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Outline

• Introduction:

• Systematic Expansion of QCD
using Soft and Collinear Effective Theory

• Motivation for going beyond
Leading Power

• SCET at Subleading Power:

• Overview of recent developements in collider
observables at Subleading Power

• Computing Power Corrections at Fixed Order

• Subleading Power Regularization and Renormalization

• Leading Log Resummation at subleading power
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An LHC Collision
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• Very complicated structure!

• Involves interactions at many hierarchical energy scales.

• It is very complicated to obtain precise theoretical predictions
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Limits of QCD
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Figure 4. Tree level matching for the nnn̄n̄ Glauber operators. In a) we show the four full QCD graphs

with t-channel singularities. In b) we show the corresponding Glauber operators for the four operators in

SCET with two equivalent notations. The notation with the dotted line emphasizes the factorized nature

of the n and n̄ sectors in the SCET Glauber operators, which have a 1/P2
? between them.

These constraints are what ensure the diagrams give forward scattering. To leading power the

large Mandelstam invariant is s = n · p1 n̄ · p2 = n · p4 n̄ · p3 and we have the hierarchy s ⇠ �0 �
|t| ⇠ �2. For simplicity we often work in a frame where

p?1 = �p?4 = q?/2 , p?3 = �p?2 = q?/2 . (5.7)

Thus for these tree level 2–2 scattering graphs the Mandelstam invariant t = q2
? = �~q 2

? < 0.

For this matching calculation there are four relevant QCD tree graphs, shown in Fig. 4a.

They will result in four di↵erent Glauber operators, whose Feynman diagrams for this matching

are represented by Fig. 4b. For simplicity, here we take ?-polarization for the external gluon

fields (leaving the calculation with the full set of polarizations to Sec. 5.1.3). Expanding in � the

results for the top row of diagrams at leading order is
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In writing these results we have written out the collinear quark spinors but left o↵ the collinear

gluon polarization vectors "µ2A2
n (p2) etc, for simplicity. We use color index Ai for the external

– 23 –

Collinear Soft Regge

• Significant progress in understanding QCD made by considering
limits where we have a power expansion in some small kinematic
quantity.
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Soft and Collinear Effective Theory [Bauer, Fleming, Pirjol, Stewart]

Soft and Collinear Effective Theory (SCET) is limit of QCD

• Results derived with SCET must be equivalent to results derived directly from
QCD.

• SCET systematizes the power expansion from the start
→ explicit power counting at any step

• Simplifies field theoretic derivation of factorization formulae
→ Scales separated in building the EFT once and for all, recycled among different processes

• Resummation of large logs from deriving anomalous dimensions of hard, collinear
or soft operators → logs coming from IR poles in pQCD get related to UV divergences in

SCET, hence we can define MS-like counterterms, anomalous dimensions, RGEs, etc..
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Mode setup in SCET

• Light cone coordinates: kµ = n̄µ

2 k+ + nµ

2 k− + kµ
⊥ ≡ (k+, k−, k⊥)

(k+, k−, k⊥)

n-collinear: kµ
n ∼ Q(λ2, 1, λ)

n̄-collinear: kµ
n̄ ∼ Q(1, λ2, λ)

soft: kµ
s ∼ Q(λ, λ, λ)

usoft: kµ
us ∼ Q(λ2, λ2, λ2)

hard scale: kµ
hard ∼ Q(1, 1, 1) (integrated out)

• Allows for a factorized description: Hard, Jet, Beam, Soft radiation

SCETII →

SCETI →

EFT expansion: λ� 1
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From Standard Model to SCET

LSM → LSCET = Lhard + Ldyn =
∑

i≥0

L(i)
hard +

∑

i≥0

L(i)
dyn + L(0)

G

Lhard describes the

hard scattering/the

partonic interaction.

e.g. how to go from gg

to H + 2 partons.

Note: it can come from

non-QCD interactions





p

p

b

W

= direction, = energy (x2)

SCET





Ldyn describes the

evolution of the

strongly interacting

final/initial states

e.g. how to go from

2 partons to 2 jets/

how the jets evolve

EFT of pure QCD

dσ

dτ
∼ σ0H(Q, µ)⊗ J(Q, τ, s, µ)⊗ S(s, µ) + . . .
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Power expansion for generic O observable

• A large class of observables O (qT , event shapes, angularities, etc.) exhibit singularities
in perturbation theory as O → 0.

• Standard factorization theorems describe only leading power term.

• To be concrete let’s take O = p2
T .

dσ

dp2
T

=
∞∑
n=0

(αs

π

)n 2n−1∑
m=0

c
(0)
nm

logm p2
T

Q2

p2
T

+
∞∑
n=1

(αs

π

)n 2n−1∑
m=0

c
(1)
nm logm p2

T

Q2

+
∞∑
n=1

(αs

π

)n 2n−1∑
m=0

c
(2)
nm p2

T logm p2
T

Q2
+ · · ·

=
dσ(0)

dp2
T

+
dσ(1)

dp2
T

+
dσ(2)

dp2
T

+ · · ·

Leading Power (LP)

Next to Leading Power (NLP)

• Relate observable
p2
T

Q2 � 1 to the SCET power counting parameter λ� 1

• Use SCET to study this limit
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Leading Power

Leading power well understood for a wide variety of observables.

• We can prove factorization theorems

dσ(0)

dτ
=
∞∑

n=0

(αs

π

)n 2n−1∑

m=0

c(0)
nm

(
logm τ

τ

)

+

=

= H(0)J(0)
τ ⊗ J(0)

τ ⊗ S (0)
τ + O

(ΛQCD

τ Q

)

• We can resum logs and get very accurate theory predictions
31
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FIG. 18: Thrust distributions in the far-tail region at N3LL′

order with QED and mb corrections included at Q = mZ to-
gether with data from ALEPH. The red solid line is the cross
section in the R-gap scheme using αs(mZ) and Ω1 obtained
from fits using our full code, see Eq. (68). The light red band
is the perturbative uncertainty obtained from the theory scan
method. The red dashed line shows the distribution with the
same αs but without power corrections. The light solid blue
line shows the result of a full N3LL′ fit with the BS profile
that does not properly treat the multijet thresholds. The
short dashed green line shows predictions at N3LL′ with the
BS profile, without power corrections, and with the value of
αs(mZ) obtained from the fit in Ref. [20]. All theory results
are binned in the same manner as the experimental data, and
then connected by lines.

of our theoretical result in Eq. (4) that are important in
this far-tail region are i) the nonperturbative correction
from Ω1, and ii) the merging of µS(τ), µJ(τ), and µH

toward µS = µJ = µH at τ = 0.5 in the profile func-
tions, which properly treats the cancellations occurring
at multijet thresholds. To illustrate the importance of
Ω1 we show the long-dashed red line in Fig. 18 which has
the same value of αs(mZ), but turns off the nonpertur-
bative corrections. To illustrate the importance of the
treatment of multijet thresholds in our profile function,
we take the BS profile which does not account for the
thresholds (the BS profile is defined and discussed below
in Sec. IX), and use the smaller αs(mZ) and larger Ω1

that are obtained from the global fit in this case. The
result is shown by the solid light blue line in Fig. 18,
which begins to deviate from the data for τ > 0.36 and
gives a cross section that does not fall to zero at τ = 0.5.
The fact that αs(mZ) is smaller by 0.0034 for the light
blue line, relative to the solid red line, indicates that the
proper theoretical description of the cross section in the
far-tail region has an important impact on the fit done
in the tail region. The final curve shown in Fig. 18 is the
short-dashed green line, which is the result at the level
of precision of the analysis by Becher and Schwartz in
Ref. [20]. It uses the BS profile, has no power correc-
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FIG. 19: Thrust cross section for the result of the N3LL′ fit,
with QED and mb corrections included at Q = mZ . The
red solid line is the cross section in the R-gap scheme using
αs(mZ) and Ω1 obtained from fits using our full code, see
Eq. (68). The red dashed line shows the distribution with the
same αs but without power corrections. The short-dashed
green line shows predictions at N3LL′ with the BS profile,
without power corrections, and with the value of αs(mZ) ob-
tained from the fit in Ref. [20]. Data from ALEPH, DELPHI,
L3, SLD, and OPAL are also shown.

tions, and has the value of αs obtained from the fit in
Ref. [20]. It also misses the Q = mZ data in this re-
gion. The results of other O(α3

s) thrust analyses, such as
Davison and Webber [23] and Dissertori et al. [22, 25],
significantly undershoot the data in this far-tail region.15

To the best of our knowledge, the theoretical cross sec-
tion presented here is the first to obtain predictions in
this far-tail region that agree with the data. Note that
our analysis does include some O(αk

sΛQCD/Q) power cor-
rections through the use of Eq. (24). It does not account
for the full set of O(αsΛQCD/Q) power corrections as
indicated in Eq. (4) (see also Tab. IIb), but the agree-
ment with the experimental data seems to indicate that
missing power corrections may be smaller than expected.

Unbinned predictions for the thrust cross section at
Q = mZ in the peak region are shown in Fig. 19. The
green dashed curve shows the result at the level of pre-
cision in Becher and Schwartz, that is N3LL′, with the
BS profile, without power corrections, and with the value
of αs(mZ) = 0.1172 obtained from their fit. This purely
perturbative result peaks to the left of the data. With
the smaller value of αs(mZ) obtained from our fit, the
result with no power corrections peaks even slightly fur-
ther to the left, as shown by the long-dashed red curve.
In contrast, the red solid curve shows the prediction from

15 See the top panel of Fig. 9 in Ref. [23], the top left panel of Fig. 4
in Ref. [22], and the left panel of Fig. 2 in Ref. [25].

[Stewart, et al.]

[Chen, Gehrmann, Glover, Huss, Li, Neill, Schulze, Stewart, Zhu]
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So, why bother going beyond leading power?
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NLP field theoretical motivations

• Power counting is a different direction in
which amplitudes and cross sections
can be expanded

• Various interesting field theoretical questions
to answer at subleading power:

� What is the structure of factorization theorems at each power?

dσ(n)

dO =
∑

j

H
(nHj )
j ⊗ J

(nJj )
j ⊗ S

(nSj )
j

� What is the degree of universality?

� Appearance of universal structures, e.g. Γcusp(αs)?

� Appearance of new RGE structures, functions, objects, etc
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Application: Fixed Order Computations via Slicing

• IR divergences in fixed order calculations can be regulated using slicing parameter
(e.g. qT [Catani,Grazzini], N-jettiness [Gaunt et. al], [Boughezal et al.] ).

σ(X ) =

∫
0

dqT
dσ(X )

dqT
=

qcut
T∫

0

dqT
dσ(X )

dqT
+

∫
qcut
T

dqT
dσ(X )

dqT

• qT subtraction has been applied to many processes in pp at NNLO:
pp → Z , pp →W , pp → H, pp → γγ, pp → Zγ, pp →Wγ,
pp → ZZ , pp →WW , pp →WZ

• N-jettiness subtraction also applied to W /Z/H + 1 jet @NNLO

• Error, ∆σ(qcut
T ), (or computing time) can be exponentially improved by analytically computing

power corrections.

∆σ(qcut
T ) =

qcut
T∫

0

dqT

(
dσ(X )

dqT
− dσ(X )LP

dqT

)
≡ σnon sing.(qcut

T )

• Understanding of power corrections crucial for applications to more complicated processes
(fully differential N3LO calculations, H + jets, Z/W + jets)

[Matrix collaboration]
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Applications
Matching resummation with FO
If observable τ needs resummation:

• Use Leading Power EFT for resummed XS at small τ

dσ

dτ
∼
τ→0

αn
s

logm τ

τ

EFT−→
resummation

e−α
k
s log2k τ

τ

• For large τ use Fixed Order calculation to get full
O(αn

s ) contribution

• Need matching procedure in transition region between the two.

• Computing Power Corrections analytically improves convergence of the EFT at larger
values of τ
=⇒ smaller transition regions
=⇒ smaller uncertainties from matching procedure

Taming log divergence of NLP
• Fixed order power correction (NLP) exhibits an inte-

grable divergence for τ → 0

• If Leading Power (singular) is resummed and NLP is
not, the NLP (integrable) divergence dominates.

αn
s

logm τ

τ
−→ e−α

k
s log2k τ

τ
vs αn

s logm τ
0.00 0.05 0.10 0.15 0.20

0

2
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14

[Moult, Stewart, Vita, Zhu] 13



Other applications: Bootstrap

Bootstrap for observables
• Bootstrap approaches aim to completely reconstruct amplitudes or cross

sections from limits.

• Intensively applied for amplitudes in N = 4.

• Recenty, some success in QCD
for soft matrix elements [Zhu et al.]

• Can the bootstrap be extended from
amplitudes to cross section?
For example, can we bootstrap an event shape observable using the infor-
mation from limits at leading and subleading power?

Remaining Parameters in Symbol

of 6-Point MHV Remainder Function

[Dixon et al.], [Basso, Sever, Vieira]
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SCET beyond leading power
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Subleading Power QCD for collider observables

Before 2016

2016 2017 2018 (to appear in) 2019

SCETI SCETII
ultra-soft modes kµs ∼ Q(λ2, λ2, λ2) soft modes kµs ∼ Q(λ, λ, λ)

(thrust, N-jettiness, jet mass, . . . ) (qT , broadening, EEC, Glaubers, . . . )

Subleading Lagrangians X
Fixed Order (fully differential)

Hard Scattering Operators

ggH, Vqq̄, Hqq̄, N-jet

Resummation

Lagrangians Fixed Order Hard Scattering Resummation
[Stewart et al.] [Beneke et al.]

[Moult et al.] LL at O(α2
s ) [Moult, Stewart, GV] 1703.03408 [Moult, Stewart, GV, Zhu]

(2002-2004)

1612.00450 (qq̄V )

, 1710.03227 (ggH)

[Moult et al.] qq̄V 1703.03411 1804.04665, H → gg

[Chang, Stewart, GV] [Ebert, Moult, Stewart, Tackmann, GV, Zhu] [Chang, Stewart, GV] qq̄H [IM, LS, IS, FT, GV, HXZ]
Subleading Lagrangians in SCETII 1807.10764, T0 (beam thrust) at NLL NLP 1712.04343 pp → H, pp → V

[Ebert, Moult, Stewart, Tackmann, GV, Zhu] [Beneke et al.] (N-jet operators)
1812.08189, qt at NLL NLP 1712.04416

, 1808.04742

[Chang, Stewart, GV]
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[Chang, Stewart, GV] [Ebert, Moult, Stewart, Tackmann, GV, Zhu] [Chang, Stewart, GV] qq̄H [IM, LS, IS, FT, GV, HXZ]
Subleading Lagrangians in SCETII 1807.10764, T0 (beam thrust) at NLL NLP 1712.04343 pp → H, pp → V

[Ebert, Moult, Stewart, Tackmann, GV, Zhu] [Beneke et al.] (N-jet operators)
1812.08189, qt at NLL NLP 1712.04416, 1808.04742

[Chang, Stewart, GV]
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Subleading Power QCD for collider observables

SCETI SCETII
ultra-soft modes kµs ∼ Q(λ2, λ2, λ2) soft modes kµs ∼ Q(λ, λ, λ)

(thrust, N-jettiness, jet mass, . . . ) (qT , broadening, EEC, Glaubers, . . . )

Subleading Lagrangians X X
Fixed Order (fully differential) LL, NLL NLL

Hard Scattering Operators ggH, Vqq̄, Hqq̄, N-jet X
Resummation H → gg, pp → H/V

Lagrangians Fixed Order Hard Scattering Resummation
[Stewart et al.] [Beneke et al.] [Moult et al.] LL at O(α2

s ) [Moult, Stewart, GV] 1703.03408 [Moult, Stewart, GV, Zhu]
(2002-2004) 1612.00450 (qq̄V ), 1710.03227 (ggH) [Moult et al.] qq̄V 1703.03411 1804.04665, H → gg

[Chang, Stewart, GV] [Ebert, Moult, Stewart, Tackmann, GV, Zhu] [Chang, Stewart, GV] qq̄H [IM, LS, IS, FT, GV, HXZ]
Subleading Lagrangians in SCETII 1807.10764, T0 (beam thrust) at NLL NLP 1712.04343 pp → H, pp → V

[Ebert, Moult, Stewart, Tackmann, GV, Zhu] [Beneke et al.] (N-jet operators)
1812.08189, qt at NLL NLP 1712.04416, 1808.04742

[Chang, Stewart, GV]

Other works on at subleading powers in different contexts:

• B-physics: [Lee, Stewart],[Neubert, Becher, Paz, Hill] [Beneke, Feldmann] [Tackmann, Mannel] (and many others)

• Threshold (only soft radiation): [Bonocore, Laenen, Magnea, Vernazza, White] (next-to-eikonal),
[Beneke, Broggio, Garny, Jaskiewicz, Szafron, Vernazza ] (resummation) and many other references...

• Inclusive fixed order: [Boughezal, Liu, Petriello], [Boughezal, Isgrò, Petriello]

• Subleading power in light quark mass expansion: [Liu, Penin]
• · · · 16



What’s in this talk

SCETI SCETII
ultra-soft modes kµs ∼ Q(λ2, λ2, λ2) soft modes kµs ∼ Q(λ, λ, λ)

(thrust, N-jettiness, jet mass, . . . ) (qT , broadening, EEC, Glaubers, . . . )

Subleading Lagrangians X X
Fixed Order (fully differential) LL, NLL NLL

Hard Scattering Operators ggH, Vqq̄, Hqq̄, N-jet X
Resummation H → gg, pp → H/V

Lagrangians Fixed Order Hard Scattering Resummation
[Stewart et al.] [Beneke et al.] [Moult et al.] LL at O(α2

s ) [Moult, Stewart, GV] 1703.03408 [Moult, Stewart, GV, Zhu]
(2002-2004) 1612.00450 (qq̄V ), 1710.03227 (ggH) [Moult et al.] 1703.03411 1804.04665, H → gg

[Chang, Stewart, GV] [Ebert, Moult, Stewart, Tackmann, GV, Zhu] [Chang, Stewart, GV] 1712.04343 [IM, LS, IS, FT, GV, HXZ]
Subleading Lagrangians in SCETII 1807.10764, T0 (beam thrust) at NLL NLP pp → H, pp → V

[Ebert, Moult, Stewart, Tackmann, GV, Zhu] [Beneke et al.] (N-jet operators)
1812.08189, qt at NLL NLP 1712.04416, 1808.04742

[Chang, Stewart, GV]
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Next: Computing power corrections at Fixed order

SCETI SCETII
ultra-soft modes kµs ∼ Q(λ2, λ2, λ2) soft modes kµs ∼ Q(λ, λ, λ)

(thrust, N-jettiness, jet mass, . . . ) (qT , broadening, EEC, Glaubers, . . . )

Subleading Lagrangians X X
Fixed Order (fully differential) LL, NLL NLL

Hard Scattering Operators ggH, Vqq̄, Hqq̄, N-jet X
Resummation H → gg, pp → H/V

Lagrangians Fixed Order Hard Scattering Resummation
[Stewart et al.] [Beneke et al.] [Moult et al.] LL at O(α2

s ) [Moult, Stewart, GV] 1703.03408 [Moult, Stewart, GV, Zhu]
(2002-2004) 1612.00450 (qq̄V ), 1710.03227 (ggH) [Moult et al.] 1703.03411 1804.04665, H → gg

[Chang, Stewart, GV] [Ebert, Moult, Stewart, Tackmann, GV, Zhu] [Chang, Stewart, GV] 1712.04343 [IM, LS, IS, FT, GV, HXZ]
Subleading Lagrangians in SCETII 1807.10764, T0 (beam thrust) at NLL NLP pp → H, pp → V

[Ebert, Moult, Stewart, Tackmann, GV, Zhu] [Beneke et al.] (N-jet operators)
1812.08189, qt at NLL NLP 1712.04416, 1808.04742

[Chang, Stewart, GV]
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Power corrections at FO: General Setup

Beam Thrust (0-jettiness)

T0 =
∑

k∈event

min(p+
k , p
−
k )

• Used as a slicing parameter for FO
calculations

• Represents the “crossed” version of
thrust

• Take as example the fully differential cross

section dσ
dQ2dYdT for color singlet production

(0-jettiness) including O(αs) and O(T /Q)

corrections .

• Power corrections in O(T /Q):

• Perturbative

• NOT higher twist PDFs/non-perturbative power corrections.

• O(T /Q) corrections contained in:

• Phase space: Φ = Φ(0) + T
Q

Φ(2) +O(T
2

Q2 )

• Matrix element squared: |M|2 = A(0) + T
Q
A(2) +O(T

2

Q2 )

Schematically:
dσ

dQ2dYdT ∼
∫

dz

z

[
A(0)Φ(0) +

T
Q

A(0)Φ(2) +
T
Q

A(2)Φ(0)

]
+O

(T 2

Q2
, α2

s

)
19



Power corrections at FO: PDF expansion

hemisphere b hemisphere a

kµ
a(Y )

kµ
b (Y )

bµb
bµa

pµ
1

pµ
2

µ
a

µ
b

Y

p p

nµ = (1, 0, 0, 1)

n̄µ = (1, 0, 0,−1)

• Need to keep track of O(T ) component of mo-

menta: both for phase space expansion and

mandelstams entering |M|2.

• Solving Q and Y measurements uniquely fixes

how factors of T enter the PDFs.

Example n-collinear emission, k+ ∼ T , k− ∼ Q:

pµa = QeY
[(

1 +
k−e−Y

Q

)
+
T
Q

k−

2Q
+O

(T 2

Q2

)]
nµ

2

pµb = Qe−Y

[
1 +
T
Q

(
eY +

k−

2Q

)
+O

(T 2

Q2

)]
n̄µ

2

• At subleading power both PDF momenta contain power corrections regardless of the

direction of the emission =⇒ derivative of both PDFs

fa

(
pa

Ecm

)
∼ fa

(
xa

za
+
T
Q

∆a

)
= fa

(
xa

za

)
+
T
Q

∆af
′
a

(
xa

za

)
fb

(
pb

Ecm

)
∼ fb

(
xb +

T
Q

∆b

)
= fb (xb) +

T
Q

∆b f
′
b (xb)

T power corrections from
residual momenta in PDFs
for an n-collinear emission:

20



Power corrections at FO: Master formulae

• Expansion of phase space and matrix element squared in soft and

collinear limits has a general (universal) structure

n-Collinear Master Formula for 0-Jettiness power corrections

dσ
(2)
n

dQ2dYdT ∼
∫ 1

xa

dza

za

zεa
(1− za)ε

(
QT eY
ρ

)−ε{
fafb A

(2)(Q,Y , za)

+
eY

ρ
A(0) T

Q

[
fafb

(1− za)2 − 2

2za
+ xa

1− za

2za
f ′a fb + xb

1 + za

2za
faf
′
b

]}

Soft Master Formula for 0-Jettiness power corrections

dσ
(2)
s

dQ2dYdT ∼
1

ε

T −2ε

Q

{
Ā(0)(Q,Y )

[
fafb

(
− ρ

eY
− eY

ρ

)
+ xa

ρ

eY
f ′a fb + xb

eY

ρ
faf
′
b

]
+ fafb

[
ρQ Ā

(2)
+ (Q,Y ) +

Q

ρ
Ā

(2)
− (Q,Y )

]}
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Power corrections at FO: Cross section results

• Combining soft and collinear kernels, 1
ε poles cancel (consistency check)

and the differential cross section takes the form:

• By consistency, the kernel must have trivial za, zb dependence (soft kine-

matic) at Leading Log.

• We can compute the full NLO kernels with master formulae.

Non-trivial za, zb dependence at NLL.

• Example for gg channel in H production at NLL:

dσ(2,n)

dQ2dYdT = σ̂LO
(
αs
4π

)n ∫ 1
xa

∫ 1
xb

dza
za

dzb
zb

[
fi fjC

(2,n)
fi fj

(za, zb, T ) + xa
za
f ′i fjC

(2,n)
f ′i fj

(za, zb, T ) + xb
zb
fi f
′
j C

(2,n)
fi f
′
j

(za, zb, T )

]

C
(2,1)

f ′g fg
(za, zb,T ) = 4CA

ρ

QeY
δ(1− za)

[(
− ln
T eY

Qρ
− 1

)
δ(1− zb) +

(1 + zb)(1− zb + z2
b )2

2z2
b

L0(1− zb)

]

+ 4CA
eY

Qρ

(1− za + z2
a )2

2za
δ(1− zb)
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Power corrections at FO: full NLO results for pp → H

10-5 10-4 10-3 10-2 10-1
10-5

10-4

10-3

10-2

10-1

NLO T lep
0 gg → Hg a1 a0

earlier fit +0.6090± 0.0060 +0.1824± 0.0043
analytic +0.6040 +0.1863

FNLO(τ) = d
d ln τ

{
τ
[
a1 ln τ + a0 +O(τ)

]}

Numerical fit at percent level matches
analytic calculation within 1 σ

[Ebert, Moult, Stewart, Tackmann, GV, Zhu] 1807.10764
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Next: Regularization and Renormalization at NLP

SCETI SCETII
ultra-soft modes kµs ∼ Q(λ2, λ2, λ2) soft modes kµs ∼ Q(λ, λ, λ)

(thrust, N-jettiness, jet mass, . . . ) (qT , broadening, EEC, Glaubers, . . . )

Subleading Lagrangians X X
Fixed Order (fully differential) LL, NLL NLL

Hard Scattering Operators ggH, Vqq̄, Hqq̄, N-jet X
Resummation H → gg, pp → H/V

Lagrangians Fixed Order Hard Scattering Resummation
[Stewart et al.] [Beneke et al.] [Moult et al.] LL at O(α2

s ) [Moult, Stewart, GV] 1703.03408 [Moult, Stewart, GV, Zhu]
(2002-2004) 1612.00450 (qq̄V ), 1710.03227 (ggH) [Moult et al.] 1703.03411 1804.04665, H → gg

[Chang, Stewart, GV] [Ebert, Moult, Stewart, Tackmann, GV, Zhu] [Chang, Stewart, GV] 1712.04343 [IM, LS, IS, FT, GV, HXZ]
Subleading Lagrangians in SCETII 1807.10764, T0 (beam thrust) at NLL NLP pp → H, pp → V

[Ebert, Moult, Stewart, Tackmann, GV, Zhu] [Beneke et al.] (N-jet operators)
1812.08189, qt at NLL NLP 1712.04416, 1808.04742

[Chang, Stewart, GV]
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New features of

Regularization and Renormalization

at Subleading Power

Regularization of subleading power Rapidity divergences Renormalization with θ functions

(Ebert, Moult, Stewart, Tackmann, GV, Zhu) (Moult, Stewart, GV, Zhu)

[1812.08189] [1804.04665]
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Rapidity Divergences

• Large class of observables e.g. ~qT , broadening, EEC, pvetoT , . . .
belong to the class of SCETII observables

• SCETII calculations are affected by Rapidity Divergences

• Measurement fixes ⊥ component of momentum, i.e. k+k− ∼ k2
⊥ hyperbola

Light cone coordinates: kµ = (k+, k−, ~k⊥)

n-collinear: pn ∼ Q(λ2, 1, λ)

n̄-collinear: pn̄ ∼ Q(1, λ2, λ)

soft: ps ∼ Q(λ, λ, λ)

k+

k�

Q

�Q

�2Q

�2Q �Q Q

n-coll.

n̄-coll.

soft

• Example of massless soft real emission with SCETII measurement:∫
ddk δ+(k2)δ(d−2)(~q⊥ − ~k⊥)f (k+, k−, ~k⊥) = q−2ε

T

∫ ∞
0

dk−

k−
f (k−, ~q⊥)

• Divergence when modes overlap

k± → 0 , y = 1/2 log(k+/k−)→ ±∞ ,

not regulated by dimensional regularization =⇒ need a rapidity regulator
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Rapidity Divergences beyond leading power

• Leading Power (in q2
T � Q2) representative rapidity divergent integral:

dσLP

dq2
T

∼ 1

q2+2ε
T

∫ Q

0

dk−

k−

� Log divergent, from eikonal propagators from Wilson Lines.
� It can be regulated in many ways: [Collins] , [Beneke, Feldmann, Chiu, Manohar, . . . ],

[Becher, Bell] [Bell, Rahn, Talbert], [Chiu, Jain, Neill, Rothstein] [Rothstein,Stewart], [Chiu, Fuhrer,

Hoang, Kelley, Manohar], [Echevarria, Idilbi, Scimemi], [Li, Neill, Zhu], . . .

(typically...)

• Subleading Power: much broader class of rapidity divergent integrals appearing

� Prototypical integrals take the form:
dσNLP

dq2
T

∼ 1

q2ε
T

∫ Q

0

dk−

(k−)α

� α can be negative, hence not only log divergences∫
dk−

(k−)2
,

∫
dk−

(k−)3
=⇒ Power Law Rapidity Divergences

� Regulating only Wilson lines is not sufficient.
Note that this is also true at LP for Glaubers, see [Rothstein, Stewart]

� Divergences also from soft-quark emissions,
hard-collinear propagators, phase space expansion.
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Rapidity Divergences beyond leading power

• Leading Power (in q2
T � Q2) representative rapidity divergent integral:
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dq2
T
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dq2
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q2ε
T

∫ Q

0

dk−

(k−)α
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,
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Rapidity Regularization at Subleading Power

Hence, at Subleading Power:

• Regulating only Wilson lines is not sufficient.

• Regularization should conveniently treat power law rapidity divergent integrals

• Common simplifications always used at Leading Power no longer true

Example: non-homogeneous regulators (as k0 or η regulator with |kz |) generate power
corrections!

n collinear regulator:

(
k−n + k+

n

ν

)−η
= ν

η
(
k−n +

k2
T

k−n

)−η
=

(
k−n
ν

)−η [
1− η

k2
T

(k−n )2
+O(λ4)

]

I(0)
n = ν

η
∫ Q

0
dk−

gn(k−/Q)

(k−)1+η︸ ︷︷ ︸
LP collinear integral

− k2
T ν
η
∫ Q

0
dk−η

gn(k−/Q)

(k−)3+η︸ ︷︷ ︸
NLP integral induced by non homogeneous reg.

+ O(λ4)

The NLP integral induced by the regulator is 1
η

divergent =⇒ the η prefactor cancels out and the term does NOT vanish for η → 0

Introduce the pure rapidity regulator

∫
ddk →

∫
ddk ω2υη

∣∣∣∣ n̄ · kn · k

∣∣∣∣−η/2

=

∫
ddk ω2υηe−ykη

• It doesn’t introduce power corrections

• It breaks boost symmetry in the most minimal way.

• Includes dimensionless (pure) rapidity scale υ (upsilon)
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Leading-Logarthmic power corrections

• Compute power corrections in q2
T/Q

2 in the n-collinear, n̄-collinear and
soft limits (soft is scaless for homogeneous regulators)

• Sum together results

• Rapidity divergences cancel between sectors, finite terms add up.
(In rapidity regularization this is trivial since gn(η) = gn̄(−η))

At Leading Log the result is quite simple. Here a couple of examples:

• Drell Yan production (qq̄ → Vg)

dσ
(2),LL
qq̄→Vg

dQ2dYdq2
T

= σ̂LO
qq̄→V (Q)× αsCF

4π

2

Q2
ln

Q2

q2
T

[
f qq̄uni (xa, xb)

]
,

• Gluon fusion Higgs production (gg → Hg)

dσ
(2),LL
gg→Hg

dQ2dYdq2
T

= σ̂LO
gg→H(Q)× αsCA

4π

2

Q2
ln

Q2

q2
T

[
8fg (xa)fg (xb) + f gguni (xa, xb)

]
,

• Common factor

f ijuni(xa, xb) = −xaf ′i (xa)fj (xb)− fi (xa) xbf
′
j (xb) + 2xaf

′
i (xa) xbf

′
j (xb)
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Next Leading-Logarthmic power corrections

• We computed also the NLL kernels at O(αs) for all channels both in
DY and ggH.

• za, zb kernels pretty complicated. They involve L++
0 (1− za), etc.

• Remainder is q2
T/Q

2 suppressed

• Describes qT distribution up to 10 GeV

10-1 100 101 102

0

1

2

3

4

5

10-1 100 101 102

10-7

10-6

10-5

10-4

10-3

dσ

dYdq2
T

− dσLP

dYdq2
T

= c1(Y ) ln
Q2

q2
T

+ c0(Y ) +O
(
q2
T

Q2

)
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Renormalization at subleading powers

(Moult, Stewart, GV, Zhu) [1804.04665]
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Fixed Order Calculation of Thrust
zs ⇠ ⌧

)
✓cc ⇠ p

⌧

• Compute power corrections for Higgs thrust at lowest order

1

σ0

dσ(2)

dτ
= 8CA

(αs

4π

)[(1

ε
+ log

µ2

Q2τ

)
−
(

1

ε
+ log

µ2

Q2τ2

)]
θ(τ) +O(α2

s )

= 8CA

(αs

4π

)
log τ θ(τ) +O(α2

s )

• No virtual corrections at lowest order (δ(τ) ∼ 1/τ).

• Divergences cancel between soft and collinear.

• Log appears at first non-vanishing order:

• At LP, log(τ)/τ arises from RG evolution of δ(τ)
• At NLP log(τ) arises from RG evolution of “nothing”?

32



Elements of Subleading Power Factorization
[Moult, Stewart, GV, Zhu]

Note: Fields/Lagrangians have a definite power counting in λ!

Operator Bµn⊥ χn P
µ
⊥ Bµus ψus ∂µus

Power C. λ λ λ λ2 λ3 λ2

LSCET = Lhard + Ldyn

=
∑
i≥0
L(i)
hard +

∑
i≥0
L(i) + L(0)

G

• Analogously to what we have seen at FO
power corrections at the operator level arise
from two distinct sources:

• Power corrections to scattering amplitudes.
• Power corrections to kinematics.

• Power corrections to scattering amplitudes can
be computed from subleading SCET operators [Moult, Stewart, GV]

• They give rise to new jet and soft functions, whose renormalization was not previously
known
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Renormalization of Subleading Soft Functions

−→

• The subleading soft function satisfies a 2× 2 mixing RG

µ
d

dµ


S̃

(2)
g,Bus (y , µ)

S̃
(2)
g,θ(y , µ)

 =

γ11(y , µ) γ12

0 γ22(y , µ)



S̃

(2)
g,Bus (y , µ)

S̃
(2)
g,θ(y , µ)


• It mixes with “θ-soft” functions

S
(2)
g,θ(τ, µ) =

1

(N2
c − 1)

tr〈0|YT
n̄ (0)Yn(0)θ(τ − τ̂)YT

n (0)Yn̄(0)|0〉

• It is power suppressed due to θ(τ) ∼ 1 instead of δ(τ) ∼ 1/τ .

• In collinear sector, analogous subleading Jet functions and θ-jet functions appear

• We find this type of mixing is a generic behavior at subleading power.
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Resummed Soft Function

• Solve RGE mixing equation to renormalize the operators, and
resum subleading power logarithms.

• We find the final result for the renormalized subleading power
soft function:

S
(2)
g,Bus (Qτ, µ) = θ(τ)γ12 log

(
µ

Qτ

)
e

1
2
γ11 log2

(
µ
Qτ

)

• Expanded perturbatively, we see a simple series:

S
(2)
g,Bus (Qτ, µ) = θ(τ)

[
γ12 log

(
µ

Qτ

)
+

1

2
γ12γ11 log3

(
µ

Qτ

)
+ · · ·

]

• In particular, we find:

• First log generated by mixing with the θ function operators.
• The single log is then dressed by Sudakov double logs

from the diagonal anomalous dimensions.

• Example also useful for understanding power suppressed RG
consistency.
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Next: Resummation of beam thrust at NLP

SCETI SCETII
ultra-soft modes kµs ∼ Q(λ2, λ2, λ2) soft modes kµs ∼ Q(λ, λ, λ)

(thrust, N-jettiness, jet mass, . . . ) (qT , broadening, EEC, Glaubers, . . . )

Subleading Lagrangians X X
Fixed Order (fully differential) LL, NLL NLL

Hard Scattering Operators ggH, Vqq̄, Hqq̄, N-jet X
Resummation H → gg, pp → H/V

Lagrangians Fixed Order Hard Scattering Resummation
[Stewart et al.] [Beneke et al.] [Moult et al.] LL at O(α2

s ) [Moult, Stewart, GV] 1703.03408 [Moult, Stewart, GV, Zhu]
(2002-2004) 1612.00450 (qq̄V ), 1710.03227 (ggH) [Moult et al.] 1703.03411 1804.04665, H → gg

[Chang, Stewart, GV] [Ebert, Moult, Stewart, Tackmann, GV, Zhu] [Chang, Stewart, GV] 1712.04343 [IM, LS, IS, FT, GV, HXZ]
Subleading Lagrangians in SCETII 1807.10764, T0 (beam thrust) at NLL NLP pp → H, pp → V

[Ebert, Moult, Stewart, Tackmann, GV, Zhu] [Beneke et al.] (N-jet operators)
1812.08189, qt at NLL NLP 1712.04416, 1808.04742

[Chang, Stewart, GV]
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Resummation of Beam thrust at NLP

• Starting point for studying resummation at NLP for fully differential
observables at the LHC

T0 =
∑

k∈event

min(p+
k , p

−
k )

• Used as a slicing parameter for FO
calculations

• Represents the “crossed” version of thrust

• Contains the additional complication of treating the proton initial states (Jet
→ Beam functions) at subleading power

• At LL NLP, the fixed order calculation gives (see Fixed Order section):

dσ(2)

dT0dY dQ
=
σ0

Q

αsCA

π
ln
T0

Q

[
2fg (xa)fg (xb)−xaf ′g (xa)fg (xb)− fg (xa)xbf

′
g (xb)

︸ ︷︷ ︸
PDF derivative term, no analog at LP

]

hemisphere b hemisphere a

kµ
a(Y )

kµ
b (Y )

bµb
bµa

pµ
1

pµ
2

µ
a

µ
b

Y

p p
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Kinematic corrections for beam thrust

• LP factorization theorem for T0 contains LP beam functions

Bg

(
t = b+ω,

ω

P−
, µc
)

= 〈pn(P−)|Bcn⊥µ(0)δ(b+ − p̂+)δ(ω − Pn)Bcµn⊥(0)|pn(P−)〉

• As we’ve seen at Fixed Order in the previous sections, at NLP we need
to keep track of small components of momenta routed in beam
functions:

ω → ω + ∆ω where ∆ω ∼ T0 ∼ O(λ2)

• After expansion we get a new object, a Derivative Beam Function

Bg
′
(
t,

ω

P−
, µc
)

= 〈pn(P−)|Bcn⊥µ(0)δ(b+ − p̂+)δ′(ω − Pn)Bcµn⊥(0)|pn(P−)〉

Note that the derivative beam function is LP (ω ∼ λ0)
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Derivative beam functions and OPE

• The derivative beam function B ′ is the object entering the
factorization theorem

• We can OPE it onto PDFs operators using a matching kernel Ĩ

B′g
(
t, x =

ω

P−
, µc
)

=
∑
j

∫
dξ

ξ
Ĩgj
(
t,

x

ξ
, µ

)
fj (ξ, µ)

[
1 +O

(
Λ2
QCD

t

)]

• The matching kernel is shown to be related to the LP kernel via

Ĩgj
(
t,

x

ξ
, µ

)
=

d

dx
Igj
(
t,

x

ξ
, µ

)
• Hence, to all orders in αs , the derivative beam function OPE is

B ′g (t, x , µc) =
∑

j

∫
dξ

ξ

d

dx
Igj
(
t,
x

ξ
, µ

)
fj(ξ, µ)

[
1 +O

(
Λ2
QCD

t

)]

• The O
(

Λ2
QCD

t

)
power corrections include non-perturbative corrections

which include higher twist PDFs. We neglect these by considering
values of T0 s.t. t ∼ QT0 � Λ2

QCD
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Resummed cross section for beam thust at NLP

• At tree level Itreegj

(
t,
x

ξ
, µ

)
= δgjδ(t)δ

(
1− x

ξ

)

• Hence B ′ treeg (t, x , µc) = δ(t)f ′g (x , µ)

we got the PDF derivatives we expected from FO!

For the cross section:

• Other pieces work similar to thrust case (theta beam functions B
(2)
θ ,

subleading Beam functions B
(2)
τδ ∼ tB(0), subleading operators, RGEs)

• Final result

dσLL
ggH

dQ2dY dτ0
=σ̂LO(Q)

single log from mixing with θ︷ ︸︸ ︷(αs

4π

)
4CAθ(τ0) log(τ0)

Sudakov︷ ︸︸ ︷
e−

αs
4π 4CA log2(τ0)

×
[

2fg (xa) fg (xb)− xaf
′
g (xa) fg (xb)− fg (xa)xbf

′
g (xb)

︸ ︷︷ ︸
non-perturbative functions

]
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Future Directions

• Fixed order calculation of LL power corrections at N3LO

• Power corrections for diboson production

• Resummation beyond Sudakov for collider observables

• Systematic application of fixed order techniques (IBPs, DE, etc.) to
calculate EFT objects at high loop order

• Regge/Small-x/Forward/high-energy limit beyond leading power

• Factorization beyond leading power and Factorization breaking effects

• Subleading power observables, spin asymmetries, pT distributions in
quarkonia production
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Conclusions

∫
ddk →

∫
ddk ω2υη

∣∣∣∣
n̄ · k
n · k

∣∣∣∣
−η/2

10-5 10-4 10-3 10-2 10-1
10-5

10-4

10-3

10-2

10-1

• Described the recent developements for collider
observables at subleading power

• Studied how to implement rapidity regularization
at subleading powers and proposed a new regulator
purely based on rapidity

• Computed full O(αs) power correction of differential
distribution for color singlet production

• Cross section level renormalization at subleading power
involves a new class of universal jet and soft functions involving θ-functions.

• Achieved all orders resummation for fully differential color singlet
production in pp at subleading power

Thank you!
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Backup slides
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How to treat power law divergences

• Consider rapidity divergent integral

∫ 1

x
dz

g(z)

(1− z)a+η
.

• When g(z) is not known analytically (eg. when it involves PDFs), need to extract pole
as η → 0 without computing the integral.

• For a = 1, use standard distributional identity

1

(1− z)1+η
= −

δ(1− z)

η
+ L0(1− z) +O(η) , L0(y) = [θ(y)/y ]+ ,

• For a > 1, these distributions need to be generalized to higher-order plus distributions
subtracting higher derivatives as well. For example, for a = 2 one obtains

1

(1− z)2+η
=
δ′(1− z)

η
− δ(1− z) + L++

0 (1− z) +O(η) ,

where the second-order plus function L++
0 (1− z) acts on a test function g(z) as a double

subtraction.

• Power law divergences generate new PDF derivatives

∫ 1

xa

dza
f (xa/za)f (xb/zb)

(1− za)2+η
=

f ′(xa)f (xb/zb)

η
+O(η0)
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Soft-Collinear Factorization at Subleading Power

• BPS field redefinition decouples LP soft and collinear interactions.

• Working in an expansion in EFT parameter λ (not αs), subleading
power Lagrangians enter as T -products:

〈0|T{Õ(k)
j (0)exp[i

∫
d4x Ldyn]}|X〉

= 〈0|T{Õ(k)
j (0)exp[i

∫
d4x (L(0) + L(1) + L(2) + · · ·)]}|X〉

= 〈0|T
{
Õ

(k)
j (0)exp[i

∫
d4xL(0)]

(
1+i

∫
d4yL(1) +

1

2

(
i
∫
d4yL(1))(i∫ d4zL(1))+i

∫
d4zL(2) +· · ·

)}
|X〉

= 〈0|T
{
Õ

(k)
j (0)

(
1 + i

∫
d4yL(1) +

1

2

(
i
∫
d4yL(1))(i∫ d4zL(1)) + i

∫
d4zL(2)

)}
|X〉
L(0) + · · · .

• Only need to consider a finite number of insertions.

• Decoupling of leading power dynamics =⇒ states still factorize.

• Call resulting subleading Jet and Soft functions ”Radiative” in analogy
to Next-to-eikonal soft gluon radiation [Bonocore, Laenen, Magnea, Vernazza, White]

|X 〉 = |Xn〉|Xs〉

45



Radiative Functions: Examples

L(1)
χn = g χ̄nB⊥us(n) · P⊥

/̄n

P̄ χn = K̂
(1)µ
Bn B

⊥
usµ

non-eikonal single soft emission from a collinear quark

L(1)BPS
χnψus

= χ̄ng /Bn⊥ψ(n)
us = K̂

(1)ᾱ
χn ψαus(n)

ultrasoft quark emission from a collinear field

L(2)
χBB = χ̄n

[
T aγµ⊥

1

P̄ T bγν⊥

]
/̄n

2
χngBaµus(n)

gBbνus(n)

λ2 non-eikonal double soft emission from a collinear quark

L(2)
g ⊃ ig

[
∂

[µ
⊥B

ν]
us

]
[B⊥nµ,B⊥nν ]

λ2 non-eikonal single soft emission from a collinear gluon

L(2)
g ⊃ g2Tr

(
[Bµ⊥us ,Bν⊥us ][B⊥nµ,B⊥nν ]

)
λ2 non-eikonal double soft emission from a collinear gluon

[Larkoski, Neill and Stewart], [Moult, Stewart and GV]
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Radiative Jet Function contribution to Power
Corrections in Thrust

dσ ∼
Leading Power

〈O(0)O(0)〉 +
O(λ) typically vanishes

〈O(1)O(0)〉+ 〈O(0)L(1)O(0)〉+ . . .

+ 〈O(0)O(2)〉+ 〈O(1)O(1)〉+ 〈O(0)L(2)O(0)〉+ 〈O(0)L(1)L(1)O(0)〉+ . . .

Example:

• LP hard scattering operator: O(0) = χ̄n̄γ
µ
⊥χn

• Subleading Lagrangian insertion on χn dynamics:

• Cross section:
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RJF contribution to Power Corrections in Thrust

∼
∫
d4y〈0|

O(0)
BPS(x)︷ ︸︸ ︷

[χ̄n(x)Ynγ
µ
⊥Yn̄χn̄(x)]

L(2)(y) insertion︷ ︸︸ ︷[
χ̄nT

ag /Bus⊥
1

P̄ i /∂us⊥
/̄n

2
χn + . . .

]

[
χ̄n̄(0)Y †n̄ γ

µ
⊥Ynχn(0)

]

︸ ︷︷ ︸
O(0)†

BPS (0)

0〉

After fierzing, color algebra, reducing the allowed form of the
convolutions, using simmetry to reduce the number of allowed object
that appear we get a factorized expression in terms of matrix elements of
soft and collinear fields.
Define Radiative Jet Function: J

(2)
B . In picture, combine it with the LP

jet function on n̄ to give

J(τn̄)J
(2)
B (τn, r

+
2 ) =
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Factorization in Pictures

• Allows all orders factorization for Lagrangian insertions.

• Integral over soft and collinear matrix elements:

=

∫
dr+

2 ⊗

Other example: double insertion of soft quark emission

=

∫
dr+

2 dr+
3 ⊗

• Can separately compute radiative corrections to each matrix element

• Valid to all orders in αs , but you need to address convergence and
closure issues. 49


