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e Introduction:

e Systematic Expansion of QCD
using Soft and Collinear Effective Theory

e Motivation for going beyond
Leading Power

e SCET at Subleading Power:

Overview of recent developements in collider
observables at Subleading Power

Computing Power Corrections at Fixed Order

Subleading Power Regularization and Renormalization

Leading Log Resummation at subleading power




An LHC Collision

e Very complicated structure!

. Q ~ TeV 1
2
R N @ my ~100 Gev

W m?%/pry ~ 20 GeV

7 : NN . -
i : N
: : °
HEE .

aleoq ABI1our]

AQCD ~ 100 MeV

e Involves interactions at many hierarchical energy scales.

e |t is very complicated to obtain precise theoretical predictions



Limits of QCD

e Significant progress in understanding QCD made by considering
limits where we have a power expansion in some small kinematic
quantity.

Collinear Soft Regge
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SOft and CO”Inear Effectlve Theory [Bauer, Fleming, Pirjol, Stewart]

Soft and Collinear Effective Theory (SCET) is limit of QCD

Chiral Pert. Theory

jets, pions p/A, <1 Heavy Quark
SCET energetic ] Effective Theory
hadrons \ / B physics
my/Ey <1 Aqep/my < 1

Results derived with SCET must be equivalent to results derived directly from
QCD.

SCET systematizes the power expansion from the start

— explicit power counting at any step

Simplifies field theoretic derivation of factorization formulae
— Scales separated in building the EFT once and for all, recycled among different processes

e Resummation of large logs from deriving anomalous dimensions of hard, collinear
or soft operators — logs coming from IR poles in pQCD get related to UV divergences in
SCET, hence we can define MS-like counterterms, anomalous dimensions, RGEs, etc..



Mode setup in SCET

e Light cone coordinates: k* = - k* + 2k~ + k' = (k*, k=, k1)

EFT expansion: A <« 1

(k+7 k_7 kJ_) k+
n-collinear: k% ~ Q(A\2, 1, \)
Q-
n-collinear: k& ~ Q(1, A2, \)
SCETy = soft: ki ~ Q(A, A, A) ol
N Q|-

SCET; — usoft: ki ~ Q(A\2, )2, )\2)

hard scale: k., ~ Q(1,1,1) (integrated out)

e Allows for a factorized description: Hard, Jet, Beam, Soft radiation



From Standard Model to SCET

Lsy — LsceT = Luard + Lagn = Z Céia)l-d + Z Efgn + E(QO)

Lhara describes the
hard scattering/the

partonic interaction.

e.g. how to go from gg
to H + 2 partons.

Note: it can come from

non-QCD interactions

Layn describes the
evolution of the
strongly interacting
final /initial states

e.g. how to go from
2 partons to 2 jets/

how the jets evolve

EFT of pure QCD

S~ oH(Q ) ® (Q,7,5.1) ® S(s. 1)+



Power expansion for generic O observable

e A large class of observables O (g7, event shapes, angularities, etc.) exhibit singularities
in perturbation theory as O — 0.

e Standard factorization theorems describe only leading power term
o To be concrete let's take O = p2T

do >/ as n2nl ()IOg iTz
- 2_% (;) ZO Cm 7 Leading Power (LP)

e Relate observable pT

< 1 to the SCET power counting parameter \ < 1
e Use SCET to study this limit



Power expansion for generic O observable
e A large class of observables O (g7, event shapes, angularities, etc.) exhibit singularities
in perturbation theory as O — 0.

e Standard factorization theorems describe only leading power term
o To be concrete let's take O = p2T

d eS) < n2n71 |0g iTQ
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Next to Leading Power (NLP)

e Relate observable p—T < 1 to the SCET power counting parameter A < 1
e Use SCET to study this limit



Power expansion for generic O observable

e A large class of observables O (g7, event shapes, angularities, etc.) exhibit singularities

in perturbation theory as O — 0.

e Standard factorization theorems describe only leading power term.

e To be concrete let's take O = p2T

o2
do >0/ as n2nzl ()IOg %
B G) R
oo}
+z:1<as> Zc log™ —-
—
+Z<as> chm pT|0g 272-
—1

do(©) do(® do®
+
dp? dp? dp%

Leading Power (LP)

Next to Leading Power (NLP)

e Relate observable p—T < 1 to the SCET power counting parameter A < 1

e Use SCET to study this limit



Leading Power

Leading power well understood for a wide variety of observables.

e We can prove factorization theorems

do©® i (%)”2"21 c© (log” T\ _
dr _n=0 T/ = nm T +_

= HOJO g 0 g 5O 4 O(AQ%>
T - T T T

e We can resum logs and get very accurate theory predictions
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So, why bother going beyond leading power?



NLP field theoretical motivations

NNLP |

e Power counting is a different direction in & WL
which amplitudes and cross sections o° e
can be expanded & P Qo

e Various interesting field theoretical questions o T
to answer at subleading power: o T

o What is the structure of factorization theorems at each power?

do(” (1) o f(m) o (ns)
10 Z H7 e i @5
J
o What is the degree of universality?

o Appearance of universal structures, e.g. [cysp(s)?

o Appearance of new RGE structures, functions, objects, etc



Application: Fixed Order Computations via Slicing

e IR divergences in fixed order calculations can be regulated using slicing parameter
(e.g. g7 [Catani,Grazzini], N-jettiness [Gaunt et. al], [Boughezal et al.] )

cut

o(X) = /dQTLT(X) = / quidZé)T() + / dqr do(X)
0 0

dqr cut dar

aT

e g7 subtraction has been applied to many processes in pp at NNLO:
pp—Z, pp— W, pp— H, pp— v, pp = Zv, pp > W,
pp — ZZ, pp - WW, pp - WZ

[Matrix collaboration]
e N-jettiness subtraction also applied to W/Z/H + 1 jet @NNLO

e Error, A(T(qCT”t), (or computing time) can be exponentially improved by analytically computing
power corrections.
cut

ar
AU(q%‘t) _ / qu (dU(X) o dO’(X)LP) = g"on sing.(qc#t)
J dqr dqr

e Understanding of power corrections crucial for applications to more complicated processes
(fully differential N3LO calculations, H + jets, Z/W + jets)



Applications

Matching resummation with FO
If I - Peak Tail
observable 7 needs resummation: Resummation  Transition | Fixed Order

e Use Leading Power EFT for resummed XS at small 7

3
k 2k __ ~
do plog™r  EFT e e 2
—_— ~ H -
dr =0 s T resummation T

e For large 7 use Fixed Order calculation to get full
O(af) contribution

e Need matching procedure in transition region between the two.

e Computing Power Corrections analytically improves convergence of the EFT at larger
values of 7
—> smaller transition regions
— smaller uncertainties from matching procedure

L L B B
Taming log divergence of NLP Ty e

e Fixed order power correction (NLP) exhibits an inte-
grable divergence for 7 — 0

NLP Fixed Order (x4) é

—— NLP LL a(p) (x4)

o If Leading Power (singular) is resummed and NLP is .
not, the NLP (integrable) divergence dominates.
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[Moult, Stewart, Vita, Zhu]



Other applications: Bootstrap

Bootstrap for observables
e Bootstrap approaches aim to completely reconstruct amplitudes or cross
sections from limits.
Remaining Parameters in Symbol

e Intensively applied for amplitudes in A/ = 4.  of 6-Point MHV Remainder Function

Constraint L=2|L=3|L=4
. 1. Integrability 75 643 5897
° )
Recenty' SOrn.e success In QCD 2. Total S3 symmetry 20 151 1224
for soft matrix elements [zhu et al] 3. Parity invariance 15 | 120 | s74
1. Collinear vanishing (7°) 4 59 622
> 5. OPE leading discontinuity 0 26 482
6. Final entry 0 2 113
7. Multi-Regge limit 0 2 80
T ) 8. Near-collinear OPE (T) 0 0 4
NLP, NNLP —» collinear OPE (T
9. Near-collinear OPE (77?) 0 0 0
e Can the bootstrap be extended from [Dixon et al.], [Basso, Sever, Vieira]

amplitudes to cross section?
For example, can we bootstrap an event shape observable using the infor-
mation from limits at leading and subleading power?



SCET beyond leading power



Subleading Power QCD for collider observables

Before 2016

SCET, SCET,,
ultra-soft modes kE ~ Q(A2, A2, A%) soft modes kE ~ Q(X, A, A)
(thrust, N-jettiness, jet mass, ...) (g7, broadening, EEC, Glaubers, ...)
Subleading Lagrangians v
F|Xed Order (fully differential)
Hard Scattering Operators
Resummation
Lagrangians Fixed Order Hard Scattering Resummation

[Stewart et al.] [Beneke et al.]
(2002-2004)



Subleading Power QCD for collider observables

2016
SCET, SCET,,
ultra-soft modes kE ~ Q(A2, A2, A%) soft modes kE ~ Q(X, A, A)
(thrust, N-jettiness, jet mass, ...) (g7, broadening, EEC, Glaubers, ...)
Subleading Lagrangians v
FlXed Order (fully differential) LL
Hard Scattering Operators
Resummation
Lagrangians Fixed Order Hard Scattering Resummation

[Stewart et al.] [Beneke et al.] [Moult et al.] LL at O(ag)
(2002-2004) 1612.00450 (qgV)



Subleading Power QCD for collider observables

2017

SCET, SCET,,
ultra-soft modes kE ~ Q(A2, A2, A%) soft modes kE ~ Q(X, A, A)
(thrust, N-jettiness, jet mass, ...) (g7, broadening, EEC, Glaubers, ...)
Subleading Lagrangians v
FlXed Order (fully differential) LL

Hard Scattering Operators  ggH, Vqg, Hag, N-jet
Resummation

Lagrangians Fixed Order Hard Scattering Resummation
[Stewart et al.] [Beneke et al.] [Moult et al.] LL at O(ag) [Moult, Stewart, GV] 1703.03408
(2002-2004) 1612.00450 (qgV/), 1710.03227 (ggH) [Moult et al.] ggV/ 1703.03411

[Chang, Stewart, GV] qgH
1712.04343

[Beneke et al.] (N-jet operators)
1712.04416



Subleading Power QCD for collider observables

2018

SCET, SCETy,
ultra-soft modes kE ~ Q(A2, A2, A%) soft modes kE ~ Q(X, A, A)
(thrust, N-jettiness, jet mass, ...) (q-,-, broadening, EEC, Glaubers, ...)
Subleading Lagrangians v
Fixed Order (fuly differential) LL, NLL NLL
Hard Scattering Operators  ggH, Vagg, Hag, N-jet
Resummation H— gg
Lagrangians Fixed Order Hard Scattering Resummation
[Stewart et al.] [Beneke et al.] [Moult et al.] LL at O(ag) [Moult, Stewart, GV] 1703.03408 [Moult, Stewart, GV, Zhu]
(2002-2004) 1612.00450 (qgV/), 1710.03227 (ggH) [Moult et al.] gV 1703.03411 1804.04665, H — gg
[Ebert, Moult, Stewart, Tackmann, GV, Zhu] [Chang, Stewart, GV] qgH
1807.10764, T( (beam thrust) at NLL NLP 1712.04343
[Ebert, Moult, Stewart, Tackmann, GV, Zhu] [Beneke et al.] (N-jet operators)

1812.08189, q¢ at NLL NLP 1712.04416, 1808.04742



Subleading Power QCD for collider observables

(to appear in) 2019

SCET, SCET,,
ultra-soft modes kE ~ Q(A2, A2, A%) soft modes kE ~ Q(X, A, A)
(thrust, N-jettiness, jet mass, ...) (q-,-, broadening, EEC, Glaubers, ...)
Subleading Lagrangians v v
Fixed Order (fuly differential) LL, NLL NLL
Hard Scattering Operators  ggH, Vagg, Hag, N-jet v
Resummation H— gg, pp— H/V
Lagrangians Fixed Order Hard Scattering Resummation
[Stewart et al.] [Beneke et al.] [Moult et al.] LL at O(ag) [Moult, Stewart, GV] 1703.03408 [Moult, Stewart, GV, Zhu]
(2002-2004) 1612.00450 (qgV/), 1710.03227 (ggH) [Moult et al.] gV 1703.03411 1804.04665, H — gg
[Chang, Stewart, GV] [Ebert, Moult, Stewart, Tackmann, GV, Zhu] [Chang, Stewart, GV] ggH [IM, LS, IS, FT, GV, HXZ]
Subleading Lagrangians in SCET), 1807.10764, Tq (beam thrust) at NLL NLP 1712.04343 pp — H,pp — V
[Ebert, Moult, Stewart, Tackmann, GV, Zhu] [Beneke et al.] (N-jet operators)
1812.08189, g+ at NLL NLP 1712.04416, 1808.04742

[Chang, Stewart, GV]



Subleading Power QCD for collider observables

SCET, SCETy,

ultra-soft modes ki ~ Q(AZ, A2, A2) soft modes ki ~ Q(A, A, A)
(thrust, N-jettiness, jet mass, ...) (g7 broadening, EEC, Glaubers, ...)
Subleading Lagrangians v v
Fixed Order (fully differential) LL, NLL NLL
Hard Scattering Operators  ggH, Vqgg, Hqg, N-jet v
Resummation H— gg, pp— H/V
Lagrangians Fixed Order Hard Scattering Resummation
[Stewart et al.] [Beneke et al.] [Moult et al] LL at O((xg) [Moult, Stewart, GV] 1703.03408 [Moult, Stewart, GV, Zhu]
(2002-2004) 1612.00450 (qg V'), 1710.03227 (ggH) [Moult et al.] qgV 1703.03411 1804.04665, H — gg
[Chang, Stewart, GV] [Ebert, Moult, Stewart, Tackmann, GV, Zhu] ~ [Chang, Stewart, GV] qgH [IM, LS, 1S, FT, GV, HXZ]
Subleading Lagrangians in SCET|, 1807.10764, 7—0 (beam thrust) at NLL NLP 1712.04343 pp — H,pp — V
[Ebert, Moult, Stewart, Tackmann, GV, Zhu] [Beneke et al.] (N-jet operators)
1812.08189, g+ at NLL NLP 1712.04416, 1808.04742
[Chang, Stewart, GV]

Other works on at subleading powers in different contexts:
® B-physics: [Lee, Stewart],[Neubert, Becher, Paz, Hill] [Beneke, Feldmann] [Tackmann, Mannel] (and many others)

o Threshold (only soft radiation): [Bonocore, Laenen, Magnea, Vernazza, White] (next-to-eikonal),
[Beneke, Broggio, Garny, Jaskiewicz, Szafron, Vernazza ] (resummation) and many other references...

o Inclusive fixed order: [Boughezal, Liu, Petriello], [Boughezal, Isgrd, Petriello]

Subleading power in light quark mass expansion: [Liu, Penin]



What's in this talk

SCET, SCET),
ultra-soft modes k& ~ Q(A2, A2, A2) soft modes k£ ~ Q(X, X, \)
(thrust, N-jettiness, jet mass, ...) (g7 broadening, EEC, Glaubers, ... )

Subleading Lagrangians v v

Fixed Order (fully differential) LL,

Hard Scattering Operators  ggH, Vqg, Hqg, N-jet v
Resummation H— ggl |pp ) H/'VI
Lagrangians Fixed Order Hard Scattering Resummation
[Stewart et al.] [Beneke et al.] [Moult et al.] LL at O(a%) [Moult, Stewart, GV] 1703.03408 [Moult, Stewart, GV, Zhu]
(2002-2004) 1612.00450 (q§ V), 1710.03227 (ggH) [Moult et al.] 1703.03411 1804.04665, H — gg
[Chang, Stewart, GV] [Ebert, Moult, Stewart, Tackmann, GV, Zhu] [Chang, Stewart, GV] 1712.04343 [IM, LS, IS, FT, GV, HXZ]
Subleading Lagrangians in SCET), 1807.10764, Ty (beam thrust) at NLL NLP pp — H opp — V
[Ebert, Moult, Stewart, Tackmann, GV, Zhu] [Beneke et al.] (N-jet operators)
1812.08189, g at NLL NLP 1712.04416, 1808.04742

[Chang, Stewart, GV]



Next: Computing power corrections at Fixed order

SCET, SCET),
ultra-soft modes k& ~ Q(A2, A2, A2) soft modes k£ ~ Q(X, X, \)
(thrust, N-jettiness, jet mass, ...) (g7 broadening, EEC, Glaubers, ... )

Subleading Lagrangians v v
Fixed Order (fully differential) LL, NLL
Hard Scattering Operators  ggH, Vqg, Hqg, N-jet

Resummation H—gg, pp— H/V
Lagrangians Fixed Order Hard Scattering Resummation
[Stewart et al.] [Beneke et al.] [Moult et al.] LL at O(a%) [Moult, Stewart, GV] 1703.03408 [Moult, Stewart, GV, Zhu]
(2002-2004) 1612.00450 (q§ V), 1710.03227 (ggH) [Moult et al.] 1703.03411 1804.04665, H — gg
[Chang, Stewart, GV] [Ebert, Moult, Stewart, Tackmann, GV, Zhu] [Chang, Stewart, GV] 1712.04343 IM, LS, IS, FT, GV, HXZ]
Subleading Lagrangians in SCET), 1807.10764, Ty (beam thrust) at NLL NLP pp — H opp — V
[Ebert, Moult, Stewart, Tackmann, GV, Zhu] [Beneke et al.] (N-jet operators)
1812.08189, g at NLL NLP 1712.04416, 1808.04742

[Chang, Stewart, GV]



Power corrections at FO: General Setup

e Take as example the fully differential cross Beam Thrust (0-jettiness)
. do . .
section IdvaT for color singlet production To = Z min(p;r,pk_)
(0-jettiness) including O(as) and O(T/Q) KGevent
e Used as a slicing parameter for FO
corrections . calculations

e Represents the ‘“crossed” version of
o Power corrections in O(T/Q): thrust

o Perturbative

e NOT higher twist PDFs/non-perturbative power corrections.

e O(T/Q) corrections contained in:
e Phase space: & = ¢(0) 4 %cb(?) + (')('(%2)

e Matrix element squared: |M|2 = A©) + %AQ) + 0(5—22)

- . do dz 0) 4 (0 T 4(0) a2 T 20 72 2
Schematically: m ~ / — {A( 1o 4 5A( Vo) 4 aA( Jo®| 1 0 E,as



Power corrections at FO: PDF expansion

hemisphere b / hemisph
o Need to keep track of O(7) component of mo- enusphiere Y,’, " ennspherea
'/ ph

menta: both for phase space expansion and N\ kb (Y) )

mandelstams entering |M|?. AN

e Solving Q and Y measurements uniquely fixes
how factors of 7 enter the PDFs.

Example n-collinear emission, kT ~T, k™ ~Q:

e L TR (TP
pff:QeY[(lJ,- Q )+5E+O(&):|7 n“:(l,(lo,l)
nt :(170707_1)

T k= T2\ A"

pmae g (e ze) (@) T

Py Q + Q + 20 + Q2 5

At subleading power both PDF momenta contain power corrections regardless of the
direction of the emission = derivative of both PDFs

Pa Xa T Xa T Xa
w(g) o (Cran) = (3) e (3)

T power corrections from Ecm zs

residual momenta in PDFs T T
: fecion- Pb ’
for an n-collinear emission: fp ( ) ~ fy (Xb + 7Ab> = fp (xp) + — Apfy (xp)
Eem Q Q




Power corrections at FO: Master formulae

e Expansion of phase space and matrix element squared in soft and

collinear limits has a general (universal) structure

n-Collinear Master Formula for 0-Jettiness power corrections

da'E,Z) 1 % z5 (QTeY
dQ2dydT x, Za (1—za)¢

a

)_ {fafb AD(Q, Y, z,)

1+

Y G 2

e T (1—2z3)*—2 1-—2z, Z,

—AO 1 r £l fof,!
+ P Q alp 22 + X3 27 2Tb + Xp 2z, alp

Soft Master Formula for 0-Jettiness power corrections
d0‘§2) 172 5(0) P e¥ P, e¥ _
szdeTN; Q {A (Q,Y)|:fafb<*efy*7 JrXaefyfafb*Xbeafb

+ 66 [polx‘f’(o, Y) + %Z\(E)(O, Y)H




Power corrections at FO: Cross section results

e Combining soft and collinear kernels, % poles cancel (consistency check)

and the differential cross section takes the form:

Za Zp

dggf\y/n()iT = &LO(%T')HIXQ fl dds |:fﬁcf('f%jn)(23?zbv7—) f; EC)E )(Za7zb7T) bef/cigf’ )(zavszT):|

e By consistency, the kernel must have trivial z,, z, dependence (soft kine-

matic) at Leading Log.

e We can compute the full NLO kernels with master formulae.
Non-trivial z,, z, dependence at NLL.

e Example for gg channel in H production at NLL:

% 1 1— 2\2
VG Ty = ac, 6(1723)[<7|n Te 71)(5(172b>+ (14 2)(1 = zp + 2) Lo(1 — zp)
[ Qe 225



Power corrections at FO: full NLO results for pp — H

[Ebert, Moult, Stewart, Tackmann, GV, Zhu] 1807.10764

10_1§ T T fff”w T T fff”w T T T TTTTT T I‘}-
F pp — H (13 TeV) >
e [ gg NLO

-2 _
e 0T a L E
T --alta :
qq _g|_— full nons. |
— 107 fun—a,L
Q F — full—a;L—ay 3
£ L ]
2 1071 E
10—5 1 L1 \H‘ 1 1 \\\\H‘ 1 NN

107 1074 1073 1072 1071
Teut — 77:ut/Q

Fxvo(r) = ﬁ{f[al InT + a0 + O()] }

NLO 7—015;: gg — Hg a ap
earlier fit +0.6090 £ 0.0060 +0.1824 4+ 0.0043
Numerical fit at percent level matches analytic +0.6040 +0.1863

analytic calculation within 1 o



Next: Regularization and Renormalization at NLP

SCET, SCET,,
ultra-soft modes k& ~ Q(A2, A2, A2) soft modes k£ ~ Q(X, X, A)
(thrust, N-jettiness, jet mass, ...) (g7, broadening, EEC, Glaubers, ...)

Subleading Lagrangians v v
F|Xed Order (fully differential) LL, NLL

Hard Scattering Operators  ggH, Vqg, Hqg, N-jet v
Resummation pp— H/V
Lagrangians Fixed Order Hard Scattering Resummation
[Stewart et al.] [Beneke et al.] [Moult et al.] LL at O(a2) [Moult, Stewart, GV] 1703.03408 [Moult, Stewart, GV, Zhu]
(2002-2004) 1612.00450 (qgV/), 1710.03227 (ggH) [Moult et al.] 1703.03411 1804.04665, H — gg
[Chang, Stewart, GV] [Ebert, Moult, Stewart, Tackmann, GV, Zhu] [Chang, Stewart, GV] 1712.04343 IM, LS, IS, FT, GV, HXZ]
Subleading Lagrangians in SCET), 1807.10764, Ty (beam thrust) at NLL NLP pp — Hopp — V

[Ebert, Moult, Stewart, Tackmann, GV, Zhu]|  [Beneke et al.] (N-jet operators)
1812.08189, g¢ at NLL NLP 1712.04416, 1808.04742

[Chang, Stewart, GV]



New features of
Regularization and Renormalization

at Subleading Power

Regularization of subleading power Rapidity divergences Renormalization with 6 functions
(Ebert, Moult, Stewart, Tackmann, GV, Zhu) (Moult, Stewart, GV, Zhu)

[1812.08189] [1804.04665]



Rapidity Divergences

veto

o Large class of observables e.g. ¢, broadening, EEC, p'™@ ..
belong to the class of SCET), observables

e SCET) calculations are affected by Rapidity Divergences

e Measurement fixes | component of momentum, i.e. kTk~ ~ k” hyperbola

kt
Light cone coordinates: k* = (kt, k—, k1)
Q-
n-collinear: p, ~ Q(\2, 1, \)
n-collinear: pr ~ Q(1, A2, \) ;g ol
soft: ps ~ Q(A, A, A) NQ A Q

o Example of massless soft real emission with SCET|; measurement:

() - o [ dkT
/ddk6+(k2)z\(’ G, — ko O)F(kt, k ,kJ_):qTZ/O k—_f(k ,G1)

e Divergence when modes overlap
Kkt >0, y =1/2log(kT/k™) = +oo,

not regulated by dimensional regularization = need a rapidity regulator



Rapidity Divergences beyond leading power

. Leading Power (in q?,- < Q?) representative rapidity divergent integral:

dotP 1 /Q dk~
P -
2 242 —
qu qr “Jo k
¢ Log divergent, from eikonal propagators from Wilson Lines. (typically...)
& It can be regulated in many ways: [Collins| , [Beneke, Feldmann, Chiu, Manohar, ...],
[Becher, Bell] [Bell, Rahn, Talbert], [Chiu, Jain, Neill, Rothstein] [Rothstein,Stewart], [Chiu, Fuhrer,
Hoang, Kelley, Manohar], [Echevarria, Idilbi, Scimemi], [Li, Neill, Zhu], ...



Rapidity Divergences beyond leading power

. Leading Power (in qg,— < Q?) representative rapidity divergent integral:

dotP 1 /Q dk—
dq%_ q%ere 0o k-

o Log divergent, from eikonal propagators from Wilson Lines. (typically...)

& It can be regulated in many ways: [Collins| , [Beneke, Feldmann, Chiu, Manohar, ...],
[Becher, Bell] [Bell, Rahn, Talbert], [Chiu, Jain, Neill, Rothstein] [Rothstein,Stewart], [Chiu, Fuhrer,
Hoang, Kelley, Manohar], [Echevarria, Idilbi, Scimemi], [Li, Neill, Zhu], ...

. Subleading Power: much broader class of rapidity divergent integrals appearing
doNtP 1 /Q dk~
0

¢ Prototypical integrals take the form: o~ =
dgt  a Jo (k7)"

© « can be negative, hence not only log divergences

dk— dk—
/W , W —>  Power Law Rapidity Divergences

o Regulating only Wilson lines is not sufficient.
Note that this is also true at LP for Glaubers, see [Rothstein, Stewart]

o Divergences also from soft-quark emissions,
hard-collinear propagators, phase space expansion.




pidity Regularization at Subleading Power

Hence, at Subleading Power:
e Regulating only Wilson lines is not sufficient.
e Regularization should conveniently treat power law rapidity divergent integrals
e Common simplifications always used at Leading Power no longer true

Example: non-homogeneous regulators (as k" or n regulator with |k,|) generate power
corrections!

Ky + ki~ K2\ — ky\~n K?
n collinear regulator: <u> (k + —) = (L) [1 —n— O(XA)]
[ cotinear reguiator B Ky v (kn )?
,gn<k /Q) 2w (O ek Q) .
v / dk 1+?7 — kv /0 dk nm + O(X\Y)
LP collinear integral NLP integral induced by non homogeneous reg.

The NLP integral induced by the regulator is % divergent = the n) prefactor cancels out and the term does NOT vanish for n — 0

Introduce the pure rapidity regulator

k‘*'}/Q

/ddk—>/ddkw2u’7 nx
n

e It doesn't introduce power corrections

= /ddk wiue VKN

e |t breaks boost symmetry in the most minimal way.

e Includes dimensionless (pure) rapidity scale v (upsilon)



Leading-Logarthmic power corrections

e Compute power corrections in q%-/Q2 in the n-collinear, n-collinear and
soft limits (soft is scaless for homogeneous regulators)

e Sum together results

e Rapidity divergences cancel between sectors, finite terms add up.

(In rapidity regularization this is trivial since gn(n) = ga(—n))

At Leading Log the result is quite simple. Here a couple of examples:
e Drell Yan production (gg — Vg)

do® L G 2 @
_Yaa=Ve  _ ,L0 sCr 2 fa
dQ2dYd %. qq_H/(Q) 4 QQI [ um(XB:Xb)] s

e Gluon fusion Higgs production (gg — Hg)

do@LL

gg—Hg  _ ,LO asCy 2 02 88
dQPdvdgE Gggrsv(Q) X = QZI ) [SQ(Xa)fg(Xb)'*‘ﬁ.m(Xv Xb)]

e Common factor

£ (%2, xp) = —Xaf! (xa)fi(x6) — i(xa) X/ (x5) + 25/ (xa) X/ (x5)



Next Leading-Logarthmic power corrections

o We computed also the NLL kernels at O(as) for all channels both in
DY and ggH.

e z,, 2, kernels pretty complicated. They involve £, (1 — z,), etc.
e Remainder is g3/ Q2 suppressed

e Describes gt distribution up to 10 GeV

5 . .

<o T T I\Hmu; 10 T [T T

34; pp — H (13 TeV) an 1 >

3, F 99NLOy, ¥ =2 [ 3 10

T [ ! ] o

~ 3 — i 1 - F oo al

> 3: VVVVV iugnonslng~ \ ] = 1055 ——-e1L + ¢

S f o alte v >~ E— full— i L

S 2 e [ — full — ¢, L —

ak 2: \ ] % 106 e = E

o L ] o

= r [ g 3

£ b . ]

z 1: \ B T 107F pp — H (13 TeV)

st . < ggNLOy, Y =2 7

1 E A e T

~ 0 Ll T " " N )

10-1 100 10! 102 10 10 10 10
ar [GeV] qr [GeV]

do dU’LP 2 2
dvdeZ ~ dvagz —aMin q% +C°(Y)+O(qT)
T T



Renormalization at subleading powers

(Moult, Stewart, GV, Zhu) [1804.04665)



Fixed Order Calculation of Thrust

e
: > Zk :

e Compute power corrections for Higgs thrust at lowest order

1 do®@ Qs 1 uz 1
= =8Ca () (= r1og L) = (=41
oo dr A <47T) |:<e +log Q27'> (e +log

=8Cy4 (%i) log 7 0(7) + O(a?)

e No virtual corrections at lowest order (6(7) ~ 1/7).
e Divergences cancel between soft and collinear.
e Log appears at first non-vanishing order:

e At LP, log(7)/7 arises from RG evolution of §(7)
e At NLP log(7) arises from RG evolution of “nothing”?



Elements of Subleading Power Factorization

[Moult, Stewart, GV, Zhu]

Note: Fields/Lagrangians have a definite power counting in X!
e Analogously to what we have seen at FO

. . Operator | BF PHBE EIR
power corrections at the operator level arise perator | By, | xn | P | Bs | Yus | 94s
. Power C.| A [ a | a [ A2 ]a3]x2
from two distinct sources:
e Power corrections to scattering amplitudes. LSCET = Lhard T Ldyn

e Power corrections to kinematics.

- () ) 20
> ooy i+ e +
iSo Thard T &) g

e Power corrections to scattering amplitudes can
be computed from subleading SCET operators [Moult, Stewart, GV]

e They give rise to new jet and soft functions, whose renormalization was not previously
known




Renormalization of Subleading Soft Functions

e The subleading soft function satisfies a 2 x 2 mixing RG
4 S (v 10) mly,p) o S vam)
~gg (v, 1) 0 Y22(y; 1) ~é%2} (v, n)

e It mixes with “#-soft” functions

1

= (g 1y O OYn(0)6(r — 1)V (0)7n(0)[0)

2
S (r )
e It is power suppressed due to 6(7) ~ 1 instead of §(7) ~ 1/7.
e In collinear sector, analogous subleading Jet functions and 6-jet functions appear

e We find this type of mixing is a generic behavior at subleading power.



Resummed Soft Function

e Solve RGE mixing equation to renormalize the operators, and
resum subleading power logarithms.

e We find the final result for the renormalized subleading power
soft function:

1 og2 (A
SS)BUS(QT,;L) = 0(7)712 log (&) o271t log (oT)
e Expanded perturbatively, we see a simple series:

2 1% 1 o
Sé,)lius(QTv n) = 6(7) {712 log (a) + 57271 log® (a) + - ]
e |n particular, we find:

e First log generated by mixing with the 6 function operators.
e The single log is then dressed by Sudakov double logs
from the diagonal anomalous dimensions.

e Example also useful for understanding power suppressed RG
consistency.



Next: Resummation of beam thrust at NLP

SCET, SCET),
ultra-soft modes k& ~ Q(A2, A2, A2) soft modes k£ ~ Q(X, X, A)
(thrust, N-jettiness, jet mass, ...) (g7, broadening, EEC, Glaubers, .)

Subleading Lagrangians v v

Fixed Order (suly differential) LL, NLL NLL

Hard Scattering Operators  ggH, Vqg, Hqg, N-jet v

Resummation H— gg,|pp — H/V
Lagrangians Fixed Order Hard Scattering Resummation
[Stewart et al.] [Beneke et al.] [Moult et al.] LL at O(a2) [Moult, Stewart, GV] 1703.03408 [Moult, Stewart, GV, Zhu]
(2002-2004) 1612.00450 (qgV/), 1710.03227 (ggH) [Moult et al.] 1703.03411 1804.04665, H — gg
[Chang, Stewart, GV] [Ebert, Moult, Stewart, Tackmann, GV, Zhu] [Chang, Stewart, GV] 1712.04343 IM, LS, IS, FT, GV, HXZ]
Subleading Lagrangians in SCET), 1807.10764, Ty (beam thrust) at NLL NLP pp — Hopp — V

[Ebert, Moult, Stewart, Tackmann, GV, Zhu] ~ [Beneke et al.] (N-jet operators)
1812.08189, g¢ at NLL NLP 1712.04416, 1808.04742

[Chang, Stewart, GV]



Resummation of Beam thrust at NLP

e Starting point for studying resummation at NLP for fully differential
observables at the LHC hemisphere b y, hemispherea

To= > min(p/.p;)

ke€event

e Used as a slicing parameter for FO
calculations

e Represents the “crossed” version of thrust

e Contains the additional complication of treating the proton initial states (Jet
— Beam functions) at subleading power

o At LL NLP, the fixed order calculation gives (see Fixed Order section):

do® a0 asCp

InE
d7odYdQ Q@ = Q

[26,06)fy (x6) =xa 3 (%) () — fy(xa)x0F4 (x0)

PDF derivative term, no analog at LP




Kinematic corrections for beam thrust

o LP factorization theorem for Ty contains LP beam functions

Be (£ = btw, o= ic) = (pa(P)IB5Lu(0)3(b" = ¥)6(w — Pa)BEL (0)lpn(P 7))

e As we've seen at Fixed Order in the previous sections, at NLP we need
to keep track of small components of momenta routed in beam
functions:

w—w+Aw where Aw~ Top~ O(N?)

e After expansion we get a new object, a Derivative Beam Function
B, (t, =~ - pt
s (£ o iic) = (Po(P)IBE L, (0)0(b" = 5%)0'(w — Po)BE (0)lpn(P7))

Note that the derivative beam function is LP (w ~ \°)



Derivative beam functions and OPE

e The derivative beam function B’ is the object entering the
factorization theorem

e We can OPE it onto PDFs operators using a matching kernel 7

B, (t, Pf,uc Z/d£ - (t Eyu>f(§ 1) 1+O< QCD>:|

e The matching kernel is shown to be related to the LP kernel via

- d
(15) -4 (52)

e Hence, to all orders in o, the derivative beam function OPE is
dé- d X QCD
B ( txm—Z/f o (050 stem) 1+0< :

e The O ( QCD) power corrections include non-perturbative corrections

which include higher twist PDFs. We neglect these by considering
values of 7y s.t. t ~ Q7o > /\éCD



Resummed cross section for beam thust at NLP

o At tree level  tree (L 2“) = 6,;0(t)6 (1 - 2)

e Hence B, (t, x, pic) = 0(t)fy (x, )

we got the PDF derivatives we expected from FO!

For the cross section:

e Other pieces work similar to thrust case (theta beam functions Béz)
subleading Beam functions BSS) ~ tB(© subleading operators, RGEs)

e Final result

single log from mixing with 6 Sudakov
st _510(0) (%2 )aCup(r) oglrm)e ¢
dQ2dYdr 47

X [ng (xa) fg (xb) — xafg (xa) fg(xp) — fg(xa)xbfg/(xb)

non-perturbative functions




Future Directions

e Fixed order calculation of LL power corrections at N3LO
e Power corrections for diboson production
e Resummation beyond Sudakov for collider observables

e Systematic application of fixed order techniques (IBPs, DE, etc.) to
calculate EFT objects at high loop order

e Regge/Small-x/Forward /high-energy limit beyond leading power

e Factorization beyond leading power and Factorization breaking effects

e Subleading power observables, spin asymmetries, pr distributions in
quarkonia production



Conclusions

Subleading Lagrangians

e Described the recent developements for collider Fhed Order e

i) o

Hard Scattering Operators st Vag, Haa, Net

Resummation

observables at subleading power

Lagrangians.

e Studied how to implement rapidity regularization

Hoag,

Fixed Or
s

Hard Scattering,

Resummation

. -n/2
at subleading powers and proposed a new regulator /ddk%/ddku v
purely based on rapidity
o ppal‘!‘(ll!TeV)‘
:Elo-hggNL? =
. . . = ay
e Computed full O(as) power correction of differential 5 ==t
3 g — il none ]
distribution for color singlet production T —miaiow
=107 |
107% L L L
107% 1074 1073 1072 1071

e Cross section level renormalization at subleading power

Teut =

Teu/Q
involves a new class of universal jet and soft functions involving 6-functions.

e Achieved all orders resummation for fully differential color singlet
roduction in at subleading power o rel g Tom e w0 Sudgor
P PP &P (7,&‘;‘571 0(Q) (52)4Ca8(ro) og(ro)e 71 o5 ()

[t ) ) = ) o) — i)

non-perturbative functions
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[t ) ) = ) o) — i)

THANK YOU!

non-perturbative functions



Backup slides



How to treat power law divergences

Consider rapidity divergent integral /ld £(2)

e Consider ra erge egra z ———

nsider rapidity divergent integr g = z)n

e When g(z) is not known analytically (eg. when it involves PDFs), need to extract pole
as n — 0 without computing the integral.

e For a =1, use standard distributional identity

1 5(1—z2)
TR — +Lo(l—2)+O(m),  Loly)=I[0y)/v]+,

e For a > 1, these distributions need to be generalized to higher-order plus distributions
subtracting higher derivatives as well. For example, for a = 2 one obtains

1 12
(]_ _ Z)2+77 - n

6(1—2)+ L, (1-2)+0m)|,

where the second-order plus function £, (1 — z) acts on a test function g(z) as a double
subtraction.

e Power law divergences generate new PDF derivatives

/ dz, F0a/Z2)(0/2) _ F0a)FO0/20) | 0y

(1 —z5)%tn n



Soft-Collinear Factorization at Subleading Power

e BPS field redefinition decouples LP soft and collinear interactions.

e Working in an expansion in EFT parameter A (not «s), subleading
power Lagrangians enter as T-products:

O T{O (@expli [d*x Laynl}IX)

= TLOM @esplifd*x (£ + £ £ yix)
= (0] T{O;k)(O)exp[ifd“xz:(o)]<1+/ [d"yL! 1) é (ifd*y O (ifd*zcMYvifd*ze® 4. . > }\X)
= <0\T{()j§k>(0)<1+fyf/%a“‘ é\/4(/4‘1‘,“‘)(/';[/21”‘3 \ w(ﬂz:‘“)}\x)do) NI

e Only need to consider a finite number of insertions.
e Decoupling of leading power dynamics = states still factorize.

1X) = [Xn)[Xs)

e Call resulting subleading Jet and Soft functions " Radiative” in analogy
to Next-to-eikonal soft gluon radiation [Bonocore, Laenen, Magnea, Vernazza, White]



Radiative Functions: Examples

[Larkoski, Neill and Stewart], [Moult, Stewart and GV]

B’LLS

M _ - gl o 2,
K(l) ’an - gX"Bus(n) : PL;X" - KB,, ,‘)115//
@___»_E”_.__)__ non-eikonal single soft emission from a collinear quark
Yus
(1)BPS _ o (n _ pMe&,
L"anus = Xnglgnj_wus = Kx,, Q“/;ys(,,)
IA(%E ultrasoft quark emission from a collinear field
@ — >— =

Bus Bus

2 — 1 b ﬁ >ap ~bv
Cg{gg = Xn |:Ta,},iE T ’Yj_] Ex,,gbu’s(”)gbjsw)

== —————— A2 non-eikonal double soft emission from a collinear quark

BUS

£ > ig (015 187, 87,

A2 non-eikonal single soft emission from a collinear gluon

) 5 g?Tr (B, B 11Bx,. B

nps

A2 non-eikonal double soft emission from a collinear gluon




Radiative Jet Function contribution to Power

Corrections in Thrust

Leading Power O(A) typically vanishes

do ~ (0900 4 (oW OOy 1+ (0 1O
+ (0@ 0@ 1 (oM oMy 4+ (00 £2) o)

S -
N\
)
et e

Example: <, @™ _ > °
~ 7
(\/\/
)
- Bus P
e LP hard scattering operator: 00 = )'(,—,fyix,, s
L£2g”
e
e Subleading Lagrangian insertion on x, dynamics: é}”

e Cross section:




RJF contribution to Power Corrections in Thrust

L(z)(y) insertion

O (x)

~ O RV Voo %0 T*eBuss. s a4

[%3(0) Vi vnx,,(O)] 0)

0
ol (0)

After fierzing, color algebra, reducing the allowed form of the
convolutions, using simmetry to reduce the number of allowed object
that appear we get a factorized expression in terms of matrix elements of
soft and collinear fields.

Define Radiative Jet Function: J$). In picture, combine it with the LP
jet function on n to give

(9<0> i 1
S (rn ) = 7.,

PEN
|
|
|

\

< |
Bl\T



Factorization in Pictures

e Allows all orders factorization for Lagrangian insertions.

e Integral over soft and collinear matrix elements:

e Can separately compute radiative corrections to each matrix element

e Valid to all orders in ag, but you need to address convergence and
closure issues.



