
Performance of univariate kernel
density estimationmethods in
TensorFlow

Bachelor Thesis

Author: Marc Steiner

Supervisors: Jonas Eschle, Prof. Dr. Nicola Serra

University of Zurich

Performance of univariate kernel density estimation methods in TensorFlow

Acknowledgements

I am grateful to Prof. Dr. Nicola Serra, for giving me the opportunity to complete my bachelor thesis
under his domain.

I would also like to thank my supervisor Jonas Eschle, which advised me a lot concerning research,
implementation and writing. He provided both technical and emotional guidance and helped me
fulfill my potential.

Finally, I would like to thank my girlfriend Christa Schläppi, who unconditionally supported me
through every challenge in the last year and acted as a sounding board for all the intelligent as well
as not so intelligent ideas I had.

Marc Steiner 2

Performance of univariate kernel density estimation methods in TensorFlow

Abstract

Kernel density estimation is a non‑parametric density estimation and often used in statistical infer‑
ence, especially in scientific fields like high energy physics. Multiple new implementations of univari‑
ate kernel density estimation are proposed, basedonTensorFlow (a just‑in‑time compiledmathemat‑
ical Python library for CPU andGPU) and zfit (a highly scalable and customizablemodelmanipulation
and fitting library based on TensorFlow). Starting from the exact algorithm, several optimizations
from recent papers are implemented to boost its efficiency. These optimizations include linear bin‑
ning, Fast Fourier Transformedkernel functions, the ImprovedSheather‑Jonesalgorithmproposedby
Botev et al., and specialized kernel functions as proposed by Hofmeyr. The accuracy and efficiency
of the proposed implementation suite is then compared to existing implementations in Python and
shown to be competitive. The proposed univariate kernel density estimation suite achieves state‑of‑
the‑art accuracy as well as efficiency, especially for large number of samples (𝑛 ≥ 108).

Marc Steiner 3

Performance of univariate kernel density estimation methods in TensorFlow

Contents

1 Introduction 6
1.1 Purpose of this thesis . 6
1.2 Kernel density estimation . 6
1.3 zfit and TensorFlow . 7
1.4 Univariate case . 8

2 Theory 8
2.1 Exact kernel density estimation . 8
2.2 Binning . 9

2.2.1 Simple binning . 9
2.2.2 Linear binning . 9

2.3 Using convolution and the Fast Fourier Transform . 10
2.4 Improved Sheather‑Jones Algorithm . 11
2.5 Using specialized kernel functions and their series expansion 12

3 Current state of the art 14

4 Implementation 15
4.1 Advantages of using zfit and TensorFlow . 15
4.2 Exact univariate kernel density estimation . 16
4.3 Binnedmethod . 17
4.4 FFT basedmethod . 18
4.5 ISJ basedmethod . 18
4.6 Specialized kernel method . 18

5 Comparison 19
5.1 Benchmark setup . 19
5.2 Differences of Exact, Binned, FFT, ISJ and Hofmeyr implementations 21

5.2.1 Accuracy . 22
5.2.2 Runtime . 25

5.3 Comparison to KDEpy . 27
5.3.1 Accuracy . 27
5.3.2 Runtime . 29

5.4 Comparison to KDEpy on GPU . 30
5.4.1 Runtime . 31

5.5 Findings . 34

6 Summary 35

Marc Steiner 4

Performance of univariate kernel density estimation methods in TensorFlow

Appendix 37
Source Code . 37

References 38

Marc Steiner 5

Performance of univariate kernel density estimation methods in TensorFlow

1 Introduction

1.1 Purpose of this thesis

The purpose of this thesis is to propose four novel implementations of univariate kernel density es‑
timation based on TensorFlow1, TensorFlow Probability2 and zfit3, which incorporate insights from
recent papers to decrease the computational complexity and therefore runtime. The newly proposed
implementations are then compared to the state of the art of kernel density estimation in Python and
shown to be competitive. By leveraging TensorFlow’s graph based computation, the newly proposed
methods to calculate a kernel density estimate can benefit from parallelization and efficient compu‑
tation on CPU/GPU.

First the mathematical theory will be summarized in chapter 2, before currently existing implemen‑
tations of kernel density estimation (KDE) in Python are discussed in chapter 3. In chapter 4 the four
novel KDE implementations are proposed, which are then compared against the current state of the
art in chapter 5. The findings are then summarized in chapter 6.

1.2 Kernel density estimation

Experimental science is based on accumulating and interpreting data, however the process of inter‑
preting the data can be difficult. Suppose we are trying to understand some physical system. We
might want to find out how probable certain events are, which is described by the probability density
function (PDF) of the system. If we already have some knowledge of the system and the underlying
mechanismsarewell understood,wemight be able to guess the shapeof theprobability density func‑
tion and define it mathematically as a function depending on some parameters of the system (which
might have physical meaning). If we then fit the function to the experimentally found data by some
goodness‑of‑fit criterion like log‑likelihood or 𝜒2, we can get information about the parameters and
learnmore about the system itself. Butwhat if the underlyingmechanisms are too complex to be fully
described analytically and the knowledge of the system is too poor to describe themodel as an exact
mathematical function?

In the particle accelerator at CERN for instance, a whooping 25 gigabytes of data is recorded per
second4, resulting from the process of many physical interactions that occur almost simultaneously.
It is often not feasible to anticipate features of the distribution one observes experimentally, as the
distribution is comprised of many different distributions, which result from all the different physical
interactions. However, through Monte Carlo based simulation, samples can be drawn from the the‑
oretical distribution. These can be used in conjunction with so called non‑parametric methods, that
approximate the shape of the drawn distribution without the need for a predefined mathematical
model. The perhaps simplest non‑parametric method is the Histogramm. By summing the the data
up in discrete bins the underlying probability distribution can be approximated, without needing any

Marc Steiner 6

Performance of univariate kernel density estimation methods in TensorFlow

prior knowledge of the system itself. However Histograms tend to produce PDFs that are highly de‑
pendent on bin width and bin positioning, meaning the interpretation of the data changes a lot by
two arbitrary parameters.

A more sophisticated non‑parametric method is the kernel density estimation (KDE), which can be
looked at as a sort of generalized histogram5. In a kernel density estimation each data point is substi‑
tuted with a so called kernel function that specifies how much it influences its neighboring regions.
This kernel functions can then be summed up to get an estimate of the probability density distribu‑
tion, quite similarly as summing up data points inside bins. However since the kernel functions are
centeredon thedata points directly, KDE circumvents theproblemof arbitrary bin positioning6. Since
KDE still depends on kernel bandwidth (ameasure of the spread of the kernel function) instead of bin
width, one might argue that this is not a major improvement. However, upon closer inspection, one
finds that the underlying PDF does depend less strongly on the kernel bandwidth than histograms
do on bin width and it is much easier to specify rules for an approximately optimal kernel bandwidth
than it is to do so for bin width7. Mathematical research has shown that it is possible to compute an
approximately optimal bandwidth value, which is not possible for bin width. Another benefit is that
one gets a smooth distribution by specifying a smooth kernel function, which is often desirable or
even expected from theory. Due to this increased robustness, KDE is particular useful in High‑Energy
Physics (HEP) where it has been used for confidence level calculations for the Higgs Searches at the
Large Electron Positron Collider (LEP)8. However there is still room for improvement in terms of accu‑
racy and computation speed and certainmore sophisticated approaches to kernel density estimation
have been proposed in dependence on specific areas of application8.

1.3 zfit and TensorFlow

Currently the basic principle of KDE has been implemented in various programming languages and
statistical modeling tools. The standard framework used in High Energy Physics (HEP) that includes
KDE is the ROOT/RooFit toolkit written in C++. However as the amount of experimental data grows
(likeatCERN), sogrows the computational burdenand traditionalmethods to calculate kernel density
estimation become cumbersome. In addition, Python plays an increasingly large role in the natural
sciences due to support by corporations involved in Big Data and its superior accessibility. To elevate
research in HEP, zfit, a new alternative to RooFit, was recently proposed. It is implemented on top
of TensorFlow, one of the leading Python frameworks to handle large data and high parallelization,
allowing a transparent usage of CPUs and GPUs3.

TensorFlowprovides the intuitive accessibility of Pythonwhile ensuring speed and efficiency because
the underlying operations are implemented in C++. TensorFlow implements so‑called graph‑based
computation, whichmeans that it builds a graph describing the computation to be done before it ac‑
tually executes it. By analyzing the graph TensorFlow can then optimize the algorithm and schedule
parts that can be executed in parallel to be run on different CPUs or GPUs, which is especially impor‑

Marc Steiner 7

Performance of univariate kernel density estimation methods in TensorFlow

tant for large data and lengthy calculations. Additionally TensorFlow supports automatic differentia‑
tion. Every operation in the graph implements its own derivative and the therefore the whole graph
can be differentiated by using the chain rule. This is especially important for applications where we
want tominimize thegradient suchas inneural networkbasedcomputations. Finally, TensorFlowcan
be used together with other scientific libraries in Python and TensorFlow accepts NumPy9 arrays as
input, although computations outside of the graph do not benefit of TensorFlow’s optimizations and
its automatic differentiation. Being able to calculate a kernel density estimation using TensorFlow
and zfit has therefore numerous advantages for large data.

So faronlyexactkerneldensityestimationsexist forTensorFlow, howeveras seen inchapter2, theKDE
can be approximated using multiple mathematical tricks with only a negligible decrease in accuracy,
while decreasing the computational complexity substantially.

1.4 Univariate case

The newly proposed implementations in this thesis are limited to the one‑dimensional case, since
this is the case which is most often used and therefore benefits the most of decreased runtime. It
is feasible to extend the implementation to the multi‑dimensional case in the future, however this
would require more work due to not quite identical APIs to the univariate case. In addition one must
ensure that the kernel functions used would bemulti‑dimensional themselves.

2 Theory

2.1 Exact kernel density estimation

Given a set of 𝑛 sample points 𝑥𝑘 (𝑘 = 1, ⋯ , 𝑛), an exact kernel density estimation ̂𝑓ℎ(𝑥) can be
calculated as

̂𝑓ℎ(𝑥) = 1
𝑛ℎ

𝑛
∑
𝑘=1

𝐾(𝑥 − 𝑥𝑘
ℎ) (1)

where𝐾(𝑥) is called the kernel function, ℎ is the bandwidth of the kernel and 𝑥 is the value for which
the estimate is calculated. The kernel function defines the shape and size of influence of a single data
point over the estimation,whereas thebandwidthdefines the rangeof influence. Most typically a sim‑
ple Gaussian distribution (𝐾(𝑥) ∶= 1√

2𝜋𝑒− 1
2 𝑥2) is used as kernel function. The larger the bandwidth

parameter ℎ the larger is the range of influence of a single data point on the estimated distribution.

The computational complexity of the exact KDE above is given by 𝒪(𝑛𝑚) where 𝑛 is the number of
sample points to estimate from and𝑚 is the number of evaluation points (the points where youwant

Marc Steiner 8

Performance of univariate kernel density estimation methods in TensorFlow

to calculate the estimate). There exist several approximative methods to decrease this complexity
and therefore decrease the runtime as well.

2.2 Binning

The most straightforward way to decrease the computational complexity is by limiting the number
of sample points. This can be done by a binning routine, where the values at a smaller number of
regular grid points are estimated from the original larger number of sample points. Given a set of
sample points 𝑋 = {𝑥0, 𝑥1, ..., 𝑥𝑘, ..., 𝑥𝑛−1, 𝑥𝑛} with weights 𝑤𝑘 and a set of equally spaced grid
points 𝐺 = {𝑔0, 𝑔1, ..., 𝑔𝑙, ..., 𝑔𝑛−1, 𝑔𝑁} where 𝑁 < 𝑛 we can assign an estimate (or a count) 𝑐𝑙 to
each grid point 𝑔𝑙 and use the newly found 𝑔𝑙 to calculate the kernel density estimation instead.

̂𝑓ℎ(𝑥) = 1
𝑛ℎ

𝑁
∑
𝑙=1

𝑐𝑙 ⋅ 𝐾(𝑥 − 𝑔𝑙
ℎ) (2)

This lowers the computational complexity down to𝒪(𝑁 ⋅𝑚). Depending on the number of grid points
𝑁 there is tradeoff between accuracy and speed. However as we will see in the comparison chapter
later as well, even for tenmillion sample points, a grid of size 1024 is enough to capture the true den‑
sity with high accuracy10. As described in the extensive overview by Artur Gramacki11 simple binning
or linear binning can be used, although the last is often preferred since it is more accurate and the
difference in computational complexity is negligible.

2.2.1 Simple binning

Simple binning is just the standard process of taking a weighted histogram and then normalizing it
by dividing each bin by the sum of the sample points weights. In one dimension simple binning is
binary in that it assigns a sample point’s weight (𝑤𝑘 = 1 for an unweighted histogram) either to the
grid point (bin) left or right of itself.

𝑐𝑙 = 𝑐(𝑔𝑙) = ∑
𝑥𝑘∈𝑋

𝑔𝑙+𝑔𝑙−1
2 <𝑥𝑘< 𝑔𝑙+1+𝑔𝑙

2

𝑤𝑘 (3)

where 𝑐𝑙 is the value for grid point 𝑔𝑙 depending on sample points 𝑥𝑘 and their associated weights
𝑤𝑘.

2.2.2 Linear binning

Linear binning on the other hand assigns a fraction of the whole weight to both grid points (bins)
on either side, proportional to the closeness of grid point and data point in relation to the distance

Marc Steiner 9

Performance of univariate kernel density estimation methods in TensorFlow

between grid points (bin width).

𝑐𝑙 = 𝑐(𝑔𝑙) = ∑
𝑥𝑘∈𝑋

𝑔𝑙<𝑥𝑘<𝑔𝑙+1

𝑔𝑘+1 − 𝑥𝑘
𝑔𝑙+1 − 𝑔𝑙

⋅ 𝑤𝑘 + ∑
𝑥𝑘∈𝑋

𝑔𝑙−1<𝑥𝑘<𝑔𝑙

𝑥𝑘 − 𝑔𝑙−1
𝑔𝑙+1 − 𝑔𝑙

⋅ 𝑤𝑘 (4)

where 𝑐𝑙 is the value for grid point 𝑔𝑙 depending on sample points 𝑥𝑘 and their associated weights
𝑤𝑘.

2.3 Using convolution and the Fast Fourier Transform

Another technique to speedup the computation is rewriting the kernel density estimation as convolu‑
tion operation between the kernel function and the grid counts (bin counts) calculated by the binning
routine given above.

By using the fact that a convolution is just a multiplication in Fourier space and only evaluating the
KDE at grid points one can reduce the computational complexity down to 𝒪(log 𝑁 ⋅ 𝑁).11

Using the equation (2) from above only evaluated at grid points gives us

̂𝑓ℎ(𝑔𝑗) = 1
𝑛ℎ

𝑁
∑
𝑙=1

𝑐𝑙 ⋅ 𝐾(𝑔𝑗 − 𝑔𝑙
ℎ) = 1

𝑛ℎ
𝑁

∑
𝑙=1

𝑘𝑗−𝑙 ⋅ 𝑐𝑙 (5)

where 𝑘𝑗−𝑙 = 𝐾(𝑔𝑗−𝑔𝑙
ℎ).

Ifwe set 𝑐𝑙 = 0 for all 𝑙not in the set{1, ..., 𝑁}andnotice that𝐾(−𝑥) = 𝐾(𝑥)wecanextendequation
(5) to a discrete convolution as follows

̂𝑓ℎ(𝑔𝑗) = 1
𝑛ℎ

𝑁
∑

𝑙=−𝑁
𝑘𝑗−𝑙 ⋅ 𝑐𝑙 = ⃗𝑐 ∗ �⃗� (6)

where the two vectors look like this

Figure 1: Vectors ⃗𝑐 and �⃗� used for the convolution

By using the well known convolution theorem we can fourier transform ⃗𝑐 and �⃗�, multiply them and
inverse fourier transform them again to get the result of the discrete convolution.

Marc Steiner 10

Performance of univariate kernel density estimation methods in TensorFlow

However, due to the limitation of evaluating only at the grid points themselves, one needs to interpo‑
late to get values for the estimated distribution at points in between.

2.4 Improved Sheather‑Jones Algorithm

A different take on KDEs is described in the paper ‘Kernel density estimation by diffusion’ by Botev et
al.12 The authors present a new adaptive kernel density estimator based on linear diffusion processes
which also includes an estimation for the optimal bandwidth. Amore detailed and extensive explana‑
tion of the algorithm aswell as an implementation inMatlab is given in the ‘Handbook of Monte Carlo
Methods’13 by the original paper authors. However the general idea is briefly sketched below.

The optimal bandwidth is often defined as the one thatminimizes themean integrated squared error
(𝑀𝐼𝑆𝐸) between the kernel density estimation ̂𝑓ℎ,𝑛𝑜𝑟𝑚(𝑥) and the true probability density function
𝑓(𝑥), where 𝔼𝑓 denotes the expected value with respect to the sample which was used to calculate
the KDE.

𝑀𝐼𝑆𝐸(ℎ) = 𝔼𝑓 ∫[̂𝑓ℎ,𝑛𝑜𝑟𝑚(𝑥) − 𝑓(𝑥)]2𝑑𝑥 (7)

To find the optimal bandwidth it is useful to look at the second order derivative 𝑓 (2) of the unknown
distribution as it indicates howmany peaks the distribution has and how steep they are. For a distri‑
bution with many narrow peaks close together a smaller bandwidth leads to better result since the
peaks do not get smeared together to a single peak for instance.

As derivedbyWandand Jones an asymptotically optimal bandwidthℎ𝐴𝑀𝐼𝑆𝐸 whichminimizes a first‑
order asymptotic approximation of the 𝑀𝐼𝑆𝐸 is then given by14

ℎ𝐴𝑀𝐼𝑆𝐸(𝑥) = (1
2𝑁√𝜋‖𝑓 (2)(𝑥)‖2)

1
5

(8)

where 𝑁 is the number of sample points (or grid points if binning is used).

As Sheather and Jones showed, this second order derivative can be estimated, starting from an even
higher order derivative ‖𝑓 (𝑙+2)‖2 by using the fact that ‖𝑓 (𝑗)‖2 = (−1)𝑗𝔼𝑓 [𝑓 (2𝑗)(𝑋)], 𝑗 ≥ 1

ℎ𝑗 = (1 + 1/2𝑗+1/2

3
1 × 3 × 5 × ⋯ × (2𝑗 − 1)

𝑁√𝜋/2 ∥𝑓 (𝑗+1)∥2)
1/(3+2𝑗)

= 𝛾𝑗(ℎ𝑗+1) (9)

where ℎ𝑗 is the optimal bandwidth for the 𝑗‑th derivative of 𝑓 and the function 𝛾𝑗 defines the depen‑
dency of ℎ𝑗 on ℎ𝑗+1

Their proposed plug‑in method works as follows:

Marc Steiner 11

Performance of univariate kernel density estimation methods in TensorFlow

1. Compute ‖ ̂𝑓 (𝑙+2)‖2 byassuming that 𝑓 is the normal pdfwithmeanand variance estimated from
the sample data

2. Using ‖ ̂𝑓 (𝑙+2)‖2 compute ℎ𝑙+1
3. Using ℎ𝑙+1 compute ‖ ̂𝑓 (𝑙+1)‖2

4. Repeat steps 2 and 3 to compute ℎ𝑙, ‖ ̂𝑓 (𝑙)‖2, ℎ𝑙−1, ⋯ and so on until ‖ ̂𝑓 (2)‖2 is calculated
5. Use ‖ ̂𝑓 (2)‖2 to compute ℎ𝐴𝑀𝐼𝑆𝐸

Theweakest point of this procedure is the assumption that the true distribution is a Gaussian density
function in order to compute ‖ ̂𝑓 (𝑙+2)‖2. This can lead to arbitrarily bad estimates of ℎ𝐴𝑀𝐼𝑆𝐸, when
the true distribution is far from being normal.

Therefore Botev et al. took this idea further12. Given the function 𝛾[𝑘] such that

𝛾[𝑘](ℎ) = 𝛾1 (⋯ 𝛾𝑘−1 (𝛾𝑘⏟⏟⏟⏟⏟⏟⏟
𝑘 times

(ℎ)) ⋯) (10)

ℎ𝐴𝑀𝐼𝑆𝐸 can be calculated as

ℎ𝐴𝑀𝐼𝑆𝐸 = ℎ1 = 𝛾[1](ℎ2) = 𝛾[2](ℎ3) = ⋯ = 𝛾[𝑙](ℎ𝑙+1) (11)

By setting ℎ𝐴𝑀𝐼𝑆𝐸 = ℎ𝑙+1 and using fixed point iteration to solve the equation

ℎ𝐴𝑀𝐼𝑆𝐸 = 𝛾[𝑙](ℎ𝐴𝑀𝐼𝑆𝐸) (12)

the optimal bandwidth ℎ𝐴𝑀𝐼𝑆𝐸 can be found directly.

This eliminates the need to assume normally distributed data for the initial estimate and leads to
improved performance, especially for density distributions that are far from normal as seen in the
next chapter. According to their paper increasing 𝑙 beyond 𝑙 = 5 does not increase the accuracy in
any practically meaningful way. The computation is especially efficient if 𝛾[5] is computed using the
Discrete Cosine Transform ‑ an FFT related transformation.

The optimal bandwidthℎ𝐴𝑀𝐼𝑆𝐸 can then either be used for other kernel density estimationmethods
(like the FFT‑approach discussed above) or also to compute the kernel density estimation directly
using another Discrete Cosine Transform.

2.5 Using specialized kernel functions and their series expansion

Lastly there is an interesting approach described by Hofmeyr15 that uses special kernel functions of
the form 𝐾(𝑥) ∶= 𝑝𝑜𝑙𝑦(|𝑥|) ⋅ 𝑒𝑥𝑝(−|𝑥|) where 𝑝𝑜𝑙𝑦(|𝑥|) denotes a polynomial of finite degree.

Given the kernel with a polynom of order 𝛼

Marc Steiner 12

Performance of univariate kernel density estimation methods in TensorFlow

𝐾𝛼(𝑥) ∶=
𝛼

∑
𝑗=0

|𝑥|𝑗 ⋅ 𝑒−|𝑥| (13)

the kernel density estimation is given by (equation (1))

̂𝑓ℎ(𝑥) = 1
𝑛ℎ

𝑛
∑
𝑘=1

𝛼
∑
𝑗=0

(|𝑥 − 𝑥𝑘|
ℎ)𝑗 ⋅ 𝑒(− |𝑥−𝑥𝑘|

ℎ) (14)

where as usual 𝑛 is the number of samples and ℎ is the bandwidth parameter.

Hofmeyr showed that the above kernel density estimator can be rewritten as

̂𝑓ℎ(𝑥) =
𝛼

∑
𝑗=0

𝑗
∑
𝑖=0

(𝑗
𝑖)(exp(

𝑥(�̃�(𝑥)) − 𝑥
ℎ)𝑥𝑗−𝑖ℓ(𝑖, �̃�(𝑥)) + exp(

𝑥 − 𝑥(𝑛(𝑥))
ℎ)(−𝑥)𝑗−𝑖𝑟(𝑖, �̃�(𝑥))) (15)

where �̃�(𝑥) is defined to be the number of sample points less than or equal to 𝑥 (�̃�(𝑥) =
∑𝑛

𝑘=1 𝛿𝑥𝑘
((−∞, 𝑥]), where 𝛿𝑥𝑘

(⋅) is the Dirac measure of 𝑥𝑘) and ℓ(𝑖, �̃�) and 𝑟(𝑖, �̃�) are given
by

ℓ(𝑖, �̃�) =
�̃�

∑
𝑘=1

(−𝑥𝑘)𝑖 exp(𝑥𝑘 − 𝑥�̃�
ℎ) (16)

𝑟(𝑖, �̃�) =
�̃�

∑
𝑘=�̃�+1

(𝑥𝑘)𝑖 exp(𝑥�̃� − 𝑥𝑘
ℎ) (17)

Or put differently, all values of ̂𝑓ℎ(𝑥) can be specified as linear combinations of terms in
⋃𝑖,�̃�{ℓ(𝑖, �̃�), 𝑟(𝑖, �̃�)}. Finally, the critical insight lies in the fact that ℓ(𝑖, �̃�) and 𝑟(𝑖, �̃�)} can be
computed recursively as follows

ℓ(𝑖, �̃� + 1) = exp(𝑥�̃� − 𝑥�̃�+1
ℎ)ℓ(𝑖, �̃�) + (−𝑥�̃�+1)𝑖 (18)

𝑟(𝑖, �̃� − 1) = exp(𝑥�̃�−1 − 𝑥�̃�
ℎ)(𝑟(𝑖, �̃�) + (𝑥�̃�)𝑖) (19)

Using this recursion one can then calculate the kernel density estimation with a single forward and a
single backward pass over the ordered set of all 𝑥�̃� leading to a computational complexity of 𝒪((𝛼 +
1)(𝑛 + 𝑚))where𝛼 is the order of the polynom, 𝑛 is the number of sample points and𝑚 is the num‑
ber of evaluation points. What is important to note here is that this is the only method that defines a
computational gain for an exact kernel density estimation. Although we can also use binning to ap‑

Marc Steiner 13

Performance of univariate kernel density estimation methods in TensorFlow

proximate it and reduce the computational complexity even further, it is already a significant runtime
reduction for the exact estimate.

3 Current state of the art

Toget a senseofwhat the current stateof kernel density estimation inPython is, wewill lookat several
current implementations and their distinctions. This will lead to an understanding of their different
properties and allowus to compare and classify the newmethods proposed in the next chapter inside
Python’s ecosystem.

Themost popular KDe implementations in Python are SciPy’sgaussian_kde16, Statsmodels’KDE-
Univariate17, Scikit‑learn’sKernelDensity package18 aswell as KDEpy by TommyOdland19.

The question of the optimal KDE implementation for any situation is not entirely straightforward and
depends a lot on what your particular goals are. Statsmodels includes a computation based on Fast
Fourier Transform (FFT) andnormal reference rules for choosing theoptimal bandwidth,which Scikit‑
learns package lacks for instance. On the other hand, Scikit‑learn includes a 𝑘‑d‑tree based kernel
density estimation, which is not available in Statsmodels. As Jake VanderPlas was able to show in his
comparison20 Scikit‑learn’s tree based approach to compute the kernel density estimation was the
most efficient in the vast majority of cases in 2013.

However the new implementation proposed by Tommy Odland in 2018 called KDEpy19 was able to
outperform all previous implementations (even Scikit‑learn’s tree based approach) in terms of run‑
time for a given accuracy by a factor of at least one order ofmagnitude, using an FFT based approach.
Additionally it incorporates features of all implementations mentioned before as well as additional
kernels and an additional method to calculate the bandwidth using the Improved Sheather Jones
(ISJ) algorithm first proposed by Botev et al12, which was discussed in the previous chapter.

This makes KDEpy the de‑facto standard of kernel density estimation in Python.

Table 1: Comparison between KDE implementations by Tommy Odland10 (NR: normal reference
rules, namely Scott/Silverman, CV: Cross Validation, ISJ: Improved Sheater Jones according to Botev
et al.12)

Feature / Library scipy sklearn statsmodels KDEpy

Number of kernel functions 1 6 7 (6 slow) 9

Weighted data points No No Non‑FFT Yes

Automatic bandwidth NR None NR,CV NR, ISJ

Multidimensional No No Yes Yes

Marc Steiner 14

Performance of univariate kernel density estimation methods in TensorFlow

Feature / Library scipy sklearn statsmodels KDEpy

Supported algorithms Exact Tree Exact, FFT Exact, Tree, FFT

Therefore the novel implementation for kernel density estimation based on TensorFlow and zfit pro‑
posed in this thesis is compared to KDEpy directly to show that it can outperform KDEpy in terms of
runtime and accuracy for large datasets (𝑛 ≥ 108).

4 Implementation

In addition to the rather simple case of an exact univariate kernel density estimation (henceforth
called ZfitExact), four conceptually different novel implementations in zfit and TensorFlow are
proposed. A method based on simple or linear binning (called ZfitBinned), a method using the
FFT algorithm (called ZfitFFT), a method based on the improved Sheather Jones algorithm (called
ZfitISJ) and lastly a method based on Hofmeyr’s method of using a specialized kernel of the form
𝑝𝑜𝑙𝑦(𝑥) ⋅ exp(𝑥) (called ZfitHofmeyr) and recursive computation of the bases needed to calculate
the kernel density estimations as linear combination. Allmethods are implemented for the univariate
case only.

Important to note is that for ZfitISJ and ZfitFFT simple or linear binning is necessary as a pre‑
liminary step.

4.1 Advantages of using zfit and TensorFlow

The benefit of using zfit, which is based on TensorFlow, is that both frameworks are optimized for
parallel processing and CPU as well as GPU processing. TensorFlow uses graph based computation,
which means that it generates a computational graph of all operations to be done and their order,
before actually executing the computation. This has two key advantages.

First it allowsTensorFlow toact as a kindof compiler andoptimize the codebefore runningand sched‑
ule graphbranches that are independent of each other to be run ondifferent processors and executed
in parallel. Operations in TensorFlow are often implemented twice, once for CPU and once for GPU to
make use of the different environments available on each processor type. Also, similarly to NumPy9,
TensorFlow’s underlying operations are programmed in C++ and therefore benefit from static typing
and compile time optimization.

Secondly it allows fore automatic differentiation, meaning that every TensorFlow operation defines
its own derivative. Using the chain rule, TensorFlow can then automatically compute the gradient of
the whole program, which is especially useful for non‑parametric fitting (i.e. gradient descent com‑
putations in function approximations using a neural network).

Marc Steiner 15

Performance of univariate kernel density estimation methods in TensorFlow

4.2 Exact univariate kernel density estimation

The implementationof anexact univariate kernel density estimation inTensorFlow is straightforward.
Asdescribed in theoriginal TensorflowProbability Paper2, a KDEcanbe constructedbyusing itsMix-
tureSameFamily distribution class, given sampled data, their associated weights and band‑
width h as follows

import tensorflow as tf
from tensorflow_probability import distributions as tfd

data = [...]
weights = [...]
h = ...

f = lambda x: tfd.Independent(tfd.Normal(loc=x, scale=h))
n = data.shape[0].value

probs = weights / tf.reduce_sum(weights)

kde = tfd.MixtureSameFamily(
mixture_distribution=tfd.Categorical(

probs=probs),
components_distribution=f(data))

Interestingly, due to the smart encapsulated structure of TensorFlow Probability we can use any dis‑
tribution of the location‑scale family type as a kernel as long as it follows the Distribution contract
in TensorFlow Probability. If the used Kernel has only bounded support, the implementation pro‑
posed in this paper allows to specify the support upon instantiation of the class. If the Kernel has infi‑
nite support (like a Gaussian kernel for instance) a practical support estimate is calculated by search‑
ing for approximate roots with Brent’s method21 implemented for TensorFlow in the python package
tf_quant_finance by Google. This allows us to speed up the calculation as negligible contribu‑
tions from far away kernels are neglected.

However calculating an exact kernel density estimation is not always feasible as this can take a long
time with a huge collection of data points. By implementing it in TensorFlow we already get a sig‑
nificant speed up compared to implementations in native Python, due to TensorFlow’s advantages
mentioned above. Nonetheless the computational complexity remains the same and for large data
this can still make the exact KDE impractical.

An exact KDE using zfit called ZfitExact is implemented as a zfit.pdf.WrapDistribution
class, which is zfit’s class type for wrapping TensorFlow Probability distributions.

Marc Steiner 16

Performance of univariate kernel density estimation methods in TensorFlow

4.3 Binnedmethod

The method ZfitBinned also implements kernel density estimation as a constructed Mixture-
SameFamily distribution, however it bins the data (either simple or linearly) to an equally spaced
grid and uses only the grid points weighted by their grid count as kernel locations (see section 2.2).

Since simple binning is already implemented in TensorFlow as tf.histogram_fixed_width,
the contribution of this thesis for ZfitBinned lies in an implementation of linear binning in Ten‑
sorFlow. Implementing linear binning efficiently with TensorFlow is a bit tricky since loops should
be avoided as the graph based computation is fastest with vectorized operations and loops pose a
significant runtime overhead. However with some inspiration from the KDEpy package19 this can be
done without using loops at all.

First, every data point 𝑥𝑘 is transformed to ̃𝑥𝑘 in the following way (the transformation can be vector‑
ized)

̃𝑥𝑘 = 𝑥𝑘 − 𝑔0
Δ𝑔 (20)

where Δ𝑔 is the grid spacing and 𝑔0 is the left‑most value of the grid.

Given this transformation every ̃𝑥𝑘 can then be described by an integral part ̃𝑥𝑖𝑛𝑡
𝑘 (equal to its nearest

left grid point index 𝑙 = 𝑥𝑖𝑛𝑡
𝑘) plus some fractional part ̃𝑥𝑓𝑟𝑎𝑐

𝑘 (corresponding to the additional distance
betweengridpoint 𝑔𝑙 anddatapoint𝑥𝑘). The linearbinning can thenbe solved in the followingway.

Fordatapointson the right sideof thegridpoint 𝑔𝑙: The fractional parts of thedatapoints are summed
if the integral parts equal 𝑙.

For data points on the left side of the grid point 𝑔𝑙: 1 minus the fractional parts of the data points are
summed if the integral parts equal 𝑙 − 1.

Including the weights this looks as follows

𝑐𝑙 = 𝑐(𝑔𝑙) = ∑
�̃�𝑓𝑟𝑎𝑐

𝑘 ∈�̃�𝑓𝑟𝑎𝑐

𝑙=�̃�𝑖𝑛𝑡
𝑘

̃𝑥𝑓𝑟𝑎𝑐
𝑘 ⋅ 𝑤𝑘 + ∑

�̃�𝑓𝑟𝑎𝑐
𝑘 ∈�̃�𝑓𝑟𝑎𝑐

𝑙=�̃�𝑖𝑛𝑡
𝑘 +1

(1 − ̃𝑥𝑓𝑟𝑎𝑐
𝑘) ⋅ 𝑤𝑘 (21)

Left and right side sums can then be calculated efficiently with the TensorFlow function
tf.math.bincount.

The binned method ZfitBinned is implemented in the same class definition as ZfitExact, the
binning can be enabled by specifying a constructor argument.

Marc Steiner 17

Performance of univariate kernel density estimation methods in TensorFlow

4.4 FFT basedmethod

The KDEmethod calledZfitFFT, which uses the FFT basedmethod (discussed in section 2.3), is im‑
plemented as a zfit.pdf.BasePdf class. It is not based on TensorFlow Probability as it does not
use aMixtureDistributionbut instead calculates the estimate for the given grid points directly.
To still infer values for other points in the range of 𝑥 tfp.math.interp_regular_1d_grid
is used, which computes a linear interpolation of values between the grid. In TensorFlow one‑
dimensional discrete convolutions are efficiently implemented already if we use tf.nn.conv1d.
In benchmarking using this method to calculate the estimate proved significantly faster than using
tf.signal.rfft and tf.signal.irfft to transform, multiply and inverse transform the
vectors, which is implemented as an alternative option as well.

4.5 ISJ basedmethod

Themethod called ZfitISJ is also implemented as a zfit.pdf.BasePdf class. After using sim‑
ple or linear binning to calculate the grid counts, the estimate for the grid points is calculated using
the improved Sheather Jones method (discussed in section 2.4).

To find the roots for 𝛾𝑙 in equation (12) Brent’smethod21 implementedtf_quant_finance is used
again. To avoid loops the iterative function 𝛾𝑙 is statically unrolled for 𝑙 = 5, since higher valueswould
not lead toanypractical differencesaccording to thepaper authors. For theDiscreteCosineTransform
tf.signal.dct is used.

4.6 Specialized kernel method

The method called ZfitHofmeyr is again implemented as a zfit.pdf.BasePdf class. It uses
specialized kernels of the form 𝑝𝑜𝑙𝑦(𝑥) ⋅ exp(𝑥) (as discussed in 2.5).

However due to the recursive nature of the method, an implementation in TensorFlow directly dis‑
played the same poor performance as using an exact kernel density estimation based on a mixture
distribution. This is due to the fact, that recursive functionsof this type cannotbe vectorizedandhave
to be implementedusing loops, which are ill‑advised for TensorFlowdue to its graphbasedparadigm.
Implementing the recursion usingNumPy andtf.numpy_function (whichwraps aNumPy based
Python function to create a single TensorFlow operation) was an order of magnitude faster, but still
slower than all approximative methods discussed before.

Finally, implementing the method in C++ directly as a custom TensorFlow operation appropriately
named tf.hofmeyr_kde yielded the competitive execution runtime expected from theory. The
code for the C++ based implementation is based on the C++ code used for the author’s ownR package
FKSUM22.

Marc Steiner 18

Performance of univariate kernel density estimation methods in TensorFlow

So far the custom TensorFlow operation is only implemented as a proof of concept and poses severe
limitations. Its C++ library has to be compiled for every platform specifically and it currently does not
compute its own gradient and therefore does not support TensorFlow’s automatic differentiation. It
is also implemented only for the CPU and does therefore not benefit of using the GPU.

5 Comparison

To compare the efficiency and performance of the different kernel density estimationmethods imple‑
mented with TensorFlow a benchmarking suite was developed. It consists of three parts: a collection
of distributions to use, a collection of methods to compare and a runner module that implements
helper methods to execute themethods to test against the different distributions and plot the gener‑
ated datasets nicely.

The goal is to accesswhether the newly proposedmethods (ZfitBinned,ZfitFFT,ZfitISJ and
ZfitHofmeyr) are able to competewith currentKDE implementations inPython in termsof runtime
for a given accuracy. Furthermore the benchmarking between the four new implementations should
yield insights to choose the right method for the right use case.

5.1 Benchmark setup

To compare the different implementations multiple popular test distributions mentioned in Wand et
al.14 were used (see figure 2). A simple normal distribution, a simple uniform distribution, a bimodal
distribution comprised of two normals, a skewed bimodal distribution, a claw distribution that has
spikes, and one called asymmetric double claw that has different sized spikes left and right. This test
distributions are implemented using TensorFlow Probability and data is sampled from each test dis‑
tribution at random. The different KDE methods are then used to approximate this test distributions
from the sampled data.

Marc Steiner 19

Performance of univariate kernel density estimation methods in TensorFlow

8 6 4 2 0 2 4 6 8
x

0.0

0.2

0.4

P(
x)

Gaussian

8 6 4 2 0 2 4 6 8
x

0.00

0.05

0.10

P(
x)

Uniform

8 6 4 2 0 2 4 6 8
x

0.0

0.2

0.4

P(
x)

Bimodal

8 6 4 2 0 2 4 6 8
x

0.0

0.2

0.4

P(
x)

SkewedBimodal

8 6 4 2 0 2 4 6 8
x

0.0

0.2

0.4

0.6

P(
x)

Claw

8 6 4 2 0 2 4 6 8
x

0.0

0.2

0.4

P(
x)

AsymmetricDoubleClaw

Figure 2: Test distributions used to sample data from

All comparisons were made using a standard Gaussian kernel function. Although all location‑scale
family distributions of TensorFlow Probability may be used for the new implementation proposed
in this paper, the Gaussian kernel function is the most used one and provides best reference to
compare different implementations against each other. An exception is ZfitHofmeyr (see 4.6),
which uses a specialized kernel function of the form 𝑝𝑜𝑙𝑦(𝑥) ⋅ exp(𝑥), namely the 𝐾1 kernel function
with a polynom of order 𝛼 = 1 as given by equation (13). The 𝐾1 kernel function is used, since
it was shown to be the most performant in nearly all cases in Hofmeyr’s own benchmarking22.
Indicating this and the fact that the underlying algorithm was implemented in C++ as a custom
TensorFlow operation, the Hofmeyr method used in the comparisons is therefore appropriately
called ZfitHofmeyrK1withCpp.

For all approximative implementations linear binning with a fixed bin count of 𝑁 = 210 = 1024 was
used. This is the default in KDEpy, a power of 2 (which is favorable for FFT based algorithms), results
in an exact kernel density calculation for the lowest sample size used (103) but also yields results with
high accuracy for the highest sample size used (108). Decreasing the bin count would decrease the
runtimewhile providing lesser accuracywhereas increasing thebin countwould yieldhigher accuracy
while increasing the runtime (see 2.2). However, as allmethods compareduse the same linear binning

Marc Steiner 20

Performance of univariate kernel density estimation methods in TensorFlow

routine, changing the bin count does not change how they compare. Therefore the bin size is kept
fixed.

For nearly all implementations the bandwidth was calculated using the popular rule of thumb intro‑
duced by Silverman23, because it is simple to compute and sufficient to capture the differences be‑
tween implementations. The only exception is the ISJ based method, since it is based on calculating
the approximately optimal bandwidth directly (as shown in section 2.4).

5.2 Differences of Exact, Binned, FFT, ISJ and Hofmeyr implementations

First, the exact kernel density estimation implementation is compared against the linearly binned,
FFT and ISJ and Hofmeyr implementations run on a Macbook Pro 2013 Retina using the CPU.

The sample sizes lie in the rangeof103 to104. Thenumberof samples is restrictedbecause calculating
the exact kernel density estimation for more than 104 kernels is computationally unfeasible (larger
datasets would lead to an exponentially larger runtime).

Marc Steiner 21

Performance of univariate kernel density estimation methods in TensorFlow

5.2.1 Accuracy

8 6 4 2 0 2 4 6 8
x

0.0

0.1

0.2

0.3

0.4

P(
x)

Gaussian

8 6 4 2 0 2 4 6 8
x

0.00

0.02

0.04

0.06

0.08

0.10

P(
x)

Uniform

8 6 4 2 0 2 4 6 8
x

0.0

0.1

0.2

0.3

0.4

P(
x)

Bimodal

8 6 4 2 0 2 4 6 8
x

0.0

0.1

0.2

0.3

0.4

P(
x)

SkewedBimodal

8 6 4 2 0 2 4 6 8
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P(
x)

Claw

8 6 4 2 0 2 4 6 8
x

0.0

0.1

0.2

0.3

0.4

P(
x)

AsymmetricDoubleClaw

actual ZfitExact ZfitBinned ZfitFFT ZfitISJ ZfitHofmeyrK1withCpp

Figure 3: Comparison between the five algorithms ’Exact’, ’Binned’, ’FFT’, ’ISJ’ and ’Hofmeyr’ with
𝑛 = 104 sample points

As seen in figure 3, all implementations are capturing the underlying distributions rather well, except
for the complicated spiky distributions at the bottom. Here the ISJ approach is especially favorable,
since it does not rely on Silverman’s rule of thumb to calculate the bandwidth. This can be seen in
figure 4 in more detail.

Marc Steiner 22

Performance of univariate kernel density estimation methods in TensorFlow

8 6 4 2 0 2 4 6 8
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P(
x)

Claw

actual
ZfitExact (ISE: 3.315e-02)

ZfitBinned (ISE: 3.304e-02)

ZfitFFT (ISE: 3.304e-02)

ZfitISJ (ISE: 2.048e-03)

ZfitHofmeyrK1withCpp (ISE: 4.105e-02)

Figure 4: Comparison between the five algorithms ’Exact’, ’Binned’, ’FFT’, ’ISJ’ and ’Hofmeyr’ with
𝑛 = 104 sample points on distribution ’Claw’

Marc Steiner 23

Performance of univariate kernel density estimation methods in TensorFlow

10
3

10
4

Number of samples (n)

10
4

10
3

IS
E

Gaussian

10
3

10
4

Number of samples (n)

10
3

2 × 10
3

3 × 10
3

4 × 10
3

IS
E

Uniform

10
3

10
4

Number of samples (n)

10
3

10
2

IS
E

Bimodal

10
3

10
4

Number of samples (n)

10
3

10
2

IS
E

SkewedBimodal

10
3

10
4

Number of samples (n)

10
2

IS
E

Claw

10
3

10
4

Number of samples (n)

10
2

3 × 10
3

4 × 10
3

6 × 10
3IS

E

AsymmetricDoubleClaw

ZfitExact ZfitBinned ZfitFFT ZfitISJ ZfitHofmeyrK1withCpp

Figure 5: Integrated square errors (𝐼𝑆𝐸) for the five algorithms ’Exact’, ’Binned’, ’FFT’, ’ISJ’ and
’Hofmeyr’

The calculated integrated square errors (𝐼𝑆𝐸) per sample size can be seen in figure 5. As expected
the 𝐼𝑆𝐸 decreases with increased sample size. The specialized kernel method (implemented as Ten‑
sorFlow operation in C++: ZfitHofmeyrK1withCpp) has a higher 𝐼𝑆𝐸 than the other methods
for all distributions. Although the ISJ based method’s (ZfitISJ) accuracy is equally as poor for the
uniform distribution, it has the lowest 𝐼𝑆𝐸 for the spiky ‘Claw’ distribution, which confirms the su‑
periority of the ISJ based bandwidth estimation for highly non‑normal, spiky distributions. For other
type of distributions the exact, linearly binned and FFT based method have comparable integrated
square errors, which suggest that the the accuracy loss of linear binning is negligible compared to the
exact kernel density estimate.

Marc Steiner 24

Performance of univariate kernel density estimation methods in TensorFlow

5.2.2 Runtime

The runtime comparisons are split in an instantiation and an evaluation phase. In the instantiation
phase everything is prepared for evaluation at different values of 𝑥, depending on the method used
more or less calculation happens during this phase. In the evaluation phase the kernel density esti‑
mate is calculated and returned for the evaluation points.

10
3

10
4

Number of samples (n)

10
2

10
1

In
st

an
tia

tio
n

ru
nt

im
e

[s
]

Gaussian

10
3

10
4

Number of samples (n)

10
1

In
st

an
tia

tio
n

ru
nt

im
e

[s
]

Uniform

10
3

10
4

Number of samples (n)

10
1

In
st

an
tia

tio
n

ru
nt

im
e

[s
]

Bimodal

10
3

10
4

Number of samples (n)

10
1

In
st

an
tia

tio
n

ru
nt

im
e

[s
]

SkewedBimodal

10
3

10
4

Number of samples (n)

10
1

2 × 10
2

3 × 10
2

4 × 10
2

6 × 10
2

In
st

an
tia

tio
n

ru
nt

im
e

[s
]

Claw

10
3

10
4

Number of samples (n)

10
1

In
st

an
tia

tio
n

ru
nt

im
e

[s
]

AsymmetricDoubleClaw

ZfitExact ZfitBinned ZfitFFT ZfitISJ ZfitHofmeyrK1withCpp

Figure 6: Runtime difference of the instantiaton phase between the five algorithms ’Exact’, ’Binned’,
’FFT’, ’ISJ’ and ’Hofmeyr’

As seen in figure 6, the FFT and ISJ method use more time during the instantiation phase than the
other methods. This is expected, since for these methods the kernel density estimate is calculated
for every grid point during the instantiation phase, whereas for the other methods, the calculation
is only prepared and actually executed during the evaluation phase itself. In addition, we can see

Marc Steiner 25

Performance of univariate kernel density estimation methods in TensorFlow

that the FFT method is faster than the ISJ method in calculating the kernel density estimate for the
grid points. The linear binning method is slower than the exact method because the bin counts are
calculated during the instantiation phase.

10
3

10
4

Number of samples (n)

10
2

P
df

 ru
nt

im
e

[s
]

Gaussian

10
3

10
4

Number of samples (n)

10
2

P
df

 ru
nt

im
e

[s
]

Uniform

10
3

10
4

Number of samples (n)

10
2

P
df

 ru
nt

im
e

[s
]

Bimodal

10
3

10
4

Number of samples (n)

10
2

P
df

 ru
nt

im
e

[s
]

SkewedBimodal

10
3

10
4

Number of samples (n)

10
2

P
df

 ru
nt

im
e

[s
]

Claw

10
3

10
4

Number of samples (n)

10
2

P
df

 ru
nt

im
e

[s
]

AsymmetricDoubleClaw

ZfitExact ZfitBinned ZfitFFT ZfitISJ ZfitHofmeyrK1withCpp

Figure 7: Runtime difference of the evaluation phase between the five algorithms ’Exact’, ’Binned’,
’FFT’, ’ISJ’ and ’Hofmeyr’

In figure 7 we can see that evaluation runtime of the exact KDE method increases with increased bin
size, whereas for the other methods it stays nearly constant. The binned method benefits from the
fact that, no matter how big the sample size is, it has to compute the kernel density estimate only for
the fixed bin count of 𝑁 = 1024. The other methods are faster during the evaluation phase, because
they have already calculated estimate in the instantiation phase and only need to interpolate for the
values in between.

Marc Steiner 26

Performance of univariate kernel density estimation methods in TensorFlow

5.3 Comparison to KDEpy

Now the newly proposed methods (Binned, FFT, ISJ, Hofmeyr) are compared against the state of the
art implementation in PythonKDEpy, also run on aMacbookPro 2013 Retina using the CPU. The num‑
ber of samples per test distribution is in the range of 103 ‑ 108. By excluding the exact kernel density
estimation, larger sample data sizes can be used for comparison.

5.3.1 Accuracy

8 6 4 2 0 2 4 6 8
x

0.0

0.1

0.2

0.3

0.4

P(
x)

Gaussian

8 6 4 2 0 2 4 6 8
x

0.00

0.02

0.04

0.06

0.08

0.10

P(
x)

Uniform

8 6 4 2 0 2 4 6 8
x

0.0

0.1

0.2

0.3

0.4

P(
x)

Bimodal

8 6 4 2 0 2 4 6 8
x

0.0

0.1

0.2

0.3

0.4

P(
x)

SkewedBimodal

8 6 4 2 0 2 4 6 8
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P(
x)

Claw

8 6 4 2 0 2 4 6 8
x

0.0

0.1

0.2

0.3

0.4

P(
x)

AsymmetricDoubleClaw

actual ZfitBinned ZfitFFT ZfitISJ ZfitHofmeyrK1withCpp KDEpyFFT

Figure 8: Comparison between the newly proposed algorithms ’Binned’, ’FFT’, ’ISJ’, ’Hofmeyr’ and
the FFT based implementation in KDEpy with 𝑛 = 104 sample points

The differentmethods show the samebehavior as the reference implementation in KDEpy, againwith
the exception of the ISJ algorithm, which works better for spiky distributions (figure 8).

Marc Steiner 27

Performance of univariate kernel density estimation methods in TensorFlow

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
6

10
4

10
2

10
0

IS
E

Gaussian

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
4

10
3

10
2

10
1

10
0

IS
E

Uniform

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
5

10
3

10
1

IS
E

Bimodal

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
6

10
5

10
4

10
3

10
2

IS
E

SkewedBimodal

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
4

10
2

10
0

IS
E

Claw

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
3

10
1

10
1

10
3

IS
E

AsymmetricDoubleClaw

ZfitBinned ZfitFFT ZfitISJ ZfitHofmeyrK1withCpp KDEpyFFT

Figure 9: Integrated square errors (𝐼𝑆𝐸) for the newly proposed algorithms ’Binned’, ’FFT’, ’ISJ’,
’Hofmeyr’ and the FFT based implementation in KDEpy

The integrated square errors plotted in figure 9, are in general in the same order of magnitude for all
implementations, except for the Hofmeyr method, which shows unrealistically high errors for higher
sample sizes. Thismight relate to an uncaught overflowerror in the customTensorFlowoperation im‑
plemented in C++ and should be investigated further. Additionally we see again that the ISJmethod’s
𝐼𝑆𝐸 is an order of magnitude lower for the spiky ‘Claw’ distribution, because it calculates a band‑
width closer to the optimum and does not rely on assuming a normal distribution in doing so. It can
be shown also that the binned, FFT and ISJ methods capture the nature of the underlying distribu‑
tions with high accuracy using only 𝑁 = 210 bins even for a sample size of 𝑛 = 108. KDEpy’s FFT
based implementation loses accuracy for higher sample sizes (𝑛 ≥ 108), whereas the new binned,
FFT and ISJ methods increase their accuracy even further, which suggests that using TensorFlow in‑
creases numerical stability for extensive calculations like kernel density estimations.

Marc Steiner 28

Performance of univariate kernel density estimation methods in TensorFlow

5.3.2 Runtime

Again the runtime comparisons are split in an instantiation and an evaluation phase.

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
2

10
0

10
2

In
st

an
tia

tio
n

ru
nt

im
e

[s
]

Gaussian

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
2

10
0

10
2

In
st

an
tia

tio
n

ru
nt

im
e

[s
]

Uniform

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
3

10
2

10
1

10
0

10
1

In
st

an
tia

tio
n

ru
nt

im
e

[s
]

Bimodal

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
2

10
0

10
2

In
st

an
tia

tio
n

ru
nt

im
e

[s
]

SkewedBimodal

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
2

10
0

10
2

In
st

an
tia

tio
n

ru
nt

im
e

[s
]

Claw

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
2

10
0

10
2

In
st

an
tia

tio
n

ru
nt

im
e

[s
]

AsymmetricDoubleClaw

ZfitBinned ZfitFFT ZfitISJ ZfitHofmeyrK1withCpp KDEpyFFT

Figure 10: Runtime difference of the instantiaton phase between the newly proposed algorithms
’Binned’, ’FFT’, ’ISJ’, ’Hofmeyr’ and the FFT based implementation in KDEpy

During the instantiation phase the newly proposed binned, FFT, ISJ and Hofmeyrmethods are slower
than KDEpy’s FFT method by one or two orders of magnitude (figure 10). This is predictable, since
generating the TensorFlow graph generates some runtime overhead.

In many practical situtations in high energy physics however, generating the TensorFlow graph and
the PDF has to be done only once and the PDF is evaluated repeatedly. This is for instance important if
using the distribution estimate for log‑likelihood or𝜒2 fits, which is a prime use case of zfit. Therefore
in such cases the PDF evaluation phase is of much higher importance. We can see, that once the

Marc Steiner 29

Performance of univariate kernel density estimation methods in TensorFlow

initial graph is built, evaluating the PDF for different values of 𝑥 is nearly constant instead increasing
exponentially as in the case of KDEpy’s FFT method (figure 11).

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
3

10
2

10
1

10
0

P
df

 ru
nt

im
e

[s
]

Gaussian

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
3

10
2

10
1

10
0

P
df

 ru
nt

im
e

[s
]

Uniform

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
2

10
1

10
0

P
df

 ru
nt

im
e

[s
]

Bimodal

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
3

10
2

10
1

10
0

P
df

 ru
nt

im
e

[s
]

SkewedBimodal

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
3

10
2

10
1

10
0

P
df

 ru
nt

im
e

[s
]

Claw

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
3

10
2

10
1

10
0

P
df

 ru
nt

im
e

[s
]

AsymmetricDoubleClaw

ZfitBinned ZfitFFT ZfitISJ ZfitHofmeyrK1withCpp KDEpyFFT

Figure 11: Runtime difference of the evaluation phase between the newly proposed algorithms
’Binned’, ’FFT’, ’ISJ’, ’Hofmeyr’ and the FFT based implementation in KDEpy

5.4 Comparison to KDEpy on GPU

Now we compare the new methods against KDEpy while leveraging TensorFlow’s capability of GPU
based optimization. All computations were executed using two Tesla P100 GPU’s on the openSUSE
Leap operating system running on an internal server of the University of Zurich. The number of sam‑
ples per test distribution is again in the range of 103 ‑ 108. As using the GPU does not change the
accuracy, wewill only compare the runtimes here. Also the Hofmeyrmethod is excluded as it was not
implemented for running on the GPU.

Marc Steiner 30

Performance of univariate kernel density estimation methods in TensorFlow

5.4.1 Runtime

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
3

10
1

10
1

In
st

an
tia

tio
n

ru
nt

im
e

[s
]

Gaussian

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
2

10
0

10
2

In
st

an
tia

tio
n

ru
nt

im
e

[s
]

Uniform

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
2

10
0

10
2

In
st

an
tia

tio
n

ru
nt

im
e

[s
]

Bimodal

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
2

10
0

10
2

In
st

an
tia

tio
n

ru
nt

im
e

[s
]

SkewedBimodal

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
2

10
0

10
2

In
st

an
tia

tio
n

ru
nt

im
e

[s
]

Claw

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
2

10
0

10
2

In
st

an
tia

tio
n

ru
nt

im
e

[s
]

AsymmetricDoubleClaw

ZfitBinned ZfitFFT ZfitISJ KDEpyFFT

Figure 12: Runtime difference of the instantiaton phase between the newly proposed algorithms
’Binned’, ’FFT’, ’ISJ’ and the FFT based implementation in KDEpy (run on GPU)

The instantiation of the newly proposed implementations runs faster on the GPU than the CPU. This
is no surprise as many operations in TensorFlow benefit from the parallel processing on the GPU. For
a high number of sample points the newly proposed binned as well as the newly proposed FFT im‑
plementation are instantiated nearly as fast as KDEpy’s FFT implementation if run on a GPU (figure
12).

Marc Steiner 31

Performance of univariate kernel density estimation methods in TensorFlow

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
3

10
2

10
1

10
0

P
df

 ru
nt

im
e

[s
]

Gaussian

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
3

10
2

10
1

10
0

P
df

 ru
nt

im
e

[s
]

Uniform

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
3

10
2

10
1

10
0

P
df

 ru
nt

im
e

[s
]

Bimodal

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
3

10
2

10
1

10
0

P
df

 ru
nt

im
e

[s
]

SkewedBimodal

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
2

10
1

10
0

P
df

 ru
nt

im
e

[s
]

Claw

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
3

10
2

10
1

10
0

P
df

 ru
nt

im
e

[s
]

AsymmetricDoubleClaw

ZfitBinned ZfitFFT ZfitISJ KDEpyFFT

Figure 13: Runtime difference of the evaluation phase between the newly proposed algorithms
’Binned’, ’FFT’, ’ISJ’ and the FFT based implementation in KDEpy (run on GPU)

The runtime of the PDF evaluation phase does not differ much from the one seen on the CPU. All new
methods are evaluated in near constant time (figure 13).

Marc Steiner 32

Performance of univariate kernel density estimation methods in TensorFlow

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
2

P
df

 ru
nt

im
e

[s
]

Gaussian

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

2 × 10
3

3 × 10
3

P
df

 ru
nt

im
e

[s
]

Uniform

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

2 × 10
3

3 × 10
3

P
df

 ru
nt

im
e

[s
]

Bimodal

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

2 × 10
3

3 × 10
3

P
df

 ru
nt

im
e

[s
]

SkewedBimodal

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

2 × 10
3

3 × 10
3

P
df

 ru
nt

im
e

[s
]

Claw

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

2 × 10
3

3 × 10
3

P
df

 ru
nt

im
e

[s
]

AsymmetricDoubleClaw

ZfitBinned ZfitFFT ZfitISJ

Figure 14: Runtime difference of the evaluation phase between the newly proposed algorithms
’Binned’, ’FFT’, ’ISJ’ only (run on GPU)

Looking at the evaluation runtimes of only the newmethods, we can see that the differences aremin‑
imal (figure 14) and all evaluation runtimes are of the same order of magnitude.

Marc Steiner 33

Performance of univariate kernel density estimation methods in TensorFlow

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
2

10
1

10
0

10
1

10
2

To
ta

l r
un

tim
e

[s
]

Gaussian

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
2

10
1

10
0

10
1

To
ta

l r
un

tim
e

[s
]

Uniform

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
2

10
1

10
0

10
1

To
ta

l r
un

tim
e

[s
]

Bimodal

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
2

10
1

10
0

10
1

10
2

To
ta

l r
un

tim
e

[s
]

SkewedBimodal

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
2

10
1

10
0

10
1

10
2

To
ta

l r
un

tim
e

[s
]

Claw

10
3

10
4

10
5

10
6

10
7

10
8

Number of samples (n)

10
2

10
1

10
0

10
1

10
2

To
ta

l r
un

tim
e

[s
]

AsymmetricDoubleClaw

ZfitBinned ZfitFFT ZfitISJ KDEpyFFT

Figure 15: Runtime difference of the total calculation (instantiation and evaluation phase) between
the newly proposed algorithms ’Binned’, ’FFT’, ’ISJ’ and the FFT based implementation in KDEpy
(run on GPU)

For larger datasets (𝑛 ≥ 108) even the total runtime (instantiation and PDF evaluation combined) of
the newly proposed binned and FFT methods is lower than for KDEpy’s FFT method, i.e these new
methods based on TensorFlow and zfit can outperform KDEpy if run on the GPU (figure 15).

5.5 Findings

The comparisons above lead to four distinct findings.

1. The Hofmeyr method (ZfitHofmeyr), although a performant algorithm in theory, is difficult
to implement efficiently in TensorFlow due to recursion and needs more work to be used for

Marc Steiner 34

Performance of univariate kernel density estimation methods in TensorFlow

real data.
2. For use cases where only the evaluation runtime is of importance, for instance in log‑likelihood

fitting, the newly proposed FFT and ISJ based implementations (ZfitFFT and ZfitISJ) are
the most efficient ones.

3. The ISJ based implementation (ZfitISJ) provides superior accuracy for spiky non‑normal
distributions by an order of magnitude, while imposing only a minor runtime cost.

4. For sample sizes 𝑛 ≥ 108, the newly proposed binned and FFT methods (ZfitBinned,
ZfitFFT) are able to outperform KDEpy in terms of total runtime for a given accuracy if run
on the GPU.

6 Summary

After discussing the current mathematical research on kernel density estimation, several new im‑
plementations for kernel density estimation using zfit and TensorFlow were proposed. Namely one
just using linear binning (ZfitBinned), one using an approach based on a Fast Fourier Transform
(ZfitFFT), onebasedon the improvedSheather‑Jones algorithm (ZfitISJ) andonebasedon spe‑
cialized kernel functions of the form 𝑝𝑜𝑙𝑦(𝑥) ⋅ exp(𝑥) (ZfitHofmeyr). Since all proposed methods
are based on TensorFlow and zfit, they are optimized for parallel processing on multiple CPUs and
GPUs.

An extensive benchmarking showed that the methods ZfitBinned and ZfitFFT are both able to
compete with the current state‑of‑the‑art implementations in Python in terms of runtime for a given
accuracy. Furthermore thosemethods showed superior performance both in accuracy as well as run‑
time for a given accuracy for large sample sizes (𝑛 ≥ 108). Even for smaller datasets the methods
may be favorable in caseswhere the PDF has to be built only once but is evaluated repeatedly (i.e. log‑
likelihood fits in zfit). In such cases ZfitFFT proves especially useful, as it only calculates a linear
interpolation in the evaluation phase and has therefore the smallest runtime during this phase. Han‑
dling large datasets and fast repeated evaluation of the PDF are both cases that are important in high
energy physics. Additionally ZfitBinned and ZfitFFT have the benefit of allowing any distribu‑
tion of the location‑scale family that follows the Distribution contract of TensorFlow Probability2 as
kernel function, which includes more than twelve distributions at the moment.

For spiky non‑normal distributions themethod ZfitISJ provides superior accuracy with only ami‑
nor increase in runtime, because it computes an approximately optimal bandwidth and does not de‑
pend on assuming normally distributed data in doing so. It was able to outperform any other imple‑
mentation in terms of accuracy in the most cases.

The last method ZfitHofmeyr is an interesting proof of concept, that can in theory compute exact
kernel density estimates very fast, however, due to its recursive nature it is poorly suited to be imple‑
mented with TensorFlow. After implementing it with C++ as custom TensorFlow operation the practi‑

Marc Steiner 35

Performance of univariate kernel density estimation methods in TensorFlow

cal speed gainwas indeed notable, however it was not able to outperform the other implementations
based on runtime for a given accuracy. In particular, it failed to approximate some distributions com‑
pletely for bigger sample sizes, although thismight be an artifact of an uncaught overflow error in the
C++ implementation. Further investigation would be needed to find a way to mitigate this. For these
reasons the current implementation of ZfitHofmeyr proofed insufficient to accurately portray the
usefulness of Hofmeyr’s method.

Table 2: Comparison between KDE implementations (NR: normal reference rules, namely
Scott/Silverman, CV: Cross Validation, ISJ: Improved Sheater Jones according to Botev et al.)

Feature / Library scipy sklearn statsmodels KDEpy Zfit

Number of kernel functions 1 6 7 (6 slow) 9 12

Weighted data points No No Non‑FFT Yes Yes

Automatic bandwidth NR None NR,CV NR, ISJ NR, ISJ

Multidimensional No No Yes Yes No(planned)

Supported algorithms Exact Tree Exact, FFT Exact, Tree, FFT Exact, Binned, FFT, ISJ

All proposed implementations restrict themselves to the one‑dimensional case as described in sec‑
tion 1.4. So far only KDEpy and Statsmodels implement a multidimensional KDE in Python. Gener‑
alization to higher dimensionel kernel density estimation is feasible and would extend its use case
even further, although this would requiremore work. Firstly because the binning routine would have
to be extended to the multi‑dimensional case and secondly because the improved Sheather‑Jones
algorithm implementation would have to be adapted. In addition one must ensure that the kernel
functions used are multidimensional themselves, however, this is already the case for the most im‑
portant kernel function, the Gaussian density. In addition, looking deeper in the specialized kernel
function based approach might result in an even faster implementation, however this would require
substantially more work due to the difficulty of implementing recursion in TensorFlow efficiently.

In conclusion, the newly proposed methods ZfitFFT, ZfitISJ show superior performance for
cases where only the PDF evaluation runtime is of importance, especially if the PDF is used for log‑
likelihood or 𝜒2‑squared fitting. Furthermore, the proposed improved Sheather‑Jones algorithm im‑
plementation shows state‑of‑the‑art accuracy in general while imposing only a minor runtime cost.
Finally, for larger datasets with sample size (𝑛 ≥ 108), the binned as well as the FFT based imple‑
mentations (ZfitBinned,ZfitFFT) are able to outperform the current state‑of‑the‑art in terms of
runtime for a given accuracy. Therefore the newly proposed implementations are optimally suited for
kernel density estimation in scientific fields like high energy physics that deal with large datasets.

Marc Steiner 36

Performance of univariate kernel density estimation methods in TensorFlow

Appendix

Source Code

The source code of the newly proposed implementations can be found at https://github.com/
AstroViking/tf‑kde

Marc Steiner 37

https://github.com/AstroViking/tf-kde
https://github.com/AstroViking/tf-kde

Performance of univariate kernel density estimation methods in TensorFlow

References

1 Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor‑
rado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Y. Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven‑
berg, DandelionMané, RajatMonga, SherryMoore, DerekMurray, ChrisOlah,MikeSchuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasude‑
van, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi‑
aoqiang Zheng, TensorFlow: Large‑Scale Machine Learning on Heterogeneous Systems (2015).

2 J. V. Dillon, I. Langmore, D. Tran, E. Brevdo, S. Vasudevan, D.Moore, B. Patton, A. Alemi, M. D. Hoffman,
and R. A. Saurous, TensorFlow Distributions, CoRR abs/1711.10604, (2017).

3 J. Eschle, A. Puig Navarro, R. Silva Coutinho, and N. Serra, Zfit: Scalable Pythonic Fitting, SoftwareX
11, 100508 (2020).

4 Processing: What to Record? ‑ CERN Accelerating Science, https://home.cern/science/computing/
processing‑what‑record (accessed Nov. 16, 2020).

5 M. Rosenblatt, Remarks on Some Nonparametric Estimates of a Density Function, Ann. Math. Statist.
27, 832 (1956).

6 T. Duong, Kernel Density Estimation in Python, https://www.mvstat.net/tduong/research/seminars/
seminar‑2001‑05/ (accessed Nov. 16, 2020).

7 M. Lerner, Kernel Density Estimation in Python, https://mglerner.github.io/posts/histograms‑and‑
kernel‑density‑estimation‑kde‑2.html (accessed Nov. 16, 2020).

8 K. Cranmer, Kernel Estimation in High‑Energy Physics, Computer Physics Communications 136, 198
(2001).

9 C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J.
Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F.
del R’ıo, M. Wiebe, P. Peterson, P. G’erard‑Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi,
C. Gohlke, and T. E. Oliphant, Array Programming with NumPy, Nature 585, 357 (2020).

10 T. Odland, Comparison | KDEpy, https://kdepy.readthedocs.io/en/latest/comparison.html (accessed
Nov. 16, 2020).

11 A. Gramacki, FFT‑Based Algorithms for Kernel Density Estimation andBandwidth Selection, inNonpara‑
metric Kernel Density Estimation and Its Computational Aspects (Springer, 2018), pp. 85–118.

12 Z. I. Botev, J. F. Grotowski, D. P. Kroese, and others, Kernel Density Estimation via Diffusion, The Annals
of Statistics 38, 2916 (2010).

13 D. P. Kroese, T. Taimre, and Z. I. Botev,Handbook of Monte Carlo Methods, Vol. 706 (JohnWiley & Sons,
2013).

14 M. P. Wand and M. C. Jones, Kernel Smoothing (Crc Press, 1994).
15 D. Hofmeyr, Fast Exact Evaluation of Univariate Kernel Sums, IEEE Trans. Pattern Anal. Mach. Intell. 1

(2019).

Marc Steiner 38

https://home.cern/science/computing/processing-what-record
https://home.cern/science/computing/processing-what-record
https://www.mvstat.net/tduong/research/seminars/seminar-2001-05/
https://www.mvstat.net/tduong/research/seminars/seminar-2001-05/
https://mglerner.github.io/posts/histograms-and-kernel-density-estimation-kde-2.html
https://mglerner.github.io/posts/histograms-and-kernel-density-estimation-kde-2.html
https://kdepy.readthedocs.io/en/latest/comparison.html

Performance of univariate kernel density estimation methods in TensorFlow

16 Scipy.stats.gaussian_kde— SciPy V1.5.4 Reference Guide, https://docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.gaussian_kde.html (accessed Nov. 16, 2020).

17 Kernel Density Estimation — Statsmodels, https://www.statsmodels.org/devel/examples/notebooks/
generated/kernel_density.html (accessed Nov. 16, 2020).

18 Sklearn.neighbors.KernelDensity — Scikit‑Learn 0.23.2 Documentation, https://scikit‑learn.org/stable/
modules/generated/sklearn.neighbors.KernelDensity.html (accessed Nov. 16, 2020).

19 T. Odland, KDEpy, https://github.com/tommyod/KDEpy (accessed Nov. 16, 2020).
20 J. VanderPlas, Kernel Density Estimation in Python, https://jakevdp.github.io/blog/2013/12/01/

kernel‑density‑estimation/ (accessed Nov. 16, 2020).
21 R. P. Brent, An Algorithmwith Guaranteed Convergence for Finding a Zero of a Function, The Computer

Journal 14, 422 (1971).
22 D. P. Hofmeyr, Fast Kernel Smoothing in R with Applications to Projection Pursuit, arXiv:2001.02225

[stat] (2020).
23 B.W. Silverman,Density Estimation for Statistics and Data Analysis (Chapman&Hall/CRC, Boca Raton,

1998).

List of Tables

1 Comparison between KDE implementations by Tommy Odland10 (NR: normal refer‑
ence rules, namely Scott/Silverman, CV: Cross Validation, ISJ: ImprovedSheater Jones
according to Botev et al.12) . 14

2 Comparison between KDE implementations (NR: normal reference rules, namely
Scott/Silverman, CV: Cross Validation, ISJ: Improved Sheater Jones according to
Botev et al.) . 36

List of Figures

1 Vectors ⃗𝑐 and �⃗� used for the convolution . 10
2 Test distributions used to sample data from . 20
3 Comparison between the five algorithms ’Exact’, ’Binned’, ’FFT’, ’ISJ’ and ’Hofmeyr’

with 𝑛 = 104 sample points . 22
4 Comparison between the five algorithms ’Exact’, ’Binned’, ’FFT’, ’ISJ’ and ’Hofmeyr’

with 𝑛 = 104 sample points on distribution ’Claw’ . 23
5 Integrated square errors (𝐼𝑆𝐸) for the five algorithms ’Exact’, ’Binned’, ’FFT’, ’ISJ’ and

’Hofmeyr’ . 24
6 Runtime difference of the instantiaton phase between the five algorithms ’Exact’,

’Binned’, ’FFT’, ’ISJ’ and ’Hofmeyr’ . 25

Marc Steiner 39

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html
https://www.statsmodels.org/devel/examples/notebooks/generated/kernel_density.html
https://www.statsmodels.org/devel/examples/notebooks/generated/kernel_density.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html
https://github.com/tommyod/KDEpy
https://jakevdp.github.io/blog/2013/12/01/kernel-density-estimation/
https://jakevdp.github.io/blog/2013/12/01/kernel-density-estimation/

Performance of univariate kernel density estimation methods in TensorFlow

7 Runtime difference of the evaluation phase between the five algorithms ’Exact’,
’Binned’, ’FFT’, ’ISJ’ and ’Hofmeyr’ . 26

8 Comparison between the newly proposed algorithms ’Binned’, ’FFT’, ’ISJ’, ’Hofmeyr’
and the FFT based implementation in KDEpy with 𝑛 = 104 sample points 27

9 Integrated square errors (𝐼𝑆𝐸) for the newly proposed algorithms ’Binned’, ’FFT’, ’ISJ’,
’Hofmeyr’ and the FFT based implementation in KDEpy 28

10 Runtime difference of the instantiaton phase between the newly proposed algorithms
’Binned’, ’FFT’, ’ISJ’, ’Hofmeyr’ and the FFT based implementation in KDEpy 29

11 Runtime difference of the evaluation phase between the newly proposed algorithms
’Binned’, ’FFT’, ’ISJ’, ’Hofmeyr’ and the FFT based implementation in KDEpy 30

12 Runtime difference of the instantiaton phase between the newly proposed algorithms
’Binned’, ’FFT’, ’ISJ’ and the FFT based implementation in KDEpy (run on GPU) 31

13 Runtime difference of the evaluation phase between the newly proposed algorithms
’Binned’, ’FFT’, ’ISJ’ and the FFT based implementation in KDEpy (run on GPU) 32

14 Runtime difference of the evaluation phase between the newly proposed algorithms
’Binned’, ’FFT’, ’ISJ’ only (run on GPU) . 33

15 Runtime difference of the total calculation (instantiation and evaluation phase) be‑
tween the newly proposed algorithms ’Binned’, ’FFT’, ’ISJ’ and the FFT based imple‑
mentation in KDEpy (run on GPU) . 34

Marc Steiner 40

	Introduction
	Purpose of this thesis
	Kernel density estimation
	zfit and TensorFlow
	Univariate case

	Theory
	Exact kernel density estimation
	Binning
	Simple binning
	Linear binning

	Using convolution and the Fast Fourier Transform
	Improved Sheather-Jones Algorithm
	Using specialized kernel functions and their series expansion

	Current state of the art
	Implementation
	Advantages of using zfit and TensorFlow
	Exact univariate kernel density estimation
	Binned method
	FFT based method
	ISJ based method
	Specialized kernel method

	Comparison
	Benchmark setup
	Differences of Exact, Binned, FFT, ISJ and Hofmeyr implementations
	Accuracy
	Runtime

	Comparison to KDEpy
	Accuracy
	Runtime

	Comparison to KDEpy on GPU
	Runtime

	Findings

	Summary
	Appendix
	Source Code

	References

