

The property φ ≥ 0 follows from the property of the distance function R(|x− y|) =
1/|x− y|.

The charge distribution can be split up into two components, a positively charged
distribution ρ+(x) and a negatively charged distribution −ρ−(x) of opposite total
charge as follows:

ρ(x) = ρ+(x)− ρ−(x), (24)

∫
dx[ρ+(x)− ρ−(x)] = 0. (25)

As mentioned before, if the two charge distributions are equal (ρ+(x) ≡ ρ−(x)), then
the potential energy is minimal. This property can be used to compare statistical dis-
tributions. Therefore the charges are replaced by observations (each observation has
the same charge, positive for ρ+ and negative for ρ− and Eq. 25 must be fulfilled).
After the substitution of ρ from Eq 25 into Eq 22

φ = 1
2

∫
dx
∫

dy[ρ+(x)− ρ−(x)]× [ρ+(y)− ρ−(y)]R(|x− y|)

= 1
2

∫
dx
∫

dy[ρ+(x)ρ+(y)− 2ρ−(x)ρ+(y) + ρ−(x)ρ−(y)]R(|x− y|)
(26)

and the replacement of the integrals by corresponding sample means, the charge dis-
tribution results in:

φNM =
1

M(M− 1) ∑
j>i

R(|yi − yj|)−
1

NM ∑
i,j

R(|xi − yj|) +
1

N(N − 1) ∑
j>i

R(|xi − xj|).

(27)
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M and N correspond to the number of observations for ρ+ and ρ−. The xi therefore
correspond to particles with a charge of 1/N and the yi to particles with a charge of
-1/M. With this definition Eq. 25 is still fulfilled. The 1/r power law is replaced with
a more general distance function (more on this later). For large numbers of M and N it
follows that the sample mean converge to the integral due to the law of large numbers.
For more details, see the Ref. [16, 18, 40] .

4.2.2. Goodness of Fit Implementation

It was mentioned before that goodness of fit tests are hypothesis tests with the follow-
ing definition:

H0 : f0 = f (28)

H1 : f0 6= f (29)

where f0 is the true p.d.f. of the data and f is the p.d.f. from the fit. H0 is the null
hypothesis and H1 is the alternative hypothesis. For the test of these hypotheses a
test statistic is needed. Eq. 26 is a possible equation for a test statistic. In the case of
goodness of fit tests f0 corresponds to the ρ− and f corresponds to ρ+.

φ = 1
2

∫
dx
∫

dy[ f0(x)− f (x)]× [ f0(y)− f (y)]R(|x− y|)

= 1
2

∫
dx
∫

dy[ f0(x) f0(y)− 2 f0(x) f (y) + f (x) f (y)]R(|x− y|)
(30)

As mentioned before the statistical energy is minimal if the two distributions fully
overlap. As the distribution f0 is unknown for the data points, otherwise no fit is
needed, Eq. 26 is useless as a test statistic. However Eq. 27 can be used, as it only needs
the observed data (data points) and the fit observation (fit data points). The points
from the fit are generated from the fit p.d.f. with a MC technique. The number of
measured data points are fixed by the experiment and the number of MC data points
can be chosen. For the case where N � M, Eq. 27 can be simplified:

φNM = +
1

N2 ∑
j>i

R(|xi − xj|)−
1

NM ∑
i,j

R(|xi − yj|). (31)

As Eq. 31 shows, the energy term with the generated data points in Eq. 27 cancels
out. Under the assumption that N is large, the N(N− 1) simplifies to N2. Equation 31
is the test statistic for the point-to-point dissimilarity method, but two things are still
needed. First a reasonable choice of the distance function is needed and second the
procedure to calculate the p-value with the test statistic from Eq. 31. This is described
in the following sections.

Distance Function: The distance function R(r) is 1/r for the electrostatic potential,
in this context different functions can be used, with the only condition that they have
to decrease monotonically with r.

Rpow(r) =
1

rκ + ε
(32)
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Rlog(r) = − ln(r + ε) (33)

RG(r) = e−r2/(2s2) (34)

The three most commonly used distance functions are the inverse power laws, the
logarithmic function and the Gaussian function. The first two have poles at r equals
to zero. This could produce infinities in the test statistic. Therefore these poles are
suppressed by a small constant cutoff ε. This constant, introduced for numerical rea-
sons, will improve the power of the test because resolving extremely small distances,
perhaps smaller then the experimental resolution, could introduce large accidental
contributions to the statistical energy. In Ref. [40] is proposed to set

ε =
1

M f0maxd
(35)

where f0max is the maximum of the d dimensional probability density function f0. Fur-
ther in Ref. [40] it has been found that the precise value of ε has a negligible effect on
the p-value calculation. The Gaussian function has a similar coefficient, s, which is the
resolution of the distance function. If s is too small then the fit p.d.f. is approximately
constant in the Gaussian region around the events. On the other side if s is to big,
the finer structure in the fit p.d.f. is lost [39]. In Ref. [40] it is recommended to use
either the logarithmic or the Gaussian distance function. The logarithmic function is
long range, the p-values are invariant under scaling (r → ar) and it does not contain
a parameter which has to be adjusted. On the other side the Gaussian function has a
limited range for the correlation between the data values. Furthermore the parameter
s in Eq. 34 should be adjusted to the density of observations and to the shape of f0. In
section 4.3 a comparison of these two distance functions for a specific p.d.f. is shown
[16, 18, 40].

p-Value: Now the test statistic T can be calculated, but the distribution of T for the
case f0 = f is not known. This means that the p-value cannot be calculated directly.
For an estimation of the p-value a re-sampling method known as the permutation test
can be used. This test involves the following steps:

1. Combine data and MC data (from the fit p.d.f) into a pooled sample of size n =
nd + nMC.

2. Randomly select nd events from the pooled sample and label these ”data” (dupli-
cates are not allowed).

3. Label the remaining events with ”MC”.
4. calculate the test statistic value for this data; MC combination and name it, Tperm.
5. repeat steps 1 to 4 until the number of repetition reach nperm, which is maximum

n!/(nd!nMC!).

This results then in a set of T-values {T1
perm, ..., Tnperm

perm }, where the p value is simply
the fraction of times for which T < Tperm is valid. To avoid large processing time, a
random subset of combinations may be used and not all permutations.

This technique works because, if the test p.d.f f and the parent p.d.f f0 are the same,
the assignment “data” and “MC” are just labels. This means reassigning these should
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have no effect on the mean of T. Furthermore each of the n!/(nd!nMC!) events com-
binations could be observed from an experiment. Thus, the technique can be used to
estimate the p.d.f. of T and, in turn, obtain an estimate for the p-value [39].

Additional Issues: In physics analysis events are in many cases weighted, for ex-
ample to correct for the detector acceptance. As the data points correspond to particles
with charges 1/N and the MC data points to particles with charges 1/M, the weights
can be used to rescale the charges for the data points:

1
Nw
· w1 + ... +

1
Nw
· wN =

1
Nw
· (w1 + ... + wN) = 1 (36)

where (w1 + ... + wN) = Nw by definition. Nw is the number of events after weighting
and the wi are the weights.

The second issues is, that in multidimensional analyses not all dimensions describe
the same quantities. In Ref.[39] it is proposed to do a rescaling of each variable xi lest
one dimension dominate the test function. In Ref. [40] it is proposed to scale each xi
relative to its mean value x̄i by the inverse of the square root of the variance σ2

i :

xi → x′i =
xi − x̄i

σi
. (37)

This rescaling method however has a simple problem. Not each dimension variable xi
has a Gaussian dependence. This rescaling influence then the dependence of the data
on each xi. In general a simple rescaling is used:

xi → x′i =
xi −Min(xi)

Max(xi)−Min(xi)
. (38)

This method rescales the original dependence for each xi to the range 0 to 1.
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4.3. Measurement

In this section the point-to-point dissimilarity method is tested and applied to data.
For the experimental use it is necessary to know how well the method performs. In
Ref. [39] the point-to-point dissimilarity method is compared to other g.o.f. methods,
for example the χ2 method. From the comparison in Ref. [39] it follows that the dis-
similarity method has the best behaviour, also for small sample sizes. Based on this
paper [39] the section focus on the fit model of the Si measurement and studies at the
influence of different Chebychev polynomials on the g.o.f. test.

4.3.1. Fit Models

For the goodness of fit test two p.d.f.s are needed. One is the parent distribution of the
data and the other is the fit distribution. To test the method similar p.d.f.s as used for
the toy-study of Sec. 3 are used.

1. Parent Distribution: The p.d.f consists of a signal and a background components.
For the signal a Gaussian distribution in mass and a third order Chebychev poly-
nomial in q2 is used, with the same mass and q2 ranges as in the measurements of
the Si. For the background an exponential distribution in mass and a third order
Chebychev polynomial in q2 is used.

2. first order Chebychev: This p.d.f. consists, in contrast to the parent distribution, of
a first order Chebychev polynomial as signal p.d.f. in q2.

3. second order Chebychev: This p.d.f. consists, in contrast to the parent distribution,
of a second order Chebychev polynomial as signal p.d.f. in q2.

4. fourth order Chebychev: This p.d.f. consists, in contrast to the parent distribution,
of a fourth order Chebychev polynomial as signal p.d.f. in q2.

5. fifth order Chebychev: This p.d.f. consists, in contrast to the parent distribution, of
a fifth order Chebychev polynomial as signal p.d.f. in q2.

6. Case 2-5 extended: In addition to the four previous cases, the q2 distribution for the
background is described by a Chebychev polynomial with the same order as the
signal p.d.f in q2, instead of a third order Chebychev polynomial as in the parent
distribution.

For the test 1000 data samples each with 500 events are generated from the parent
distribution.

4.3.2. p-Value Distributions

The p-value distribution should be flat for the case where fit and parent distribution
are the same. If this is not the case, the p-values should all have small values. The
procedure to generate the p-value distribution is to fit the generated 1000 data samples
from the parent p.d.f. with the fit p.d.f. Then use the fitted p.d.f. to generate one MC
data sample and calculate the p-Value for each of the 1000 data samples. These 1000
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p-values give then the p-value distribution. The whole procedure is repeated for each
different fit p.d.f. (cases 1-6).

For a numerical comparison of the p-value distribution the ”power” of the g.o.f. test
is calculated. It is defined as the percentage of p-values which are lower than signifi-
cance level 0.05. In case the fit p.d.f. is equal to the parent p.d.f., the power of the g.o.f.
should be 5%. For all other cases the power should be higher.

Distance Function logarithmic: First the logarithmic function was tested since the
coefficient ε is clearly defined. From Fig. 20 it can be seen that f0max = 95. The dimen-
sion of the fit is d = 2 and the number of MC data points is M = 10000 which gives ε =
5·10−7.
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Figure 20: Invariant mass (left) and q2 distribution (right) for the parent distribution.

In figure 21, on the left, it is shown the distribution for the case when the fit p.d.f. is
the same as the parent p.d.f. with fixed parameter values. It is clearly flat as expected
for f = f0. Figure 21 on the right side shows the p-value distribution but when the
parameters of the fit p.d.f are not fixed. The distribution is clearly not flat and has a
bias to higher p-values. This is an indication, that the logarithmic distance function is
unable to reproduce the fast fluctuations in data.

As conclusion it follows that the logarithmic distance function is not the right choice
for the fit distribution used in this thesis. A more promising distance function is the
Gaussian, as it has a limited range for the correlation and can be adjusted to faster
fluctuations.
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Figure 21: Left: p-value distribution for the case when the fit p.d.f. is fixed to the parameter values of
the the parent p.d.f. The p-values are calculated with the logarithmic distance function. The
distribution is flat as expected. Right: p-value distribution where the fit p.d.f. is fitted to
the data and the parameters are not fixed. The p-values are calculated with the logarithmic
distance function. The figure shows a not flat distribution.

Distance Function Gaussian: As for the logarithmic distance, also the Gaussian
distance has one free parameter. In contrast to the logarithmic case, it is not a cutoff to
avoid the pole, but it defines the width of the Gaussian. For simplicity the coefficient
s is constant over all xi.

As shown in Ref. [40] for large values of s the finer structure of the fit p.d.f. is lost.
Therefore the Gaussian distance function can have the same problem as the logarith-
mic distance function, the p-value distribution can have a bias to higher p-values. If
the parameter s is too small, as shown in Ref. [39], the fit p.d.f. will be constant in
the Gaussian region around each data point. Therefore the p-value distribution will
always be flat.

To test this behaviour, p-value distributions for a wide range of s are produced.
From Ref. [39] it follows that the most promising s-values for sample with 500 events
have small almost vanishing bias to higher p-values. According with this conditions,
the best p-value was found to be s = 0.0001. The value distribution for the best s- and
for two other examples is shown in Fig. 22 and in Fig. 23. Table 1 shows the ”power”
for each case.

s= 0.001 s = 0.0001 s = 0.0005
parent p.d.f. 1.4 3.3 1.5
1st Chebychev signal+background 14.6 7.9 10.5
1st Chebychev signal 15.9 7.4 11.7
2nd Chebychev signal+background 3.5 3.7 3.8
2nd Chebychev signal 5.5 4.3 4.2
4th Chebychev signal+background 2.7 3.9 2.8
4th Chebychev signal 0.7 2.1 1.3
5th Chebychev signal+background 8.1 4.1 7.4
5th Chebychev signal 4.8 3.1 3.5

Table 1: The power of the goodness of fit test for the different cases of fit p.d.f.
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(b) s = 0.0005
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(c) s = 0.0001

Figure 22: p-value distribution for the case where parent p.d.f. is fitted to data samples.
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(a) 1st order Chebychev polynomial
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(b) 1st order Chebychev polynomial
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(c) 2nd order Chebychev polynomial
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(d) 2nd order Chebychev polynomial
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(e) 4th order Chebychev polynomial
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(f) 4th order Chebychev polynomial
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(g) 5th order Chebychev polynomial
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(h) 5th order Chebychev polynomial

Figure 23: p-value distribution for different fit p.d.f. fitted to data samples. The left figures show the
distribution when both signal and background have a different Chebychev polynomial then
the parent p.d.f. The right figures show the distribution when the signal only has a different
Chebychev polynomial then the parent p.d.f. The blue straight line corresponds to s = 0.0001,
the red dotted line corresponds to s = 0.001 and blue dotted is s = 0.0005.
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Discussion: From the p-value distributions in Fig. 22 it follows that s = 0.0001 is the
best choice, because it has the smallest bias. As mentioned before s could be too small
and therefore the p-value distribution would be always flat. The p-value distributions
in Fig. 23 shows that this is not the case for s = 0.0001. Furthermore it has the smallest
bias to higher p-values. This bias comes from the behaviour of the Chebychev poly-
nomials. Higher order polynomials will fit the small fluctuations better and therefore
the s parameter is too large to see the finer structure. Thus the p-value distribution
has a bias to higher p-values. This bias vanish for Chebychev polynomials with one
order lower than the true polynomial. For a difference of two order of the Chebychev
polynomials the p-values peaks to smaller values.

Testing the invariant mass distribution This procedure was used to look for the be-
haviour of the p-value distribution for two cases of peaking background: first an ad-
ditional small peak in the mass distribution of B0→ K∗0µ+µ− and second additional
background contributions in the B0 → J/ψ K∗0 mass. In the first case the additional
peak influences directly the B0→ K∗0µ+µ− mass fit and in the second case additional
background contributions in the B0→ J/ψ K∗0 mass fit influence the fixed mean of the
B0 mass peak. Figure 24 shows p-value distribution for s = 0.0001 of the first case of
peaking background.
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Figure 24: Left: The B0 invariant mass distribution is shown for a toy experiment, when an additional
peaking component, modeled with a Gaussian function with mean 5320 MeV/c2 (top), 5290
MeV/c2 (bottom) and sigma 30 MeV/c2, is included. The corresponding p-value distribution
is shown on the right.

Figure 25 shows the p-value distribution for different fixed mean values of the fit
p.d.f. From shifts of 5 MeV/c2 on the p-value distribution changes. The p-value dis-
tribution go to lower p-values and for a difference of 20 GeV2/c4 (width of the peak =
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20 GeV2/c4) all p-values are below 0.05.
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Figure 25: The B0 invariant mass distribution is shown for a toy experiment (left), when the fixed Gaus-
sian mean of the fit function is shifted by 10 MeV/c2. The corresponding p-value distribution
is shown on the right. The black line corresponds to a shift of 1 MeV/c2, the blue line corre-
sponds to 2 MeV/c2, the red line correspond to 5 MeV/c2, the green line corresponds to 10
MeV/c2 and the purple line corresponds to 20 MeV/c2.

In conclusion: additional peaks which are not included in the fit p.d.f., shift the p-
value distribution to lower p-values. As it should be when the fit p.d.f. is not equal to
the true p.d.f. of the data.

Remark
The point-to-point dissimilarity method, which was implemented and tested in this
sections, has been applied to the distribution for forward and backward events before
computing of the zero-crossing point of AFB, to decide if the fitted p.d.f. well describes
the data. This allowed us to model the q2 distributions for the signal (for forward and
backward category) keeping blind the AFB. Avoiding the risk of involuntarily biasing
the result. The choice of the order of the polynomial was only driven by the goodness
of fit test, and the y-axis (i.e. the number of events for the two categories) was kept
blind, such that it was impossible to compute the AFB before choosing the p.d.f. used
for fitting the signal.
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5. Measurement

In Sec. 3 the unbinned counting method was described and tested. In this section the
signal selection and the application of the method to data are described.

5.1. Selection

Here the selection of the signal events is shortly described. For more information
about the selection see Ref. [10]. The signal candidates of B0→ K∗0µ+µ− events must
first pass a hardware trigger which selects muons with at transverse momentum, pT >
1.48 GeV/c. In the software trigger additional conditions are required to select the
signal events (Refs. [29, 38]). The residual background can be classify according with
the three categories: combinatorial background, partially reconstructed background
and peaking background.
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Figure 26: The K+ π− µ+ µ− invariant mass versus the µ+ µ− invariant mass distribution for candidates
in data. Plot reproduced from Ref. [8]. The red solid lines are the J/ψ and ψ(2S) resonance
regions. They are removed from the analysis. The yellow dashed line is the K+ π− µ+ µ−

invariant mass cut to remove partially reconstructed backgrounds. The black lines show a
±50 MeV/c2 window around the reconstructed B0 mass.

The combinatorial background consists of particles from different decay trees which
are randomly combined. This component is described with an exponential in the B-
invariant mass fit and is reduced using a Boosted Decision Tree (BDT). The BDT uses
information about the event kinematics, vertex and track quality, impact parameter
and particle identification information.

The peaking background consists of the following decays: B0→ J/ψ K∗0, B0→ ψ(2S)
K∗0 and B0 → φ µ+ µ−, where at least one particle is misidentified. Vetoes have been
applied in order to reduce this background to a negligible level.

The partially reconstructed background consists of particles coming from the same
B-meson decay where some particles from the same decay tree are missing. As a con-
sequence this background is on the left of the B0 mass.
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5.2. B0→ K∗0µ+µ− and B0→ J/ψ K∗0 invariant mass distributions

The mass model used for the signal and background is tested using B0 → J/ψ K∗0

events and B0 → K∗0µ+µ− MC. The combinatorial background is modeled with an
exponential function, while the partially reconstructed background is modeled with
an empirical model, known as RooExpAndGauss. The RooExpAndGauss models an ex-
ponential rise to a threshold and a Gaussian fall off above the threshold.
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Figure 27: The K+π−µ+µ− invariant mass of B0 → J/ψ K∗0 is shown. Plot reproduced from Ref. [8].
The red dashed line is the exponential background, the yellow long dashed line is the RooEx-
pAndGauss contribution, the long dashed purple line is the additional signal component for
B0

s → K∗0 J/ψ and the green line is the signal double Crystal Ball shape.

For the signal mass distribution of B0→ K∗0µ+µ− and B0→ J/ψ K∗0 a double Crystal
Ball shape [34] is used with both tails on the left-hand side of the mean. It is assumed
that the B0 mass, µB0 , and shape parameters α and n are identical for B0 → J/ψ K∗0

and B0→ K∗0µ+µ−. This has been verified using the MC simulation. Figure 27 shows
the mass distribution for B0→ J/ψ K∗0 in the J/ψ mass window. In Fig. 28 the mass
distribution for B0→ K∗0µ+µ− is shown. The mean, µB0 , and the shape parameters α
and n are fixed from the B0→ J/ψ K∗0 measurement, but the widths σ1 and σ2 are left
floating in the fit.

In the B0→ J/ψ K∗0 fit an additional component is included for B0
s → K∗0 J/ψ de-

cays, which is suppressed by fs/ fd and a CKM factor. The fraction of B0
s decays is

constrained from Ref. [3] to be 0.7±0.2%. In the fit for B0→ K∗0µ+µ− the B0
s contribu-

tion is neglected, which result in a small additional systematic uncertainty.
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Figure 28: K+π−µ+µ− invariant mass distribution of B0→ K∗0µ+µ− candidates, in the range 4m2 < q2

< 19 GeV2/c4, after the full selection has been applied. The signal mass model (green line)
and the background mass model (red line) are described in the text. Figure taken from Ref.
[8].

5.3. Zero-Crossing Point of AFB

In this section the result of the zero-crossing point of AFB is shown. For more details
see Ref.[8]. The p.d.f. for forward- and backward events are expected to be smooth in
q2 in the range 1 − 7.8 GeV2/c4. Above 7.8 GeV2/c4 there is a non-negligible contri-
bution from the radiative tails of the J/ψ . Below 1 GeV2/c4 there is the photon pole,
which is difficult to parametrize with a smooth polynomial. For the case q2 → 0 the
amplitude of the penguin diagram, which includes the photon (see Fig. 4), increases
rapidly, resulting in an infrared divergence. The mass model described in section 5.2
is used for the signal mass distribution and a third order Chebychev polynomial is
used for the signal q2 distribution. For the background q2 distribution a second order
Chebychev polynomial is used.

5.3.1. Result

The unbinned counting method from Sec. 3 was applied to data. Before calculating the
AFB, the fit of the forward and backward category was tested with the point-to-point
dissimilarity method described in Sec. 4. Figure 29 shows the forward and backward
going candidates.
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Figure 29: The q2 distribution for the forward category (left) and for the backward category (right) for
the signal region. The fit to data is superimposed. The dashed red line is the background, the
dashed green line is the signal and the blue line is the sum of both. Figure taken from Ref.
[8].

The fit for the forward category has a p-value of 0.6 and the fit for the backward
category has a p-value of 0.9. Therefore the fits are in good agreement with data. After
the goodness of fit test, the zero-crossing point of the AFB and the 68% confidence level
were calculated as shown in section 3. The results are shown in Fig. 30. The extracted
zero-crossing point for B0→ K∗0µ+µ− is:

q0 = 4.9+1.1
−1.3 GeV2/c4[8].

This result is compatible with SM predictions and strongly disfavours models with
flipped C7 Wilson coefficient with respect to SM.
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Figure 30: The AFB as a function of q2. The blue dashed line comes from the unbinned counting experi-
ment. The green band is the theory prediction from Ref. [22]. The data-points are the result
of counting forward- and backward-going events in 1 GeV2/c4 bins of q2. The uncertainty on
the data-points is statistical only. The red-hatched region is the 68% confidence interval on
the zero-crossing point observed in the data. Figure taken from Ref. [8].

Page 47 University of Zurich, Physics Institute, August 10, 2012



6. Summary Measurement of the Zero-Crossing Point of AFB and S5 of B0→ K∗0µ+µ− at LHCb

6. Summary

For the analysis of the zero-crossing point of AFB the unbinned counting method was
used. The method splits the data into forward and backward events. Afterward the
two categories are fitted in mass and q2, and combined together to form the AFB as a
function of q2. This method was tested on MC and later applied to data. The result for
the zero-crossing point of AFB is

q0 = 4.9+1.1
−1.3 GeV2/c4[8]

and the SM prediction is

q2
0 = 4.97+0.03

−0.03|FF
+0.09
−0.09|SL

+0.29
−0.27|SD GeV2/c4[22],

where (FF) are the form factor uncertainties, (SL) are the uncertainties from the Λ/mb
corrections and (SD) are the uncertainty from short distance parameters (mt, mW and
the µ-scale). The measured AFB is compatible with the SM prediction. As mentioned
in section 2, earlier measurements seemed to prefer a flipped C7 Wilson coefficient
with respect to the SM. This would have implied no zero-crossing in the AFB. The
present analysis does not confirm this observations.

A goodness of fit method for multidimensional analysis was implemented: the
point-to-point dissimilarity method. This has been a crucial aspect to test and vali-
date the empirical model used to fit the data.

In addition a sensitivity study for the measurement of the observables S4, S5, S7 and
S8 has been performed. It has been found that the zero-crossing point of the S5 asym-
metry can be measured by LHCb with a dataset corresponding to 1 fb−1. These mea-
surements have been validated using the LHCb simulation. The background model
has been studied by using the B0-mass sidebands in data. At the moment these ob-
servables are still “blind”, but a measurement of them is foreseen for the near future.
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Appendix

A. RootFinder Method

The RootFinder method is described in section 3.2.2. It is based on the bisection method
to find the root of a function.[2]

Algorithm for the bisection method

1. Choose xl and xk such that f (xl) f (xk) < 0, or in other words, f (x) changes sign
between xl and xk.

2. The first estimation for the root, xm is the mid-point between xl and xk as

xm =
xl + xk

2
(39)

3. Now different cases must be checked:

a) If f (xl) f (xm) < 0, then the root lies between xl and xm; then xl = xl and xk = xm.
b) If f (xl) f (xm) > 0, then the root lies between xm and xk; then xl = xm and xk = xk.
c) If f (xl) f (xm) = 0, then the root is xm. Stop the algorithm if it is true.

4. Repeat step 2-3 until the number of iteration is greater then a pre-specified number
of iteration Nmax or xk−xl

2 < ε, where ε is the pre-specified error tolerance.

Figure 31 shows an iteration example for the described bisection method.
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F(b )2
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Figure 31: The figure shows the iteration for finding the root. The gray brackets show the different
iteration steps from top to down.[37]
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