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Abstract

In this master thesis we present a high-precision QED calculation for the process eTe™ — 27,
a process relevant in light of the PADME experiment at INFN. The accuracy of the result,
currently incorporating photonic contributions, is based on an exact NNLO calculation that
includes effects of the electron’s nonvanishing mass. For an observable that models the ex-
perimental cuts at the DA®NE collider, we provide numerical results for the integrated cross
section, as well as a number of relevant differential distributions. The process is implemented
in the latest version of MCMULE, a unified framework for precision QED.
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1 Introduction

The Standard Model (SM) of particle physics has been able to successfully describe a wide range
of observed phenomena [1]. The theory is capable of characterizing three out of the four funda-
mental interactions in the universe, as well as classifying the whole set of observed elementary
particles. Most SM processes can be accurately predicted through application of perturbation
theory.

Even though the SM is a self-consistent theory and has proven successfully in providing pre-
dictions for experimental observables, it has a number of shortcomings [2|. It does not include
the gravitational interaction and therefore cannot be considered a complete theory of the fun-
damental interactions in our universe. It does not account for the observed asymmetry between
matter and antimatter [3] and it does not include neutrino masses as demonstrated by their
oscillations [4].

It also does not contain any description of dark matter by means of a particle with the properties
consistent with cosmological observations. Various evidence from astrophysical and cosmolog-
ical observations suggest the existence of such a type of matter constituting about 85% of the
matter content of the universe. It is implied for example by galactic rotation curves [5] and
temperature fluctuations of the cosmic microwave background [6]. The lack of description for
it within the SM is often considered to be a shortcoming of the theory, and naturally, many
extensions thereof are being investigated [7].

A recently revived proposition for physics Beyond the Standard Model (BSM) is the dark pho-
ton, a hypothetical spin-1 particle arising from a minimal extension of the SM with a new U(1)
abelian gauge symmetry [8]. In this model, the dark photon serves as a portal through which it
couples to ordinary charged particles, and could thus be detectable. Additional interest in the
dark photon arises from its ability to explain the apparent variance in the magnetic moment of
the muon [9], even though this seems to be disfavoured now.

In recent years, a lot of interest has been devoted to quantum chromodynamics (QCD) and the
electroweak theory, which allow to predict processes at the high-energy frontier. Since the Large
Hadron Collider (LHC) has begun to operate at the energy of /s = 13 TeV and no compelling
evidence of BSM physics has been found, low-energy phyisics has become an ever more impor-
tant alternative line of search [10] for new physics.

One notable low-energy experiment searching for BSM signatures is the PADME experiment
(Positron Annihilation into Dark Matter Experiment) at Laboratori Nazionali di Frascati of
INFN, whose objective is to search for dark matter by trying to unveil the dark sector of the
SM [11] in an electron positron annihilation experiment. The experiment is designed to detect
dark photons by measuring the missing invariant mass in the final state photons.

The present work aims at calculating the process eTe™ — 27 at next-to-next-to leading order
(NNLO) accuracy, including effects of the electron’s non-vanishing mass. This can help to accu-
rately estimate the SM background of the process studied in the PADME experiment, ultimately
allowing a finer comparison of experiment to theory. It can also be beneficial for determining
luminosity at eTe™ colliders, which has historically been done using Bhabha scattering [12], but
could be done with ete™ — 27, too.

In many respects, quantum electrodynamics (QED) is simpler than QCD and the electroweak
theory because the interaction is based on an abelian U(1) group in QED, where as QCD is
based on the nonabelian SU (3) group. However, in QED the logarithms that contain the fermion



masses are physical in the sense that they can be measured in experiments, and they can be
large which can result in numerical instabilities. The need to account for the fermion mass thus
introduces a challenge that is easily overlooked when one compares QED to QCD.

In Chapter 2, we discuss the methods that were employed in the calculation, where we first give
a brief overview of the steps involved, followed by a more detailed discussion of some of the
strategies employed. In Chapter 3, we give results for integrated cross sections and a number of
differential distributions. Finally, a conclusion of the present work is given in Chapter 4, along
with an outlook.



2 Methods

In [13[|14] the general methods for calculactions in quantum field theory (QFT) are introduced.
The QED calculation performed in the present work can roughly be divided into the following
steps:

1. We select a theory by writing down a Lagrangian. We choose QED, so

L= —%(FW)Q +P(id = m)y — e APt (2.1)

2. Based on L, we draw all Feynman diagrams that contribute to the process at the desired
order. For eTe™ — 2y at NLO we have one-loop diagrams multiplying tree-level diagrams
(called wirtual corrections) and tree-level diagrams with an additional photon in the final
state, multiplying again such diagrams (called real corrections). Often, we will end up
with so many diagrams that we would like to have a program generate them for us. Our
choice for automatic diagram generation is QGRAF [15], a Fortran program capable of
generating Feynman diagrams purely based on graph-theoretical concepts. All it needs to
know is the kind of lines and vertices at its disposal.

3. We apply the Feynman rules to obtain analytic expressions for amplitudes A and matrix
element M = A A" in Mathematica. Here /\/l,(ll) and ASP have [ loops and two photons,
./\/lgll and Agil contain an additional photon in the final state, and so on. Generally, if
possible, we reduce the workload, for example by writing the virtual corrections as

MO = AW AOT L 40 4T _ 9o 4D 4O, (2.2)

and by computing amplitudes that differ only by permutations of final state momenta just
once. In our case we use a custom Mathematica interface of QGRAF, which automat-
ically applies the Feynman rules. It can be found at https://gitlab.com/mule-tools/
QGraf. The version at https://gitlab.com/mule-tools/QGraf/-/tree/cosmetics|imple-
ments the QED Feynman rules given in Section

4. Whenever possible, we compute the loop integrals analytically. To that end, we select a
regularization scheme, in our case a variant of dimensional regularization, and expand the
loop integrals in d = 4 — 2¢ dimensions as a Laurent series in €. For evaluation of one-loop
integrals, we use the Mathematica program Package-X [16] for expansions up to O(€?).

5. We account for contributions with fermion loops, where the quark loops cannot be inte-
grated analytically, since they are non-perturbative at low energies. The method employed
here for these contributions is the hyperspherical method, briefly explained in Section

6. We express the matrix elements in terms of renormalized quantities. As a result, matrix
elements and amplitudes will be free of ultra violet (UV) divergences. We will look at a
practical way to do that in Section

!'Note that in contrast to standard convention, the matrix element M is the product of an amplitude with a
complex conjugate amplitude. We call it just the ”matrix element”, instead of the "matrix element squared”.


https://gitlab.com/mule-tools/QGraf
https://gitlab.com/mule-tools/QGraf
https://gitlab.com/mule-tools/QGraf/-/tree/cosmetics

7. We combine real and virtual corrections to cancel infrared (IR) divergences. In a real-
world setting the phase space integrals giving rise to soft divergences cannot be performed
analytically. This step therefore requires the introduction of a counterterm that contains
the divergence but can be integrated analytically. A systematic way to do this is the FKS!
subtraction scheme [17], whose main ideas are outlined in Section

8. We compute an observable cross section by integrating numerically over the final state
momenta. Most of the steps above are typically performed in a computer algebra setting;
for this step however, we switch to the fast numerical language Fortran 95. Many aspects
around the numerical integration have been implemented as part of MCMULE [18], a For-
tran 95 framework for fully differential higher-order QED calculations, on which we rely
heavily in this work. In MCMULE we specify the measurement function, which imposes
phase space cuts necessary to match predictions to experiments. For the phase space inte-
gration, MCMULE uses Monte-Carlo (MC) integration in combination with the adaptive
importance sampling routine VEGAS [19].

2.1 Diagrammatic renormalization and multiplicative renormalization

Often, renormalization is developed as follows: First, one realizes that the Lagrangian ([2.1))
actually contains bare quantities that are indicated with 0 subscripts

1 . _
£ =~ (F)* + Yo(idd — mo)yo — eo A}y o. (2.3)
Next, one expresses the bare quantities in terms of renormalized quantities
Yo = Za%, AR = Z3PAM ey = Zee, mo=Zmm, e0ZaZy’ = Zye (2.4)

and writes Z; = 1 + §; so that

£ = L 2B 4 20 - By — ZreA T

= 3 (F 2 400 — ) — ATt — 09(Fyu)? + (02idh — (S — 6) o — by AV,

4
(2.5)
where we have dropped terms O(62) since for simplicity we look at at 1-loop renormalization.
The first three terms in ([2.5) produce the ordinary Feynman rules

i —iGu0 )
— = I) “m = 1)2_71:712 >wwAw = —Zeﬂyl‘"’ (26)

in addition to which we can now read off the counterterms

AR = — i63(pP g — Puby) > =i(pds — m(d2 — Om))

>X>“W = —tedy 27)

These counterterms allow us to cancel UV divergences in individual diagrams, rendering each
diagram by itself finite. That can be useful. For example, the renormalized fermion self-energy
3(p) in terms of the bare self-energy Yo(p) is

—in(p) = i& + @ = —iS(p) +i(poa— Gam — ). (2.8)
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The explicit expressions for d2 and dy, in on-shell renormalization are given in Appendix [A] for
a number of scenarios relevant to this work.

An alternative approach, sometimes called multiplicative renormalization, involves less countert-
erms but does not work for individual diagrams. Instead, the approach renders the full 1-loop
amplitude UV finite through application of the following steps:

1. We take the full LO amplitude

2. For each external fermion, we multiply it by a factor of vZ where Z = Z; = Z due to
the Ward identity

3. For each internal fermion line, we send m — m+mJd,,, to account for mass renormalization

4. We rewrite all factors Z5 ! from internal photons as Zs 1 = 72 and absorb the two charge
renormalizations Z. into the charges of the vertices the photon connects to

Aside from the mass renormalization, which doubles the amount of diagrams, most of the renor-
malization is thus achieved in a multiplicative way, thus the name multiplicative renormalization.
One way to see that multiplicative renormalization is correct is to write £ in the suggestive form

L= —izw,w)? + Zo (i) — m)v — ZopSmth — Zie A byt (2.9)

which allows us to read off a different set of Feynman rules

— = # = —jeJy*
Z2(p—m) >W ! (2.10)

. _ — 1w
——X—— = —ZZ5m = W

which are similar to (2.6)) but contain the Z and Z3 factors. Now we can write down diagrams
using these rules and count the amount of Z factors. For ete™ — 2v we have

7 Z
>

\ + +  diagrams with loops (2.11)
-

VA A

where we have written explicitly the different factors of Z. The crux is now to reduce them as
much as possible to the ordinary rules and some extra bits. The extra bits turn out to
be just the mass renormalization, as well as the overall Z factors. To see this, take the first
diagram of . It has a factor Z~! from the propagator and a Z from each vertex, one of
which we cancel. Similarly, the second diagram contains after cancellation just an overall factor

of Z. Thus (2.11) becomes

—Pp— NN

Z X \4 + Zx +  diagrams with loops (2.12)
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which produces the counterterms of the complete NLO amplitude 1-loop amplitude. The nice
thing about multiplicative renormalization is that the NLO counterterms can be generated from
the tree-level amplitudes, just by splitting up the internal fermion lines and putting in the
factors of Z. The definitions of the renormalization constants is equivalent, and they are the
same in the two approaches. Having presented the starting point on how one can approach
multiplicative renormalization, we would like to refer to chapter 2.1 of [20] for more tips on its
practical application.

2.2 LO and NLO conbributions to eTe™ — 2~

For our process of interest, at leading order we find the tree-level amplitudes

pP1 —»— b3 pP1 —»— b3
iAD) = Y + Y : (2.13)
P2 —a— P4 P2 —a— P4
In terms of the Mandelstam invariants
s =(p1 + p2)?
t =(p1 — p3)* (2.14)
u =(p1 — pa)?

the Born matrix element for unpolarized scattering is

(—m? (s* + st +12) + m*(3s — t) + mO + t(s +t)?)

MO = | A2 = 327202 5
(m? —t)"(m? —s—1t)

+ (tu)

(2.15)
where m is the electron mass and a = €2 /47 the fine structure constant.
Being proportional to e* ~ o2, the matrix element is the leading order contribution.
In general, NLO corrections to our process are O(a?) and NNLO corrections will be O(a?).
The virtual corrections at NLO are produced from tree-level diagrams multiplying the 1-loop

diagrams
wi} + 2x \4 + \ (2.16)

Hif\/\/\/\/\/ +W

denoted bubble, vertex and box contributions respectively. The diagrams where the final state
photons are permuted are always there too, but we will leave them implicit from now on. The
factor 2 in accounts for the additional diagram with the vertex correction appearing in
the lower vertex.

Notice that in no diagram contains an internal fermion loop. We call such contributions
photonic. In addition to , there are also diagrams with internal fermion loops, which are
treated separately in Section

The diagrams contain UV divergences, and to make them disappear we include the coun-
terterms . They also contain IR divergences, and to make them disappear we need to
account for real corrections, which have an additional photon in the final state. In our process,

12



real corrections consist of contributions like

— P ANNANN—G——
Mfloll = IASLF = Yo X Aananny + .. (2.17)
—g— NN ANNANAN—Pp———

Physically, these diagrams need to be taken into account because if one photon becomes soft
(meaning its energy becomes very small), the final state cannot be distinguished from one with
just two photons with any realistic detector. There is always a minimum energy that can be
detected.

Beyond LO, we do not list any matrix elements directly in this work, since they are lengthy.
Instead, we provide all major analytic results in computer readable format [21].

2.3 NNLO contributions to ete™ — 2y

At NNLO, we can distinguish three types of contributions: The double-virtual ./\/lg), the real-

virtual Mf}}rl and the double-real M7(10+)2 contributions. Each was obtained in a different manner,
and in this section we discuss how.

2.3.1 Double-virtual contributions

First, let us discuss how contributions with two loops were taken into account in this work.
The procedure outlined in the following again deals only with the photonic parts (those without
fermion loops) and explains how the double-virtual matrix element Mg) with leading mass
dependence was obtained. The parts containg fermion loops are discussed in Section

We can distinguish two types of double-virtual contributions. On the one hand, we have 1-loop
amplitudes multiplying 1-loop amplitudes

+’\/\/\/\/\/’\/\/\/\/\/

AW qF v:} x Y + (2.18)
Hi’\/\/\/\/\/ ANNNANA
and the other hand, there are two-loop amplitudes multiplying tree-level amplitude
NANNANY ANNNAN—P——
A 4O = wg} x \ + . (2.19)

that need to be taken into account.

2.3.1.1 Massification procedure

The two-loop integrals are challenging objects, especially when one would like to obtain the full
mass dependence since the integrals can be difficult. Often however, it is enough to construct only
the terms that are constant or logarithmic in the fermion mass m while dropping polynomially
suppressed terms. This means that terms constant in the fermion mass and terms of order

13



O(log(m?/q?)") are kept while terms O(m?/q?)" are not taken into account. Here, ¢? represents
an invariant of the process which is much larger than m so the ratio is small (as is the case for
the DA®NE beam where the PADME experiment takes place, which has /s ~ 1GeV).

A procedure dubbed massification [22}23] allows us to obtain this leading mass dependence
from the massless variant. The basic principle behind the massification procedure resides in
Soft-Collinear Effective Theory (SCET) [24-26]: It can be shown there that the massive variant
of the matrix element M (m) can be written in the factorized form

M(m #0) =8 x Z x M(0) + O(m?/¢*) (2.20)

with the soft function S, the process-independet collinear function Z and matrix element with
vanishing fermion mass M (0). The soft function S has only contributions from diagrams with
fermion loops. It can be shown that all the loop integrals that contain a photon as part of the
loop are scaleless in the soft region, and thus vanish in dimensional regularization, a result that
has been proven [27] to all orders in perturbation theory within the SCET framework. Since
the matrix element M treated in this section contains no fermion loops, we can set S = 1 here.
The massification approach has recently been extended beyond NNLO [28/29] and to cases with
multiple masses [30].

2.3.1.2 Checking the massless matrix element

The massless variant M (0) has already been worked out at NNLO [31] a while ago. In this work,
the result of [31] was used and massified, thus providing an important shortcut for a difficult

.I.
part of the NNLO calculation. In order to check the massless results the AS) AS) part was
computed independently in this work. Since the ampltiude ASP is massless, it has pole structure

A B
AY = S+ +C+Deto. (2.21)

with the €2 pole coming from the overlap of the soft and collinear divergences. In the product

A,(}) AS)T all poles up to €® need to be retained, and therefore in AS) all terms up to and
including €2 are needed (since the overlap of the €? term and the e¢~2 term is proportional to ).
Package-X, the Mathematica package for automated e-expansion of one-loop integrals, which was
used for all the integrals so far, produces only terms up to €.

A separate calculation is therfore required in order to obtain all the photonic 1-loop integrals
up to €2. In a first step, Passarino-Veltman [32] is applied, which is a general method which
allows to write tensor integrals in terms of a handful of scalar integrals, thus reducing the
amount of integrals that needed to be solved. One then obtains bubbles (with two propgators in
the loop integral), triangles (three propagators in the loop) and boz integrals, which have four
propagators in the loop.

A pedagogical introduction to the methods used for the computation of these integrals is given
in [33]. Briefly explained, it proceeds as follows: After conversion of the integrals to parametric
Feynman representation, the bubble and triangle integrals can be rewritten so that the loop
integral takes the form of a § function from complex analysis, which in turn is expressed with
I' functions using the identity

['(a)T'(b)

et (2.22)

1
| w a0 = ) -
0

which yields results exact in €. For the box integral, the result exact in € can be found readily
using the integral substitution mentioned in [34]. When one applies the substitution, the box

14



can be written in terms of hypergeometric functions. These can in turn be expanded with the
code HypExp 2 [35]. For all integrals, the poles up to and including €” were successfully checked

T
against automated calculations. After replacing the integrals, the AS’ AS) part was obtained
up to € and agreement with the result from [31] was found.

2.3.1.3 Conversion to FDH scheme

Since the massification procedure is largely process independent, it is part of the McMule frame-
work and done directly in Fortran. The code though expects the matrix element in the four-
dimensional helicity (FDH) scheme, which treats as many objects as possible in strictly four
dimensions. The works [18,36] provide helpful pedagogical introductions to the different regu-
larization schemes.

Application of the procedure therefore requires conversion of the double-virtual matrix element
in conventional dimensional regularization (CDR) to the FDH scheme. The key observation that
can be exploited for the conversion is the scheme independence of the IR finite matrix element

1 0 1 2
<ME}])DR + M(C])DR + M(C])DR > =

0 1 2
- (M8 MB ME ) 229
CDR

Zpu
where Z is constructed so that the products in (2.23)) are finite for € — 0. Z has been worked
out in dimenional regularization in the massless case [37H40]. In [1§] Z is given in FDH, and
conversion to CDR is obtained via n. — 0. Thus all objects on the left-hand side of (2.23)) are
now available. On the right-hand side, we can use

Midy = lim My (2.24)

€E—
therefore the only ingredient still required for the prediction of M%Q]%H is MSI))H. For this, a full
one-loop calculation in FDH is required. In this scheme regular fields are treated in 4 dimensions

while singular fields are treated in ds = d + n, dimensions (d = 4 — 2¢). As a result, when going
from CDR to FDH the diagrams with e-scalars can be generated from

62

G = 9+ 50 (2.25)

where in brackets we denote the dimension of the space the objects live in. Pictorially,

—— —Pp— —
wﬁ — VE} + Y (2.26)
—g— —g— —g—

where the second diagram in (2.26) has an e-scalar in the loop. When evaluating the diagrams,
we need the ability to deal with the numerator algebra mandated from the hierarchy

5[4] C QSM - QS[dS] (2.27)

of the spaces involved, using the same notation as |18]. To aid in this calculation, we use the
Mathematica package TRACER [41], which can do algebra with Dirac v matrices in arbitrary
dimensions.

15



2.3.2 Real-virtual contributions

Real-virtual contributions consist of one-loop diagrams with an additional photon in the final
state multiplying tree-level diagrams with an additional photon, e.g.

———
\

A\ \

—g— NN ANNANNANAN—Pp————

Instead of calculating Mg}rl by ourselves we decided to use OPENLOOPS 2 [42-H44], a Fortran
program that allows to evaluate tree and one-loop scattering matrix elements for any SM process
automatically.

In order to see if OPENLOOPS was indeed viable even in the limit where one of the photons is
soft, its numerical stability was studied for decreasing photon energy in an otherwise random
phase space point. To study the energy decrease we introduce the dimensionless scaled photon
energy £ defined via

\[

E, = 735 (2.29)

with photon Energy E,, and compare real-virtual matrix element to the eikonal approximation,
which is defined in Section [2.5] The results, shown in Figure in terms of &, suggest that

°
10—3 4
°
©
o
g 10+
o °
2
S
o
g
@ 1073 4 ®
£ .
[
2
©
© 1078 4 ® e
°
1077 1 *
10-° 1077 10-° 10-3

soft photon &

Figure 2.1: Relative agreement of MS}LI to the eikonal approximation, evaluated with OPEN-

Loops 2 for decreasing photon energies parameterized by &.

as we decrease the soft photon energy the agreement with the eikonal approximation increases.
Only when we reach ¢ ~ 10~ the agreement starts to become worse, a behavior which can most
likely be attributed to numerical instabilities which arise at this point. But even at & ~ 10710
the relative agreement is still O(1075). In the soft-collinear region it was also found that the
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numerical stability is fine. Therefore we decided to use OPENLOOPS 2 in this work for the

evaluation of M S}rl )

2.3.3 Double-real contributions

We also need to account for double-real contributions. They are products of tree-level amplitudes
with four photons in the final state, that is

—Pp— NN —
\ \
Mn+2 =  / X 4 + (230)
\{ \
—g— NN >

The double-real contributions are arguably the simplest NNLO pieces. Aside from the different
permutations of the final state photons, the topology shown in (2.30) is the only one that needs

to be taken into account. While ./\/17(10}r2 can be evaluated with OPENLOOPS 2, it was decided
to obtain an analytical expression for the matrix element by ourselves, since it is faster than
OPENLOOPS 2 and a lot of statistics for the double-real contribution is needed.

Thus MSRQ was calculated in Mathematica, and the result agrees with OPENLOOPS 2. The long
fermion line produces a multitude of terms when one performs the spin sum. In addition, from
final state permutations there are 4! = 24 individual diagrams that produce 24 x24 contributionsE]
to M;OJ)FQ . Naive calculation of MgLOJ)rQ produces numerical instabilities. Fortunately, these seem
to go away when one simplifies separately chunks of 24 diagrams (all permutations) multiplying

one single diagram. An overall simplifcation was not done.

2.4 Contributions with fermion loops

Contributions with internal fermion loops, also called ng contributions, can be divided into
vacuuum polarization (VP) contributions that contain insertions of

P
\AMQW = ip? g 11(p?) (2.31)

and light-by-light (LbL) contributions that have insertions of

"

\

vy . (2.32)

A

Fermion loops with an odd number of photons attached vanish as a result of Furry’s theorem [14].
At NLO, in our process of interest there is only one fermion loop contribution, namely

=0 (2.33)

2From these, only 24 x 25/2 = 300 are unique, corresponding to the upper triangle of the 24 x 24 matrix

17



which is zero (it has three photons attached to the loop). Therefore there are no fermion loop
contributions to eTe™ — 2y at NLO.

In general, the loop fermion can be any lepton or quark, with each possibility giving another
diagram. At low energies, the analytical form of hadronic contributions (those with quark loops)
is unknown. Accounting for such contributions presents a major challenge since they cannot be
obtained in perturbative QCD.

Let us first look at VP contributions. These arise from insertion of into internal photons.
The action of the insertion into a photon propagator is

4, i i i
e =T (e = iR, M)~ = ()

(2.34)

and thus corresponds to just a multiplication with IT(¢?). Since in our process of interest there

are no internal photons at LO, VP diagrams arise from the insertion into NLO diagrams and

therefore contribute only at NNLO. Therefore we have bubble, vertex and box contributions at

NNLO given by the corresponding one-loop contribution multiplied by II(¢?), where ¢? is the

loop momentum.

To account for these contributions there exist two strategies: The hyperspherical method, which

has been historically used to evaluate the QED parts of the electron g — 2 [45-47], and the

dispersive method [48}/49]. In this work we proceeded with the hypherspherical method, which

is pedagogically introduced in [50]. Very briefly, the method works like this:

1. Fix the momentum routing such that the momentum flowing through the VP is ¢2, so that
one has TI(¢?).

2. Wick rotate the loop and external momenta into the Euclidean momenta (denoted by
capital letters) and write the loop momentum in terms of hyperspherical coordinates,
which gives the Jacobian
2

dtq =id*Q = i%dQ%lQQ (2.35)

3. Reduce to a set of master integrals, which can be achieved with Passarino-Veltman re-
duction [32]. However, we may not use the implementation PVReduce [51] (which is part
of Package-X), since it uses properties that we are not allowed to use in the present case;
namely shift invariance and the fact that scaleless integrals vanish in dimensional reg-
ularizationﬂ Thus a custom version of the algorithm by Passarino and Veltman was

implemented to perform the reduction to scalar integrals.
4. Integrate over the angles df1q, leaving only a residual radial dQ? integration.
5. Rotate all momenta back to Minkowski space and perform the analytical continuation.

Looking at the structure of the angular integrals arising in our calculation it can be observed that
the bubble contribution contains integrals with only a single angle-dependent propagator. The
vertex and box contributions contain integrals with maximum two and three angle-dependent
propagators respectively. Therefore all angular integrals can be reduced to three scalar master

$We cannot use shift invariance since we still have a factor of TI(¢?) in every term. Shifting the loop momentum
therefore results in a different value of H(q2). Moreover, integrals that would otherwise be scaleless are not
due to TI(g?).
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integrals, which can be computed in the hyperspherical method. The first two are

1 2
s =or? ——
/ C@rPrEmt T QPR
/dQ 1 1 _ i log [ LT HizV1 -T2
CQ+P)2+m] (Q+R)2+my Q2 /PPX1-1) B\ ar — el

(2.36)
where we have introduced the abbreviations
Q*+ P? +m? — /M@, P2, —m?)
Z; = for i=1,2
2./Q2P2
2= — 212 (2.37)

PP
VPP

Here A(a, b, ¢) is the Kéllén function and all dot products and squares of four-dimensional objects
are defined in terms of the four-dimensional Euclidean metric. The integrals were obtained
through expansion of the angle-dependent propagators in terms of Gegenbauer polynomials and
through application of orthogonality relations of the Gegenbauer polynomials. The product
of three angle-dependent propagators, which we require for the box contribution, cannot be
obtained in this way since the integral of a product of three Gegenbauer polynomials is not
known. The master integral with three angle-dependent propagators was taken from [52], where
it has been computed by direct integration.

At this point, the residual Q? integrals still contain UV divergences. Again, these can be
removed by including the counterterms , but now the counterterms are computed in the
hyperspherical method, too. The fermion self-energy at 1-loop is thus integrated over the angles
of the loop momentum, for which we can use the master integrals again. The resulting
Q? dependent renormalization constants are given in Appendix

Having completed the angular integration, many aspects of the result can be checked by choosing

2

M(q%) = ﬁ (2.38)

then the vacuum polarization becomes

igw/ 2 ig/u/
= [1 = 2.
\WQ,W q2 (q ) q2 2 ( 39)

which corresponds to the propagator for a massive photon. With this choice, the integral over
¢? is finite, because the IR divergence has been regulated by the finite photon mass. With
this choice of II, we can thus integrate numerically. At the same time, we can now integrate
analytically, since there are just one-loop integrals, although with massive photons. Again, the
result needs to be rendered UV finite by including the counterterms, which are computed from
the fermion self energy with a massive photon correction. To allow for a precise comparison,
the renormalization constants were computed including terms polynomial in A. The results are
also given in Appendix [A] The comparison of the numerical and analytical integration was then
performed for different phase space points, and the relative agreement between the two turned
out to be of the order of 1078 to 10720,
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2.5 Dealing with infrared divergences

Once the real and virtual matrix elements have been obtained, they need to be integrated over
the phase space in order to produce an observable cross section. In this section, we discuss how
this can be achieved at NLO.

The NLO contribution to the cross section for a process with n final state particles can be

written in terms of the virtual and real matrix elements MS) and MS)+)1 as

o= / doy + / do, = / Ao, MWD + / d®, MY, (2.40)
where d®,, is the n-particle phase space volume
d3k;

OrRBE) (2.41)

A, = (2m)*5(Sk) [[dei = 2m)*s(Sk) ]
(2 (2
The issue at this point is that the real and virtual contributions in are both separately IR
divergent. If we could compute the integrals analytically, then the divergences would manifest in
terms of the regulator used, and the dependence on the regulator would drop out once real and
virtual contributions are combined, as guaranteed by the KLN theorem [53}|54]. This is indeed
possible for simple observables, and it has been accomplished at NLO for eTe™ — 27 in [55].
But often we cannot integrate analytically, especially when considering also the presence of the
measurement function that imposes non-trivial phase space cuts in order to match experimental
procedures. The measurement function along with the flux factor have been left implicit in
. We are thus left with numerical phase space integration as the only option.
The trick is to construct a counterterm Mt that contains the divergence and can be integrated
analytically. The counterterm can then be subtracted from the real corrections and added back

/d(Z)A/ <M7(10-i)-1 — MCT) + /d(;% M. (2.42)

Because it can be integrated analytically over the additional photon phase space d¢,, the inte-
grated counterterm can then be combined with the virtual correction, making it finite as well.
A general method for the construction of such a counterterm, originally proposed by Frixione,
Kunszt and Signer [56] and recently generalized to any order in perturbation theory [|17] in
massive QED, is to isolate the soft part of the real contribution in a delicate way. To start, we
parameterize the photon that can become soft with scaled energy &, cosine of the angle y and a
(d — 2)-dimensional transversal unit vector e7 as

b= 260, VT e y) (2.43)

so that in the soft limit £ — 0. Then the phase space d¢, of the extra photon can be split into
radial and angular integrals

d—1
"k — = dYdeeei% (2.44)

_ . 4—d
W =1 o 2B ()

where T includes the angular part and some trivial factors. A &2 has been factored out explicitly
in order to apply to the remaining £~'72¢ the identity

o 66726 1
= G0 ()

X (2.45)
| £(6) — FO)B(E — ©)
<<£>f>:/o & en '
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&, can be fixed arbitrarily as long as it is in the same range as £&. However, keeping it variable
can serve as a check of the implementation of the scheme. In Chapter 3, this &, independence is
verified for our process of interest.

When replacing £ ~172¢ the real corrections become

e
2¢

0 1 0
do, = doy + doy, = / dYdepy, 1dE ( sEOMO) ¢+ < 3 +2€> M;+)1§2> (2.46)
C
with d¢n,1 being the phase space of the remaining particles. The first term in (2.46) can be
trivially integrated over d¢ due to the presence of §(§), and the result amounts to evaluating the

(0)

real matrix element M, 7, in the soft limit, which simplifies to the well-known result

Jinn MO = MO (2.47)
—

with Born matrix element M%O) and process-independent eikonal factor £. In the soft part (the
first summand in ), the only dependence on the extra photon momentum is in &£, which
can be integrated analytically over the extra photon phase space in dimensional regularization,
thus producing the integrated eikonal

—2e
£e) =~ / dre. (2.48)
2¢
The integrated eikonal contains explicit 1/e poles from the soft singularities, which cancel the
1/e poles in the virtual contributions. The real and virtual contributions can then be written as

7= oe) +ore) = [ dtey (M + EEIMP) + [ di @ (ML), (249)
C

the integrands are now separately finite and can thus be comptuted numerically in strictly d = 4
dimensions.
At higher orders in perturbation theory the idea remains the same: As long as we have something
divergent, we split it up with counterterms until we end up with finite integrands. For the
construction of these counterterms, we use the factorization of the all orders matrix element
into an exponential involving the eikonal and a finite part [57]

S MY =y MO (2.50)
=0 =0

The generalization of the infrared subtraction at any order in perturbation theory is discussed
in [17] in detail.

2.6 Dealing with numerical instabilities

In the evaluation of the MC integrand, numerical instabilities can arise. For example, in the
hyperspherical method, the UV cancellation can be problematic: In the large Q2 regime the
counterterms subtract a large number from a large number, yielding an inaccurate small result.
In this section, after discussing how they can arise, we mention some strategies to battle such
instabilities.

Evaluating expressions with a large number of digits (e.g. 100) in Mathematica and comparing
to evaluation with machine precision can serve as a measure for numerical instability. The
underlying reason for the instabilities resides in the finite representation of rational numbers
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in computers. Nowadays, floating-point numbers are almost always represented in terms of the
IEEE 754 standard, which approximates numbers using their scientific representation:

number = (—1)% x m x b°. (2.51)

For example in single precision, base b = 2 is used, 1 bit is reserved for the sign (s) of the
number, 8 bits for the exponent e and 32 bits for the mantissa m, requiring in total 32 bits.
For the sake of argument, let us imagine that we have a decimal machine (b = 10) with a
mantissa of just five decimal digits and we would like to subtract 4199.926123 from 4200.00000.
Now, when we load these numbers into variables they will be represented as 4.1999 x 103 and
4.2000 x 103 (these are each separately accurate to five digits). The result of the subtraction
on the other hand will be 1.0000 x 10~! which has an accuracy of only a single digit; the true
result being 0.073877.

There are several ways to battle these problems:

1. Perform the bulk of the subtraction before the conversion to the floating point system.

2. Using identities, rewrite expressions to make the cancellation less extreme. For example,
for |a| ~ |b| we replace
a>—b —  (a+b)(a—D) (2.52)

since a? — b? loses twice as many digits as (a + b)(a — b) doesﬂ Another variation of this
occurs when we we want to compute pg — |p] for an on-shell momentum where |p] > m.
Then we should always replace

po+1pl  m?
po—Ipl — (pO_M)poJrlzﬂ_poJrlﬁW (2.53)

which replaces the problematic large - large with a well-behaved small / large.

3. In the problematic region, expand the expression in a small parameter. For example, the
following logarithm, which arose from the VP contributions, is improved through expansion
in the small parameter m?/s

_ — 4m2) — 2m?2 2 4m2
log (s s(s—4m?) —2m ) —2log - L2 (2.54)
s s

s+ /s (s —4m?) — 2m?

where we include as many terms as needed for our target accuracy.

4. Switch to higher precision, e.g. quadruple precision. This makes the evaluation of the
expression slower, but depending on where the bottleneck is, it might not matter.

4Besides, a? — b? is also slower since it has two multiplications and one addition versus two additions and one
multiplication.
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3 Results

In this chapter, we present numerical results for Born, NLO and NNLO cross sections. The
results include photonic contributions only.

3.1 Integrated cross sections and implementation tests

The calculation of QED corrections in the FKS! scheme require the introduction of the unphysical
parameter £ as introduced in Section [2.5] Therefore, independence of the radiative corrections
from &, needs to be checked at NLO and NNLO. This is successfully demonstrated for values in
the range of 0.01 < &, < 1 with the NNLO results shown in Figure A plot demonstrating
&. independence at NLO can be found in Appendix

0.010 A
o?
2
— o,
. 2
0.005 - ‘77(1-22
~ \‘\ — o
0.000 A
—0.005 A
x 1073
2 -
Alf ] t d
absg o]
,4—
AL | T T T T T T AL | T T T T T T AL |
102 1071 10°

€e

Figure 3.1: Demonstration of & independence for the integrated cross section o(2). Top: IR finite
double-virtual, real-virtual, double-real and combined cross sections as a function of
&.. Bottom: Quadratic fit and relative difference of o to fitted cross section with
20 confidence in shaded blue.

The results were obtained at /s = 1.0 GeV for an observable that models the DA®NE criteria:
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We ask for at least two photons in the final state satisfying

Enin = 300 MeV

45° < 0 < 135° (3.1)
Emax = 10°
where & = [180° — 0; — 02| is the acollinearity between the most energetic and next-to-most

energetic photon, 6; the angle of photon i to the beam axis and Ey;, the minimum photon
energy.

The resulting Born, NLO and NNLO corrections along with MC errors are summarized in Table
We give the LO cross section ¢(® as well as the NLO and NNLO corrections ¢(!) and
o) from MCMULE and BABAYAGA event generator, taken from [58], where o) is based on an
approach that matches the exact NLO result to a parton shower algorithm. In addition, we give
the ratio of full cross sections at subsequent orders

K® =14 6K0 = G‘Z (3:2)

where o; is the full cross section at order ¢, e.g. g9 = o 4 oM 4 5@,

| o (nb) | BABAYAGA o (nb) | McMULE 6K (%)
o© 1137.53087(3) | 137.53
o) | -8.08773(9) | -8.08 -5.88067
o 0.38298(3) 0.32 0.296

Table 3.1: Resulting integrated LO, NLO and NNLO corrections and MC numerical errors for
the criteria 1} obtained with MCMULE compared to BABAYAGA.

| o (nb) | 6K@ (%)
o© 1132.19035(2)
o | -0.4472(2) | -0.3383
o2 0.00405(8) | 0.0031

Table 3.2: Resulting corrections for an observable similar to 1’ but without the cut on
acollinearity

At LO and NNLO, we find agreement to BABAYAGA in all digits provided in [58]. At NNLO, our
cross section agrees to the matched parton shower at the level of 19%. In Table the results
for the observable but without the acollinearity cut are shown. We note that the NLO
cross section is an order of magnitude smaller than the result obtained with the £,.x criterion,
and the NNLO correction is two orders of magnitudes smaller. The sizeable radiative corrections
in Table are a consequence of the &ax cut.

3.2 Differential distributions

Besides the integrated cross sections, a number of differential distributions for the criteria
were obtained. Figure displays the distribution of acollinearity. In Figure[3.3 and Figure
we show the energy distribution of the most and next-to-most energetic photon in the top panel.
In Figures and the distributions of #; and 6 are given, where we only give the NLO
results, since the NNLO results require more statistics than have been obtained at the time of
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writing. In the top panel of each plot we show the distrubtion over x of the total cross sections
do /dz while in the bottom pannel we display the distribution of the K-factors defined as

KO — 14 50 = 4o/

= o T (3.3)

Let discuss Figure the energy distribution of the most energetic photon. It can be observed
that the NLO curve vanishes below Fq =~ 330 MeV. This is because the situation where the most
energetic photon has the least energy happens when the energy is distributed evenly among the
three photons available at NLO, i.e. for E; = /s/3 ~ 330 MeV. By the same reasoning the
NNLO curve would drop to zero at Ey = \/s/4 = 250 MeV. However, it is zero below E; = 300
MeV simply due to the criteria (3.1)).

As discussed in Section [3.1] one reason for the sizeable corrections observed is the cut on
acollinearity. Adding to this, many distributions have the LO cross concentrated in a single
bin. As a result, in the bins that have no contribution from the LO, the NNLO correction
represents in fact an NLO correction, thus enhancing the K-factors significantly. For example,
in Figure we have 6 K2 of the same order of magnitude as 6K () in Figure

103 _:. — LO
3 —— NLO
] —— NNLO
™)
3 10
> ]
N
— ]
< o
N
= ]
10° E
0.1+
0.0 A
2 0.1+
<
o
—0.2 A
—0.3 1
0 2 4 6 8 10
¢ (deg)
Figure 3.2: Distribution of acollinearity between most energetic and next-to-most energetic pho-
ton
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Figure 3.3: Energy distribution of the most energetic photon
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Figure 3.4: Energy distribution of the next-to-most energetic photon
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Figure 3.5: Angular distribution of the most energetic photon
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Figure 3.6: Angular distribution of the next-to-most energetic photon
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4 Conclusion and outlook

ete™ — 2v is a process of interest in low-energy precision physics, for example in light of the
PADME experiment that uses the process to search for BSM signals. In this master thesis,
we have performed a high-precision QED calculation for ete™ — 2v. For the first time, fixed
order NNLO corrections are accounted for in this process, and as a result, we are able to obtain
photonic NNLO contributions for any observable. The NNLO correction accounts for effects
constant and logarithmic in the electron’s non-vanishing mass, while some polynomial terms are
neglected. The calculation, which has been cross-checked at LO, NLO and NNLO with BABAYAGA
at the level of integrated cross sections, is implemented in the latest version of MCMULE [18],
which is publicly available.

At the time of writing, the calculation accounts for photonic contributions. Leptonic and
hadronic VP contributions have been prepared already as part of the thesis, but are not yet
included in the numerical results. The natural next step is therefore to include VP contribu-
tions. As for the hadronic LbL contributions, one would probably have to switch from the
hyperspherical method to a dispersive Ansatz. Essentially, it is expected that a lot of the work
done for the hadronic contributions to g — 2 will have to be redone, of which an overview can
be found in [59]. Possibly, one could use a similar parameterization of the hadronic LbL tensor,
although the presence of at least two real photons might simplify things.

Finally, the results obtained in the present work may provide a shortcut to the related process
e~y — e~ (Compton scattering) through crossing relations. The massless two-loop results that
were obtained contain the full complex dependence, thus after crossing the analytic continuation
to the physical domain should be feasible.

Increased accuracy for photonic contributions could be obtained through incorporation of a par-
ton shower algorithm. One could also work towards an N3LO calculation: The FKS scheme has
been generalized to any order in perturbation theory for QED, and massless matrix elements
have recently been worked out in [60] and [61]. Although it is expected that the three-loop
matrix elements will present a major bottleneck, targeting the next order frontier can become
an achievable task in the forseeable future.
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A On-shell renormalization constants

In plain QED,

a T(e+1) (4ru?\ 3 — 2¢
Om = —ZO(]Z))‘p:m = “in . ( 2 11— o (A.l)
dXo(p) a T(e+1) (4mu?\ 3 — 2¢
= = —m = Om A.2
01= 02 dp lp=m = CAm € < m? ) 1—2e o (4.2)

where 02 contains contributions from UV and (soft) IR singularities.
If instead we choose to regularize the soft divergence in Yo (p) with a photon mass A we find up

to O(€%)

3am

om = —Zo(p)lp=m = — 1
o <2m2 ()\2 + 3m?log Zi;‘f) + 4m2) + M log ( ) + 2AVA2 — 4m?2 (A2 + 2m?) log (’\+m))

8mm3
(A.3)
4 4 A2
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R dyp lp=m = 4mre 4m? 8mm? (A.4)
30/XT= D7 (M — 240 — 4 log (M) g (12
" dmm? (dm? — \?) 47

In the hyperspherical method, after performing the angular integration we obtain renormaliza-
tion constants with residual Q2 dependence

ire (VQm2 + Q%) - @) (VQE(Am2 + Q) + 4m? - Q)
O = —Z0(P)|p=m = PPy (A.5)
01 =6y = dE;;p) |,’¢=m

in?e? (—m! (V/QT m? + Q2) - 3Q7) — 6m*Q" +3Q" (V@2 (4m? + Q%) - @?))
- miQ4\/Q? (4m? + Q?)

(A.6)
where we left implicit the factor iQ?/2 from the transformation to hyperspherical variables and
the factor 1/(27)* from the loop measure.
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B Independence of . at NLO

The &, independence of the NLO cross section is demonstrated in Figure
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Figure B.1: Demonstration of £, independence at NLO. Top: IR finite virtual, real and combined
cross sections. Bottom: Linear fit and relative difference of ¢! to fit with 20
confidence displayed in shaded blue.
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