Production of top quark pairs at the LHC: NLO corrections and off-shell effects

Mathieu PELLEN

Institute for Theoretical Physics and Astrophysics, University of Würzburg

In collaboration with: Ansgar Denner, Jean-Nicolas Lang, and Sandro Uccirati

Theoretical Particle Physics seminar Physik-Institut, University of Zurich, Switzerland

18th of September 2018

\rightarrow Illustration of Giordano Bruno's philosophical ideas

Mathieu PELLEN

Production of top quark pairs at the LHC: NLO corrections and off-shell effects

LHC: Great tool to probe fundamental interactions at high energies

 $pp \rightarrow t^{\star} \bar{t}^{\star} \rightarrow (W^{\star} \rightarrow \nu_{\mu} \mu^{-}) (W^{\star} \rightarrow jj) b\bar{b}$

• <u>Run I</u>

- Discovery of the Higgs boson
- Exclusion of new physics parameters/models
- <u>Run II</u> $\rightarrow \sqrt{s} = 13 \,\text{TeV}$
 - Study of the properties of the Higgs boson
 - Precision study of standard candle processes (tt, di-boson, ...)
 - Measurement of new SM processes (tth, VBS, ...)
 - Discovery of new physics?

 \rightarrow Precision physics on both the experimental and theoretical side

 \hookrightarrow Precise theoretical predictions comparable with measurements

 \rightarrow High experimental precision for t \overline{t} production

Mathieu PELLEN

 \rightarrow Example: t\bar{t} production in association with Dark Matter

[Backović, MP et al.; 1508.05327]

Discrepancies between SM predictions and experimental measurements might hint at new physics

- The top quark is the heaviest particle in the SM
- Possible window to new physics

[Frederix, Maltoni; 0712.2355], [Arina, MP et al.; 1605.09242], [Hespel et al.; 1606.04149] + [...]

 \rightarrow Tevatron asymmetry:

BSM: [Westhoff; 1703.01983] + [...] SM: [Czakon et al.; 1411.3007, 1711.03945]

- Study of its interaction with Higgs boson very important
 → Yukawa coupling with Higgs boson
- Top quarks are copiously produced at the LHC
 - ightarrow Standard candle at the LHC

Precise study of top quarks production very important at LHC

- Need for precise theoretical predictions:
 - NLO QCD [Denner et al.; 1012.3975, 1207.5018], [Frederix; 1311.4893], [Cascioli et al.; 1312.0546], [Campbell et al.; 1204.1513, 1608.03356], ...
 - <u>NLO EW</u> [Bernreuther et al.; hep-ph/0610335, 0804.1237, 0808.1142], [Kühn et al.; hep-ph/0508092, hep-ph/0610335], [Hollik, Kollar; 0708.1697], [Pagani et al.; 1606.01915]
 - NNLO QCD [Moch et al.; 1203.6282], [Czakon et al.; 1303.6254, 1601.05375, 1606.03350], [Abelof et al.; 1506.04037], [Gao, Papanastasiou; 1705.08903]
 → Combination with NLO EW [Czakon et al.; 1705.04105]
 - COMDITIATION WITH INFO EVA [Czakon et al.; 1/05.04105]
 - <u>Resummation</u> [Beneke et al.; 0907.1443], [Czakon et al.; 0907.1790, 1803.07623], [Ahrens et al.; 1003.5827], [Kidonakis; 0903.2561, 1009.4935], ...
 - NLO QCD matched to PS [Frixione et al.; hep-ph/0305252, 0707.3088], [Höche et al.; 1402.6293], [Garzelli et al.; 1405.5859], [Campbell et al.; 1412.1828], [Ježo et al.; 1607.04538]

Focus of the presentation: NLO corrections (QCD and EW) and off-shell effects

- Final states dominated by a production process
- Example: final state $e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b}$ dominated by $pp \rightarrow t^*\bar{t}^* \rightarrow (W^* \rightarrow \nu_\mu\mu^-) (W^* \rightarrow e^+\nu_e) b\bar{b}$

On-shell region dominated by resonant production *Off-shell* region receives large non-resonant contributions

• Only $e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b}$ is measured in experiments

 \rightarrow During run II, the tail of the distributions will be probed \rightarrow New physics contributions?

Mathieu PELLEN

Off-shell computations

• NLO QCD to fully-leptonic channel $t\bar{t}$

[Denner et al.; 1012.3975, 1207.5018], [Bevilacqua et al.; 1012.4230], [Frederix; 1311.4893],

[Cascioli et al.; 1312.0546]

- \rightarrow Matching to QCD PS [Ježo et al.; 1607.04538]
- → Top mass determination [Heinrich et al.; 1312.6659, 1709.08615],

[Bevilacqua et al.; 1710.07515], [Ferrario Ravasio et al.; 1801.03944]

 \rightarrow For the ILC [Chokoufé Nejad et al.; 1609.03390], [Bach et al.; 1712.02220]

- NLO EW to fully-leptonic channel $t\bar{t}$ [Denner, MP; 1607.05571]
- NLO QCD to semi-leptonic channel tt [Denner, MP; 1711.10359]
- NLO QCD to fully-leptonic channel $t\bar{t}H$ [Denner, Feger; 1506.07448] \rightarrow For the ILC [Chokoufé Nejad et al.; 1609.03390]
- NLO EW to fully-leptonic channel tt
 t
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H

[Denner, Lang, MP, Uccirati; 1612.07138]

NLO QCD to fully-leptonic channel tīj

[Bevilacqua et al.; 1509.09242, 1609.01659]

• NLO QCD to fully-leptonic channel $tar{t}\gamma$ [Bevilacqua et al.; 1803.09916]

- Electroweak (EW) corrections:
 - \rightarrow large in high energy region

 \rightarrow Sudakov logarithms: $-\frac{\alpha}{4\pi} \log^2 \left(s_{ij} / M_W^2 \right)$

 \rightarrow During run II, the tail of the distributions will be probed \rightarrow New physics contributions?

Theoretical predictions including NLO EW vs. data

 \rightarrow Example: pp \rightarrow tt(+j)

 \mathbb{N}

 \rightarrow NLO EW corrections improve comparison with data

 \rightarrow Including EW corrections is mandatory to match LHC precision!

Mathieu PELLEN

Production of top quark pairs at the LHC: NLO corrections and off-shell effects 12 / 48

1) pp
$$\rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}$$
 at NLO EW
2) pp $\rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}H$ at NLO EW (+ QCD)
3) pp $\rightarrow \mu^- \bar{\nu}_\mu b\bar{b}jj$ at NLO QCD

\rightarrow Conclusion

1) pp $\rightarrow {\rm e}^+ \nu_{\rm e} \mu^- \bar{\nu}_\mu {\rm b} \bar{\rm b}$ at NLO EW

 \rightarrow Calculation of NLO EW corrections to off-shell $\mathrm{t}\overline{\mathrm{t}}$ production:

$$pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}$$

- Off-shell, non-resonant, and interference effects
 → Realistic final state
- EW corrections can be large in certain phase-space regions
 → Sudakov logarithms
- Theoretical and numerical challenge to consider 2 → 6 process
 → Up to 6 external charged particles and 4 intermediate resonances

LO definition - pp $\rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b}$

• The LO is defined at order $\mathcal{O}\left(\alpha_{\rm s}^2 \alpha^4\right)$

 \rightarrow Not only doubly resonant top-pair contributions

- singly resonant top contributions
- non-resonant top contributions

NLO EW definition - $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b}$

→ NLO EW corrections are of order $\mathcal{O}\left(\alpha_{s}^{2}\alpha^{5}\right)$ *i.e.* $\mathcal{O}\left(\text{LO} \times \alpha\right)$ $\sigma_{\text{NLO}} = \sigma_{\text{Born}}\left[\alpha_{s}^{2}\alpha^{4}\right] + \sigma_{\text{Real}}\left[\alpha_{s}^{2}\alpha^{5}\right] + \sigma_{\text{Virt}}\left[\alpha_{s}^{2}\alpha^{5}\right]$ <u>Real corrections:</u>

Virtual corrections:

→ No V =W, Z radiation considered (experimentally different signature) → Sudakov logarithms: $-\frac{\alpha}{4\pi} \log^2 (s_{ij}/M_V^2)$

NLO EW definition - $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b}$

→ NLO EW corrections are of order $O\left(\alpha_s^2 \alpha^5\right)$ → Two types of virtual corrections → Interference of EW and QCD processes

ightarrow In the same way, interference channel: ${
m g}q/ar q
ightarrow {
m t}^{\star}ar t^{\star}q/ar q$

 \rightarrow QCD corrections of photon induced $\mathcal{O}(\alpha_{s}\alpha^{5})$: $g\gamma \rightarrow t^{*}\bar{t}^{*}$ (neglected here as Born contribution is already small)

\rightarrow Tree and one-loop matrix element:

m Recola [Actis, Denner, Hofer, Lang, Scharf, Uccirati] + m Collier [Denner, Dittmaier, Hofer]

- \rightarrow In-house Monte Carlo $\rm MoCaNLO$ $_{\rm [Feger]}$
- \rightarrow Dipole subtraction method [Catani, Seymour], [Dittmaier]
- \rightarrow Complex-mass scheme [Denner, Dittmaier et al.]
- \rightarrow LHAPDF [LHAPDF collaboration]

• For the renormalisation and factorisation scale:

$$\mu_{\rm fix} = m_{\rm t}$$

• G_{μ} scheme:

$$lpha = rac{\sqrt{2}}{\pi} \textit{G}_{\mu} \textit{M}_{W}^{2} \left(1 - rac{M_{W}^{2}}{M_{Z}^{2}}
ight) \qquad ext{with} \qquad \textit{G}_{\mu} = 1.16637 imes 10^{-5} \, ext{GeV}$$

Inputs:

$$\begin{split} m_{\rm t} &= 173.34 \, {\rm GeV}, & \Gamma_{\rm t} &= 1.36918 \dots \, {\rm GeV} \\ M_Z^{\rm OS} &= 91.1876 \, {\rm GeV}, & \Gamma_Z^{\rm OS} &= 2.4952 \, {\rm GeV} \\ M_W^{\rm OS} &= 80.385 \, {\rm GeV}, & \Gamma_W^{\rm OS} &= 2.085 \, {\rm GeV} \\ M_{\rm H} &= 125.9 \, {\rm GeV} \end{split}$$

 \rightarrow Top width at NLO EW and QCD $_{\rm [Basso,\ Dittmaier,\ Huss,\ Oggero;\ 1507.04676]}$

Predictions for $\sqrt{s}=13 {\rm TeV}$ at the LHC

$\rightarrow NNPDF23_nlo_as_0119_qed \ [NNPDF Collaboration]$ with massless bottom quarks and bottom-quark PDF neglected \rightarrow Event selection:

b jets:	$p_{T,b} > 25 \text{GeV},$	$ y_{\rm b} < 2.5$
charged lepton:	$p_{T,\ell} > 20GeV,$	$ y_\ell < 2.5$
missing transverse momentum:	$p_{\mathrm{T,miss}} > 20\mathrm{GeV}$	
b-jet–b-jet distance:	$\Delta R_{bb} > 0.4$	

 \rightarrow anti- $k_{\rm T}$ jet algorithm $_{\rm [Cacciari,\ Salam,\ Soyez]}$ with R=0.4 for both jet clustering and photon recombination

Fiducial cross section

Ch.	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLO~EW}$ [fb]	δ [%]
gg	2824.2(2)	2834.2(3)	0.35
$q\bar{q}$	375.29(1)	377.18(6)	0.50
${ m g}q(/ar{q})$	0.259(4)		
$\gamma {f g}$	27.930(1)		
рр	3199.5(2)	3211.7(3)	0.38

[Denner, MP; 1607.05571]

- Cross section dominated by the gg channel
- γg channel around 1%
- Small positive EW corrections

 \rightarrow Negative corrections for on-shell top quarks ($\sim -1.5\%$) (due to the choice of the top width)

[Denner, MP; 1607.05571]

- \rightarrow Sudakov logarithms $\rightarrow -15\%$
- ightarrow Important photon contributions ightarrow +6% [Pagani, Tsinikos, Zaro; 1606.01915]

[Denner, MP; 1607.05571]

 \rightarrow Radiative tail due to non-reconstructed photons

Double-pole Approximations (DPA)

(More details in Refs. [Dittmaier, Schwan; 1511.01698], [Denner, MP; 1607.05571] and therein)

- Expansion about the resonance poles
- Accounts for off-shell effects
 - \rightarrow Resonant propagator fully included / Full phase space
- Accounts also for non-factorisable corrections
- Applied only to the virtual corrections
- \rightarrow Two DPAs considered: tt and WW

Ch.	$\sigma_{ m LO}^{ m WWDPA}$ [fb]	$\delta_{ m LO}^{ m WW \ DPA}$ [%]	$\sigma_{ m LO}^{ m tt\ DPA}$ [fb]	$\delta_{ m LO}^{ m tt\ DPA}$ [%]
gg	2808.4(6)	-0.56	2738.8(2)	-3.0
qą	372.90(1)	-0.64	368.82(1)	-2.2
рр	3181.3(5)	-0.57	3107.6(2)	-2.9

 \rightarrow At LO, WW DPA is better than the tt DPA

Ch.	$\sigma_{ m NLO~EW}^{ m WW~DPA}$ [fb]	$\delta_{ m NLO\;EW}^{ m WW\;DPA}$ [%]	$\sigma_{ m NLO~EW}^{ m tt~DPA}$ [fb]	$\delta_{ m NLO\; EW}^{ m tt\; DPA}$ [%]
gg	2832.9(2)	-0.046	2836.5(2)	+0.082
qq	377.36(8)	0.047	377.23(5)	+0.013
рр	3210.5(2)	-0.037	3214.0(2)	+0.072

 \rightarrow At NLO, both DPAs are equally good

Mathieu PELLEN

[Denner, MP; 1607.05571]

 \rightarrow Both DPAs work well for top dominated observables

Similar to WW production [Biedermann et al.; 1605.03419]

[Denner, MP; 1607.05571]

 \rightarrow Kinematic edge: $M^2_{\mu^-\bar{b}} < M^2_{\bar{t}} - M^2_{W} \simeq (154 \text{ GeV})^2$

 \rightarrow Only full calculation reliable for arbitrary distributions

2) pp $\rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} H$ at NLO EW (+ QCD)

- Discovery of Higgs boson at Run I
 - \rightarrow Study of its properties during Run II
- Top quark, heaviest particle in the SM
 - \rightarrow Yukawa coupling, new physics contributions etc.

 $pp \to t \bar{t} H$ process is key

• Experimental status:

 \rightarrow Evidence from Run-I at $\sqrt{s} = 7$ and 8 TeV

[CMS; 1408.1682], [ATLAS; 1506.05988], [ATLAS; 1503.05066], [ATLAS; 1409.3122], [ATLAS+CMS; 1606.02266]

ightarrow Observation for Run-II at $\sqrt{s}=13\,{
m TeV}$

[CMS; 1804.02610]

Need for precise predictions for $t\bar{t}H$ production:

• NLO QCD [Beenakker et al.; hep-ph/0107081, hep-ph/0211352],

[Dawson et al.; hep-ph/0107101, hep-ph/0305087]

- <u>NLO EW</u> [Frixione et al.; 1407.0823, 1504.03446], [Zhang et al.; 1407.1110]
- <u>Resummation</u> [Broggio et al.; 1510.01914, 1611.00049], [Kulesza et al.; 1509.02780]
- <u>NLO QCD matched to PS</u> [Frederix et al.; 1104.5613], [Garzelli et al.; 1108.0387], [Hartanto et al.; 1501.04498]
- NLO QCD for off-shell top quarks [Denner, Feger; 1506.07448] (LHC),

[Chokoufé-Nejad et al.; 1609.03390] (Linear collider)

 \rightarrow NLO EW calculations for off-shell top quarks still missing

 \rightarrow Calculation of NLO EW corrections to off-shell tterfH production:

$$pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} H$$

- Off-shell, non-resonant, and interference effects
 - \rightarrow Realistic final state
- EW corrections can be large in certain phase space-regions
 → Sudakov logarithms
- Theoretical and numerical challenge to consider 2 → 7 process
 → Up to 6 external charged particles and 4 intermediate resonances
 → Virtual corrections involving up to 9-point functions
- Extension of two off-shell top quark computations: [Denner, Feger; 1506.07448] (NLO QCD to $t\bar{t}H)$ and [Denner, MP; 1607.05571] (NLO EW to $t\bar{t})$

 \rightarrow Small photon contributions (around +1% \rightarrow LUXqed PDF)

 \rightarrow +10% to -5% over the whole range: non-negligible effect

$$\sigma_{\rm QCD}^{\rm NLO} = \sigma^{\rm Born} + \delta \sigma_{\rm QCD}^{\rm NLO} \qquad \text{and} \qquad \sigma_{\rm EW}^{\rm NLO} = \sigma^{\rm Born} + \delta \sigma_{\rm EW}^{\rm NLO}$$

 $\rightarrow~$ Additive and multiplicative combination:

$$\sigma_{\rm QCD+EW}^{\rm NLO} = \sigma^{\rm Born} + \delta \sigma_{\rm QCD}^{\rm NLO} + \delta \sigma_{\rm EW}^{\rm NLO}$$

and

$$\sigma_{\text{QCD}\times\text{EW}}^{\text{NLO}} = \sigma_{\text{QCD}}^{\text{NLO}} \left(1 + \frac{\delta \sigma_{\text{EW}}^{\text{NLO}}}{\sigma^{\text{Born}}} \right) = \sigma_{\text{EW}}^{\text{NLO}} \left(1 + \frac{\delta \sigma_{\text{QCD}}^{\text{NLO}}}{\sigma^{\text{Born}}} \right)$$

\rightarrow **Results** (in [fb]):

Recompute the QCD corrections of Ref. [Denner, Feger; 1506.07448] in the present set-up

$$\sigma^{\rm LO}$$
 $\sigma^{\rm Born}$
 $\sigma^{\rm NLO}_{\rm QCD}$
 $\sigma^{\rm NLO}_{\rm EW}$
 $\sigma^{\rm NLO}_{\rm QCD+EW}$
 $\sigma^{\rm NLO}_{\rm QCD\timesEW}$

 2.4817(1)
 2.7815(1)
 2.866(1)
 2.721(3)
 2.806
 2.804

 \rightarrow NLO effects dominated by QCD corrections

 \rightarrow Differences between the two combinations for large EW corrections

3) pp $ightarrow \mu^- ar{ u}_\mu$ b $ar{ m b}$ jj at NLO QCD

 \rightarrow NLO QCD to off-shell tt production in the lepton+jets channel: pp $\rightarrow \mu^- \bar{\nu}_\mu b \bar{b} j j$

- Measured experimentally [ATLAS; 1708.00727], [CMS; 1610.04191]
- Larger cross section due to W boson branching ratio
- Better reconstruction of top quarks (only one neutrino)
- \bullet Unexplored final state for $\mathrm{t}\overline{\mathrm{t}}$ production

[Anger, Febres Cordero, Ita, Sotnikov; 1712.05721]: $W\overline{b}b + 2j$

but different orders at LO: $\mathcal{O}\left(\alpha_{\rm s}^4\alpha^2\right)$ vs. $\mathcal{O}\left(\alpha_{\rm s}^2\alpha^4\right)$

Definition

- Partonic channels featuring two resonant top quarks
- The LO is defined at order $\mathcal{O}\left(\alpha_{\rm s}^2 \alpha^4\right)$

Mathieu PELLEN

Predictions for $\sqrt{s} = 13$ TeV at the LHC

→ Event selection for *resolved* topology [ATLAS; 1708.00727], [CMS; 1610.04191]:

 $\begin{array}{ll} \mbox{light/b jets:} & \mbox{$p_{{\sf T},j,b}>25$ GeV}, & |y_{j,b}|<2.5$\\ \mbox{charged lepton:} & \mbox{$p_{{\sf T},\ell}>25$ GeV}, & |y_\ell|<2.5$\\ \mbox{b-jet-b-jet distance:} \Delta R_{\rm jb}, \Delta R_{\rm jb}, \Delta R_{\rm bb}>0.4 \end{array}$

 \rightarrow anti- $k_{\rm T}$ jet algorithm $_{\rm [Cacciari, Salam, Soyez]}$ with R=0.4 \rightarrow Additional cut to ensure a stable definition of the fiducial volume for top-quark pair production at both LO/NLO

 $60\,{
m GeV} < m_{
m jj} < 100\,{
m GeV}$

$$\sigma_{
m LO}=13.3565(6)^{+30.68\%}_{-22.09\%}$$
 pb $\sigma_{
m NLO}=15.56(7)^{+0.9(6)\%}_{-4.6(5)\%}$ pb and $K_{
m NLO}=1.16$

Mathieu PELLEN

 \rightarrow Large corrections toward high transverse momenta (due to real corrections)

 \rightarrow Clear effect of the cuts:

$$p_{\mathrm{T}, \mathrm{j}_2, \mathrm{max}}^2 \sim m_{\mathrm{j}\mathrm{j}, \mathrm{max}}^2 / \Delta R_{\mathrm{j}\mathrm{j}, \mathrm{min}}^2 = \left(100\right)^2 / \left(0.4\right)^2 = \left(250\,\mathrm{GeV}
ight)^2$$

 \rightarrow Scale variation band increase for high transverse momenta (the NLO predictions become LO accurate)

Mathieu PELLEN

[Denner, MP; 1711.10359]

 \rightarrow Different NLO behaviour between the hadronic and leptonic top quark

[Denner, MP; 1711.10359]

 \rightarrow Different NLO behaviour between the hadronic and leptonic top quark

 \rightarrow Extreme NLO effect: inclusion of higher-order effects needed

Conclusion

Summary

- First NLO EW calculation of the full off-shell processes $pp \rightarrow t^* \bar{t}^*$ and $pp \rightarrow t^* \bar{t}^* H$ in the leptonic channel
- NLO EW corrections are non-negligible

ightarrow Between +15% and -15%

- Off-shell effects can be large
 - \rightarrow WW double-pole approximation better than the tt one
 - \rightarrow Only the full calculation is always reliable
- $\bullet\,$ Combination with NLO QCD corrections for $pp \to t^{\star} \overline{t}^{\star} H$
 - \rightarrow State-of-the art predictions comparable with experiments
- $\bullet~$ NLO QCD for $pp \to t^{\star} \overline{t}^{\star}$ in the lepton+jets channel
 - \rightarrow Different corrections with respect to leptonic channel

JHEP 1608 (2016) 155 [arXiv:1607.05571] JHEP 1702 (2017) 053 [arXiv:1612.07138] JHEP 1802 (2018) 013 [arXiv:1711.10359]

BACK-UP

Mathieu PELLEN

Semi-leptonic tt

[Denner, MP; 1711.10359]

Fiducial cross section (tth)

Ch.	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLO~EW}$ [fb]	δ [%]
gg	2.0116(1)	2.020(1)	+0.42
$q\bar{q}$	0.84860(5)	0.8454(6)	-0.38
$\mathrm{g} q(/ar{q})$		0.00007(2)	
$\gamma { m g}$	0.02178(1)		
рр	2.8602(1)	2.866(1)	+0.20

- Cross section dominated by the gg channel
- γg channel below 1%
- Small positive EW corrections

Inputs (tth)

• For the renormalisation and factorisation scale:

 $\mu_{\mathsf{dyn}} = \left(m_{\mathsf{T},\mathsf{t}}m_{\mathsf{T},\bar{\mathsf{t}}}m_{\mathsf{T},\mathsf{H}}
ight)^{rac{1}{3}}$ with $m_{\mathsf{T}} = \sqrt{m^2 + p_{\mathsf{T}}^2}$

• G_{μ} scheme:

$$\alpha = \frac{\sqrt{2}}{\pi} G_{\mu} M_{\mathsf{W}}^2 \left(1 - \frac{M_{\mathsf{W}}^2}{M_{\mathsf{Z}}^2} \right) \qquad \text{with} \qquad G_{\mu} = 1.16637 \times 10^{-5} \, \mathsf{GeV}$$

Inputs:

$$\begin{split} m_{\rm t} &= 173.34\,{\rm GeV}, & \Gamma_{\rm t} &= 1.36918\ldots\,{\rm GeV}\\ M_Z^{\rm OS} &= 91.1876\,{\rm GeV}, & \Gamma_Z^{\rm OS} &= 2.4952\,{\rm GeV}\\ M_W^{\rm OS} &= 80.385\,{\rm GeV}, & \Gamma_W^{\rm OS} &= 2.085\,{\rm GeV}\\ M_{\rm H} &= 125.0\,{\rm GeV} \end{split}$$

 \rightarrow Top width at NLO EW and QCD [Basso, Dittmaier, Huss, Oggero; 1507.04676]

Mathieu PELLEN

Production of top quark pairs at the LHC: NLO corrections and off-shell effects 52 / 48

Predictions for tth at $\sqrt{s} = 13$ TeV at the LHC

 $\rightarrow LUXqed_plus_PDF4LHC15_nnlo_100$ [Manohar, Nason, Salam, Zanderighi] with massless bottom quarks and bottom-quark PDF neglected \rightarrow Event selection:

 \rightarrow anti- $k_{\rm T}$ jet algorithm $_{\rm [Cacciari,\ Salam,\ Soyez]}$ with R=0.4 for both jet clustering and photon recombination

• $\Gamma_{\rm t}^{\rm LO}=1.449582\,\text{GeV}$

 \rightarrow Used for LO in the comparison with NLO QCD and EW

 \rightarrow Crudest predictions

• $\Gamma_{\rm t}^{\rm NLO,QCD} = 1.35029 \, \text{GeV}$

- \rightarrow Used for LO in the comparison with NLO EW alone \rightarrow To isolate EW effects
- $\Gamma_{\rm t}^{\rm NLO}=1.36918\,\text{GeV}$ (with both NLO QCD and EW corrections)
 - \rightarrow Used for NLOs (NLO EW alone or NLO QCD and EW together) \rightarrow Best predictions

Taken from Ref. [Basso, Dittmaier, Huss, Oggero; 1507.04676]