BERNHARD MISTLBERGER

 os
 erc

 FOUR-GLUON SCATTERING AT THREE LOOPS,

 FOUR-GLUON SCATTERING AT THREE LOOPS, INFRARED STRUCTURE, AND THE REGGE LIMIT

 INFRARED STRUCTURE, AND THE REGGE LIMIT}
with Johannes M. Henn and Volodya A. Smirnov

MOTIVATION

- Our capabilities to make precision predictions for the LHC rely on the continuous development of perturbative methods.
- Better understanding of the structure of quantum field theory can lead to improved techniques for calculation.
- Improved techniques for computation can be used to analyze formal aspects of QFT.

A fruitful interplay

MAXIMALLY SUPERSYMMETRIC YANG MILLS THEORY

- Non-abelian gauge theory
- Fields: Gluons, 4 complex fermions, 6 scalars ; all in the adjoint representation of $\mathrm{SU}(\mathrm{N})$.
- Vanishing beta-function:

Free of UV divergences,
$\beta=0$ conformal symmetry.

- Enhanced degree of symmetry (Dual super-conformal symmetry)

MAXIMALLY SUPERSYMMETRIC YANG MILLS THEORY

- Idealised system: Allows for very high order / high multiplicity computations:
- Hexagon Wilson loop amplitude
~ planar 6-point amplitude to 5 loop order
[Caron-Huot,Dixon,McLeod,Hippel]
- All order formulae for planar four and five point amplitudes. \quad [Anastasiou, Bern, Dixon, Kosower;Bern, Dixon, Smirnov;
- Explicit computation of 2 loop planar amplitudes (and integrands) for 4 and 6 points has lead to deeper understanding of structure of $\mathrm{N}=4$ SYM and OFT in general.

STATUS OF LOOPS AND LEGS

- Data on non-planar amplitudes is scarce (in any theory).
, OCD:
- 3 loops: Form Factor
- 2 loops: 4-point.

Some bits and pieces for 5-points

- Amplitudes with internal masses are even more difficult.

Let's add a data point for 4 legs and 3 loops

N=4 SYM AMPLITUDE FOR SCATTERING OF 4 PARTICLES

, Mandelstam invariants:

$$
\begin{aligned}
t & =\left(p_{2}+p_{3}\right)^{2} \\
s & =\left(p_{1}+p_{2}\right)^{2} \\
u & =\left(p_{1}+p_{3}\right)^{2}=-s-t
\end{aligned}
$$

, On-shell:

$$
p_{i}^{2}=0
$$

- Perturbative expansion: $\alpha=\frac{g^{2}}{4 \pi^{2}}\left(4 \pi e^{-\gamma_{\mathrm{E}}}\right)^{\epsilon}$

$$
\mathcal{A}\left(p_{i} ; \epsilon\right)=\mathcal{K} \sum_{L=0}^{\infty} \alpha^{L} \mathcal{A}^{(L)}(s, t ; \epsilon)
$$

HOW TO CONSTRUCT AN INTEGRAND

- The number one go-to method: Feynman Diagrams

HOW TO CONSTRUCT AN INTEGRAND

- The number one no-go method: Feynman Diagrams
- QCD: ~ 80.000 diagrams
- Lots of gauge redundancy
- Naively:

8 powers of momenta in the numerator

HOW TO CONSTRUCT AN INTEGRAND

- Generalised Unitarity Methods
[Bern, Carrasco, Dixon, Johansson, Kosower, Roiban 2007]
- Imposing BCJ
[Bern, Carrasco, Dixon, Johansson, Roiban 2012]
- Manifest UV properties
[Bern, Carrasco, Dixon, Johansson, Roiban 2008]
- dLog - Forms, No-Poles at Infinity [Arkani-Hamed, Bourjaily, Cachazo,Trnka 2014] [Bern, Herrmann, Litsey, Stankowicz, Trnka 2015+2016]

GENERALISED UNITARITY

- Step 1: Make an Ansatz for your amplitude
- Step 2: Constrain and verify your Ansatz by taking iterative cuts of your amplitude

2 Loops:

$$
\begin{array}{r}
\left.\mathcal{A}_{4}^{2-\text { loop }}(1,2,3,4)\right|_{\text {cut(a) }}=\left.\int \sum_{P_{1}, P_{2}} \frac{d^{4-2 \epsilon} p}{(2 \pi)^{4-2 \epsilon}} \frac{i}{\ell_{2}^{2}} \mathcal{A}_{4}^{1 \text {-loop }}\left(-\ell_{2}, 3,4, \ell_{1}\right) \frac{i}{\ell_{1}^{2}} \mathcal{A}_{4}^{\text {tree }}\left(-\ell_{1}, 1,2, \ell_{2}\right)\right|_{\ell_{1}^{2}=\ell_{2}^{2}=0} \\
\text { [Bern,Rozowsky,Yan] }
\end{array}
$$

GENERALISED UNITARITY

- Iterated 2 particle cuts to constrain the amplitude

(b)

(f)

(c)

(e)

(g)

(i)

(j)

(d)
(h)

(k)
[Bern, Carrasco, Dixon, Johansson, Kosower, Roiban]

GENERALISED UNITARITY

- Step 1: Make an Ansatz for your amplitude
- Step 2: Constrain and verify your Ansatz by taking iterative cuts of your amplitude
- Caveat: Method has to be valid in $\mathrm{D}=4-2 \epsilon$ dimensions
- SuSy-power-counting
- D-Dimensional Cuts
- Polarisation sums in $\mathrm{D}=10, \mathrm{~N}=1 \mathrm{SYM}$

GENERALISED UNITARITY

- Result is an amplitude of remarkable simplicity
- 3 Loop amplitude can be written in terms of only 9 different Feynman Integrals
- Symmetric permutation over external legs

$$
\begin{aligned}
M_{4}^{(3)}=\left(\frac{\kappa}{2}\right)^{8} s_{12} s_{13} s_{14} M_{4}^{\mathrm{tree}} \sum_{S_{3}} & {\left[I^{(\mathrm{a})}+I^{(\mathrm{b})}+\frac{1}{2} I^{(\mathrm{c})}+\frac{1}{4} I^{(\mathrm{d})}\right.} \\
& \left.+2 I^{(\mathrm{e})}+2 I^{(\mathrm{f})}+4 I^{(\mathrm{g})}+\frac{1}{2} I^{(\mathrm{h})}+2 I^{(\mathrm{i})}\right] .
\end{aligned}
$$

GENERALISED UNITARITY

- 10 - propagator Integrals
- Numerators for Integrals have very low powers of loop-momenta! Huge simplification w.r.t. naive
 Feynman diagram approach.
- Colour-Factors associated with graphs.

Integral $I^{(x)}$	$N^{(x)}$ for $\mathcal{N}=4$ Super-Yang-Mills
(a)-(d)	s_{12}^{2}
(e)-(g)	$s_{12} s_{46}$
(h)	$s_{12}\left(\tau_{26}+\tau_{36}\right)+s_{14}\left(\tau_{15}+\tau_{25}\right)+s_{12} s_{14}$
(i)	$s_{12} s_{45}-s_{14} s_{46}-\frac{1}{3}\left(s_{12}-s_{14}\right) l_{7}^{2}$

AMPLITUHEDRON CONNECTION

- Geometric construction for planar N=4 SYM amplitudes:

All amplitude integrands take the form

$$
d \mathcal{A}=\frac{d f_{1}}{f_{1}} \ldots \frac{d f_{n}}{f_{n}} \delta\left(C\left(f_{i}\right) \cdot \mathcal{W}\right)
$$

, d-Log Form

- Example: Box Integral ~ 1 Loop Amplitude:

$$
\begin{aligned}
& d \mathcal{I}_{4}=d^{4} \ell_{5} \ell_{5}^{2}\left(\ell_{5}-k_{1}\right)^{2}\left(\ell_{5}-k_{1}-k_{2}\right)^{2}\left(\ell_{5}+k_{4}\right)^{2} \\
& d \mathcal{I}_{4}=d \log \frac{\ell_{5}^{2}}{\left(\ell_{5}-\ell_{5}^{5}\right)^{2}} \wedge d \log \frac{\left(\ell_{5}-k_{1}\right)^{2}}{\left(\ell_{5}-\ell_{5}^{5}\right)^{2}} \wedge d \log \frac{\left(\ell_{5}-k_{1}-k_{2}\right)^{2}}{\left(\ell_{5}-\ell_{5}^{*}\right)^{2}} \wedge d \log \frac{\left(\ell_{5}+k_{4}\right)^{2}}{\left(\ell_{5}-\ell_{5}^{5}\right)^{2}}
\end{aligned}
$$

$l_{5} \rightarrow \infty$: no pole!
[Bern, Herrmann, Litsey, Stankowicz, Trnka]

AMPLITUHEDRON CONNECTION

- Amplituhedron only known for planar N=4 SYM
- Never mind: Let's say the similar properties hold for nonplanar N=4 SYM
- Only d-Log Integrals
- No pole as $l_{i} \rightarrow \infty$
- Find basis integrals that satisfy this properties and express the integrand in this basis.

FEYNMAN INTEGRALS

- In general we would only require 9 Feynman Integrals
- Direct computation is very complicated:
 10 propagators, divergent,
- Remember:

All Integrals are only functions of s and $t(a n d u)$.

- Differential Equations!

DIFFERENTIAL EQUATIONS

- For massive Feynman integrals

$$
\frac{\partial}{\partial m^{2}} \int d^{d} k \frac{1}{k^{2}-m^{2}}=\int d^{d} k \frac{1}{\left(k^{2}-m^{2}\right)^{2}}
$$

But we have no masses!

- Differential operator w.r.t. Mandelstam invariants

$$
\frac{\partial}{\partial s_{i j}} \mathcal{I}\left(s_{k l}\right)
$$

- At the integrand level we only have dependence on loop momenta and external momenta

$$
\frac{1}{p^{2}+2 k \cdot p+k^{2}}
$$

DIFFERENTIAL EQUATIONS

- How-To: Derive a differential operator
(one selected method)
- Make an Ansatz in terms of external momenta:

$$
\frac{\partial}{\partial s_{i j}}=\sum_{k, l} \alpha_{k l} p_{k} \cdot \frac{\partial}{\partial p_{l}}
$$

- Fix the coefficients of the Ansatz

$$
\frac{\partial}{\partial s_{i j}} s_{k l}=\delta_{i j, k l}
$$

- Differential operator turns Feynman integrals into other

Feynman integrals

$$
p_{k} \cdot \frac{\partial}{\partial p_{l}} \frac{1}{\left(p_{l}+k\right)^{2}}=-\frac{2 p_{k} \cdot\left(p_{l}+k\right)}{\left(\left(p_{l}+k\right)^{2}\right)^{2}}
$$

DIFFERENTIAL EQUATIONS+IBPS

- Differential operator turns Feynman integrals into other Feynman integrals

$$
\frac{\partial}{\partial s_{12}} \mathcal{I}\left(s_{12}, s_{13}\right)=\mathcal{I}^{\prime}\left(s_{12}, s_{13}\right)
$$

- Integration-By-Part identities: Relations among different Feynman integrals

$$
\int d^{d} k \frac{\partial}{\partial k^{\mu}}\left(q^{\mu} f(k, p, q)\right)=0
$$

- Select "simplest" possible integrals as Master Integrals (simple: \# of propagators, etc.)
- Express every Feynman integral in terms of Master Integrals

$$
\mathcal{I}^{\prime}\left(s_{12}, s_{13}\right)=\sum_{i} c_{i}\left(s_{12}, s_{13}, \epsilon\right) M_{i}\left(s_{12}, s_{13}\right)
$$

DIFFERENTIAL EQUATIONS+IBPS

- System of coupled first order differential equations

$$
\frac{\partial}{\partial x} \vec{M}(x)=A(x, \epsilon) \vec{M}(x) \quad x=\frac{s_{23}}{s_{12}}
$$

- Upside: Computing Master Integrals is now a well known problem of solving one-parameter differential equations.
- Downside: To compute 1 Integral that you are interested in you need to solve many Master Integrals.

113 Master Integrals

DIFFERENTIAL EQUATIONS+IBPS

- IBP Reduction to Master Integrals is computationally intense
- Computing 4 point 2 loop integrals is pushing the limit
- To compute

, ~100 GB of reduction output
- ~12.800.000 Integrals reduced
- Many public tools; We used a private code.

DIFFERENTIAL EQUATIONS+IBPS

- IBP Reduction to Master Integrals is computationally intense
- Computing 4 point 2 loop integrals is pushing the limit
- To compute

DIFFERENTIAL EQUATIONS+IBPS

- Structure of the differential equations

$$
\frac{\partial}{\partial x} \vec{M}(x)=\left[\frac{a(x, \epsilon)}{x}+\frac{b(x, \epsilon)}{1+x}\right] \vec{M}(x)
$$

Singularities only at $x=0,1$

- Choose a "canonical" basis: [Arkani-Hamed et al; Henn]

$$
\begin{aligned}
\frac{\partial}{\partial x} \vec{M}_{c}(x) & =\epsilon\left[\frac{a_{c}}{x}+\frac{b_{c}}{1+x}\right] \vec{M}_{c}(x) \\
\vec{M} & =T_{c}(x, \epsilon) \vec{M}_{c}
\end{aligned}
$$

DIFFERENTIAL EQUATIONS+IBPS

- Canonical Basis

$$
\frac{\partial}{\partial x} \vec{M}_{c}(x)=\epsilon\left[\frac{a_{c}}{x}+\frac{b_{c}}{1+x}\right] \vec{M}_{c}(x)
$$

, Choose your Master Integrals wisely: Integrals with normalised (unit) leading singularities!
[Arkani-Hamed et al; Henn]

- Integrals with d-Log form in 4 dimensions

$$
M=\int \frac{d \alpha_{1}}{\alpha_{1}} \ldots \frac{d \alpha_{n}}{\alpha_{n}}
$$

, Computing d-Log form for every Master Integral can be tricky

- Provides very natural building blocks for amplitudes

Remember: 1 Integrand computation based
on the fact that the entire integrand should take d-Log form!

DIFFERENTIAL EQUATIONS+IBPS $\vec{M}=T_{c}(x, \epsilon) \overrightarrow{M_{c}}$

- Canonical Basis

$$
\frac{\partial}{\partial x} \vec{M}_{c}(x)=\epsilon\left[\frac{a_{c}}{x}+\frac{b_{c}}{1+x}\right] \vec{M}_{c}(x)
$$

- Alternative: For rational transformations with one-parameter differential equations:
Algorithmic solution for certain Feynman Integrals
[Lee;Moser;Barkatou,Pfluegel]
- Application of algorithm for large systems is computationally intense.
- Contains a 8×8 coupled sub-sector
 Took a while ... Intermediate expression swell.
- Output contains ugly numbers ...
$\partial_{x} M_{76}=\left(\frac{6229184016644665631477627 \epsilon}{6902702454618210240000000(1+x)}-\frac{248402382303128086741058389 \epsilon}{75929727000800312640000000 x}\right) M_{1}+\ldots$

DIFFERENTIAL EQUATIONS+IBPS

- Once a canonical form is obtained:

Solve as Laurent series in ϵ

$$
\begin{aligned}
\vec{M}_{c}(x) & =\mathcal{P} e^{\epsilon \int d x\left(\frac{a_{c}}{x}+\frac{b_{c}}{1+x}\right)} \vec{M}_{c}\left(x_{0}\right) \\
& =\left[1+\epsilon \int d x\left(\frac{a_{c}}{x}+\frac{b_{c}}{1+x}\right)+\ldots\right] \vec{M}_{c}\left(x_{0}\right)
\end{aligned}
$$

- Natural functions for solution:

Harmonic Polylogarithms

$$
H_{a_{n}, a_{n-1}, \ldots, a_{1}}(x)=\int_{0}^{x} d x^{\prime} \frac{H_{a_{n-1}, \ldots, a_{1}}\left(x^{\prime}\right)}{x^{\prime}-a_{n}} \quad a_{i} \in\{0,-1\}
$$

$$
H_{0}(x)=\log (x) \quad \text { \# of integrations: weight }
$$

$$
H_{0,1}(x)=-L i(x)
$$

(weight of $\epsilon=-1$

DIFFERENTIAL EQUATIONS+IBPS

$$
\begin{aligned}
\vec{M}_{c}(x) & =\mathcal{P} e^{\epsilon \int d x\left(\frac{a_{c}}{x}+\frac{b_{c}}{1+x}\right)} \vec{M}_{c}\left(x_{0}\right) \\
& =\left[1+\epsilon \int d x\left(\frac{a_{c}}{x}+\frac{b_{c}}{1+x}\right)+\ldots\right] \vec{M}_{c}\left(x_{0}\right)
\end{aligned}
$$

- 1 Integration always with one power in ϵ Functions of uniform (transcendental) weight
- No rational pre-factors depending on x: Pure Functions of uniform weight

BOUNDARY CONDITIONS

$\vec{M}_{c}(x)=\mathcal{P} e^{\epsilon \int d x\left(\frac{a_{c}}{x}+\frac{b_{c}}{1+x}\right)} \vec{M}_{c}\left(x_{0}\right)$

- Require boundary conditions for solution $\vec{M}_{c}\left(x_{0}\right)$
- By requiring consistency conditions and a few three loop form factor integrals we fixed all of them

- Given in terms of Zeta values

$$
\zeta(n)=L i_{n}(1)
$$

- Uniform weight

MASTER INTEGRAL EXAMPLE

- Unit leading singularity basis:

$$
\begin{aligned}
I= & s(s+t) I_{f}\left[\left(l_{1}+p_{4}\right)^{4}\right] \\
I= & -\frac{1}{\epsilon^{6}} \frac{47}{36} \\
& +\frac{1}{\epsilon^{5}}\left[-\frac{8 i \pi}{3}+\frac{8 H_{-1}}{3}-\frac{3 H_{0}}{4}\right] \\
& +\frac{1}{\epsilon^{4}}\left[-4 H_{-1,-1}+H_{-1,0}+\frac{H_{0,0}}{4}+\frac{503 \zeta_{2}}{24}+4 i \pi H_{-1}-i \pi H_{0}+H_{-2}\right] \\
& +\frac{1}{\epsilon^{3}}\left[2 i \pi H_{0,0}+2 H_{-2,-1}-2 H_{-2,0}-2 H_{-1,0,0}+\frac{21}{4} H_{0,0,0}+31 i \pi \zeta_{2}\right. \\
& \left.\quad+\frac{715 \zeta_{3}}{36}-2 i \pi H_{-2}-33 \zeta_{2} H_{-1}+\frac{355 \zeta_{2} H_{0}}{24}-2 H_{-3}\right] \\
& +\mathcal{O}\left(\epsilon^{-2}\right)
\end{aligned}
$$

THE AMPLITUDE

AMPLITUDE

- Computed all required Master integrals [Henn,BM,Smirnov, to appear]
- Checked that all available integrands for 4 -point amplitude give the same result.
- Reproduced previously known planar results.
- Result: First four point scattering amplitude in four dimensional non-abelian gauge theory at three loops with finite n_{c} dependence.

What can we learn from that?

COLOUR AMPLITUDES

- 4 particle scattering: 4 colour indices!
- Represent the amplitude
 in terms of colour-stripped amplitudes

$$
\begin{aligned}
& \mathcal{A}(s, t)=\sum_{i=1}^{6} C_{i} \mathcal{A}_{(i)}(s, t) \\
& \\
& \qquad \begin{array}{lr}
\operatorname{tr}\left(T^{a_{1}} T^{a_{2}} T^{a_{3}} T^{a_{4}}\right)=\operatorname{tr}(1234) \\
C_{1}=\operatorname{tr}(1234)+\operatorname{tr}(1432) & C_{4}=\operatorname{tr}(12) \operatorname{tr}(34) \\
C_{2}=\operatorname{tr}(1243)+\operatorname{tr}(1342) & C_{5}=\operatorname{tr}(13) \operatorname{tr}(24) \\
C_{3}=\operatorname{tr}(1423)+\operatorname{tr}(1324) & C_{6}=\operatorname{tr}(14) \operatorname{tr}(23)
\end{array}
\end{aligned}
$$

- Generators in fundamental representation of SU(N)

COLOUR AMPLITUDES

$$
\mathcal{A}(s, t)=\sum_{i=1}^{6} C_{i} \mathcal{A}_{(i)}(s, t)
$$

- At L loops:

$$
\mathcal{A}_{(i)}=\sum_{j=0}^{L} n_{c}^{L-j} \mathcal{A}_{(i)}^{(L, j)}
$$

- Intricate colour identities among colour stripped amplitudes

$$
\begin{aligned}
6 \sum_{\lambda=1}^{3} A_{\lambda}^{(L, L-2)}-\sum_{\lambda=4}^{6} A_{\lambda}^{(L, L-1)} & =0, \\
A_{\lambda+3}^{(L, L-1)}+A_{\lambda}^{(L, L)} & =\text { independent of } \lambda,
\end{aligned}
$$

$$
\sum_{\lambda=1}^{3} A_{\lambda}^{(L, L)}=0
$$

- Kleiss-Kuijf, U(1) decoupling, etc.
[DelDuca,Dixon,Maltoni;
Bern,Kosower;
Kleiss Kuijf;
\{Naculich,Nastase,Schnitzer\};...]

COLOUR AMPLITUDES

$$
\mathcal{A}(s, t)=\sum_{i=1}^{6} C_{i} \mathcal{A}_{(i)}(s, t)
$$

- Let's define a colour operator Catani-Style Action of a colour operator on a fundamental generator with adjoint index

$$
\mathbf{T}_{1}^{a_{5}} T^{a_{1}}=-i f^{a_{5} a_{1} a_{6}} T^{a_{6}}
$$

- Can act on colour traces of our amplitude.

$$
\vec{A}=\left(\begin{array}{c}
\mathcal{A}_{1} \\
\vdots \\
\mathcal{A}_{6}
\end{array}\right)
$$

$$
\left(\mathbf{T}_{1}+\mathbf{T}_{2}\right)^{2} \vec{A}=\left(\begin{array}{cccccc}
\frac{n_{c}}{2} & 0 & 0 & 0 & 0 & -\frac{1}{2} \\
0 & \frac{n_{c}}{2} & 0 & 0 & -\frac{1}{2} & 0 \\
0 & 0 & n_{c} & 0 & \frac{1}{2} & \frac{1}{2} \\
-1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & n_{c} & 0 \\
0 & 0 & 1 & 0 & 0 & n_{c}
\end{array}\right) \vec{A}
$$

GENERAL IR STRUCTURE

- Massless gauge theory: Universal IR structure!

$$
\mathcal{A}\left(p_{i}, \epsilon\right)=\mathbf{Z}\left(p_{i}, \epsilon\right) \mathcal{A}^{f}\left(p_{i}, \epsilon\right)
$$

universal IR poles

GENERAL IR STRUCTURE

- Massless gauge theory: Universal IR structure!

$$
\mathcal{A}\left(p_{i}, \epsilon\right)=\mathbb{Z}\left(p_{i}, \epsilon\right) \mathcal{A}_{\text {universal IR poles }}^{f}\left(p_{i}, \epsilon\right)
$$

- Same structure for $\mathrm{N}=4 \mathrm{SYM}$ as for QCD

$$
\mathbf{Z}\left(p_{i}, \epsilon\right)=\mathcal{P} \exp \left\{-\frac{1}{2} \int_{0}^{\mu^{2}} \frac{d \mu^{2}}{\mu^{2}} \boldsymbol{\Gamma}\left(p_{i}, \mu^{2}, \alpha\left(\mu^{2}\right)\right)\right\}
$$

- Bold letters: Composed of colour operators acting on external legs
- True for arbitrary number of loops and legs!

GENERAL IR STRUCTURE $\quad \mathbf{Z}\left(p_{i}, \epsilon\right)=\mathcal{P} \exp \left\{-\frac{1}{2} \int_{0}^{\mu^{2}} \frac{d \mu^{2}}{\mu^{2}} \boldsymbol{\Gamma}\left(p_{i}, \mu^{2}, \alpha\left(\mu^{2}\right)\right)\right\}$

- Z-factor is related to Catani's IR operator
[Catani;Teyeda-Yeomans, Sterman;Dixon,Mert Aybat,Sterman]

$\begin{array}{ll}\mathbf{I}_{1} & \mathbf{I}_{2}\end{array}$

- Describes the 1 and 2 loop IR poles of any massless particle scattering amplitude.
- The Nr. 1 check of your favourite amplitude computation!
- Generalisation to all loops and n partons

IR STRUCTURE

GENERALIR STRUCTURE $\mathbf{Z}\left(p_{i}, \epsilon\right)=\mathcal{P} \exp \left\{-\frac{1}{2} \int_{0}^{\mu^{2}} \frac{d \mu^{2}}{\mu^{2}} \boldsymbol{\Gamma}\left(p_{i}, \mu^{2}, \alpha\left(\mu^{2}\right)\right)\right\}$

- Dipole Formula and Corrections

$$
\mathbf{\Gamma}_{n}\left(\left\{p_{i}\right\}, \mu^{2}, \alpha\left(\mu^{2}\right)\right)=\mathbf{\Gamma}_{n}^{\text {dip. }}\left(\left\{p_{i}\right\}, \mu^{2}, \alpha\left(\mu^{2}\right)\right)+\boldsymbol{\Delta}\left(\left\{\rho_{i j k l}\right\}\right)
$$

$$
\Gamma_{n}^{\text {dip. }}\left(\left\{p_{i}\right\}, \mu^{2}, \alpha\left(\mu^{2}\right)\right)=-\frac{1}{2} \gamma_{c}\left(\alpha_{S}\right) \sum_{i \neq j} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \log \left(\frac{-s_{i j}}{\mu^{2}}\right)+\mathbb{I} \sum_{i=1}^{n} \gamma_{J}^{(i)}(\alpha)
$$

- Relates only two colour charged lines: Dipole
- Theory dependence ($\mathrm{N}=4 \mathrm{SYM}$ vs. QCD) in the anomalous dimensions

perturbative expansion

$$
\text { GENERAL IR STRUCTURE } \quad \mathbf{Z}\left(p_{i}, \epsilon\right)=\mathcal{P} \exp \left\{-\frac{1}{2} \int_{0}^{\mu^{2}} \frac{d \mu^{2}}{\mu^{2}} \boldsymbol{\Gamma}\left(p_{i}, \mu^{2}, \alpha\left(\mu^{2}\right)\right)\right\}
$$

- 1 loop: Only dipoles
- Why only dipoles at 2 loop?

- Diagram vanishes:)
- Other 3 line diagrams exponentiate such that they reproduce the 1 loop colour structure
[Dixon,Mert Aybat,Sterman]

$$
\text { GENERAL\|R STRUCTURE } \quad \mathbf{Z}\left(p_{i}, \epsilon\right)=\mathcal{P} \exp \left\{-\frac{1}{2} \int_{0}^{\mu^{2}} \frac{d \mu^{2}}{\mu^{2}} \boldsymbol{\Gamma}\left(p_{i}, \mu^{2}, \alpha\left(\mu^{2}\right)\right)\right\}
$$

- Dipole Formula and Corrections

$$
\boldsymbol{\Gamma}_{n}\left(\left\{p_{i}\right\}, \mu^{2}, \alpha\left(\mu^{2}\right)\right)=\boldsymbol{\Gamma}_{n}^{\text {dip. }}\left(\left\{p_{i}\right\}, \mu^{2}, \alpha\left(\mu^{2}\right)\right)+\boldsymbol{\Delta}\left(\left\{\rho_{i j k l}\right\}\right)
$$

- Corrections start at 3 loops!

$$
\begin{align*}
& \Delta_{n}^{(3)}\left(\left\{\rho_{i j k l}\right\}\right)=16 f_{\text {abe }} f_{c d e}\left\{-C \sum_{i=1}^{n} \sum_{\substack{\leq j<k \leq n \\
j, k \neq i}}\left\{\mathbf{T}_{i}^{a}, \mathbf{T}_{i}^{d}\right\} \mathbf{T}_{j}^{b} \mathbf{T}_{k}^{c}+\right. \tag{4.1}\\
& \left.\sum_{1 \leq i<j<k<l \leq n}\left[\mathbf{T}_{i}^{a} \mathbf{T}_{j}^{b} \mathbf{T}_{k}^{c} \mathbf{T}_{l}^{d} \mathscr{F}\left(\rho_{i k j l}, \rho_{i l j k}\right)+\mathbf{T}_{i}^{a} \mathbf{T}_{k}^{b} \mathbf{T}_{j}^{c} \mathbf{T}_{l}^{d} \mathscr{F}\left(\rho_{i j k l}, \rho_{i l k j}\right)+\mathbf{T}_{i}^{a} \mathbf{T}_{l}^{b} \mathbf{T}_{j}^{c} \mathbf{T}_{k}^{d} \mathscr{F}\left(\rho_{i j k}, \rho_{i k l j}\right)\right]\right\},
\end{align*}
$$

GENERALIR STRUCTURE $\mathbf{Z}\left(p_{i}, \epsilon\right)=\mathcal{P} \exp \left\{-\frac{1}{2} \int_{0}^{\mu^{2}} \frac{d \mu^{2}}{\mu^{2}} \boldsymbol{\Gamma}\left(p_{i}, \mu^{2}, \alpha\left(\mu^{2}\right)\right)\right\}$

- Dipole Formula and Corrections

$$
\boldsymbol{\Gamma}_{n}\left(\left\{p_{i}\right\}, \mu^{2}, \alpha\left(\mu^{2}\right)\right)=\boldsymbol{\Gamma}_{n}^{\text {dip. }}\left(\left\{p_{i}\right\}, \mu^{2}, \alpha\left(\mu^{2}\right)\right)+\boldsymbol{\Delta}\left(\left\{\rho_{i j k l}\right\}\right)
$$

- Corrections start at 3 loops!

$$
\begin{align*}
& \Delta_{n}^{(3)}\left(\left\{\rho_{i j k l}\right\}\right)=16 f_{\text {abe }} f_{c d e}\left\{-C \sum_{i=1}^{n} \sum_{\substack{\leq j<k \leq n \\
j, k \neq i}}\left\{\mathbf{T}_{i}^{a}, \mathbf{T}_{i}^{d}\right\} \mathbf{T}_{j}^{b} \mathbf{T}_{k}^{c}+\right. \tag{4.1}\\
& \left.\sum_{1 \leq i<j<k<l \leq n}\left[\mathbf{T}_{i}^{a} \mathbf{T}_{j}^{b} \mathbf{T}_{k}^{c} \mathbf{T}_{l}^{d} \mathscr{F}\left(\rho_{i k j l}, \rho_{i l j k}\right)+\mathbf{T}_{i}^{a} \mathbf{T}_{k}^{b} \mathbf{T}_{j}^{c} \mathbf{T}_{l}^{d} \mathscr{F}\left(\rho_{i j k l}, \rho_{i l k j}\right)+\mathbf{T}_{i}^{a} \mathbf{T}_{l}^{b} \mathbf{T}_{j}^{c} \mathbf{T}_{k}^{d} \mathscr{F}\left(\rho_{i j l k}, \rho_{i k l j}\right)\right]\right\}, \\
& \text { [Almelid, Duhr, Garr }
\end{align*}
$$

[Almelid, Duhr, Gardi, 2015]

- Relating three and four coloured lines -

True for arbitrarily many!

- Very specific dependence on external kinematic

GENERAL IR STRUCTURE $\quad \mathbf{Z}\left(p_{i}, \epsilon\right)=\mathcal{P} \exp \left\{-\frac{1}{2} \int_{0}^{\mu^{2}} \frac{d \mu^{2}}{\mu^{2}} \boldsymbol{\Gamma}\left(p_{i}, \mu^{2}, \alpha\left(\mu^{2}\right)\right)\right\}$
-Where do the poles come from?

- Dependence of N=4 SYM coupling on perturbative scale

$$
\alpha=C \times\left(\mu^{2}\right)^{-\epsilon}
$$

- In the anomalous dimension are integrals of the type

$$
C^{n} \int d \mu^{2}\left(\mu^{2}\right)^{-1-n \epsilon}=C^{n} \frac{1}{-n \epsilon}\left(\mu^{2}\right)^{-n \epsilon}=\frac{\alpha^{n}}{-n \epsilon}
$$

- We can cariry out the the integral for Z exactly

$$
\log (\mathbf{Z})=\frac{1}{4} \sum_{L=1}^{\infty} \alpha^{L}\left[\frac{\gamma_{c}^{(L)}}{L^{2} \epsilon^{2}} \mathbf{D}_{\mathbf{0}}-\frac{\gamma_{c}^{(L)}}{L \epsilon} \mathbf{D}+\frac{4}{L \epsilon} \gamma_{J}^{(L)} \mathbb{I}+\frac{1}{L \epsilon} \boldsymbol{\Delta}^{(L)}\right]
$$

GENERAL IR STRUCTURE

$$
\mathcal{A}\left(p_{i}, \epsilon\right)=\mathbf{Z}\left(p_{i}, \epsilon\right) \mathcal{A}^{f}\left(p_{i}, \epsilon\right)
$$

$$
\log (\mathbf{Z})=\frac{1}{4} \sum_{L=1}^{\infty} \alpha^{L}\left[\frac{\gamma_{c}^{(L)}}{L^{2} \epsilon^{2}} \mathbf{D}_{\mathbf{0}}-\frac{\gamma_{c}^{(L)}}{L \epsilon} \mathbf{D}+\frac{4}{L \epsilon} \gamma_{J}^{(L)} \mathbb{I}+\frac{1}{L \epsilon} \boldsymbol{\Delta}^{(L)}\right]
$$

- Compare with our amplitude!
- Highly non-trivial check of [Almelid, Duhr, Gardi, 2015]
- Correct IR structure for any massless particle amplitude up to three loops and four legs

$$
\begin{array}{cl}
\boldsymbol{\Delta}_{4}^{(3)}=4 f_{a b e} f_{c d e}\left[\mathbf{T}_{1}^{a} \mathbf{T}_{2}^{b} \mathbf{T}_{3}^{c} \mathbf{T}_{4}^{d} \mathcal{S}(x)\right. & \\
& \mathcal{S}(x)= \\
& \left.+\mathbf{T}_{4}^{a} \mathbf{T}_{1}^{b} \mathbf{T}_{2}^{c} \mathbf{T}_{3}^{d} \mathcal{S}(1 / x)\right], \tag{13}\\
& \\
& -2 H_{-3,-2}+2 H_{-2,-2,-1}+2 H_{-2,-2,0}-2 H_{-2,-1,-2}-H_{-1,-2,-2} \\
\Delta_{3}^{(3)}=-C f_{a b e} f_{c d e} \sum_{\substack{i=1 . .4 \\
1 \leq j<k \leq 4 \\
j, k \neq i}}\left\{\mathbf{T}_{i}^{a}, \mathbf{T}_{i}^{d}\right\} \mathbf{T}_{j}^{b} \mathbf{T}_{k}^{c} . & -H_{-1,-1,-3}+4 H_{-2,-1,-1,-1}-2 H_{-2,-1,-1,0} \\
& -H_{-1,-2,-1,0}-H_{-1,-1,-2,0}+\zeta_{3} H_{-1,-1}+4 \zeta_{3} \zeta_{2}-\zeta_{5} \\
& +\zeta_{2}\left(6 H_{-3}-10 H_{-2,-1}+6 H_{-2,0}-H_{-1,-2}-H_{-1,-1,0}\right) \\
& +i \pi\left[2 H_{-3,-1}-2 H_{-3,0}+2 H_{-2,-2}-4 H_{-2,-1,-1}\right. \\
& \\
& +2 H_{-2,-1,0}-2 H_{-2,0,0}+H_{-1,-2,0}+H_{-1,-1,0,0} \\
& \\
& \left.+\zeta\left(3 H_{-1,-1}-4 H_{-2}\right)-\zeta_{3} H_{-1}\right] .
\end{array}
$$

- Knowing the structure of the infra-red divergences we can create a finite amplitude

$$
\mathcal{A}^{f}\left(p_{i}, \epsilon\right)=\mathbf{Z}^{-1}\left(p_{i}, \epsilon\right) \mathcal{A}\left(p_{i}, \epsilon\right)
$$

- Planar Limit: Z becomes colour-diagonal.
- Computation of 2-Loop planar amplitude lead to discovery of all order formula for planar 4-point scattering amplitude in N=4 SYM.
[Anastasiou, Bern, Dixon, Kosower;Bern, Dixon, Smirnov; Drummond, Henn, Korchemsky, Sokatchev]

$$
\mathcal{A}_{1}^{f}=\mathcal{A}_{1}^{(0,0)} \exp \left\{\frac{1}{2} n_{c} \gamma_{c} \log \left(\frac{-s}{\mu^{2}}\right) \log \left(\frac{-t}{\mu^{2}}\right)-\frac{1}{2} \gamma_{J}\left(\log \left(\frac{-s}{\mu^{2}}\right)+\log \left(\frac{-t}{\mu^{2}}\right)\right)+C\right\}
$$

- Only logarithms
- We could not find a similar structure for the non-planar contributions
- Result is still strikingly simple:
- Uniform transcendental function
- Weight 6 harmonic poly-logarithms and Zeta values.
- Rational polynomials that appear in the amplitude correspond to different tree-level structures of different color stripped amplitudes.

AMPLITUDE EXAMPLE AT 2 LOOPS

$\mathcal{A}_{1}^{f(2,2)}=\frac{i \mathcal{K}}{x}\left\{18 \zeta_{2} H_{-1,0}+24 \zeta_{2} H_{0,0}-8 H_{-3,-1}+6 H_{-3,0}-6 H_{-2,-2}+2 H_{-1,-3}-2 H_{-2,-1,-1}\right.$
$\int-6 H_{-2,-1,0}+2 H_{-2,0,0}-6 H_{-1,-2,-1}+2 H_{-1,-2,0}-10 H_{-1,-1,-2}+8 H_{-1,-1,-1,-1}$
$-10 H_{-1,-1,-1,0}+4 H_{-1,-1,0,0}-2 H_{-1,0,0,0}-6 \zeta_{2} H_{-2}-2 \zeta_{3} H_{-1}+6 H_{-4}$
$+i \pi\left[2 H_{-2,-1}+6 H_{-2,0}+6 H_{-1,-2}-8 H_{-1,-1,-1}+10 H_{-1,-1,0}-2 H_{-1,0,0}\right.$
Tree level polynomials

$$
\left.\left.-6 H_{0,0,0}-14 H_{-1} \zeta_{2}+8 H_{-3}-6 \zeta_{3}\right]\right\}
$$

$$
\pm \frac{i \mathcal{K}}{1+x}\left\{-36 \zeta_{2} H_{-1,0}-12 \zeta_{2} H_{0,0}+8 H_{-3,-1}-8 H_{-3,0}+4 H_{-2,-2}-4 H_{-2,-1,-1}\right.
$$

$$
+4 H_{-2,-1,0}+4 H_{-1,-2,-1}+12 H_{-1,-1,-2}+12 H_{-1,-1,-1,0}-4 H_{-1,-1,0,0}
$$

$$
-4 H_{-1,0,0,0}+4 H_{0,0,0,0}-78 \zeta_{4}+12 \zeta_{2} H_{-2}+4 \zeta_{3} H_{-1}-8 H_{-4}
$$

$$
+i \pi\left[4 H_{-2,-1}-4 H_{-2,0}-4 H_{-1,-2}-12 H_{-1,-1,0}+8 H_{0,0,0}-4 \zeta_{2} H_{-1}\right.
$$

$$
\left.\left.+16 \zeta_{2} H_{0}-8 H_{-3}\right]\right\}
$$

$\bigcirc-\longrightarrow-<-\lll \lll<$

REGGE LIMIT

- Kinematic Limit:

Center of mass energy >> momentum transfer

REGGE LIMIT

- Universal behavior of scattering amplitudes in high energy limit [Naculich, Schnitzer, 2007; Glover, Del Duca, 2008]
- Pole structure can be understood from infrared factorization

[Del Duca,Duhr,Gard,Magnea,White]

- How is this picture violated? Universality of corrections?
[Del Duca,Duhr,Gard,Magnea,White]
[Del Duca, Falcioni, Magnea, Vernazza]

REGGE LIMIT
 $$
\sim \frac{s}{t}\left[\mathbf{T}^{b} f_{1}\right]\left[\left(\frac{s}{-t}\right)^{\alpha(t)}+\left(\frac{-s}{-t}\right)^{\alpha(t)}\right]\left[\mathbf{T}^{b} f_{2}\right]
$$

- Decompose amplitude into irreducible representations in t-channel:

$$
\mathbf{8}_{a} \otimes \mathbf{8}_{a}=\mathbf{1} \oplus \mathbf{8}_{a} \oplus \mathbf{8}_{s} \oplus \mathbf{1 0}+\overline{\mathbf{1 0}} \oplus \mathbf{2 7} \oplus \mathbf{0}
$$

- Choose color basis:

$$
c_{g g}^{(27)}=\frac{2}{N_{c} \sqrt{\left(N_{c}+3\right)\left(N_{c}-1\right)}}\left[-\frac{N_{c}+2}{2 N_{c}\left(N_{c}+1\right)} \delta^{a_{4}}{ }_{a_{1}} \delta^{a_{3}}{ }_{a_{2}}\right.
$$

$$
+\frac{N_{c}+2}{4 N_{c}}\left(\delta^{a_{1}}{ }_{a_{2}} \delta_{a_{4}}^{a_{3}}+\delta_{a_{1}}^{a_{3}} \delta_{a_{2}}^{a_{4}}\right)-\frac{N_{c}+4}{4\left(N_{c}+2\right)} d^{a_{1} a_{4} b} d^{a_{2} a_{3}}
$$

[Del Duca, Falcioni, Magnea, Vernazza]

$$
\begin{aligned}
& c_{g g}^{(1)}=\frac{1}{N_{c}^{2}-1} \delta^{a_{4}}{ }_{a_{1}} \delta^{a_{3}}{ }_{a_{2}}, \\
& c_{g g}^{\left(8_{s}\right)}=\frac{N_{c}}{N_{c}^{2}-4} \frac{1}{\sqrt{N_{c}^{2}-1}} d^{a_{1} a_{4} b} d^{a_{2} a_{3}}{ }_{b}, \\
& c_{g g}^{\left(8_{a}\right)}=\frac{1}{N_{c}} \frac{1}{\sqrt{N_{c}^{2}-1}} f^{a_{1} a_{4} b} f_{b}^{a_{2} a_{3}}, \\
& c_{g g}^{(10+\overline{10})}=\sqrt{\frac{2}{\left(N_{c}^{2}-4\right)\left(N_{c}^{2}-1\right)}}\left[\frac{1}{2}\left(\delta^{a_{1}}{ }_{a_{2}} \delta^{a_{3}}{ }_{a_{4}}-\delta^{a_{3}}{ }_{a_{1}} \delta^{a_{4}}{ }_{a_{2}}\right)-\frac{1}{N_{c}} f^{a_{1} a_{4} b} f^{a_{2} a_{3}}{ }_{b}\right], \\
& c_{g g}^{(0)}=\frac{2}{N_{c} \sqrt{\left(N_{c}-3\right)\left(N_{c}+1\right)}}\left[\frac{N_{c}-2}{2 N_{c}\left(N_{c}-1\right)} \delta^{a_{4}}{ }_{a_{1}} \delta^{a_{3}}{ }_{a_{2}}\right. \\
& +\frac{N_{c}-2}{4 N_{c}}\left(\delta^{a_{1}}{ }_{a_{2}} \delta^{a_{3}}{ }_{a_{4}}+\delta^{a_{3}}{ }_{a_{1}} \delta^{a_{4}}{ }_{a_{2}}\right)+\frac{N_{c}-4}{4\left(N_{c}-2\right)} d^{a_{1} a_{4} b} d^{a_{2} a_{3}}{ }_{b} \\
& \left.-\frac{1}{4}\left(d^{a_{1} a_{2} b} d^{a_{3} a_{4}}{ }_{b}+d^{a_{1} a_{3} b} d^{a_{2} a_{4}}{ }_{b}\right)\right] .
\end{aligned}
$$

REGGE LIMIT

- In the octet exchange we find that we can write the amplitude in the Regge limit as

$$
\begin{aligned}
& \mathcal{A}_{\boldsymbol{8}_{a}} \sim s^{w_{\boldsymbol{8}_{a}}} \quad \mu^{2}=-t \\
&\left.w_{\boldsymbol{8}_{a}}\right|_{\alpha^{3}}= N_{c}^{3}\left[\frac{11 \zeta_{4}}{48} \frac{1}{\epsilon}+\frac{5}{24} \zeta_{2} \zeta_{3}+\frac{1}{4} \zeta_{5}+\mathcal{O}(\epsilon)\right] \\
&+N_{c}\left[\frac{\zeta_{2}}{4} \frac{1}{\epsilon^{3}}-\frac{15 \zeta_{4}}{16} \frac{1}{\epsilon}-\frac{77}{4} \zeta_{2} \zeta_{3}+\mathcal{O}(\epsilon)\right]
\end{aligned}
$$

- Our results also provide data for other channels

REGGE LIMIT

- Regge Limit of the IR finite amplitude can be described in terms of the tree level amplitude and Zeta values!

$$
\begin{align*}
\lim _{s \gg t} \mathcal{A}^{f}= & \sum_{k, q} \alpha^{k}\left(\log \frac{s}{t}\right)^{q} \mathbf{O}_{k, q} \mathcal{A}^{0}+\mathcal{O}(\epsilon) \\
\mathbf{S}=\left(\mathbf{T}_{1}+\mathbf{T}_{2}\right)^{2} \quad \mathbf{O}_{2,1}= & -\frac{1}{8} \zeta_{3} \mathbf{T}^{2}, \\
\mathbf{T}=\left(\mathbf{T}_{2}+\mathbf{T}_{3}\right)^{2} \quad \mathbf{O}_{3,2}= & i \pi \frac{11}{24} \zeta_{3}[[\mathbf{S}, \mathbf{T}], \mathbf{T}], \tag{19}\\
\mathbf{O}_{3,1}= & i \pi \frac{1}{16} \zeta_{4}(3[\mathbf{S}, \mathbf{T}] \mathbf{T}+58[[\mathbf{S}, \mathbf{T}], \mathbf{T}]) \tag{20}\\
& +\frac{11}{6} \zeta_{2} \zeta_{3}\left(3[\mathbf{S}, \mathbf{T}] \mathbf{T}+2[[\mathbf{S}, \mathbf{T}], \mathbf{T}]-\left[\mathbf{S}^{2}, \mathbf{T}\right]\right) \\
& +\left(\frac{1}{4} \zeta_{5}-\frac{1}{24} \zeta_{2} \zeta_{3}\right) \mathbf{T}^{3}-4 \zeta_{2} \zeta_{3} \mathbf{T} .
\end{align*}
$$

CONCLUSIONS

- We computed the first four dimensional gauge theory four particle scattering amplitude, including non-planar contributions.
- Studied the IR and Regge limit of the amplitude.
- Provides important piece of data for studying the general structure of high loop gauge theory amplitudes.
- First steps towards 4 particle scattering in realistic QFT.

Thank you!

