15 November 2016 Zurich University

Minimal Dark Matter, reloaded

Marco Cirelli (CNRS LPTHE Jussieu Paris)

Based on: Cirelli, Fornengo, Strumia 'Minimal Dark Matter', NPB 2006 +... Cirelli, Sala, Taoso, JHEP 2014 Cirelli, Hambye, Panci, Sala, Taoso, JCAP 2015 15 November 2016 Zurich University

Minimal Dark Matter, reloaded

Marco Cirelli (CNRS LPTHE Jussieu Paris)

Based on: Cirelli, Fornengo, Strumia 'Minimal Dark Matter', NPB 2006 +... Cirelli, Sala, Taoso, JHEP 2014 Cirelli, Hambye, Panci, Sala, Taoso, JCAP 2015

DM exists

DM exists

galactic rotation curves

weak lensing (e.g. in clusters)

'precision cosmology' (CMB, LSS)

DM exists

galactic rotation curves

weak lensing (e.g. in clusters)

'precision cosmology' (CMB, LSS)

But: what is it?

Most likely a weakly int., massive, neutral, stable relic particle.

has the correct relic abundance today!

Boltzmann eq. in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma_{\mathrm{ann}} v \rangle}$$

Weak cross section:

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \,{\rm TeV}^2} \Rightarrow \Omega_X \sim \mathcal{O}(\text{few } 0.1)$$

has the correct relic abundance today!

Boltzmann eq. in the Early Universe:

 $\Omega_X \approx \frac{6 \ 10^{-27} \text{cm}^3 \text{s}^{-1}}{\langle \sigma_{\text{ann}} v \rangle}$

Weak cross section:

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \, {\rm TeV}^2} \Rightarrow \Omega_X \sim \mathcal{O}(\text{few } 0.1)$$

(or we would have seen it...)

has the correct relic abundance today!

Boltzmann eq. in the Early Universe:

 $\Omega_X \approx \frac{6 \ 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma_{\mathrm{ann}} v \rangle}$

Weak cross section:

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \, {\rm TeV}^2} \Rightarrow \Omega_X \sim \mathcal{O}(\text{few } 0.1)$$

(or we would have seen it...)

at least on cosmological time scales, i.e.

Theories beyond the SM have ambitious goals (hierarchy prob, EWSB, unification). As a *byproduct*, they can provide DM candidates at the EW scale.

Popular candidates:

SuperSymmetric LSP, Extra dimensional LKP...

Theories beyond the SM have ambitious goals (hierarchy prob, EWSB, unification). As a *byproduct*, they can provide DM candidates at the EW scale.

Popular candidates:

SuperSymmetric LSP, Extra dimensional LKP...

...<u>BUT</u>:

(i) these theories are by now very uncomfortably fine tuned (the LHC did not find New Physics, at least yet)

Theories beyond the SM have ambitious goals (hierarchy prob, EWSB, unification). As a *byproduct*, they can provide DM candidates at the EW scale.

Popular candidates:

SuperSymmetric LSP, Extra dimensional LKP...

...<u>BUT</u>:

(i) these theories are by now very uncomfortably fine tuned (the LHC did not find New Physics, at least yet)

(ii) these theories have many parameters,DM phenomenology is unclear (scatter plots)

Theories beyond the SM have ambitious goals (hierarchy prob, EWSB, unification). As a *byproduct*, they can provide DM candidates at the EW scale.

Popular candidates:

SuperSymmetric LSP, Extra dimensional LKP...

...<u>BUT</u>:

(i) these theories are by now very uncomfortably fine tuned (the LHC did not find New Physics, at least yet)

(ii) these theories have many parameters,DM phenomenology is unclear (scatter plots)

(iii) DM stability is imposed by hand (R-parity, T-parity, KK parity)

Minimalistic approach

 $\mathcal{L} = \mathcal{L}_{SM} + \bar{\mathcal{X}}(i\mathcal{D} + M)\mathcal{X}$ $\mathcal{L} = \mathcal{L}_{SM} + |D_{\mu}\mathcal{X}|^2 - M^2|\mathcal{X}|^2$

if $\mathcal X$ is a fermion

if \mathcal{X} is a scalar

and systematically search for the ideal DM candidate...

Minimalistic approach

On top of the SM, add only one extra multiplet $\mathcal{X}=\begin{pmatrix} \chi_1\\ \chi_2 \end{pmatrix}$

 $\mathscr{L} = \mathscr{L}_{\rm SM} + \bar{\mathcal{X}}(i\mathcal{D} + M)\mathcal{X}$ $\mathscr{L} = \mathscr{L}_{\rm SM} + |D/\mu\mathcal{X}|^2 - M^2|\mathcal{X}|^2$

if ${\mathcal X}$ is a fermion

if ${\mathcal X}$ is a scalar

gauge interactions $X \rightarrow W^{\pm}, Z, \gamma$ $[g_2, g_1, Y]$

the only parameter, and will be fixed by $\Omega_{\rm DM}$

(other terms in the scalar potential)

(one loop mass splitting)

and systematically search for the ideal DM candidate...

The ideal DM candidate is weakly int., massive, neutral, stable

The ideal DM candidate is

these are all possible choices: $n \leq 5$ for fermions $n \leq 7$ for scalars to avoid explosion in the running coupling $\alpha_2^{-1}(E') = \alpha_2^{-1}(M) - \frac{b_2(n)}{2\pi} \ln \frac{E'}{M}$

> (actually, including 2-loops, $n \le 6 \ (n \le 4)$ for real (complex) scalars) Di Luzio, Nardecchia et al., 1504.00359

 $-(\underline{6} \text{ is similar to } \underline{4})$

The ideal DM candidate is weakly int., massive, neutral, stab

Each multiplet contains a neutral component with a proper assignment of the hypercharge, according to

$$Q = T_3 + Y \equiv 0$$

e.g. for
$$n = 2$$
: $T_3 = \begin{pmatrix} +\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \Rightarrow |Y| = \frac{1}{2}$

e.g. for n = 3: $T_3 = \begin{pmatrix} +1 \\ 0 \\ -1 \end{pmatrix} \Rightarrow |Y| = 0 \text{ or } 1$

etc.

The ideal DM candidate is weakly int., massive, neutral, stab

$\begin{array}{c c} SU(2)_L & U(1)_Y & ext{spin} \\ \hline 2 & 1/2 & egin{array}{c} S \ F \ F \end{array} \\ \hline S & S \end{array}$	n
$\begin{array}{c c} \underline{2} & 1/2 & \underline{S} \\ \hline F \\ \hline S \\ \hline \end{array} \end{array}$	
$\frac{2}{5}$	
A REAL PROPERTY AND ADDRESS OF THE OWNER ADDRE	
$\begin{array}{c c} 0 \\ \hline \end{array} \end{array}$	
$\frac{\mathbf{b}}{\mathbf{b}}$ S	
1/9 S	
$\frac{4}{2}$ S	
$3/2$ F	
0 F	
$\frac{5}{5}$ F	
2 F	
$\overline{\underline{7}}$ 0 S	

Each multiplet contains a neutral component with a proper assignment of the hypercharge, according to

$$Q = T_3 + Y \equiv 0$$

e.g. for
$$n=2$$
: $T_3=\left(\begin{array}{c}+\frac{1}{2}\\-\frac{1}{2}\end{array}\right)\Rightarrow |Y|=\frac{1}{2}$

e.g. for n = 3: $T_3 = \begin{pmatrix} +1 \\ 0 \\ -1 \end{pmatrix} \Rightarrow |Y| = 0 \text{ or } 1$

etc.

The ideal DM candidate is weakly int., massive, neutral, stable

$SU(2)_L$	$U(1)_Y$	spin	$M ({\rm TeV})$
9	1/9	S	0.43
<u> </u>	1/2	F	1.2
	0	S	2.0
9	0	F	2.6
<u>0</u>	1	S	1.4
	1	F	1.8
	1/9	S	2.4
	1/2	F	2.5
<u>4</u>	3/2	S	2.4
		F	2.5
	0	S	5.0
	0	F	4.2
		S	3.5
<u>6</u>	1	F	3.2
	0	S	3.5
	2	F	3.2
7	0	S	8.5

The mass M is determined by the relic abundance: $\Omega_{\rm DM} = \frac{6 \ 10^{-27} {\rm cm}^3 {\rm s}^{-1}}{\langle \sigma_{\rm ann} v \rangle} \cong 0.24$

for \mathcal{X} scalar $\langle \sigma_A v \rangle \simeq \frac{g_2^4 (3 - 4n^2 + n^4) + 16 Y^4 g_Y^4 + 8g_2^2 g_Y^2 Y^2 (n^2 - 1)}{64\pi M^2 g_{\mathcal{X}}}$

The ideal DM candidate is weakly int., massive, neutral, stabl

$SU(2)_L$	$U(1)_Y$	spin	$M ({\rm TeV})$
9	1/9	S	
<u></u>	1/2	F	1.0
	Ο	S	2.5
2	0	F	2.7
<u>ગ</u>	1	S	
	1	F	
	1/9	S	
4	1/2	F	
<u>4</u>	3/2	S	
		F	
	0	S	
	0	F	9.4
P	1	S	
<u>5</u>	-	F	
	9	S	
		F	
<u>7</u>	0	S	25

Non-perturbative corrections (and other smaller corrections) (more later) induce modifications:

 $\langle \sigma_{\mathrm{ann}} v \rangle \rightsquigarrow R \cdot \langle \sigma_{\mathrm{ann}} v \rangle + \langle \sigma_{\mathrm{ann}} v \rangle_{p-\mathrm{wave}}$ with $R \sim \mathcal{O}(\mathrm{few}) \rightarrow \mathcal{O}(10^2)$

			The ide	al DM c	andidate is
We	akly				e, neutral, stable
$SU(2)_L$	$U(1)_Y$	spin	$M ({ m TeV})$	$\Delta M({ m MeV})$	EW loops induce
9	1/9	S		348	a mass splitting ΛM
		F	1.0	342	ingido tho nunlot.
	0	S	2.5	166	THEIGHT PITE TI-UDIED.
2	0	F	2.7	166	\sim W, Z, γ
<u> </u>		S		540	N
	1	F		526	$x \rightarrow x$
	1/2	S		353	
1		F		347	$M_Q - M_{Q'} = \frac{\alpha_2 M}{4\pi} \left\{ (Q^2 - Q'^2) s_W^2 f(\frac{M_Z}{M}) \right\}$
<u>4</u>	3/2	S		729	$+ (Q - Q')(Q + Q' - 2Y) \left[f(\frac{M_W}{M}) - f(\frac{M_Z}{M}) \right]$
		F		712	writh $f(r) \xrightarrow{r \to 0} -2\pi r$
	0	S		166	$J(I) \longrightarrow -2\pi I$
	0	F	9.4	166	
	1	S		537	The neutral component
<u>5</u>		F		534	is the lightest
		S		906	DM^+
	2	F		900	$\uparrow_{\Lambda,\Lambda,I}$
7	0	S	25	166	DM^0

}

The ideal DM candidate is								
wea	akly					itral, stable		
$SU(2)_L$	$U(1)_Y$	spin	$M ({\rm TeV})$	$\Delta M({ m MeV})$	decay ch.	List all allowed SM couplings:		
9	1/9	S		348	EL	$1/2 - 1 \ 1/2$		
<u> </u>		F	1.0	342	EH \leftarrow	-e.g. $\mathcal{X}EH$		
	Ο	S	2.5	166	HH^*	$\frac{2}{2}$ $\frac{1}{2}$		
2	0	F	2.7	166	LH	<i>X</i>		
<u>0</u>	1	S		540	HH, LH	~ h		
1	1	F		526	LH			
	1/9	S		353	HHH^*	$1/2 - 1/2 \ 1/2 - 1/2$		
4		F		347	(LHH^*)	– e.g. $~\mathcal{X}LHH^{*}$		
<u>4</u>	2 / 9	S		729	HHH	$\frac{4}{2} \frac{2}{2} \frac{2}{2}$		
	\mathbf{J}/\mathbf{Z}	F		712	(LHH)	$- \sqrt{2} T_{0} V^{-3} $		
		S		166	(HHH^*H^*)	$\tau \sim \Lambda \text{ Iev } \ll \iota_{\text{universe}}$		
	0	F	9.4	166				
<u>_</u>	1	S		537	$(HH^*H^*H^*)$			
<u>6</u>	1	F		534				
	9	S		906	$(H^*H^*H^*H^*)$			
		F		900		Di Luzio, Nardecchia		
7	0	S	25	166	$(\chi\chi H^*H)$	- dim=5, loop decay et al.,		

The ideal DM candidate is weakly int., massive, neutral, stable M (TeV) ΔM (MeV) decay ch. List all allowed SM couplings: $SU(2)_L$ $U(1)_{Y}$ spin 348 ELS $1/2 - 1 \ 1/2$ 1/22 342 F 1.0 EH \leftarrow e.g. χEH 166 S 2.5 HH^* 0 *x*_____h LH1662.7F 3 S $\overline{HH}, \overline{LH}$ 5401 F526 LHS353 HHH^* 1/2 - 1/2 1/2 - 1/21/2 $(LHH^*) \leftarrow e.g. \quad \mathcal{X}LHH^*$ 347 F4 S729 HHH3/2dim=5 operator, induces F712 (LHH) $\tau \sim \Lambda^2 \text{TeV}^{-3} \ll t_{\text{universe}}$ (HHH^*H^*) S1660 for $\Lambda \sim M_{\rm Pl}$ F166 9.4 $(HH^*H^*H^*$ S537 1 No allowed decay! 5 F534Automatically $(H^*H^*H^*H^*$ 906 Sstable! 2 F900 7 0 $(\chi\chi H^*H)$ S25166

			The ide	al DM c	andida	teis
wea	akly					tral, stable
$SU(2)_L$	$U(1)_Y$	spin	$M ({\rm TeV})$	$\Delta M({ m MeV})$	decay ch.	and
9	1/9	S		348	EL	not excluded
<u> </u>	1/2	F	1.0	342	EH	by direct searches
	\cap	S	2.5	166	HH^*	
2	0	F	2.7	166	LH	
<u>0</u>	1	S		540	HH, LH	
	1 	F		526	LH	
	1/9	S		353	HHH^*	
1		F		347	(LHH^*)	
<u>4</u>	2 / 9	S		729	HHH	
	\mathbf{J}/\mathbf{Z}	F		712	(LHH)	
	0	S		166	(HHH^*H^*)	
	0	F	9.4	166		
_	1	S		537	$(HH^*H^*H^*)$	
<u>6</u>	1	F		534		
	- 9	S		906	$(H^*H^*H^*H^*)$	
		F		900		
7	0	S	25	166	$(\chi\chi H^*H)$	

The ideal DM candidate is							
wea	akly					itral, stable	
$SU(2)_L$	$U(1)_Y$	spin	M (TeV)	$\Delta M({ m MeV})$	decay ch.	and	
0	1/9	S		348	EL	not excluded	
<u> </u>		F	1.0	342	EH	by direct searches!	
	0	S	2.5	166	HH^*		
2	0	F	2.7	166	LH	Candidates with $Y \neq 0$	
$\overline{0}$	1	S		540	HH, LH	interact as	
	L	F		526	LH		
	1/9	S		353	HHH^*	at the second at	
Λ		F		347	(LHH^*)	$\leq Z^0$	
<u>4</u>	3/2	S		729	HHH		
	0/2	F		712	(LHH)		
	0	S		166	(HHH^*H^*)	$rac{1}{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ Goodman	
		F	9.4	166		$0 \simeq G_F M_{\mathcal{N}} I$ 1985	
F	T	S		537	$(HH^*H^*H^*)$	present bounds » م	
<u>6</u>	-	F		534		0.8. 1011	
	2	S		906	$(\overline{H^*H^*H^*H^*})$		
		F		900		need $Y = 0$	
7	0	\overline{S}	25	166	$(\chi\chi H^*H)$		

			The ide	al DM c	andida	teis
wea	akly					tral, stable
$SU(2)_L$	$U(1)_Y$	spin	$M ({\rm TeV})$	$\Delta M({ m MeV})$	decay ch.	and
9	1/9	S		348	EL	not excluded
<u> </u>	1/2	F	1.0	342	EH	by direct searches
	\bigcirc	S	2.5	166	HH^*	
2	0	F	2.7	166	LH	
<u>0</u>	1	S		540	HH, LH	
	1 	F		526	LH	
	1/9	S		353	HHH^*	
1		F		347	(LHH^*)	
<u>4</u>	2 / 9	S		729	HHH	
	\mathbf{J}/\mathbf{Z}	F		712	(LHH)	
	0	S		166	(HHH^*H^*)	
	0	F	9.4	166		
_	1	S		537	$(HH^*H^*H^*)$	
<u>6</u>	1	F		534		
	- 9	S		906	$(H^*H^*H^*H^*)$	
		F		900		
7	0	S	25	166	$(\chi\chi H^*H)$	

			The ide	al DM c	andida	teis
wea	akly					tral, stable
$SU(2)_L$	$U(1)_Y$	spin	M (TeV)	$\Delta M({ m MeV})$	decay ch.	and
9	1/9	S		348	EL	not excluded
<u> </u>	1/4	F	1.0	342	EH	
	0	S	2.5	166	HH^*	
2	0	F	2.7	166	LH	
<u> 0</u>					HH, LH	
	T	F		526	LH	
	1/9	S		353	HHH^*	
1					(LHH^*)	
<u>4</u>					HHH	
		F		712	(LHH)	
	0	S		166	(HHH^*H^*)	
	0	F	9.4	166		
F						
<u>6</u>	L	F		534	—	
	9	S		906	$(H^*H^*H^*H^*)$	
		F		900	_	
7	0	S	25	166	$(\chi\chi H^*H)$	

			The ide	al DM c	andida	te is	
Wea	akly					Itral	, stable
$SU(2)_L$	$U(1)_Y$	spin	M (TeV)	$\Delta M({ m MeV})$	decay ch.		and
9	1/9	S		348	EL	not	exclude
<u>4</u>		F	1.0	342	EH		
	0	S	2.5	166	HH^*		
2		F	2.7	166	LH		
<u>0</u>	1	S		540	HH, LH		
		F		526	LH		
	1 /9	S		353	HHH^*		
1					(LHH^*)		
<u>4</u>							
	0	S		166	(HHH^*H^*)		
		F	9.4	166			
	1	S		537	$(HH^*H^*H^*)$		
<u>6</u>		F		534	_		
	9	S		906	$(H^*H^*H^*H^*)$		
	2	F		900	_		
7	0	S	25	166	$(\chi\chi H^*H)$		

The ideal DM candidate is								
Wea	akly					tral, stable		
$SU(2)_L$	$U(1)_Y$	spin	$M ({\rm TeV})$	$\Delta M({ m MeV})$	decay ch.	and		
9	1/9	S		348	EL	not excluded		
<u> </u>	1/4	F	1.0	342	EH			
	0	S	2.5	166	HH^*			
2	0	F	2.7	166	LH			
<u>v</u>	1	S		540	HH, LH			
	1	F		526	LH			
					HHH^*			
1					(LHH^*)			
<u>4</u>					HHH			
	0/2	F		712	(LHH)			
	0	S		166	(HHH^*H^*)			
		F	9.4	166	—	- We have a		
F					$(HH^*H^*H^*)$	winner!		
<u>6</u>		F		534	—	to of		
	9	S		906	$(H^*H^*H^*H^*)$	ner alar		
		F		900		E S		
7	0	\overline{S}	25	166	_			

If you want to cure ill candidates...

 $Y \neq 0$: introduce some mechanism to forbid coupling with Z^0 anyway

e.g. mixing with an extra state splits the 2 components of \mathcal{X} ; if splitting is large enough, NC scattering is kinematically forbidden...

stability: impose some symmetry to forbid decays (e.g. R-parity)...

...the case of SuSy higgsino

mixing is with bino; even for pure higgsino, some mixing is 'inevitable' due to higher dim operators

Recap:

A fermionic $SU(2)_L$ quintuplet with Y = 0provides a DM candidate with M = 9.4 TeV, which is fully successful: - neutral - neutral - **automatically** stable and not yet discovered by DM searches.

(Other candidates can be cured via non-minimalities.)

Detection and Phenomenology

DM detection

direct detection

production at colliders

(line + continuum)

\indirect (

from annihil in galactic halo or center from annihil in galactic halo or center from annihil in galactic halo or center $\bar{\nu}$ from annihil in massive bodies
1. Collider searches

At 9.4 TeV, no hope at the LHC.

relax the mass constraint consider next-to-minimal cases (e.g. the triplet = pure wino) explore reach of 100 TeV future collider

Mono-X

VBF

Disappearing tracks

di-jets + MET

1. Collider searches

At 9.4 TeV, no hope at the LHC.

relax the mass constraint
 consider next-to-minimal cases (e.g. the triplet = pure wino)
 explore reach of 100 TeV future collider

ermal 100% DM 14 TeV @ 3 ab-1 Mono-jet this work 100 TeV @ 3 ab-1 Mono-photon this work 100 TeV 14 TeV VBF this work 100 TeV 8 TeV 14 TeV Disappearing tracks this work 1000 20003000 4000 500 1500 2500 3500 M_{γ} [GeV]

For triplet MDM (a.k.a. wino DM)

For 5plet MDM

	$\sqrt{s} = 8 { m TeV}$				$\sqrt{s} = 14 \text{ TeV}$					
Model	ATLAS		CMS		Exclude			Discover		
	Expected	Observed	Expected	Observed	500%	100%	20%	500%	100%	20%
Wino	224	238	203	195	354	483	635	287	394	514
Majorana Fiveplet	256	267	234	226	410	524	668	340	448	576
Dirac Fiveplet	283	293	259	251	465	599	743	381	503	639

2. Direct Detection

2. Direct Detection

 $\sigma_{\rm SI}^n = 2 \cdot 10^{-46} \ \rm cm^2$

No tree level scattering. 1-loop and 2-loops:

Cirelli, Fornengo, Strumia hep-ph/0512090

Essig 0710.1668

Hisano, Ishiwata, Nagata 1007.2601

Hisano, Ishiwata, Nagata, Takesano 1104.0228

Hill, Solon 1111.0016

Hisano, Ishiwata, Nagata 1010.5985

Farina, Pappadopulo, Strumia 1303.7244

Hill, Solon 1309.4092

Hill, Solon 1401.3339

Hisano, Ishiwata, Nagata 1504.00915

2. Direct Detection

PS: SD cross section equally challenging Hisano, Ishiwata, Nagata 1010.5985

$\frac{3. Indirect Detection}{\gamma \text{ from MDM annihilations}}$

3. Indirect Detection γ from MDM annihilations in galactic center

$\frac{3. Indirect Detection}{\gamma \text{ from MDM annihilations in dwarf galaxies}}$

i.e. , , , , , , from MDM annihilations

+ $W^{\pm}, Z \rightarrow \bar{p}, e^+, \gamma \dots$

i.e. , , , γ , from MDM annihilations

+ $W^{\pm}, Z \rightarrow \bar{p}, e^{+}, \gamma \dots$

MDM

MDM

i.e., γ , from MDM annihilations

+
$$W^{\pm}, Z \rightarrow \bar{p}, e^+, \gamma \dots$$

(channels for MDM with Y=0)

Enhanced cross section due to 'Sommerfeld corrections'

Hisano et al., 2004, 2005 Cirelli, Strumia, Tamburini 2007

Cirelli, Hambye, Panci, Sala, Taoso 1507.05519

FERMI diffuse galactic:

NFW profile, conservative bound

FERMI diffuse galactic:

NFW profile, including background

Taoso Sala, Panci. Cirelli, Hamby

FERMI diffuse galactic:

Burkert profile, including background

Sala, Panci. **Cirelli**, Hambye,

FERMI diffuse galactic:

Burkert profile, conservative bound

relevant constraints but MDM 5plet not probed

dSphs galaxies, search for continuum γ -rays:

FERMI: 15 dSphs, 6yrs, 'Pass-8' - 1503.02641 HESS: 4 dSphs, incl Sagittarius - 1410.2589 MAGIC: Seguel - 1312.1535

relevant constraints but MDM 5plet not probed

dSphs galaxies, search for γ -ray lines:

MAGIC: Seguel - 1312.1535

NB large uncertainties in dSPhs 'J factor', i.e. DM-brightness e.g. Bonnivard et al., 1504.02048

1507.05

Taoso

Sala

relevant constraints but MDM 5plet not probed

MW center area, search for γ -ray lines:

FERMI: 1506.00013

HESS: 1301.1173

Taoso 1507.05519

Cirelli, Hambye, Panci, Sala,
MW center area, search for γ -ray lines:

FERMI: 1506.00013

HESS: 1301.1173

Uncertainties in DM profile:

e.g. Cirelli et al., 1012.4515

Taoso 1<u>507.05519</u>

Sala.

Panci.

Cirelli, Hambye,

MW center area, search for γ -ray lines:

FERMI: 1506.00013

HESS: 1301.1173

Uncertainties in DM profile:

e.g. Cirelli et al., 1012.4515

Consistent conclusions in: Garcia-Cely et al. 1507.05536

MDM excluded if cuspy MDM not probed if cored

1507

Taoso

Sala

Bonus track

Some interesting recent extensions:

- millicharged MDM

Del Nobile, Nardecchia, Panci 1512.05353

assume $Y = \varepsilon \neq 0$, -> implies stability -> for suitable ε , no DD

constraints

- decaying MDM, if $\Lambda < M_{Planck}$

Del Nobile, Nardecchia, Panci 1512.05353

-> observable consequences in gamma rays

-'natural' MDM

Fabbrichesi, Urbano 1510.03861 MDM induces (at 2-loops) m_h corrections => small hierarchy prob -> supersymmetrize it!:

- fermion/boson cancellations restore naturalness
- stability preserved by SuSy

Bonus track

Some interesting recent extensions:

-asymmetric MDM

Boucenna, Krauss, Nardi 1503.01119

-MDM and vacuum stability

Cai,Ramsey-Musolf et al., 1108.0969 Cai et al., 1508.04034

-non-thermally produced MDM

Aoki, Toma, Vicente 1507.01591

-incorporating neutrino masses

Cai, Schmidt 1603.00255 Ahriche, McDonald, Nasri, Picek 1603.01247

Conclusions

The DM problem requires physics beyond the SM.

Introducing the minimal amount of it, we find <u>one</u> fully successful DM candidate: massive, neutral, *automatically* stable.

fermionic $SU(2)_L$ quintuplet with Y = 0, mass = 9.4 TeV

Its phenomenology is precisely computable:

- too heavy to be produced at LHC,
- challenging in next gen direct detection exp's,
- tested by indirect detection (γ ray) exp's:
 - excluded if cuspy
 - not probed if cored

(Other candidates have different properties.)

Conclusions

The DM problem requires physics beyond the SM.

Introducing the minimal amount of it, we find <u>one</u> fully successful DM candidate: massive, neutral, *automatically* stable.

fermionic $SU(2)_L$ quintuplet with Y = 0, mass = 9.4 TeV

	Summary of constraints (solid edge) and reaches (dashed edge)					
LHC	- 8 TeV 14 TeV					
antiprotons						
MW diffuse	conservative					
	incl bkgd					
denh	······································					
uspri						
MW line						
	NEW					
GC line						
dSph line						
0.	.1 1 10					
M _{DM} [TeV]						

Back-up slides

So is the Milky Way profile peaked or cored?

Observations:

- (difficult from inside)
- no discriminating power
- anyway, no resolution < 2.5 kpc

Simulations:

- (still open debate, but)
- prefer cuspy
- but: no resolution < 2 kpc

Pato, Iocco 1504.03317

MW center area, search for γ -ray lines:

Simulations and observations do not resolve $\lesssim 2~\text{kpc}$

MW center area, search for γ -ray lines:

Simulations and observations do not resolve $\lesssim 2~\text{kpc}$

MW center area, search for γ -ray lines:

Simulations and observations do not resolve $\lesssim 2~\text{kpc}$

MW center area, search for γ -ray lines:

Simulations and observations do not resolve $\lesssim 2~\text{kpc}$

MW center area, search for γ -ray lines:

Simulations and observations do not resolve $\lesssim 2~\text{kpc}$

MW center area, search for γ -ray lines:

Simulations and observations do not resolve $\lesssim 2~\text{kpc}$

MW center area, search for γ -ray lines:

Simulations and observations do not resolve $\lesssim 2~\text{kpc}$

Updated future sensitivity with CTA, search for γ -ray lines:

Btw, dwarfs do better than GC (if GC is cored).

Lefranc, Moulin, Panci, Sala, Silk 1608.00786

The cosmic inventory

Most of the Universe is Dark

 $\left(\Omega_x = \frac{\rho_x}{\rho_c}; \text{ CMB first peak} \Rightarrow \Omega_{\text{tot}} = 1 \text{ (flat)}; \text{ HST } h = 0.71 \pm 0.07 \right)$

The Evidence for DM

The Evidence for DM

1) galaxy rotation curves

$\Omega_{ m M}\gtrsim 0.1$

2) clusters of galaxies

- "rotation curves"
- gravitation lensing
- X-ray gas temperature

$\Omega_{\rm M} \sim 0.2 \div 0.4$

"bullet cluster" - NASA astro-ph/0608247 [further developments]

The Evidence for DM

1) galaxy rotation curves

$\Omega_{ m M}\gtrsim 0.1$

2) clusters of galaxies

$\Omega_{\rm M} \sim 0.2 \div 0.4$

3) CMB+LSS(+SNIa:)

WMAP-3yrBoomerangACbarDASICBIVSASDSS, 2dFRGSLyA Forest CroftLyA Forest SDSS

 $\Omega_{\rm M} \approx 0.26 \pm 0.05$

M.Cirelli and A.Strumia, astro-ph/0607086

Comparison with SplitSuSy-like models

A-H, Dimopoulos and/or Giudice, Romanino 2004 Pierce 2004; Arkani-Hamed, Dimopoulos, Kachru 2005 Mahbubani, Senatore 2005

SplitSuSy-like

- Higgsino (a fermion doublet)
- + something else (a singlet)
- stabilization by R-parity
- want unification also
- unification scale is low, need to embed in 5D to avoid proton decay

Mahbubani, Senatore 2005

MDM

- arbitrary multiplet, scalar or fermion
- nothing else (with Y=0)
- automatically stable
- forget unification, it's SM
- nothing

Common feature: the focus is on DM, not on SM hierarchy problem.

Non-Minimal terms in the scalar case

Quadratic and quartic terms in \mathcal{X} and H:

 $\lambda_H(\mathcal{X}^*T^a_{\mathcal{X}}\mathcal{X})\left(H^*T^a_HH\right) + \lambda'_H|\mathcal{X}|^2|H|^2 + \frac{\lambda_{\mathcal{X}}}{2}(\mathcal{X}^*T^a_{\mathcal{X}}\mathcal{X})^2 + \frac{\lambda'_{\mathcal{X}}}{2}|\mathcal{X}|^4$

[2]

[3]

- do not induce decays (even number of $\mathcal{X},$ and $\langle \mathcal{X}
 angle = 0$)
- [3] and [4] do not give mass terms

[1]

- after EWSB, [2] gives a common mass $\sqrt{\lambda'_H v} \approx \mathcal{O}(\lesssim 100 \text{ GeV})$ to all \mathcal{X}_i components; negligible for $M = \mathcal{O}(\text{TeV})$

- after EWSB, [1] gives mass splitting $\Delta M_{\text{tree}} = \frac{\lambda_H v^2 |\Delta T_X^3|}{4M} = \lambda_H \cdot 7.6 \text{ GeV} \frac{\text{TeV}}{M}$ between \mathcal{X}_i components; assume $\lambda_H \leq 0.01$ so that $\Delta M_{\text{tree}} \ll \Delta M$

- [1] (and [2]) gives annihilations $\bar{\mathcal{X}}\mathcal{X} \to \bar{H}H$ assume $|\lambda'_H| \ll g_Y^2, g_2^2$ so that these are subdominant

(Anyway, scalar MDM is less interesting.)

[back to Lagrangian] [back to table]

[4]

Neutralino "properties"							
neutralino mass matrix in MSSM ($ ilde{B} - ilde{W}^3 - ilde{H}_1^0 - ilde{H}_2^0$ basis)							
$M_{\chi} =$	$\begin{pmatrix} M_1\\ 0 \end{pmatrix}$	$0\ M_2$	$-m_Z c_\beta s_W$ $m_Z c_\beta c_W$	$m_Z s_\beta s_W$ $-m_Z s_\beta c_W$			
	$-m_Z c_\beta s_W$ $m_Z s_\beta s_W$	$m_Z c_\beta c_W \ -m_Z s_\beta c_W$	$0 \\ -\mu$	$-\mu$			

superpotential

 $\mathcal{W} = -\mu \mathcal{H}_1 \mathcal{H}_2 + \mathcal{H}_1 h_e^{ij} \mathcal{L}_{Li} \mathcal{E}_{Rj} + \mathcal{H}_1 h_d^{ij} \mathcal{Q}_{Li} \mathcal{D}_{Rj} - \mathcal{H}_2 h_u^{ij} \mathcal{Q}_{Li} \mathcal{U}_{Rj}$

soft SUSYB terms

 $\mathcal{L}_{\text{soft}} = -\frac{1}{2} \left(M_1 \bar{\tilde{B}} \tilde{B} + M_2 \bar{\tilde{W}}^a \tilde{W}^a + M_3 \bar{\tilde{G}}^a \tilde{G}^a \right) + \dots$

 $\tan\beta = \frac{\langle v_1 \rangle}{\langle v_2 \rangle}$

Propagation for antiprotons:

$$\begin{array}{c} \frac{\partial f}{\partial t} - K(T) \cdot \nabla^2 f + \frac{\partial}{\partial z} \left(\operatorname{sign}(z) f V_{\operatorname{conv}} \right) = Q - 2h \, \delta(z) \, \Gamma_{\operatorname{ann}} f \\ & \operatorname{diffusion} & \operatorname{convective wind} & \operatorname{spallations} \\ K(T) = K_0 \beta \, (p/\operatorname{GeV})^{\delta} \\ T \text{ kinetic energy} \\ & \operatorname{lel} \quad \frac{\delta}{0.70} \quad K_0 \operatorname{inkpc}^2/\operatorname{Myr} \quad L \operatorname{inkpc} \quad V_{\operatorname{conv}} \operatorname{inkm/s} \\ & \operatorname{d} \quad 0.70 \quad 0.0112 \quad 4 \quad 12 \end{array}$$

5

Solution:

0.46

Mod

mi

me

max

$$\Phi_{\bar{p}}(T, \vec{r}_{\odot}) = B \frac{v_{\bar{p}}}{4\pi} \left(\frac{\rho_{\odot}}{M_{\rm DM}}\right)^2 R(T) \sum_{k} \frac{1}{2} \langle \sigma v \rangle_k \frac{dN_{\bar{p}}^k}{dT}$$

15

0.0765

Boost Factor: local clumps in the DM halo enhance the density, boost the flux from annihilations. Typically: $B \simeq 1 \rightarrow 20$ (10⁴)

In principle, B is different for e⁺, anti-p and gammas,

energy dependent,

dependent on many astro assumptions,

with an energy dependent variance, at high energy for e⁺, at low energy for anti-p.

positrons

ñ a.I. et avalle

Indirect DetectionBoost Factor: local clumps in the DM halo enhance the density,boost the flux from annihilations. Typically: $B \simeq 1 \rightarrow 20 \ (10^4)$

For illustration:

Results for anti-protons:

Astro uncertainties:

- propagation model
- DM halo profile
- boost factor B

Results for anti-protons:

Astro uncertainties:

- propagation model
- DM halo profile
- <u>boost</u> factor B

