$\mathcal{N}=4$ Super Yang-Mills Amplitudes:
 Multi-loop, multi-leg and sometimes multi-Regge

Georgios Papathanasiou

University of Zurich, November 6, 2017
1606.08807 + in progress w/

Del Duca, Druc, Drummond, Duhr, Dulat, Marzucca, Verbeek
1612.08976 w/ Dixon, Drummond, Harrington, McLeod, Spradlin

+ in progress w/ Caron-Huot,Dixon,McLeod, von Hippel

Outline

Motivation: Why Planar $\mathcal{N}=4$ Amplitudes?

The Amplitude Bootstrap
Cluster Algebra Upgrade: The 3-loop MHV Heptagon Steinmann Upgrade: The 3-loop NMHV/4-loop MHV Heptagon New Developments

The Multi-Regge limit
Single-valued Multiple Polylogarithms
Fourier-Mellin Transforms \& All-loop Dispersion Integrals (N)LLA Applications: All MHV to (3)5 loops, also non-MHV

Conclusions \& Outlook

Aim: Can we compute scattering amplitudes in $S U(N) \mathcal{N}=4$ super Yang Mills theory to all loops, for any multiplicity and quantum numbers of the external particles?

Aim: Can we compute scattering amplitudes in $S U(N) \mathcal{N}=4$ super Yang Mills theory to all loops, for any multiplicity and quantum numbers of the external particles?

Would amount to "solving" an interacting 4D gauge theory...

Aim: Can we compute scattering amplitudes in $S U(N) \mathcal{N}=4$ super Yang Mills theory to all loops, for any multiplicity and quantum numbers of the external particles?

Would amount to "solving" an interacting 4D gauge theory...
Ambitious, but promising in 't Hooft limit, $N \rightarrow \infty$ with $\lambda=g_{Y M}^{2} N$ fixed:

Aim: Can we compute scattering amplitudes in $S U(N) \mathcal{N}=4$ super Yang Mills theory to all loops, for any multiplicity and quantum numbers of the external particles?

Would amount to "solving" an interacting 4D gauge theory...
Ambitious, but promising in 't Hooft limit, $N \rightarrow \infty$ with $\lambda=g_{Y M}^{2} N$ fixed:

- Perturbatively, only planar diagrams contribute

Aim: Can we compute scattering amplitudes in $S U(N) \mathcal{N}=4$ super Yang Mills theory to all loops, for any multiplicity and quantum numbers of the external particles?

Would amount to "solving" an interacting 4D gauge theory...
Ambitious, but promising in 't Hooft limit, $N \rightarrow \infty$ with $\lambda=g_{Y M}^{2} N$ fixed:

- Perturbatively, only planar diagrams contribute
- Planar $\mathcal{N}=4$ SYM \Leftrightarrow Free type IIB superstrings on $A d S_{5} \times S^{5}$ strongly coupled \Leftrightarrow weakly coupled

Aim: Can we compute scattering amplitudes in $S U(N) \mathcal{N}=4$ super Yang Mills theory to all loops, for any multiplicity and quantum numbers of the external particles?

Would amount to "solving" an interacting 4D gauge theory...
Ambitious, but promising in 't Hooft limit, $N \rightarrow \infty$ with $\lambda=g_{Y M}^{2} N$ fixed:

$$
k_{i}=x_{i+1}-x_{i}
$$

- Perturbatively, only planar diagrams contribute
- Planar $\mathcal{N}=4$ SYM \Leftrightarrow Free type IIB superstrings on $A d S_{5} \times S^{5}$ strongly coupled \Leftrightarrow weakly coupled
- Amplitudes \Leftrightarrow Wilson Loops; Dual Conformal Symmetry [Alday,Maldacena] [Drummond,Henn,Korchemsky,Sokatchev] [Brandhuber,Heslop,Travaglini]

Aim: Can we compute scattering amplitudes in $S U(N) \mathcal{N}=4$ super Yang Mills theory to all loops, for any multiplicity and quantum numbers of the external particles?

Would amount to "solving" an interacting 4D gauge theory...
Ambitious, but promising in 't Hooft limit, $N \rightarrow \infty$ with $\lambda=g_{Y M}^{2} N$ fixed:

- Perturbatively, only planar diagrams contribute
- Planar $\mathcal{N}=4$ SYM \Leftrightarrow Free type IIB superstrings on $A d S_{5} \times S^{5}$ strongly coupled \Leftrightarrow weakly coupled
- Amplitudes \Leftrightarrow Wilson Loops; Dual Conformal Symmetry [Alday,Maldacena] [Drummond,Henn,Korchemsky,Sokatchev] [Brandhuber,Heslop,Travaglini]
- Integrable structures \Rightarrow All loop quantities! [Beisert,Eden,Staudacher]

Practical significance

Hopefully l've convinced you that this aim is theoretically interesting and possibly within reach.

Practical significance

Hopefully l've convinced you that this aim is theoretically interesting and possibly within reach.

Along the way, it is very likely that new computational methods will also be developed, as prompted by earlier successes,

Practical significance

Hopefully l've convinced you that this aim is theoretically interesting and possibly within reach.

Along the way, it is very likely that new computational methods will also be developed, as prompted by earlier successes,

- Generalised Unitarity ${ }^{[B e r n, D i x o n, D u n b a r, K o s o w e r . . .] ~}$

Practical significance

Hopefully l've convinced you that this aim is theoretically interesting and possibly within reach.

Along the way, it is very likely that new computational methods will also be developed, as prompted by earlier successes,

- Generalised Unitarity ${ }^{[B e r n, D i x o n, D u n b a r, K o s o w e r . . .] ~}$
- Method of Symbols ${ }^{\text {[Goncharov,Spradlin,Vergu,Volovich] }}$

Practical significance

Hopefully l've convinced you that this aim is theoretically interesting and possibly within reach.

Along the way, it is very likely that new computational methods will also be developed, as prompted by earlier successes,

- Generalised Unitarity ${ }^{[B e r n, D i x o n, D u n b a r, K o s o w e r . . .] ~}$
- Method of Symbols [Goncharov,Spradlin,Vergu,Volovich]
- Momentum-twistors for massless kinematics ${ }^{\text {[Hodges] }}$ leading to significant practical applications:

Practical significance

Hopefully l've convinced you that this aim is theoretically interesting and possibly within reach.

Along the way, it is very likely that new computational methods will also be developed, as prompted by earlier successes,

- Generalised Unitarity ${ }^{[B e r n, D i x o n, D u n b a r, K o s o w e r . . .] ~}$
- Method of Symbols [Goncharov,Spradlin,Vergu,Volovich]
- Momentum-twistors for massless kinematics ${ }^{\text {[Hodges] }}$
leading to significant practical applications:
- $|g g \rightarrow H g|^{2}$ for $\mathrm{N}^{3} \mathrm{LO}$ Higgs cross-section [Anastasiou,Duhr,Dulat,Herzog,Mistlberger]
- 2-loop planar all-plus 5-gluon QCD amplitude [Gehrmann,Henn,Lo Presti]

Practical significance

Hopefully l've convinced you that this aim is theoretically interesting and possibly within reach.

Along the way, it is very likely that new computational methods will also be developed, as prompted by earlier successes,

- Generalised Unitarity ${ }^{[B e r n, D i x o n, D u n b a r, K o s o w e r . . .] ~}$
- Method of Symbols [Goncharov,Spradlin,Vergu,Volovich]
- Momentum-twistors for massless kinematics ${ }^{\text {[Hodges] }}$
leading to significant practical applications:
- $|g g \rightarrow H g|^{2}$ for $\mathrm{N}^{3} \mathrm{LO}$ Higgs cross-section [Anastasiou,Duhr, Dulat,Herzog,Mistlberger]
- 2-loop planar all-plus 5-gluon QCD amplitude [Gehrmann,Henn,Lo Presti]

See also recent 3-loop QCD soft anomalous dimension via bootstrap.
[Almelid,Duhr, Gardi,McLeod, White]

So which part of this journey are we at?

So which part of this journey are we at?
(Color-stripped, planar) amplitudes with $n=4,5$ particles already known to all loops! Captured by the Bern-Dixon-Smirnov $\mathcal{A}_{n}^{\mathrm{BDS}}$.

So which part of this journey are we at?
(Color-stripped, planar) amplitudes with $n=4,5$ particles already known to all loops! Captured by the Bern-Dixon-Smirnov $\mathcal{A}_{n}^{\mathrm{BDS}}$.

More generally,

The Amplitude Bootstrap

The Amplitude Bootstrap

The most efficient method for computing planar $\mathcal{N}=4$ amplitudes in general kinematics, at fixed order in the coupling.

The Amplitude Bootstrap

The most efficient method for computing planar $\mathcal{N}=4$ amplitudes in general kinematics, at fixed order in the coupling.
A. Construct an ansatz for the amplitude assuming

The Amplitude Bootstrap

The most efficient method for computing planar $\mathcal{N}=4$ amplitudes in general kinematics, at fixed order in the coupling.
A. Construct an ansatz for the amplitude assuming

1. What the general class of functions that suffices to express it is

The Amplitude Bootstrap

The most efficient method for computing planar $\mathcal{N}=4$ amplitudes in general kinematics, at fixed order in the coupling.
A. Construct an ansatz for the amplitude assuming

1. What the general class of functions that suffices to express it is
2. What the function arguments (encoding the kinematics) are

The Amplitude Bootstrap

The most efficient method for computing planar $\mathcal{N}=4$ amplitudes in general kinematics, at fixed order in the coupling.
A. Construct an ansatz for the amplitude assuming

1. What the general class of functions that suffices to express it is
2. What the function arguments (encoding the kinematics) are
B. Fix the coefficients of the ansatz by imposing consistency conditions (e.g. known near-collinear or multi-Regge limiting behavior)

The Amplitude Bootstrap

The most efficient method for computing planar $\mathcal{N}=4$ amplitudes in general kinematics, at fixed order in the coupling.
A. Construct an ansatz for the amplitude assuming

1. What the general class of functions that suffices to express it is
2. What the function arguments (encoding the kinematics) are
B. Fix the coefficients of the ansatz by imposing consistency conditions (e.g. known near-collinear or multi-Regge limiting behavior)

First applied very successfully for the first nontrivial, 6-particle amplitude through 5 loops. [Dixon,Drummond,Henn] [Dixon,Drummond,Hippel/Duhr,Pennington] [(Caron-Huot,)Dixon,McLeod, von Hippel]

The Amplitude Bootstrap

The most efficient method for computing planar $\mathcal{N}=4$ amplitudes in general kinematics, at fixed order in the coupling.

A. Construct an ansatz for the amplitude assuming

1. What the general class of functions that suffices to express it is
2. What the function arguments (encoding the kinematics) are
B. Fix the coefficients of the ansatz by imposing consistency conditions (e.g. known near-collinear or multi-Regge limiting behavior)

First applied very successfully for the first nontrivial, 6-particle amplitude through 5 loops. [Dixon,Drummond,Henn] [Dixon,Drummond,Hippel/Duhr,Pennington] [(Caron-Huot,)Dixon,McLeod,von Hippel]

Motivated by this progress, we upgraded this procedure for $n=7$, with information from the cluster algebra structure of the kinematical space. Surprisingly, more powerful than $n=6$! [Drummond,GP,Spradlin]

What are the right functions?

Multiple polylogarithms (MPLs)

What are the right functions?
Multiple polylogarithms (MPLs)
f_{k} is a MPL of weight k if its differential may be written as a finite linear combination

$$
d f_{k}=\sum_{\alpha} f_{k-1}^{(\alpha)} d \log \phi_{\alpha}
$$

over some set of ϕ_{α}, where $f_{k-1}^{(\alpha)}$ functions of weight $k-1$.

What are the right functions?
Multiple polylogarithms (MPLs)
f_{k} is a MPL of weight k if its differential may be written as a finite linear combination

$$
d f_{k}=\sum_{\alpha} f_{k-1}^{(\alpha)} d \log \phi_{\alpha}
$$

over some set of ϕ_{α}, where $f_{k-1}^{(\alpha)}$ functions of weight $k-1$.
Convenient tool for describing them: The symbol $\mathcal{S}\left(f_{k}\right)$ encapsulating recursive application of above definition (on $f_{k-1}^{(\alpha)}$ etc)

$$
\mathcal{S}\left(f_{k}\right)=\sum_{\alpha_{1}, \ldots, \alpha_{k}} f_{0}^{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)}\left(\phi_{\alpha_{1}} \otimes \cdots \otimes \phi_{\alpha_{k}}\right) .
$$

What are the right functions?
Multiple polylogarithms (MPLs)
f_{k} is a MPL of weight k if its differential may be written as a finite linear combination

$$
d f_{k}=\sum_{\alpha} f_{k-1}^{(\alpha)} d \log \phi_{\alpha}
$$

over some set of ϕ_{α}, where $f_{k-1}^{(\alpha)}$ functions of weight $k-1$.
Convenient tool for describing them: The symbol $\mathcal{S}\left(f_{k}\right)$ encapsulating recursive application of above definition (on $f_{k-1}^{(\alpha)}$ etc)

$$
\mathcal{S}\left(f_{k}\right)=\sum_{\alpha_{1}, \ldots, \alpha_{k}} f_{0}^{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)}\left(\phi_{\alpha_{1}} \otimes \cdots \otimes \phi_{\alpha_{k}}\right) .
$$

Collection of ϕ_{α} : symbol alphabet $\quad \mid \quad f_{0}^{\left(\alpha_{1}, \ldots, \alpha_{k}\right)}$ rational

What are the right functions?
Multiple polylogarithms (MPLs)
f_{k} is a MPL of weight k if its differential may be written as a finite linear combination

$$
d f_{k}=\sum_{\alpha} f_{k-1}^{(\alpha)} d \log \phi_{\alpha}
$$

over some set of ϕ_{α}, where $f_{k-1}^{(\alpha)}$ functions of weight $k-1$.
Convenient tool for describing them: The symbol $\mathcal{S}\left(f_{k}\right)$ encapsulating recursive application of above definition (on $f_{k-1}^{(\alpha)}$ etc)

$$
\mathcal{S}\left(f_{k}\right)=\sum_{\alpha_{1}, \ldots, \alpha_{k}} f_{0}^{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)}\left(\phi_{\alpha_{1}} \otimes \cdots \otimes \phi_{\alpha_{k}}\right) .
$$

Collection of ϕ_{α} : symbol alphabet $\quad \mid \quad f_{0}^{\left(\alpha_{1}, \ldots, \alpha_{k}\right)}$ rational
Empeirical evidence: L-loop amplitudes $=$ MPLs of weight $k=2 L$
[Duhr,Del Duca,Smirnov][Arkani-Hamed,Bourjaily, Cachazo, Goncharov, Postnikov, Trnka] [GP]

What are the right variables?

What are the right variables?

More precisely, what is the symbol alphabet?

What are the right variables?

More precisely, what is the symbol alphabet?

- For $n=6,9$ letters, motivated by analysis of relevant integrals

What are the right variables?
More precisely, what is the symbol alphabet?

- For $n=6,9$ letters, motivated by analysis of relevant integrals
- More generally, strong motivation from cluster algebra structure of kinematical configuration space $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$
[Golden, Goncharov,Spradlin,Vergu,Volovich]

What are the right variables?
More precisely, what is the symbol alphabet?

- For $n=6$, 9 letters, motivated by analysis of relevant integrals
- More generally, strong motivation from cluster algebra structure of kinematical configuration space $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$
[Golden, Goncharov,Spradlin, Vergu,Volovich]
The latter is a collection of n ordered momentum twistors Z_{i} on \mathbb{P}^{3}, (an equivalent way to parametrise massless kinematics), modulo dual conformal transformations. ${ }^{\text {[Hodges] }}$

$$
\begin{aligned}
& x_{i} \sim Z_{i-1} \wedge Z_{i} \\
& \left(x_{i}-x_{j}\right)^{2} \sim \epsilon_{I J K L} Z_{i-1}^{I} Z_{i}^{J} Z_{j-1}^{K} Z_{j}^{L}=\operatorname{det}\left(Z_{i-1} Z_{i} Z_{j-1} Z_{j}\right) \equiv\langle i-1 i j-1 j\rangle
\end{aligned}
$$

Cluster algebras ${ }^{[\text {Fomin,Zelevinsky] }}$

Cluster algebras ${ }^{[\text {FFomin,Zelevinsky] }}$

They are commutative algebras with

- Distinguished set of generators a_{i}, the cluster variables

Cluster algebras ${ }^{[\text {FFomin,Zelevinsky] }}$

They are commutative algebras with

- Distinguished set of generators a_{i}, the cluster variables
- Grouped into overlapping subsets $\left\{a_{1}, \ldots, a_{n}\right\}$ of rank n, the clusters

Cluster algebras ${ }^{[\text {FFomin,Zelevinsky] }}$

They are commutative algebras with

- Distinguished set of generators a_{i}, the cluster variables
- Grouped into overlapping subsets $\left\{a_{1}, \ldots, a_{n}\right\}$ of rank n, the clusters
- Constructed recursively from initial cluster via mutations

Cluster algebras ${ }^{[\text {FFomin,Zelevinsky] }}$

They are commutative algebras with

- Distinguished set of generators a_{i}, the cluster variables
- Grouped into overlapping subsets $\left\{a_{1}, \ldots, a_{n}\right\}$ of rank n, the clusters
- Constructed recursively from initial cluster via mutations

Can be described by quivers.

Cluster algebras ${ }^{[\text {FFomin,Zelevinsky] }}$

They are commutative algebras with

- Distinguished set of generators a_{i}, the cluster variables
- Grouped into overlapping subsets $\left\{a_{1}, \ldots, a_{n}\right\}$ of rank n, the clusters
- Constructed recursively from initial cluster via mutations

Can be described by quivers. Example: A_{3} Cluster algebra

Initial Cluster

Cluster algebras ${ }^{[\text {FFomin,Zelevinsky] }}$

They are commutative algebras with

- Distinguished set of generators a_{i}, the cluster variables
- Grouped into overlapping subsets $\left\{a_{1}, \ldots, a_{n}\right\}$ of rank n, the clusters
- Constructed recursively from initial cluster via mutations

Can be described by quivers. Example: A_{3} Cluster algebra

Initial Cluster

Mutate a_{2} : New cluster

General rule for mutation at node k :

1. $\forall i \rightarrow k \rightarrow j$, add $i \rightarrow j$, reverse $i \leftarrow k \leftarrow j$, remove \rightleftarrows.

Cluster algebras ${ }^{[F o m i n, Z e l e v i n s k y]}$

They are commutative algebras with

- Distinguished set of generators a_{i}, the cluster variables
- Grouped into overlapping subsets $\left\{a_{1}, \ldots, a_{n}\right\}$ of rank n, the clusters
- Constructed recursively from initial cluster via mutations

Can be described by quivers. Example: A_{3} Cluster algebra

Initial Cluster

Mutate a_{2} : New cluster

$$
a_{2}^{\prime}=\left(a_{1}+a_{3}\right) / a_{2}
$$

and so on...

General rule for mutation at node k :

1. $\forall i \rightarrow k \rightarrow j$, add $i \rightarrow j$, reverse $i \leftarrow k \leftarrow j$, remove \rightleftarrows.
2. In new quiver/cluster, $a_{k} \rightarrow a_{k}^{\prime}=\left(\prod_{\text {arrows } i \rightarrow k} a_{i}+\prod_{\text {arrows } k \rightarrow j} a_{j}\right) / a_{k}$

Connection to the kinematic space

Connection to the kinematic space

The latter is closely related to a Graßmannian:

$$
\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)=G r(4, n) /\left(C^{*}\right)^{n-1}
$$

Connection to the kinematic space
The latter is closely related to a Graßmannian:

$$
\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)=G r(4, n) /\left(C^{*}\right)^{n-1}
$$

- Graßmannians $\operatorname{Gr}(k, n)$ equipped with cluster algebra structure ${ }^{[S c o t t]}$

Connection to the kinematic space

The latter is closely related to a Graßmannian:

$$
\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)=G r(4, n) /\left(C^{*}\right)^{n-1}
$$

- Graßmannians $\operatorname{Gr}(k, n)$ equipped with cluster algebra structure ${ }^{[S c o t t]}$
- Initial cluster made of a special set of Plücker coordinates $\left\langle i_{1} \ldots i_{k}\right\rangle$

Connection to the kinematic space

The latter is closely related to a Graßmannian:

$$
\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)=G r(4, n) /\left(C^{*}\right)^{n-1}
$$

- Graßmannians $\operatorname{Gr}(k, n)$ equipped with cluster algebra structure ${ }^{[S c o t t]}$
- Initial cluster made of a special set of Plücker coordinates $\left\langle i_{1} \ldots i_{k}\right\rangle$
- Mutations also yield certain homogeneous polynomials of $\left\langle i_{1} \ldots i_{k}\right\rangle$

Connection to the kinematic space

The latter is closely related to a Graßmannian:

$$
\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)=G r(4, n) /\left(C^{*}\right)^{n-1}
$$

- Graßmannians $G r(k, n)$ equipped with cluster algebra structure ${ }^{[S c o t t]}$
- Initial cluster made of a special set of Plücker coordinates $\left\langle i_{1} \ldots i_{k}\right\rangle$
- Mutations also yield certain homogeneous polynomials of $\left\langle i_{1} \ldots i_{k}\right\rangle$
- Crucial observation: For all known cases, symbol alphabet of n-point amplitudes for $n=6,7$ are $G r(4, n)$ cluster variables (also known as \mathcal{A}-coordinates) ${ }^{\text {[Golden,Goncharov,Spradlin,Vergu,Volovich] }}$

Connection to the kinematic space

The latter is closely related to a Graßmannian:

$$
\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)=G r(4, n) /\left(C^{*}\right)^{n-1}
$$

- Graßmannians $G r(k, n)$ equipped with cluster algebra structure
- Initial cluster made of a special set of Plücker coordinates $\left\langle i_{1} \ldots i_{k}\right\rangle$
- Mutations also yield certain homogeneous polynomials of $\left\langle i_{1} \ldots i_{k}\right\rangle$
- Crucial observation: For all known cases, symbol alphabet of n-point amplitudes for $n=6,7$ are $\operatorname{Gr}(4, n)$ cluster variables (also known as \mathcal{A}-coordinates)
[Golden,Goncharov,Spradlin,Vergu,Volovich]
Fundamental assumption of "cluster bootstrap"
Symbol alphabet is made of cluster \mathcal{A}-coordinates on
$\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$. For the heptagon, 42 of them.

Connection to the kinematic space

The latter is closely related to a Graßmannian:

$$
\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)=G r(4, n) /\left(C^{*}\right)^{n-1}
$$

- Graßmannians $G r(k, n)$ equipped with cluster algebra structure
- Initial cluster made of a special set of Plücker coordinates $\left\langle i_{1} \ldots i_{k}\right\rangle$
- Mutations also yield certain homogeneous polynomials of $\left\langle i_{1} \ldots i_{k}\right\rangle$
- Crucial observation: For all known cases, symbol alphabet of n-point amplitudes for $n=6,7$ are $\operatorname{Gr}(4, n)$ cluster variables (also known as \mathcal{A}-coordinates)
[Golden,Goncharov,Spradlin,Vergu, Volovich]
Fundamental assumption of "cluster bootstrap"
Symbol alphabet is made of cluster \mathcal{A}-coordinates on $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$. For the heptagon, 42 of them.

See also very interesting, recent work on "cluster adjacency".
[Drummond,Foster, Gürdogan]

Heptagon Symbol Letters

Multiply \mathcal{A}-coordinates with suitable powers of $\langle i i+1 i+2 i+3\rangle$ to form conformally invariant cross-ratios,

$$
\begin{aligned}
& a_{11}=\frac{\langle 1234\rangle\langle 1567\rangle\langle 2367\rangle}{\langle 1237\rangle\langle 1267\rangle\langle 3456\rangle}, \\
& a_{21}=\frac{\langle 1234\rangle\langle 2567\rangle}{\langle 1267\rangle\langle 2345\rangle}, \\
& a_{31}=\frac{\langle 1567\rangle\langle 2347\rangle}{\langle 1237\rangle\langle 4567\rangle},
\end{aligned}
$$

$$
\begin{aligned}
& a_{41}=\frac{\langle 2457\rangle\langle 3456\rangle}{\langle 2345\rangle\langle 4567\rangle}, \\
& a_{51}=\frac{\langle 1(23)(45)(67)\rangle}{\langle 1234\rangle\langle 1567\rangle}, \\
& a_{61}=\frac{\langle 1(34)(56)(72)\rangle}{\langle 1234\rangle\langle 1567\rangle},
\end{aligned}
$$

where

$$
\begin{gathered}
\langle i j k l\rangle \equiv\left\langle Z_{i} Z_{j} Z_{k} Z_{l}\right\rangle=\operatorname{det}\left(Z_{i} Z_{j} Z_{k} Z_{l}\right) \\
\langle a(b c)(d e)(f g)\rangle \equiv\langle a b d e\rangle\langle a c f g\rangle-\langle a b f\rangle\langle a c d e\rangle
\end{gathered}
$$

together with $a_{i j}$ obtained from $a_{i 1}$ by cyclically relabeling $Z_{m} \rightarrow Z_{m+j-1}$.

Back to contructing and constraining function space

Back to contructing and constraining function space

1. Locality: Amplitudes may only have singularities when intermediate particles go on-shell \Rightarrow constrains first symbol entry (7-pts: $a_{1 j}$)

Back to contructing and constraining function space

1. Locality: Amplitudes may only have singularities when intermediate particles go on-shell \Rightarrow constrains first symbol entry (7-pts: $a_{1 j}$)
2. Integrability: For given \mathcal{S}, ensures \exists function with given symbol
$\sum_{\alpha_{1}, \ldots, \alpha_{k}} f_{0}^{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)} \underbrace{\left(\phi_{\alpha_{1}} \otimes \cdots \otimes \phi_{\alpha_{k}}\right)} d \log \phi_{\alpha_{j}} \wedge d \log \phi_{\alpha_{j+1}}=0 \quad \forall j$.

Back to contructing and constraining function space

1. Locality: Amplitudes may only have singularities when intermediate particles go on-shell \Rightarrow constrains first symbol entry (7-pts: $a_{1 j}$)
2. Integrability: For given \mathcal{S}, ensures \exists function with given symbol
$\sum_{\alpha_{1}, \ldots, \alpha_{k}} f_{0}^{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)} \underbrace{\left(\phi_{\alpha_{1}} \otimes \cdots \otimes \phi_{\alpha_{k}}\right)} d \log \phi_{\alpha_{j}} \wedge d \log \phi_{\alpha_{j+1}}=0 \quad \forall j$. omitting $\phi_{\alpha_{j}} \otimes \phi_{\alpha_{j+1}}$
3. Dual superconformal symmetry \Rightarrow constrains last symbol entry of amplitudes (MHV 7-pts: $a_{2 j}, a_{3 j}$) [Caron-Huot,He]

Back to contructing and constraining function space

1. Locality: Amplitudes may only have singularities when intermediate particles go on-shell \Rightarrow constrains first symbol entry (7-pts: $a_{1 j}$)
2. Integrability: For given \mathcal{S}, ensures \exists function with given symbol
$\sum_{\alpha_{1}, \ldots, \alpha_{k}} f_{0}^{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)} \underbrace{\left(\phi_{\alpha_{1}} \otimes \cdots \otimes \phi_{\alpha_{k}}\right)} d \log \phi_{\alpha_{j}} \wedge d \log \phi_{\alpha_{j+1}}=0 \quad \forall j$. omitting $\phi_{\alpha_{j}} \otimes \phi_{\alpha_{j+1}}$
3. Dual superconformal symmetry \Rightarrow constrains last symbol entry of amplitudes (MHV 7-pts: $a_{2 j}, a_{3 j}$) [Caron-Huot,He]
4. Collinear limit: Bern-Dixon-Smirnov ansatz $\mathcal{A}_{n}^{\mathrm{BDS}}$ contains all IR divergences \Rightarrow Constraint on $B_{n} \equiv \mathcal{A}_{n} / \mathcal{A}_{n}^{\mathrm{BDS}}: \lim _{i+1 \| i} B_{n}=B_{n-1}$

Back to contructing and constraining function space

1. Locality: Amplitudes may only have singularities when intermediate particles go on-shell \Rightarrow constrains first symbol entry (7-pts: $a_{1 j}$)
2. Integrability: For given \mathcal{S}, ensures \exists function with given symbol
$\sum_{\alpha_{1}, \ldots, \alpha_{k}} f_{0}^{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)} \underbrace{\left(\phi_{\alpha_{1}} \otimes \cdots \otimes \phi_{\alpha_{k}}\right)} d \log \phi_{\alpha_{j}} \wedge d \log \phi_{\alpha_{j+1}}=0 \quad \forall j$. omitting $\phi_{\alpha_{j}} \otimes \phi_{\alpha_{j+1}}$
3. Dual superconformal symmetry \Rightarrow constrains last symbol entry of amplitudes (MHV 7-pts: $a_{2 j}, a_{3 j}$) [Caron-Huot,He]
4. Collinear limit: Bern-Dixon-Smirnov ansatz $\mathcal{A}_{n}^{\mathrm{BDS}}$ contains all IR divergences \Rightarrow Constraint on $B_{n} \equiv \mathcal{A}_{n} / \mathcal{A}_{n}^{\mathrm{BDS}}: \lim _{i+1 \| i} B_{n}=B_{n-1}$

Define \boldsymbol{n}-gon symbol: A symbol of the corresponding n-gon alphabet, obeying $1 \& 2$.

Results [Drummond,GP,Spradin]

Weight $k=$	1	2	3	4	5	6	
Number of heptagon symbols	7	42	237	1288	6763	$?$	
well-defined in the $7 \\| 6$ limit	3	15	98	646	$?$	$?$	
which vanish in the $7 \\| 6$ limit	0	6	72	572	$?$	$?$	
well-defined for all $i+1 \\| i$	0	0	0	1	$?$	$?$	
with MHV last entries	0	1	0	2	1	4	
with both of the previous two	0	0	0	1	0	1	

Table: Heptagon symbols and their properties.

Results [Drummond,GP,Spradin]

Weight $k=$	1	2	3	4	5	6	
Number of heptagon symbols	7	42	237	1288	6763	$?$	
well-defined in the $7 \\| 6$ limit	3	15	98	646	$?$	$?$	
which vanish in the $7 \\| 6$ limit	0	6	72	572	$?$	$?$	
well-defined for all $i+1 \\| i$	0	0	0	1	$?$	$?$	
with MHV last entries	0	1	0	2	1	4	
with both of the previous two	0	0	0	1	0	1	

Table: Heptagon symbols and their properties.
The symbol of the three-loop seven-particle MHV amplitude is the only weight- 6 heptagon symbol which satisfies the last-entry condition and which is finite in the $7 \| 6$ collinear limit.

Comparison with the hexagon case

Weight $k=$	1	2	3	4	5	6	
Number of hexagon symbols	3	9	26	75	218	643	
well-defined (vanish) in the $6 \\| 5$ limit	0	2	11	44	155	516	
well-defined (vanish) for all $i+1 \\| i$	0	0	2	12	68	307	
with MHV last entries	0	3	7	21	62	188	
with both of the previous two	0	0	1	4	14	59	

Table: Hexagon symbols and their properties.

Surprisingly, heptagon bootstrap more powerful than hexagon one! Fact that $\lim _{7 \| 6} R_{7}^{(3)}=R_{6}^{(3)}$, as well as discrete symmetries such as cyclic $Z_{i} \rightarrow Z_{i+1}$, flip $Z_{i} \rightarrow Z_{n+1-i}$ or parity symmetry follow for free, not imposed a priori.

Upgrade II: Steinmann Relations ${ }^{[S t e i n m a n n] ~[C a h i l l, S t a p p] ~[B a r t e l s, L i i p a t o v, S a b i o ~ V e r a] ~}$

Upgrade II: Steinmann Relations ${ }^{[S t e i n m a n n] ~[C a h i l l, S t a p p] ~[B a r t e l s, L i i p a t o v, S a b i o ~ V e r a] ~}$

Dramatically simplify n-gon function space

[Caron-Huot,Dixon,McLeod, von Hippel][Dixon,Drummond,Harrington,McLeod,GP,Spradlin]

Upgrade II: Steinmann Relations ${ }^{[\text {[teinmann] [Cahill,Stapp] [Bartels,Lipatov,Sabio Vera] }}$

Dramatically simplify n-gon function space
[Caron-Huot,Dixon,McLeod, von Hippel][Dixon,Drummond,Harrington,McLeod, GP,Spradlin]
Double discontinuities vanish for any set of overlapping channels

Upgrade II: Steinmann Relations ${ }^{[S t e i n m a n n] ~[C a h i l l, S t a p p] ~[B a r t e l s, L i i p a t o v, S a b i o ~ V e r a] ~}$

Dramatically simplify n-gon function space
[Caron-Huot,Dixon,McLeod, von Hippel] [Dixon,Drummond,Harrington,McLeod,GP,Spradlin]
Double discontinuities vanish for any set of overlapping channels

- Channel labelled by Mandelstam invariant we analytically continue

Upgrade II: Steinmann Relations ${ }^{\text {[Steinmann] [Cahill,Stapp] [Bartels,Lipatov,Sabio Vera] }}$

Dramatically simplify n-gon function space
[Caron-Huot,Dixon,McLeod,von Hippel] [Dixon,Drummond,Harrington,McLeod,GP,Spradlin]
Double discontinuities vanish for any set of overlapping channels

- Channel labelled by Mandelstam invariant we analytically continue
- Channels overlap if they divide particles in 4 nonempty sets. Here: $\{2\},\{3,4\},\{5\}$, and $\{6,7,1\}$

Upgrade II: Steinmann Relations ${ }^{\text {[Steinmann] [Cahill,Stapp] [Bartels,Lipatov,Sabio Vera] }}$

Dramatically simplify n-gon function space
[Caron-Huot,Dixon,McLeod,von Hippel] [Dixon,Drummond,Harrington,McLeod,GP,Spradlin]
Double discontinuities vanish for any set of overlapping channels

- Channel labelled by Mandelstam invariant we analytically continue
- Channels overlap if they divide particles in 4 nonempty sets. Here: $\{2\},\{3,4\},\{5\}$, and $\{6,7,1\}$
- Focus on $s_{i-1, i, i+1} \propto a_{1 i}\left(s_{i-1 i}\right.$ more subtle)

Upgrade II: Steinmann Relations ${ }^{\text {[Steinmann] [Cahill,Stapp] [Bartels,Lipatov,Sabio Vera] }}$

Dramatically simplify n-gon function space
[Caron-Huot,Dixon,McLeod, von Hippel] [Dixon,Drummond,Harrington,McLeod,GP,Spradlin]
Double discontinuities vanish for any set of overlapping channels

- Channel labelled by Mandelstam invariant we analytically continue
- Channels overlap if they divide particles in 4 nonempty sets. Here: $\{2\},\{3,4\},\{5\}$, and $\{6,7,1\}$
- Focus on $s_{i-1, i, i+1} \propto a_{1 i}$ ($s_{i-1 i}$ more subtle)

Heptagon: No $a_{1, i \pm 1}, a_{1, i \pm 2}$ after $a_{1, i}$ on second symbol entry

Results: Steinmann Heptagon symbols

Weight $k=$	1	2	3	4	5	6	7	$7 \prime \prime$
parity +, flip +	4	16	48	154	467	1413	4163	3026
parity +, flip -	3	12	43	140	443	1359	4063	2946
parity -, flip +	0	0	3	14	60	210	672	668
parity -, flip -	0	0	3	14	60	210	672	669
Total	7	28	97	322	1030	3192	9570	7309

Table: Number of Steinmann heptagon symbols at weights 1 through 7, and those satisfying the MHV next-to-final entry condition at weight 7 . All of them are organized with respect to the discrete symmetries $Z_{i} \rightarrow Z_{i+1}, Z_{i} \rightarrow Z_{8-i}$ of the MHV amplitude.

Results: Steinmann Heptagon symbols

Weight $k=$	1	2	3	4	5	6	7	$7^{\prime \prime}$
parity +, flip +	4	16	48	154	467	1413	4163	3026
parity +, flip -	3	12	43	140	443	1359	4063	2946
parity -, flip +	0	0	3	14	60	210	672	668
parity -, flip -	0	0	3	14	60	210	672	669
Total	7	28	97	322	1030	3192	9570	7309

Table: Number of Steinmann heptagon symbols at weights 1 through 7, and those satisfying the MHV next-to-final entry condition at weight 7 . All of them are organized with respect to the discrete symmetries $Z_{i} \rightarrow Z_{i+1}, Z_{i} \rightarrow Z_{8-i}$ of the MHV amplitude.

1. Compare with $7,42,237,1288,6763$ non-Steinmann heptagon symbols

Results: Steinmann Heptagon symbols

Weight $k=$	1	2	3	4	5	6	7	$7^{\prime \prime}$
parity +, flip +	4	16	48	154	467	1413	4163	3026
parity +, flip -	3	12	43	140	443	1359	4063	2946
parity -, flip +	0	0	3	14	60	210	672	668
parity -, flip -	0	0	3	14	60	210	672	669
Total	7	28	97	322	1030	3192	9570	7309

Table: Number of Steinmann heptagon symbols at weights 1 through 7, and those satisfying the MHV next-to-final entry condition at weight 7 . All of them are organized with respect to the discrete symmetries $Z_{i} \rightarrow Z_{i+1}, Z_{i} \rightarrow Z_{8-i}$ of the MHV amplitude.

1. Compare with $7,42,237,1288,6763$ non-Steinmann heptagon symbols
2. $\frac{28}{42}=\frac{6}{9}=\frac{2}{3}$ reduction at weight 2

Results: Steinmann Heptagon symbols

Weight $k=$	1	2	3	4	5	6	7	$7^{\prime \prime}$
parity + , flip +	4	16	48	154	467	1413	4163	3026
parity +, flip -	3	12	43	140	443	1359	4063	2946
parity -, flip +	0	0	3	14	60	210	672	668
parity -, flip -	0	0	3	14	60	210	672	669
Total	7	28	97	322	1030	3192	9570	7309

Table: Number of Steinmann heptagon symbols at weights 1 through 7, and those satisfying the MHV next-to-final entry condition at weight 7 . All of them are organized with respect to the discrete symmetries $Z_{i} \rightarrow Z_{i+1}, Z_{i} \rightarrow Z_{8-i}$ of the MHV amplitude.

1. Compare with $7,42,237,1288,6763$ non-Steinmann heptagon symbols
2. $\frac{28}{42}=\frac{6}{9}=\frac{2}{3}$ reduction at weight 2
3. Increase by a factor of ~ 3 instead of ~ 5 at each weight

Results: Steinmann Heptagon symbols

Weight $k=$	1	2	3	4	5	6	7	7
parity +, flip +	4	16	48	154	467	1413	4163	3026
parity +, flip -	3	12	43	140	443	1359	4063	2946
parity -, flip +	0	0	3	14	60	210	672	668
parity -, flip -	0	0	3	14	60	210	672	669
Total	7	28	97	322	1030	3192	9570	7309

Table: Number of Steinmann heptagon symbols at weights 1 through 7, and those satisfying the MHV next-to-final entry condition at weight 7 . All of them are organized with respect to the discrete symmetries $Z_{i} \rightarrow Z_{i+1}, Z_{i} \rightarrow Z_{8-i}$ of the MHV amplitude.

1. Compare with $7,42,237,1288,6763$ non-Steinmann heptagon symbols
2. $\frac{28}{42}=\frac{6}{9}=\frac{2}{3}$ reduction at weight 2
3. Increase by a factor of ~ 3 instead of ~ 5 at each weight
4. E.g. 6 -fold reduction already at weight 5 !

In this manner, obtained 3-loop NMHV and 4-loop MHV heptagon

New Developments I

New Developments I

The 6-loop, 6-particle $\mathrm{N}+\mathrm{MHV}$ amplitude
[Caron-Huot,Dixon,McLeod,GP, von Hippel;to appear]

New Developments I

The 6-loop, 6-particle $\mathrm{N}+\mathrm{MHV}$ amplitude
[Caron-Huot,Dixon,McLeod,GP, von Hippel;to appear]

Significance:

New Developments I

The 6-loop, 6-particle $\mathrm{N}+\mathrm{MHV}$ amplitude

[Caron-Huot,Dixon,McLeod,GP, von Hippel;to appear]

Significance:

1. Exorcising Elliptic Beasts

New Developments I

The 6-loop, 6-particle $\mathrm{N}+\mathrm{MHV}$ amplitude

[Caron-Huot,Dixon,McLeod,GP, von Hippel;to appear]

Significance:

1. Exorcising Elliptic Beasts

Elliptic generalizations of MPLs needed starting at 2 loops

New Developments I

The 6-loop, 6-particle $\mathrm{N}+\mathrm{MHV}$ amplitude
[Caron-Huot,Dixon,McLeod,GP, von Hippel;to appear]

Significance:

1. Exorcising Elliptic Beasts

Elliptic generalizations of MPLs needed starting at 2 loops

By analyzing its cuts, arguments that following integral, potentially contributing to 6 -loop NMHV, is elliptic. ${ }^{\text {Bourjaily,Parra Martinez] }}$

New Developments I

The 6-loop, 6-particle $\mathrm{N}+\mathrm{MHV}$ amplitude
[Caron-Huot,Dixon,McLeod,GP, von Hippel;to appear]

Significance:

1. Exorcising Elliptic Beasts

Elliptic generalizations of MPLs needed starting at 2 loops

By analyzing its cuts, arguments that following integral, potentially contributing to 6 -loop NMHV, is elliptic. ${ }^{\text {Bourjaily,Parra Martinez] }}$

Our result is purely MPL, thus lending no support to this claim.

New Developments I

The 6-loop, 6-particle $\mathrm{N}+\mathrm{MHV}$ amplitude
[Caron-Huot,Dixon,McLeod,GP, von Hippel;to appear]

Significance:

2. Application of heptagon ideas simplifying construction of function bases

New Developments I

The 6-loop, 6-particle $\mathrm{N}+\mathrm{MHV}$ amplitude
[Caron-Huot,Dixon,McLeod,GP, von Hippel;to appear]

Significance:

2. Application of heptagon ideas simplifying construction of function bases

New alphabet: $\left\{a, b, c, m_{u}, m_{v}, m_{w}, y_{u}, y_{v}, y_{w}\right\}$, where
$a=\frac{u}{v w}, \quad m_{u}=\frac{1-u}{u}, \quad u=\frac{\langle 6123\rangle\langle 3456\rangle}{\langle 6134\rangle\langle 2356\rangle}, \quad y_{u}=\frac{\langle 1345\rangle\langle 2456\rangle\langle 1236\rangle}{\langle 1235\rangle\langle 3456\rangle\langle 1246\rangle} \&$ cyclic

New Developments I

The 6-loop, 6-particle $\mathrm{N}+\mathrm{MHV}$ amplitude

Significance:
2. Application of heptagon ideas simplifying construction of function bases

New alphabet: $\left\{a, b, c, m_{u}, m_{v}, m_{w}, y_{u}, y_{v}, y_{w}\right\}$, where
$a=\frac{u}{v w}, \quad m_{u}=\frac{1-u}{u}, \quad u=\frac{\langle 6123\rangle\langle 3456\rangle}{\langle 6134\rangle\langle 2356\rangle}, \quad y_{u}=\frac{\langle 1345\rangle\langle 2456\rangle\langle 1236\rangle}{\langle 1235\rangle\langle 3456\rangle\langle 1246\rangle}$ \& cyclic
Simplest formulation of Steinmann relations for the amplitude:

No b, c can appear after a in $2^{\text {nd }}$ symbol entry \& cyclic

New Developments I

The 6-loop, 6-particle $\mathrm{N}+\mathrm{MHV}$ amplitude

Significance:
2. Application of heptagon ideas simplifying construction of function bases

New alphabet: $\left\{a, b, c, m_{u}, m_{v}, m_{w}, y_{u}, y_{v}, y_{w}\right\}$, where
$a=\frac{u}{v w}, \quad m_{u}=\frac{1-u}{u}, \quad u=\frac{\langle 6123\rangle\langle 3456\rangle}{\langle 6134\rangle\langle 2356\rangle}, \quad y_{u}=\frac{\langle 1345\rangle\langle 2456\rangle\langle 1236\rangle}{\langle 1235\rangle\langle 3456\rangle\langle 1246\rangle}$ \& cyclic
3. Expose extended Steinmann relations for the amplitude:

No b, c can appear after a in any symbol entry \& cyclic

New Developments I

The 6-loop, 6-particle $\mathrm{N}+\mathrm{MHV}$ amplitude
[Caron-Huot,Dixon,McLeod,GP, von Hippel;to appear]

Significance:
2. Application of heptagon ideas simplifying construction of function bases

New alphabet: $\left\{a, b, c, m_{u}, m_{v}, m_{w}, y_{u}, y_{v}, y_{w}\right\}$, where
$a=\frac{u}{v w}, \quad m_{u}=\frac{1-u}{u}, \quad u=\frac{\langle 6123\rangle\langle 3456\rangle}{\langle 6134\rangle\langle 2356\rangle}, \quad y_{u}=\frac{\langle 1345\rangle\langle 2456\rangle\langle 1236\rangle}{\langle 1235\rangle\langle 3456\rangle\langle 1246\rangle}$ \& cyclic
3. Expose extended Steinmann relations for the amplitude:

No b, c can appear after a in any symbol entry \& cyclic
Observed empirically at first, must be consequence of original Steinmann holding not just in the Euclidean region, but also on other Riemann sheets.

New Developments II

Double penta-ladders to all orders

New Developments II

Double penta-ladders to all orders
Can we construct n-gon function space without solving large linear systems?

New Developments II

Double penta-ladders to all orders
Can we construct n-gon function space without solving large linear systems?

At least for $n=6$ subspace spanned by double penta-ladder integrals, yes!
[Caron-Huot,Dixon,McLeod,GP, von Hippel;to appear]
[Arkani-Hamed,Bourjaily,Cachazo,Caron-Huot, Trnka]

[Drummond,Henn,Trnka]

$$
\Omega^{(L)}(u, v, w)
$$

New Developments II

Double penta-ladders to all orders
Can we construct n-gon function space without solving large linear systems?

At least for $n=6$ subspace spanned by double penta-ladder integrals, yes!

[Arkani-Hamed,Bourjaily,Cachazo,Caron-Huot, Trnka]
[Drummond,Henn,Trnka]

$$
\Omega^{(L)}(u, v, w)
$$

E.g. $\Omega^{(2)} \equiv \int \frac{d^{4} Z_{A B} d^{4} Z_{C D}\left(i \pi^{2}\right)^{-2}\langle A B 13\rangle\langle C D 46\rangle\langle 2345\rangle\langle 5612\rangle\langle 3461\rangle}{\langle A B 61\rangle\langle A B 12\rangle\langle A B 23\rangle\langle A B 34\rangle\langle A B C D\rangle\langle C D 34\rangle\langle C D 45\rangle\langle C D 56\rangle\langle C D 61\rangle}$

New Developments II

Double penta-ladders to all orders
Can we construct n-gon function space without solving large linear systems?

At least for $n=6$ subspace spanned by double penta-ladder integrals, yes!
[Caron-Huot,Dixon,McLeod,GP, von Hippel;to appear]
[Arkani-Hamed,Bourjaily,Cachazo,Caron-Huot, Trnka]

[Drummond,Henn,Trnka]

$$
\Omega^{(L)}(u, v, w)
$$

E.g. $\Omega^{(2)} \equiv \int \frac{d^{4} Z_{A B} d^{4} Z_{C D}\left(i \pi^{2}\right)^{-2}\langle A B 13\rangle\langle C D 46\rangle\langle 2345\rangle\langle 5612\rangle\langle 3461\rangle}{\langle A B 61\rangle\langle A B 12\rangle\langle A B 23\rangle\langle A B 34\rangle\langle A B C D\rangle\langle C D 34\rangle\langle C D 45\rangle\langle C D 56\rangle\langle C D 61\rangle}$

Can in fact resum $\Omega \equiv \sum \lambda^{L} \Omega^{(L)}$ in terms of a simple integral.

Beyond seven particles

Beyond seven particles

For $N \geq 8, G r(4, N)$ cluster algebra becomes infinite

Beyond seven particles

For $N \geq 8, \operatorname{Gr}(4, N)$ cluster algebra becomes infinite

- However, in multi-Regge limit: Middle-row variables $\rightarrow 0$, i.e decouple

Beyond seven particles

For $N \geq 8, \operatorname{Gr}(4, N)$ cluster algebra becomes infinite

- However, in multi-Regge limit: Middle-row variables $\rightarrow 0$, i.e decouple
- Theorem:If quiver has form of Dynkin diagram \Rightarrow finite cluster algebra

Beyond seven particles

For $N \geq 8, \operatorname{Gr}(4, N)$ cluster algebra becomes infinite

- However, in multi-Regge limit: Middle-row variables $\rightarrow 0$, i.e decouple
- Theorem:If quiver has form of Dynkin diagram \Rightarrow finite cluster algebra
- Thus, in multi-Regge limit, $\operatorname{Gr}(4, N) \rightarrow A_{N-5} \times A_{N-5}$: finite! [Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca, GP, Verbeek]

Beyond seven particles

For $N \geq 8, \operatorname{Gr}(4, N)$ cluster algebra becomes infinite

- However, in multi-Regge limit: Middle-row variables $\rightarrow 0$, i.e decouple
- Theorem:If quiver has form of Dynkin diagram \Rightarrow finite cluster algebra
- Thus, in multi-Regge limit, $\operatorname{Gr}(4, N) \rightarrow A_{N-5} \times A_{N-5}$: finite! [Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca, GP, Verbeek]
- The two A_{N-5} factors not independent: Related by single-valuedness

Beyond seven particles

For $N \geq 8, \operatorname{Gr}(4, N)$ cluster algebra becomes infinite

- However, in multi-Regge limit: Middle-row variables $\rightarrow 0$, i.e decouple
- Theorem:If quiver has form of Dynkin diagram \Rightarrow finite cluster algebra
- Thus, in multi-Regge limit, $\operatorname{Gr}(4, N) \rightarrow A_{N-5} \times A_{N-5}$: finite! [Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca, GP,Verbeek]
- The two A_{N-5} factors not independent: Related by single-valuedness

Therefore multi-Regge limit crucial for going to higher points.

$2 \rightarrow N-2$ Multi-Regge Kinematics (MRK)

Phenomenologically relevant high-energy gluon scattering

Defined by strong ordering of rapidities or lightcone +-components,

$$
p_{3}^{+} \gg p_{4}^{+} \gg \ldots p_{N-1}^{+} \gg p_{N}^{+}, \quad\left|\mathbf{p}_{3}\right| \simeq \ldots \simeq\left|\mathbf{p}_{N}\right|
$$

where $p^{ \pm} \equiv p^{0} \pm p^{z}, \mathbf{p}_{k} \equiv p_{k \perp}=p_{k}^{x}+i p_{k}^{y}$, and can choose $\mathbf{p}_{1}=\mathbf{p}_{2}=0$.

$2 \rightarrow N-2$ Multi-Regge Kinematics (MRK)

Phenomenologically relevant high-energy gluon scattering

Defined by strong ordering of rapidities or lightcone +-components,

$$
p_{3}^{+} \gg p_{4}^{+} \gg \ldots p_{N-1}^{+} \gg p_{N}^{+}, \quad\left|\mathbf{p}_{3}\right| \simeq \ldots \simeq\left|\mathbf{p}_{N}\right|
$$

where $p^{ \pm} \equiv p^{0} \pm p^{z}, \mathbf{p}_{k} \equiv p_{k \perp}=p_{k}^{x}+i p_{k}^{y}$, and can choose $\mathbf{p}_{1}=\mathbf{p}_{2}=0$.
Implies the hierarchy of scales, for $s_{i \ldots, j}=\left(p_{i}+\ldots+p_{j}\right)^{2}$,

$$
\begin{aligned}
& s_{12} \gg s_{3 \cdots N-1}, s_{4 \cdots N} \gg s_{3 \cdots N-2}, s_{4 \cdots N-1}, s_{5 \cdots N} \gg \cdots \\
& \ldots \ldots s_{34}, \ldots, s_{N-1 N} \gg-s_{23}, \cdots,-s_{2 \ldots N}
\end{aligned}
$$

$2 \rightarrow N-2$ Multi-Regge Kinematics (MRK)

Phenomenologically relevant high-energy gluon scattering

Amplitudes typically develop large logarithms in the kinematic invariants, which are successfully resummed within the Balitsky-Fadin-Kuraev-Lipatov (BFKL) framework, giving rise to the concept of the Reggeized gluon (Regge pole) and its bound states (Regge cuts).

$2 \rightarrow N-2$ Multi-Regge Kinematics (MRK)

Phenomenologically relevant high-energy gluon scattering

Amplitudes typically develop large logarithms in the kinematic invariants, which are successfully resummed within the Balitsky-Fadin-Kuraev-Lipatov (BFKL) framework, giving rise to the concept of the Reggeized gluon (Regge pole) and its bound states (Regge cuts).

In the Euclidean region, the BDS amplitude is Regge exact. To obtain nontrivial result, necessary to analytically continue $k_{p+1}^{0}, \ldots k_{q}^{0}$.
$2 \rightarrow N-2$ Multi-Regge Kinematics (MRK)
Phenomenologically relevant high-energy gluon scattering

Amplitudes typically develop large logarithms in the kinematic invariants, which are successfully resummed within the Balitsky-Fadin-Kuraev-Lipatov (BFKL) framework, giving rise to the concept of the Reggeized gluon (Regge pole) and its bound states (Regge cuts).

In the Euclidean region, the BDS amplitude is Regge exact. To obtain nontrivial result, necessary to analytically continue $k_{p+1}^{0}, \ldots k_{q}^{0}$.

All $[p, q]$ cuts can be reconstructed from $[1, N-4]$, so focus on the latter.

The space of functions in MRK
Previously we saw, only transverse momenta $\mathbf{p}_{i}, i \geq 3$ survive in the limit.

The space of functions in MRK
Previously we saw, only transverse momenta $\mathbf{p}_{i}, i \geq 3$ survive in the limit.

- Dual conformal invariance: If $\mathbf{p}_{i+3} \equiv \mathbf{x}_{i+2}-\mathbf{x}_{i+1}$, kinematics invariant under \mathbf{x}_{i} translations, dilations and special conformal transformations

The space of functions in MRK
Previously we saw, only transverse momenta $\mathbf{p}_{i}, i \geq 3$ survive in the limit.

- Dual conformal invariance: If $\mathbf{p}_{i+3} \equiv \mathbf{x}_{i+2}-\mathbf{x}_{i+1}$, kinematics invariant under \mathbf{x}_{i} translations, dilations and special conformal transformations
- Geometry of $N-2$ points on $\mathbb{C P}^{1} \simeq$ Riemann sphere $\mathbb{C} \cup\{\infty\}$

The space of functions in MRK

Previously we saw, only transverse momenta $\mathbf{p}_{i}, i \geq 3$ survive in the limit.

- Dual conformal invariance: If $\mathbf{p}_{i+3} \equiv \mathbf{x}_{i+2}-\mathbf{x}_{i+1}$, kinematics invariant under \mathbf{x}_{i} translations, dilations and special conformal transformations
- Geometry of $N-2$ points on $\mathbb{C P}^{1} \simeq$ Riemann sphere $\mathbb{C} \cup\{\infty\}$
- Parametrized e.g. by cross ratios (+ complex conjugates)

$$
z_{i} \equiv-w_{i} \equiv \frac{\left(\mathbf{x}_{1}-\mathbf{x}_{i+3}\right)\left(\mathbf{x}_{i+2}-\mathbf{x}_{i+1}\right)}{\left(\mathbf{x}_{1}-\mathbf{x}_{i+1}\right)\left(\mathbf{x}_{i+2}-\mathbf{x}_{i+3}\right)}, \quad i=1 \ldots N-5 .
$$

The space of functions in MRK

Previously we saw, only transverse momenta $\mathbf{p}_{i}, i \geq 3$ survive in the limit.

- Dual conformal invariance: If $\mathbf{p}_{i+3} \equiv \mathbf{x}_{i+2}-\mathbf{x}_{i+1}$, kinematics invariant under \mathbf{x}_{i} translations, dilations and special conformal transformations
- Geometry of $N-2$ points on $\mathbb{C P}^{1} \simeq$ Riemann sphere $\mathbb{C} \cup\{\infty\}$
- Parametrized e.g. by cross ratios (+ complex conjugates)

$$
z_{i} \equiv-w_{i} \equiv \frac{\left(\mathbf{x}_{1}-\mathbf{x}_{i+3}\right)\left(\mathbf{x}_{i+2}-\mathbf{x}_{i+1}\right)}{\left(\mathbf{x}_{1}-\mathbf{x}_{i+1}\right)\left(\mathbf{x}_{i+2}-\mathbf{x}_{i+3}\right)}, \quad i=1 \ldots N-5 .
$$

- Only possible singularities (letters): $\left\{\mathbf{x}_{i}-\mathbf{x}_{j}\right\}=A_{N-5}$ polylogs (+c.c)

The space of functions in MRK

Previously we saw, only transverse momenta $\mathbf{p}_{i}, i \geq 3$ survive in the limit.

- Dual conformal invariance: If $\mathbf{p}_{i+3} \equiv \mathbf{x}_{i+2}-\mathbf{x}_{i+1}$, kinematics invariant under \mathbf{x}_{i} translations, dilations and special conformal transformations
- Geometry of $N-2$ points on $\mathbb{C P}{ }^{1} \simeq$ Riemann sphere $\mathbb{C} \cup\{\infty\}$
- Parametrized e.g. by cross ratios (+ complex conjugates)

$$
z_{i} \equiv-w_{i} \equiv \frac{\left(\mathbf{x}_{1}-\mathbf{x}_{i+3}\right)\left(\mathbf{x}_{i+2}-\mathbf{x}_{i+1}\right)}{\left(\mathbf{x}_{1}-\mathbf{x}_{i+1}\right)\left(\mathbf{x}_{i+2}-\mathbf{x}_{i+3}\right)}, \quad i=1 \ldots N-5 .
$$

- Only possible singularities (letters): $\left\{\mathbf{x}_{i}-\mathbf{x}_{j}\right\}=A_{N-5}$ polylogs (+c.c)
- Physical branch cuts after analytic continuation:

First entry always $\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right|^{2} \Rightarrow$ NO branch cuts as function of \mathbf{x}_{i}

The space of functions in MRK

Previously we saw, only transverse momenta $\mathbf{p}_{i}, i \geq 3$ survive in the limit.

- Dual conformal invariance: If $\mathbf{p}_{i+3} \equiv \mathbf{x}_{i+2}-\mathbf{x}_{i+1}$, kinematics invariant under \mathbf{x}_{i} translations, dilations and special conformal transformations
- Geometry of $N-2$ points on $\mathbb{C P}^{1} \simeq$ Riemann sphere $\mathbb{C} \cup\{\infty\}$
- Parametrized e.g. by cross ratios (+ complex conjugates)

$$
z_{i} \equiv-w_{i} \equiv \frac{\left(\mathbf{x}_{1}-\mathbf{x}_{i+3}\right)\left(\mathbf{x}_{i+2}-\mathbf{x}_{i+1}\right)}{\left(\mathbf{x}_{1}-\mathbf{x}_{i+1}\right)\left(\mathbf{x}_{i+2}-\mathbf{x}_{i+3}\right)}, \quad i=1 \ldots N-5 .
$$

- Only possible singularities (letters): $\left\{\mathbf{x}_{i}-\mathbf{x}_{j}\right\}=A_{N-5}$ polylogs (+c.c)
- Physical branch cuts after analytic continuation:

First entry always $\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right|^{2} \Rightarrow$ NO branch cuts as function of \mathbf{x}_{i}

Conclusion: N-particle $\mathcal{N}=4$ Super Yang-Mills amplitudes in multi-Regge kinematics are described by single-valued A_{N-5} polylogarithms.

Single-valued multiple polylogarithms

Combinations of multiple polylogarithms,

$$
G\left(a_{1}, \ldots, a_{n} ; z\right) \equiv \int_{0}^{z} \frac{d t_{1}}{t_{1}-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t_{1}\right), \quad G(; z)=1
$$

and their complex conjugates, such that all branch cuts cancel, leaving only isolated singularities.

- $\forall G(\vec{a}, z), \exists$ unique map \mathbf{s}, such that $\mathcal{G}(\vec{a}, z) \equiv \mathbf{s}(G(\vec{a}, z))$ is single-valued.
- $G(\vec{a}, z)$ then corresponds to holomorphic part of $\mathcal{G}(\vec{a}, z)$, obtained by setting $\bar{z} \rightarrow 0$, and removing any divergent $\log \bar{z}$.
Examples:

$$
\begin{aligned}
\mathcal{G}_{a}(z) & =G_{a}(z)+G_{\bar{a}}(\bar{z})=\log \left|1-\frac{z}{a}\right|^{2}, \\
\mathcal{G}_{a, b}(z) & =G_{a, b}(z)+G_{\bar{b}, \bar{a}}(\bar{z})+G_{b}(a) G_{\bar{a}}(\bar{z})+G_{\bar{b}}(\bar{a}) G_{\bar{a}}(\bar{z}) \\
& -G_{a}(b) G_{\bar{b}}(\bar{z})+G_{a}(z) G_{\bar{b}}(\bar{z})-G_{\bar{a}}(\bar{b}) G_{\bar{b}}(\bar{z}) .
\end{aligned}
$$

Building on F.Brown's work, we constructed direct algorithm for \mathbf{s}.

Application: Amplitudes in Leading-logarithmic approximation (LLA)

LLA (Regge cut) contribution factorizes in Fourier-Mellin (FM) space.

- FM transform: $\quad \mathcal{F}[F(\nu, n)]=\sum_{n=-\infty}^{\infty}\left(\frac{w}{\bar{w}}\right)^{n / 2} \int_{-\infty}^{+\infty} \frac{d \nu}{2 \pi}|w|^{2 i \nu} F(\nu, n)$
- FM maps products into convolutions:

$$
\mathcal{F}[F \cdot G]=\mathcal{F}[F] * \mathcal{F}[G]=f * g=\frac{1}{\pi} \int \frac{d^{2} w}{|w|^{2}} f(w) g\left(\frac{z}{w}\right)
$$

- Implies recursion in loop order. E.g. for N particles: Large logarithms $\prod_{k=1}^{N-5} \log ^{i_{k}} \tau_{k}$, with $\sum_{i_{k}}=L-1$ at L loops LLA, and MHV coefficient:

$$
g_{+\ldots+}^{\left(i_{1}, \ldots, i_{k}+1, \ldots, i_{N-5}\right)}\left(w_{1}, \ldots, w_{N-5}\right)=\mathcal{E}\left(w_{k}\right) * g_{+\ldots+}^{\left(i_{1}, \ldots i_{N-5}\right)}\left(w_{1}, \ldots, w_{N-5}\right)
$$

In this fashion, obtained LLA contributions of MHV amplitudes to 5 loops for any N, and non-MHV amplitudes up to 4 loops and $N=8$.

Beyond LLA

Problem: N-particle dispersion integrals diverge for $\log ^{0} \tau_{k}$
Explore eikonal approach to 6-particle MRK: [Caron-Huot'13]

$$
e^{R_{6}(w)+i \delta_{6}(w)}=2 \pi i \sum_{n=-\infty}^{\infty}(-1)^{n}\left(\frac{w}{w^{*}}\right)^{\frac{n}{2}} \int_{-\infty}^{\infty} \frac{d \nu}{2 \pi} \tilde{\Phi}_{n}(\nu)|w|^{2 i \nu} e^{-L \omega_{n}(\nu)}
$$

$L=\log (\tau)+i \pi, \quad \delta_{6}(w)=\pi \Gamma \log \frac{|w|^{2}}{|1+w|^{4}}, \quad \Gamma=\frac{a}{2}-\frac{\zeta_{2}}{2} a^{2}+\frac{11 \zeta_{4}}{4} a^{3}+\mathcal{O}\left(a^{4}\right)$.
Soft limits strongly constrain integrand and integration contour:

$$
\lim _{w \rightarrow 0} e^{R_{6}(w)+i \delta_{6}(w)}=|w|^{2 \pi i \Gamma}, \quad \lim _{w \rightarrow \infty} e^{R_{6}(w)+i \delta_{6}(w)}=|w|^{-2 \pi i \Gamma}
$$

Imply exact bootstrap conditions for adjoint BFKL eigenvalue ω and impact factor $\tilde{\Phi}$:

$$
\omega_{0}(\pm \pi \Gamma)=0, \quad \operatorname{Res}_{\nu= \pm \pi \Gamma}\left(\tilde{\Phi}_{0}(\nu)\right)= \pm \frac{1}{2 \pi}, \xlongequal{\underset{-\pi \Gamma}{*} \omega}{\underset{\pi}{*}, \underset{\pi}{\infty}}_{\sim}^{\sim}(\nu)
$$

Beyond LLA

Heptagon all-loop dispersion relation

Propose (new ingredient: central emission block $\tilde{C}_{n_{1} n_{2}}$)

$$
\begin{gathered}
e^{R_{7}+i \delta_{7}}=2 \pi i \sum_{n_{1}, n_{2}=-\infty}^{\infty}(-1)^{n_{1}+n_{2}}\left(\frac{w_{1}}{w_{1}^{*}}\right)^{\frac{n_{1}}{2}}\left(\frac{w_{2}}{w_{2}^{*}}\right)^{\frac{n_{2}}{2}} \int \frac{d \nu_{1} d \nu_{2}}{(2 \pi)^{2}}\left|w_{1}\right|^{2 i \nu_{1}}\left|w_{2}\right|^{2 i \nu_{2}} \\
\times e^{-L_{1} \omega_{n_{1}}\left(\nu_{1}\right)} e^{-L_{2} \omega_{n_{2}}\left(\nu_{2}\right)} \tilde{\Phi}_{n_{1}}\left(\nu_{1}\right) \tilde{C}_{n_{1} n_{2}}\left(\nu_{1}, \nu_{2}\right) \tilde{\Phi}_{n_{2}}\left(\nu_{2}\right) \\
L_{i}=\log \tau_{i}+i \pi, \quad \delta_{7}=\pi \Gamma \log \frac{\left|w_{1} w_{2}\right|^{2}}{\left|1+w_{2}+w_{1} w_{2}\right|^{4}}
\end{gathered}
$$

Similarly, soft limits $w_{1} \rightarrow 0, w_{2} \rightarrow \infty$ and $w_{2} \rightarrow 0$ with $w_{1} w_{2}$ fixed, imply
$\tilde{C}_{0 n_{2}}\left(\pi \Gamma, \nu_{2}\right)=\tilde{C}_{n_{1} 0}\left(\nu_{1},-\pi \Gamma\right)=2 \pi i, \underset{\nu_{1}=\nu_{2}}{\operatorname{Res}} \tilde{C}_{n_{2} n_{2}}\left(\nu_{1}, \nu_{2}\right)=\frac{-i(-1)^{n} e^{i \pi \omega_{n_{2}}\left(\nu_{2}\right)}}{\tilde{\Phi}_{n_{2}}\left(\nu_{2}\right)}$

Determining the building blocks of the BFKL dispersion integrals $\omega_{n}, \tilde{\Phi}_{n}$

- Initially obtained to LO from adjoint BFKL equation
[Bartels,Lipatov,Sabio Vera]

$$
\begin{aligned}
\omega_{n}(\nu) & =-a E(\nu, n)+\mathcal{O}\left(a^{2}\right), \quad \tilde{\Phi}_{n}(\nu)=\frac{a}{2} \frac{1}{\nu^{2}+\frac{n^{2}}{4}}+\mathcal{O}\left(a^{2}\right) \\
E(\nu, n) & =-\frac{1}{2} \frac{|n|}{\nu^{2}+\frac{n^{2}}{4}}+\psi\left(1+i \nu+\frac{|n|}{2}\right)+\psi\left(1-i \nu+\frac{|n|}{2}\right)-2 \psi(1)
\end{aligned}
$$

- Higher order corrections extracted from 6-particle perturbative data [Lipatov, Prygarin] [Dixon,Duhr,Pennington]
- Remarkably, MRK intimately related to collinear limit, described at any coupling with the help of integrability by the 'Wilson loop OPE' [Alday, Gaiotto,Maldacena,Sever,Vieira] [Basso,Sever,Vieira]
- Can obtain $\omega_{n}, \tilde{\Phi}_{n}$ to all loops! From analytic continuation of '1-particle gluon bound states' [Basso,Caron-Huot,Sever][Drummond, GP] [Hatsuda]

$$
\mathcal{W}_{6} \equiv \sum_{a=1}^{\infty} \int \frac{d u}{2 \pi} \mu_{a}(u) e^{-E_{a}(u) \tau+i p_{a}(u) \sigma+i a \phi}
$$

Determining the building blocks of the BFKL dispersion integrals $\tilde{C}_{n_{1} n_{2}}$

- Once again, computed to LO within the BFKL approach [Bartels,Kormilitzin, Lipatov, Prygarin]

$$
\tilde{C}_{n_{1} n_{2}}^{(0)}\left(\nu_{1}, \nu_{2}\right)=\frac{\Gamma\left(1-i \nu_{1}-\frac{n_{1}}{2}\right) \Gamma\left(1+i \nu_{2}+\frac{n_{2}}{2}\right) \Gamma\left(i \nu_{1}-i \nu_{2}-\frac{n_{1}}{2}+\frac{n_{2}}{2}\right)}{\Gamma\left(i \nu_{1}-\frac{n_{1}}{2}\right) \Gamma\left(-i \nu_{2}+\frac{n_{2}}{2}\right) \Gamma\left(1-i \nu_{1}+i \nu_{2}-\frac{n_{1}}{2}+\frac{n_{2}}{2}\right)}
$$

- Here: Extract from 2-loop symbol of all MHV amplitudes, specialized to MRK [Caron-Huot] [Prygarin,Spradlin, VerguVolovich] [Barheer, GP,Schomerus]
- Single-valuedness and soft limits uniquely upgrade symbol to function:

$$
\begin{aligned}
& \frac{\tilde{C}_{n 1 n_{2}}^{(1)}\left(\nu_{1}, \nu_{2}\right)}{\tilde{C}_{n_{1} n_{2}}^{(0)}\left(\nu_{1}, \nu_{2}\right)}= \frac{1}{2}\left[D E_{1}-D E_{2}+E_{1} E_{2}+\frac{1}{4}\left(N_{1}+N_{2}\right)^{2}+V_{1} V_{2}\right. \\
&\left.+\left(V_{1}-V_{2}\right)\left(M-E_{1}-E_{2}\right)+2 \zeta_{2}+i \pi\left(V_{2}-V_{1}-E_{1}-E_{2}\right)\right] . \\
& V(\nu, n) \equiv \frac{i \nu}{\nu^{2}+\frac{n^{2}}{4}}, \quad N(\nu, n)=\frac{n}{\nu^{2}+\frac{n^{2}}{4}}, \quad D_{\nu}=-i \partial / \partial \nu, \\
& M\left(\nu_{1}, n_{1}, \nu_{2}, n_{2}\right)=\psi\left(i\left(\nu_{1}-\nu_{2}\right)-\frac{n_{1}-n_{2}}{2}\right)+\psi\left(1-i\left(\nu_{1}-\nu_{2}\right)-\frac{n_{1}-n_{2}}{2}\right)+2 \gamma_{E} .
\end{aligned}
$$

Applications

- 5-loop MHV/4-loop NMHV 7-particle amplitude to NLLA, by evaluating dispersion integral by residues + nested sum algorithms [Moch,Uwer,Weinzierl]
- Generalize dispersion integral to any number of particles! 3-loop MHV 8-particle amplitude to NLLA by convolutions
- Momentun space factorization: L-loop NLLA MHV amplitudes decomposed into building blocks associated to amplitudes with up to $L+5$ legs
- Thus, obtain all 3-loop NLLA MHV amplitudes

Conclusions \& Outlook

In this presentation, we talked the beauty and simplicity of $\mathcal{N}=4$ SYM amplitudes.

We focused on two approaches for their computation:

- The (Steinmann, Cluster) Bootstrap at fixed-order/general kinematics, exploiting their analytic properties
$\Rightarrow N=6$ gluons to 6 loops, $N=7$ gluons to 4 loops
- The study of the multi-Regge limit, where factorization, dual conformal invariance and soft limits yield all-loop predictions $\forall N$
\Rightarrow Application to (N)LLA, all MHV to (3)5 loops, also non-MHV

Conclusions \& Outlook

In this presentation, we talked the beauty and simplicity of $\mathcal{N}=4$ SYM amplitudes.

We focused on two approaches for their computation:

- The (Steinmann, Cluster) Bootstrap at fixed-order/general kinematics, exploiting their analytic properties
$\Rightarrow N=6$ gluons to 6 loops, $N=7$ gluons to 4 loops
- The study of the multi-Regge limit, where factorization, dual conformal invariance and soft limits yield all-loop predictions $\forall N$ \Rightarrow Application to (N)LLA, all MHV to (3)5 loops, also non-MHV

Ultimately, can the integrability of planar SYM theory, together with a thorough knowledge of the analytic structure of its amplitudes, lead us to the theory's exact S-matrix?

Momentum Twistors Z^{I} [Hodges]

Momentum Twistors Z^{I} [Hodges]

- Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors

$$
X^{M} \in \mathbb{R}^{2,4}, X^{2}=0, X \sim \lambda X
$$

Momentum Twistors Z^{I} [Hodges]

- Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors

$$
X^{M} \in \mathbb{R}^{2,4}, X^{2}=0, X \sim \lambda X
$$

- Repackage vector X^{M} of $S O(2,4)$ into antisymmetric representation

$$
X^{I J}=-X^{J I}=\square \text { of } S U(2,2)
$$

Momentum Twistors Z^{I} [Hodges]

- Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors

$$
X^{M} \in \mathbb{R}^{2,4}, X^{2}=0, X \sim \lambda X .
$$

- Repackage vector X^{M} of $S O(2,4)$ into antisymmetric representation

$$
X^{I J}=-X^{J I}=\square \text { of } S U(2,2)
$$

- Can build latter from two copies of the fundamental $Z^{I}=\square$,

$$
X^{I J}=Z^{[I} \tilde{Z}^{J]}=\left(Z^{I} \tilde{Z}^{J}-Z^{J} \tilde{Z}^{I}\right) / 2 \text { or } X=Z \wedge \tilde{Z}
$$

Momentum Twistors Z^{I} [Hodges]

- Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors

$$
X^{M} \in \mathbb{R}^{2,4}, X^{2}=0, X \sim \lambda X
$$

- Repackage vector X^{M} of $S O(2,4)$ into antisymmetric representation

$$
X^{I J}=-X^{J I}=\square \text { of } S U(2,2)
$$

- Can build latter from two copies of the fundamental $Z^{I}=\square$,

$$
X^{I J}=Z^{[I} \tilde{Z}^{J]}=\left(Z^{I} \tilde{Z}^{J}-Z^{J} \tilde{Z}^{I}\right) / 2 \text { or } X=Z \wedge \tilde{Z}
$$

- After complexifying, Z^{I} transform in $S L(4, \mathbb{C})$. Since $Z \sim t Z$, can be viewed as homogeneous coordinates on \mathbb{P}^{3}.

Momentum Twistors Z^{I} [Hodges]

- Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors

$$
X^{M} \in \mathbb{R}^{2,4}, X^{2}=0, X \sim \lambda X
$$

- Repackage vector X^{M} of $S O(2,4)$ into antisymmetric representation

$$
X^{I J}=-X^{J I}=\square \text { of } S U(2,2)
$$

- Can build latter from two copies of the fundamental $Z^{I}=\square$,

$$
X^{I J}=Z^{[I} \tilde{Z}^{J]}=\left(Z^{I} \tilde{Z}^{J}-Z^{J} \tilde{Z}^{I}\right) / 2 \text { or } X=Z \wedge \tilde{Z}
$$

- After complexifying, Z^{I} transform in $S L(4, \mathbb{C})$. Since $Z \sim t Z$, can be viewed as homogeneous coordinates on \mathbb{P}^{3}.
- Can show

$$
\left(x-x^{\prime}\right)^{2} \propto 2 X \cdot X^{\prime}=\epsilon_{I J K L} Z^{I} \tilde{Z}^{J} Z^{\prime K} \tilde{Z}^{L}=\operatorname{det}\left(Z \tilde{Z} Z^{\prime} \tilde{Z}^{\prime}\right) \equiv\left\langle Z \tilde{Z} Z^{\prime} \tilde{Z}^{\prime}\right\rangle
$$

Momentum Twistors Z^{I} [Hodges]

- Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors

$$
X^{M} \in \mathbb{R}^{2,4}, X^{2}=0, X \sim \lambda X
$$

- Repackage vector X^{M} of $S O(2,4)$ into antisymmetric representation

$$
X^{I J}=-X^{J I}=\square \text { of } S U(2,2)
$$

- Can build latter from two copies of the fundamental $Z^{I}=\square$,

$$
X^{I J}=Z^{[I} \tilde{Z}^{J]}=\left(Z^{I} \tilde{Z}^{J}-Z^{J} \tilde{Z}^{I}\right) / 2 \text { or } X=Z \wedge \tilde{Z}
$$

- After complexifying, Z^{I} transform in $S L(4, \mathbb{C})$. Since $Z \sim t Z$, can be viewed as homogeneous coordinates on \mathbb{P}^{3}.
- Can show

$$
\begin{aligned}
& \left(x-x^{\prime}\right)^{2} \propto 2 X \cdot X^{\prime}=\epsilon_{I J K L} Z^{I} \tilde{Z}^{J} Z^{\prime K} \tilde{Z}^{\prime L}=\operatorname{det}\left(Z \tilde{Z} Z^{\prime} \tilde{Z}^{\prime}\right) \equiv\left\langle Z \tilde{Z} Z^{\prime} \tilde{Z}^{\prime}\right\rangle \\
& \left(x_{i+i}-x_{i}\right)^{2}=0 \Rightarrow X_{i}=Z_{i-1} \wedge Z_{i}
\end{aligned}
$$

$\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ and Graßmannians

Can realize $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ as $4 \times n$ matrix $\left(Z_{1}\left|Z_{2}\right| \ldots \mid Z_{n}\right)$ modulo rescalings of the n columns and $S L(4)$ transformations, which resembles a Graßmannian $\operatorname{Gr}(4, n)$.

$\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ and Graßmannians

Can realize $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ as $4 \times n$ matrix $\left(Z_{1}\left|Z_{2}\right| \ldots \mid Z_{n}\right)$ modulo rescalings of the n columns and $S L(4)$ transformations, which resembles a Graßmannian $\operatorname{Gr}(4, n)$.
$G r(k, n)$: The space of k-dimensional planes passing through the origin in an n-dimensional space.

$\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ and Graßmannians

Can realize $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ as $4 \times n$ matrix $\left(Z_{1}\left|Z_{2}\right| \ldots \mid Z_{n}\right)$ modulo rescalings of the n columns and $S L(4)$ transformations, which resembles a Graßmannian $\operatorname{Gr}(4, n)$.
$G r(k, n)$: The space of k-dimensional planes passing through the origin in an n-dimensional space. Equivalently the space of $k \times n$ matrices modulo $G L(k)$ transformations:

$\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ and Graßmannians

Can realize $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ as $4 \times n$ matrix $\left(Z_{1}\left|Z_{2}\right| \ldots \mid Z_{n}\right)$ modulo rescalings of the n columns and $S L(4)$ transformations, which resembles a Graßmannian $\operatorname{Gr}(4, n)$.
$G r(k, n)$: The space of k-dimensional planes passing through the origin in an n-dimensional space. Equivalently the space of $k \times n$ matrices modulo $G L(k)$ transformations:

- k-plane specified by k basis vectors that span it $\Rightarrow k \times n$ matrix

$\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ and Graßmannians

Can realize $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ as $4 \times n$ matrix $\left(Z_{1}\left|Z_{2}\right| \ldots \mid Z_{n}\right)$ modulo rescalings of the n columns and $S L(4)$ transformations, which resembles a Graßmannian $\operatorname{Gr}(4, n)$.
$G r(k, n)$: The space of k-dimensional planes passing through the origin in an n-dimensional space. Equivalently the space of $k \times n$ matrices modulo $G L(k)$ transformations:

- k-plane specified by k basis vectors that span it $\Rightarrow k \times n$ matrix
- Under $G L(k)$ transformations, basis vectors change, but still span the same plane.

$\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ and Graßmannians

Can realize $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ as $4 \times n$ matrix $\left(Z_{1}\left|Z_{2}\right| \ldots \mid Z_{n}\right)$ modulo rescalings of the n columns and $S L(4)$ transformations, which resembles a Graßmannian $\operatorname{Gr}(4, n)$.
$G r(k, n)$: The space of k-dimensional planes passing through the origin in an n-dimensional space. Equivalently the space of $k \times n$ matrices modulo $G L(k)$ transformations:

- k-plane specified by k basis vectors that span it $\Rightarrow k \times n$ matrix
- Under $G L(k)$ transformations, basis vectors change, but still span the same plane.
Comparing the two matrices,

$$
\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)=G r(4, n) /\left(C^{*}\right)^{n-1}
$$

Imposing Constraints: Integrable Words

Imposing Constraints: Integrable Words
Given a random symbol \mathcal{S} of weight $k>1$, there does not in general exist any function whose symbol is \mathcal{S}. A symbol is said to be integrable, (or, to be an integrable word) if it satisfies

$$
\sum_{\alpha_{1}, \ldots, \alpha_{k}} f_{0}^{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)} d \log \phi_{\alpha_{j}} \wedge d \log \phi_{\alpha_{j+1}} \underbrace{\left(\phi_{\alpha_{1}} \otimes \cdots \otimes \phi_{\alpha_{k}}\right)}_{\text {omitting } \phi_{\alpha_{j}} \otimes \phi_{\alpha_{j+1}}}=0
$$

$\forall j \in\{1, \ldots, k-1\}$. These are necessary and sufficient conditions for a function f_{k} with symbol \mathcal{S} to exist.

Imposing Constraints: Integrable Words

Given a random symbol \mathcal{S} of weight $k>1$, there does not in general exist any function whose symbol is \mathcal{S}. A symbol is said to be integrable, (or, to be an integrable word) if it satisfies

$$
\sum_{\alpha_{1}, \ldots, \alpha_{k}} f_{0}^{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)} d \log \phi_{\alpha_{j}} \wedge d \log \phi_{\alpha_{j+1}} \underbrace{\left(\phi_{\alpha_{1}} \otimes \cdots \otimes \phi_{\alpha_{k}}\right)}_{\text {omitting } \phi_{\alpha_{j}} \otimes \phi_{\alpha_{j+1}}}=0
$$

$\forall j \in\{1, \ldots, k-1\}$. These are necessary and sufficient conditions for a function f_{k} with symbol \mathcal{S} to exist.

Example: $(1-x y) \otimes(1-x)$ with x, y independent.

Imposing Constraints: Integrable Words

Given a random symbol \mathcal{S} of weight $k>1$, there does not in general exist any function whose symbol is \mathcal{S}. A symbol is said to be integrable, (or, to be an integrable word) if it satisfies

$$
\sum_{\alpha_{1}, \ldots, \alpha_{k}} f_{0}^{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)} d \log \phi_{\alpha_{j}} \wedge d \log \phi_{\alpha_{j+1}} \underbrace{\left(\phi_{\alpha_{1}} \otimes \cdots \otimes \phi_{\alpha_{k}}\right)}_{\text {omitting } \phi_{\alpha_{j}} \otimes \phi_{\alpha_{j+1}}}=0
$$

$\forall j \in\{1, \ldots, k-1\}$. These are necessary and sufficient conditions for a function f_{k} with symbol \mathcal{S} to exist.

Example: $(1-x y) \otimes(1-x)$ with x, y independent.

$$
\begin{aligned}
d \log (1-x y) \wedge d \log (1-x) & =\frac{-y d x-x d y}{1-x y} \wedge \frac{-d x}{1-x} \\
& =\frac{x}{(1-x y)(1-x)} d y \wedge d x
\end{aligned}
$$

Imposing Constraints: Integrable Words

Given a random symbol \mathcal{S} of weight $k>1$, there does not in general exist any function whose symbol is \mathcal{S}. A symbol is said to be integrable, (or, to be an integrable word) if it satisfies

$$
\sum_{\alpha_{1}, \ldots, \alpha_{k}} f_{0}^{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)} d \log \phi_{\alpha_{j}} \wedge d \log \phi_{\alpha_{j+1}} \underbrace{\left(\phi_{\alpha_{1}} \otimes \cdots \otimes \phi_{\alpha_{k}}\right)}_{\text {omitting } \phi_{\alpha_{j}} \otimes \phi_{\alpha_{j+1}}}=0
$$

$\forall j \in\{1, \ldots, k-1\}$. These are necessary and sufficient conditions for a function f_{k} with symbol \mathcal{S} to exist.

Example: $(1-x y) \otimes(1-x)$ with x, y independent.

$$
\begin{aligned}
d \log (1-x y) \wedge d \log (1-x) & =\frac{-y d x-x d y}{1-x y} \wedge \frac{-d x}{1-x} \\
& =\frac{x}{(1-x y)(1-x)} d y \wedge d x
\end{aligned}
$$

Not integrable

Imposing Constraints: Physical Singularities

Imposing Constraints: Physical Singularities

Locality: Amplitudes may only have singularities when some intermediate particle goes on-shell.

Imposing Constraints: Physical Singularities
Locality: Amplitudes may only have singularities when some intermediate particle goes on-shell.

Planar colour-ordered amplitudes in massless theories: Only happens when

$$
\left(p_{i}+p_{i+1}+\cdots+p_{j-1}\right)^{2}=\left(x_{j}-x_{i}\right)^{2} \propto\langle i-1 i j-1 j\rangle \rightarrow 0
$$

Imposing Constraints: Physical Singularities

Locality: Amplitudes may only have singularities when some intermediate particle goes on-shell.

Planar colour-ordered amplitudes in massless theories: Only happens when

$$
\left(p_{i}+p_{i+1}+\cdots+p_{j-1}\right)^{2}=\left(x_{j}-x_{i}\right)^{2} \propto\langle i-1 i j-1 j\rangle \rightarrow 0
$$

Singularities of multiple polylogarithm functions are encoded in the first entry of their symbols.

First-entry condition: Only $\langle i-1 i j-1 j\rangle$ allowed in the first entry of \mathcal{S}

Imposing Constraints: Physical Singularities

Locality: Amplitudes may only have singularities when some intermediate particle goes on-shell.

Planar colour-ordered amplitudes in massless theories: Only happens when

$$
\left(p_{i}+p_{i+1}+\cdots+p_{j-1}\right)^{2}=\left(x_{j}-x_{i}\right)^{2} \propto\langle i-1 i j-1 j\rangle \rightarrow 0
$$

Singularities of multiple polylogarithm functions are encoded in the first entry of their symbols.

First-entry condition: Only $\langle i-1 i j-1 j\rangle$ allowed in the first entry of \mathcal{S}

Particularly for $n=7$, this restricts letters of the first entry to $a_{1 j}$.

Imposing Constraints: Physical Singularities

Locality: Amplitudes may only have singularities when some intermediate particle goes on-shell.

Planar colour-ordered amplitudes in massless theories: Only happens when

$$
\left(p_{i}+p_{i+1}+\cdots+p_{j-1}\right)^{2}=\left(x_{j}-x_{i}\right)^{2} \propto\langle i-1 i j-1 j\rangle \rightarrow 0
$$

Singularities of multiple polylogarithm functions are encoded in the first entry of their symbols.

First-entry condition: Only $\langle i-1 i j-1 j\rangle$ allowed in the first entry of \mathcal{S}

Particularly for $n=7$, this restricts letters of the first entry to $a_{1 j}$.
Define a heptagon symbol: An integrable symbol with alphabet $a_{i j}$ that obeys first-entry condition.

MHV Constraints: Yangian anomaly equations

MHV Constraints: Yangian anomaly equations

- Tree-level amplitudes exhibit (usual + dual) superconformal symmetry [Drummond,Henn,Korchemsky,Sokatchev]

MHV Constraints: Yangian anomaly equations

- Tree-level amplitudes exhibit (usual + dual) superconformal symmetry [Drummond,Henn,Korchemsky,Sokatchev]
- Combination of two symmetries gives rise to a Yangian [Drummond,Henn,Plefka][Drummond,Ferro]

MHV Constraints: Yangian anomaly equations

- Tree-level amplitudes exhibit (usual + dual) superconformal symmetry [Drummond,Henn,Korchemsky,Sokatchev]
- Combination of two symmetries gives rise to a Yangian [Drummond,Henn,Plefka][Drummond,Ferro]
- Although broken at loop level by IR divergences, Yangian anomaly equations governing this breaking have been proposed [Caron-Huot,He]

Consequence for MHV amplitudes: Their differential is a linear combination of $d \log \langle i j-1 j j+1\rangle$, which implies

Last-entry condition: Only $\langle i j-1 j j+1\rangle$ may appear in the last entry of the symbol of any MHV amplitude.

MHV Constraints: Yangian anomaly equations

- Tree-level amplitudes exhibit (usual + dual) superconformal symmetry [Drummond,Henn,Korchemsky,Sokatchev]
- Combination of two symmetries gives rise to a Yangian [Drummond,Henn,Plefka][Drummond,Ferro]
- Although broken at loop level by IR divergences, Yangian anomaly equations governing this breaking have been proposed [Caron-Huot,He]

Consequence for MHV amplitudes: Their differential is a linear combination of $d \log \langle i j-1 j j+1\rangle$, which implies

Last-entry condition: Only $\langle i j-1 j j+1\rangle$ may appear in the last entry of the symbol of any MHV amplitude.

Particularly here: Only the 14 letters $a_{2 j}$ and $a_{3 j}$ may appear in the last symbol entry of R_{7}.

Imposing Constraints: The Collinear Limit

It is baked into the definition of the BDS normalized n-particle L-loop MHV remainder function that it should smoothly approach the corresponding ($n-1$)-particle function in any simple collinear limit:

$$
\lim _{i+1 \| i} R_{n}^{(L)}=R_{n-1}^{(L)}
$$

Imposing Constraints: The Collinear Limit

It is baked into the definition of the BDS normalized n-particle L-loop MHV remainder function that it should smoothly approach the corresponding ($n-1$)-particle function in any simple collinear limit:

$$
\lim _{i+1 \| i} R_{n}^{(L)}=R_{n-1}^{(L)}
$$

For $n=7$, taking this limit in the most general manner reduces the 42-letter heptagon symbol alphabet to 9-letter hexagon symbol alphabet, plus nine additional letters.

Imposing Constraints: The Collinear Limit

It is baked into the definition of the BDS normalized n-particle L-loop MHV remainder function that it should smoothly approach the corresponding ($n-1$)-particle function in any simple collinear limit:

$$
\lim _{i+1 \| i} R_{n}^{(L)}=R_{n-1}^{(L)}
$$

For $n=7$, taking this limit in the most general manner reduces the 42-letter heptagon symbol alphabet to 9-letter hexagon symbol alphabet, plus nine additional letters.

A function has a well-defined $i+1 \| i$ limit only if its symbol is independent of all nine of these letters.

Computing Heptagon Symbols

Computing Heptagon Symbols

Step 1 (Straightforward)

Form linear combination of all length- k symbols made of $a_{i j}$ obeying initial/Steinmann (+final) entry conditions, with unknown coefficients grouped in vector X.

Computing Heptagon Symbols

Step 1 (Straightforward)

Form linear combination of all length- k symbols made of $a_{i j}$ obeying initial/Steinmann (+final) entry conditions, with unknown coefficients grouped in vector X.

Step 2 (Challenging)
Solve integrability constraints, which take the form

$$
A \cdot X=0
$$

Namely all weight- k heptagon functions will be the right nullspace of rational matrix A.

Computing Heptagon Symbols

Step 1 (Straightforward)

Form linear combination of all length- k symbols made of $a_{i j}$ obeying initial/Steinmann (+final) entry conditions, with unknown coefficients grouped in vector X.

Step 2 (Challenging)
Solve integrability constraints, which take the form

$$
A \cdot X=0
$$

Namely all weight- k heptagon functions will be the right nullspace of rational matrix A.
"Just" linear algebra, however for e.g. 4-loop MHV hexagon A boils down to a size of 941498×60182. Tackled with fraction-free variants of Gaussian elimination that bound the size of intermediate expressions, implemented in Integer Matrix Library and Sage.
[Storjohann]

BDS versus BDS-like normalized amplitudes

BDS versus BDS-like normalized amplitudes

- BDS ansatz: Essentially the exponentiated 1-loop amplitude

BDS versus BDS-like normalized amplitudes

- BDS ansatz: Essentially the exponentiated 1-loop amplitude
- Contains 3 -particle invariants $s_{i-1, i, i+1}$

BDS versus BDS-like normalized amplitudes

- BDS ansatz: Essentially the exponentiated 1-loop amplitude
- Contains 3-particle invariants $s_{i-1, i, i+1}$
- BDS-like: Remove $s_{i-1, i, i+1}$ from BDS in conformally invariant fashion

BDS versus BDS-like normalized amplitudes

- BDS ansatz: Essentially the exponentiated 1-loop amplitude
- Contains 3 -particle invariants $s_{i-1, i, i+1}$
- BDS-like: Remove $s_{i-1, i, i+1}$ from BDS in conformally invariant fashion

$$
\mathcal{A}_{7}^{\mathrm{BDS} \text {-like }} \equiv \mathcal{A}_{7}^{\mathrm{BDS}} \exp \left[\frac{\Gamma_{\text {cusp }}}{4} Y_{7}\right]
$$

BDS versus BDS-like normalized amplitudes

- BDS ansatz: Essentially the exponentiated 1-loop amplitude
- Contains 3 -particle invariants $s_{i-1, i, i+1}$
- BDS-like: Remove $s_{i-1, i, i+1}$ from BDS in conformally invariant fashion

$$
\begin{gathered}
\mathcal{A}_{7}^{\mathrm{BDS}-\text { like }} \equiv \mathcal{A}_{7}^{\mathrm{BDS}} \exp \left[\frac{\Gamma_{\text {cusp }}}{4} Y_{7}\right] \\
Y_{7}=-\sum_{i=1}^{7}\left[\operatorname{Li}_{2}\left(1-\frac{1}{u_{i}}\right)+\frac{1}{2} \log \left(\frac{u_{i+2} u_{i-2}}{u_{i+3} u_{i} u_{i-3}}\right) \log u_{i}\right],
\end{gathered}
$$

BDS versus BDS-like normalized amplitudes

- BDS ansatz: Essentially the exponentiated 1-loop amplitude
- Contains 3 -particle invariants $s_{i-1, i, i+1}$
- BDS-like: Remove $s_{i-1, i, i+1}$ from BDS in conformally invariant fashion

$$
\begin{gathered}
\mathcal{A}_{7}^{\mathrm{BDS}-\text { like }} \equiv \mathcal{A}_{7}^{\mathrm{BDS}} \exp \left[\frac{\Gamma_{\text {cusp }}}{4} Y_{7}\right] \\
Y_{7}=-\sum_{i=1}^{7}\left[\operatorname{Li}_{2}\left(1-\frac{1}{u_{i}}\right)+\frac{1}{2} \log \left(\frac{u_{i+2} u_{i-2}}{u_{i+3} u_{i} u_{i-3}}\right) \log u_{i}\right], \\
u_{i}=\frac{x_{i+1, i+5}^{2} x_{i+2, i+4}^{2}}{x_{i+1, i+4}^{2} x_{i+2, i+5}^{2}}, \quad \Gamma_{\text {cusp }}=4 g^{2}-\frac{4 \pi^{2}}{3} g^{4}+\mathcal{O}\left(g^{6}\right),
\end{gathered}
$$

BDS versus BDS-like normalized amplitudes

- BDS ansatz: Essentially the exponentiated 1-loop amplitude
- Contains 3 -particle invariants $s_{i-1, i, i+1}$
- BDS-like: Remove $s_{i-1, i, i+1}$ from BDS in conformally invariant fashion

$$
\begin{gathered}
\mathcal{A}_{7}^{\mathrm{BDS}-\text { like }} \equiv \mathcal{A}_{7}^{\mathrm{BDS}} \exp \left[\frac{\Gamma_{\text {cusp }}}{4} Y_{7}\right] \\
Y_{7}=-\sum_{i=1}^{7}\left[\operatorname{Li}_{2}\left(1-\frac{1}{u_{i}}\right)+\frac{1}{2} \log \left(\frac{u_{i+2} u_{i-2}}{u_{i+3} u_{i} u_{i-3}}\right) \log u_{i}\right] \\
u_{i}=\frac{x_{i+1, i+5}^{2} x_{i+2, i+4}^{2}}{x_{i+1, i+4}^{2} x_{i+2, i+5}^{2}}, \quad \Gamma_{\text {cusp }}=4 g^{2}-\frac{4 \pi^{2}}{3} g^{4}+\mathcal{O}\left(g^{6}\right),
\end{gathered}
$$

This way, $\operatorname{Disc}_{s_{i-1, i, i+1}} \mathcal{A}_{7}=\mathcal{A}_{7}^{\mathrm{BDS} \text {-like }} \operatorname{Disc}_{s_{i-1, i, i+1}}\left[\mathcal{A}_{7} / \mathcal{A}_{7}^{\mathrm{BDS} \text {-like }}\right]$

BDS versus BDS-like normalized amplitudes

- BDS ansatz: Essentially the exponentiated 1-loop amplitude
- Contains 3 -particle invariants $s_{i-1, i, i+1}$
- BDS-like: Remove $s_{i-1, i, i+1}$ from BDS in conformally invariant fashion

$$
\begin{gathered}
\mathcal{A}_{7}^{\mathrm{BDS}-\text { like }} \equiv \mathcal{A}_{7}^{\mathrm{BDS}} \exp \left[\frac{\Gamma_{\text {cusp }}}{4} Y_{7}\right] \\
Y_{7}=-\sum_{i=1}^{7}\left[\operatorname{Li}_{2}\left(1-\frac{1}{u_{i}}\right)+\frac{1}{2} \log \left(\frac{u_{i+2} u_{i-2}}{u_{i+3} u_{i} u_{i-3}}\right) \log u_{i}\right], \\
u_{i}=\frac{x_{i+1, i+5}^{2} x_{i+2, i+4}^{2}}{x_{i+1, i+4}^{2} x_{i+2, i+5}^{2}}, \quad \Gamma_{\text {cusp }}=4 g^{2}-\frac{4 \pi^{2}}{3} g^{4}+\mathcal{O}\left(g^{6}\right),
\end{gathered}
$$

This way, $\operatorname{Disc}_{s_{i-1, i, i+1}} \mathcal{A}_{7}=\mathcal{A}_{7}^{\mathrm{BDS} \text {-like }} \operatorname{Disc}_{s_{i-1, i, i+1}}\left[\mathcal{A}_{7} / \mathcal{A}_{7}^{\mathrm{BDS} \text {-like }}\right]$
BDS-like normalized amplitudes obey Steinmann relations, BDS normalized ones do not!

NMHV (super)amplitudes

Beyond MHV, amplitudes most efficiently organized by exploiting the (dual) superconformal symmetry of $\mathcal{N}=4 \mathrm{SYM}$.

NMHV (super)amplitudes

Beyond MHV, amplitudes most efficiently organized by exploiting the (dual) superconformal symmetry of $\mathcal{N}=4 \mathrm{SYM}$.
$\Phi=G^{+}+\eta^{A} \Gamma_{A}+\frac{1}{2!} \eta^{A} \eta^{B} S_{A B}+\frac{1}{3!} \eta^{A} \eta^{B} \eta^{C} \epsilon_{A B C D} \bar{\Gamma}^{D}+\frac{1}{4!} \eta^{A} \eta^{B} \eta^{C} \eta^{D} \epsilon_{A B C D} G^{-}$

NMHV (super)amplitudes

Beyond MHV, amplitudes most efficiently organized by exploiting the (dual) superconformal symmetry of $\mathcal{N}=4 \mathrm{SYM}$.
$\Phi=G^{+}+\eta^{A} \Gamma_{A}+\frac{1}{2!} \eta^{A} \eta^{B} S_{A B}+\frac{1}{3!} \eta^{A} \eta^{B} \eta^{C} \epsilon_{A B C D} \bar{\Gamma}^{D}+\frac{1}{4!} \eta^{A} \eta^{B} \eta^{C} \eta^{D} \epsilon_{A B C D} G^{-}$
$\mathcal{A}_{n}^{\mathrm{MHV}}=(2 \pi)^{4} \delta^{(4)}\left(\sum_{i=1}^{n} p_{i}\right) \sum_{1 \leq j<k \leq n}\left(\eta_{j}\right)^{4}\left(\eta_{k}\right)^{4} A_{n}^{\mathrm{MHV}}\left(1^{+} \ldots j^{-} \ldots k^{-} \ldots n^{+}\right)+\ldots$,

NMHV (super)amplitudes

Beyond MHV, amplitudes most efficiently organized by exploiting the (dual) superconformal symmetry of $\mathcal{N}=4 \mathrm{SYM}$.
$\Phi=G^{+}+\eta^{A} \Gamma_{A}+\frac{1}{2!} \eta^{A} \eta^{B} S_{A B}+\frac{1}{3!} \eta^{A} \eta^{B} \eta^{C} \epsilon_{A B C D} \bar{\Gamma}^{D}+\frac{1}{4!} \eta^{A} \eta^{B} \eta^{C} \eta^{D} \epsilon_{A B C D} G^{-}$
$\mathcal{A}_{n}^{\mathrm{MHV}}=(2 \pi)^{4} \delta^{(4)}\left(\sum_{i=1}^{n} p_{i}\right) \sum_{1 \leq j<k \leq n}\left(\eta_{j}\right)^{4}\left(\eta_{k}\right)^{4} A_{n}^{\mathrm{MHV}}\left(1^{+} \ldots j^{-} \ldots k^{-} \ldots n^{+}\right)+\ldots$,
$E \equiv \frac{\mathcal{A}_{7}^{\mathrm{NMHV}}}{\mathcal{A}_{7}^{\mathrm{BDS}} \text {-like }}=\mathcal{P}^{(0)} E_{0}+\left[(12) E_{12}+(14) E_{14}+\right.$ cyclic $]$.

NMHV (super)amplitudes

Beyond MHV, amplitudes most efficiently organized by exploiting the (dual) superconformal symmetry of $\mathcal{N}=4 \mathrm{SYM}$.
$\Phi=G^{+}+\eta^{A} \Gamma_{A}+\frac{1}{2!} \eta^{A} \eta^{B} S_{A B}+\frac{1}{3!} \eta^{A} \eta^{B} \eta^{C} \epsilon_{A B C D} \bar{\Gamma}^{D}+\frac{1}{4!} \eta^{A} \eta^{B} \eta^{C} \eta^{D} \epsilon_{A B C D} G^{-}$
$\mathcal{A}_{n}^{\mathrm{MHV}}=(2 \pi)^{4} \delta^{(4)}\left(\sum_{i=1}^{n} p_{i}\right) \sum_{1 \leq j<k \leq n}\left(\eta_{j}\right)^{4}\left(\eta_{k}\right)^{4} A_{n}^{\mathrm{MHV}}\left(1^{+} \ldots j^{-} \ldots k^{-} \ldots n^{+}\right)+\ldots$,
$E \equiv \frac{\mathcal{A}_{7}^{\mathrm{NMHV}}}{\mathcal{A}_{7}^{\mathrm{BDS}} \text {-like }}=\mathcal{P}^{(0)} E_{0}+\left[(12) E_{12}+(14) E_{14}+\right.$ cyclic $]$.

- E_{0}, E_{12}, E_{14} the transcendental functions we wish to determine

NMHV (super)amplitudes

Beyond MHV, amplitudes most efficiently organized by exploiting the (dual) superconformal symmetry of $\mathcal{N}=4 \mathrm{SYM}$.
$\Phi=G^{+}+\eta^{A} \Gamma_{A}+\frac{1}{2!} \eta^{A} \eta^{B} S_{A B}+\frac{1}{3!} \eta^{A} \eta^{B} \eta^{C} \epsilon_{A B C D} \bar{\Gamma}^{D}+\frac{1}{4!} \eta^{A} \eta^{B} \eta^{C} \eta^{D} \epsilon_{A B C D} G^{-}$
$\mathcal{A}_{n}^{\mathrm{MHV}}=(2 \pi)^{4} \delta^{(4)}\left(\sum_{i=1}^{n} p_{i}\right) \sum_{1 \leq j<k \leq n}\left(\eta_{j}\right)^{4}\left(\eta_{k}\right)^{4} A_{n}^{\mathrm{MHV}}\left(1^{+} \ldots j^{-} \ldots k^{-} \ldots n^{+}\right)+\ldots$,
$E \equiv \frac{\mathcal{A}_{7}^{\mathrm{NMHV}}}{\mathcal{A}_{7}^{\mathrm{BDS}} \text {-like }}=\mathcal{P}^{(0)} E_{0}+\left[(12) E_{12}+(14) E_{14}+\right.$ cyclic $]$.

- E_{0}, E_{12}, E_{14} the transcendental functions we wish to determine
- $\mathcal{P}_{7}^{(0)}=\frac{3}{7}(12)+\frac{1}{7}(13)+\frac{2}{7}(14)+$ cyclic the tree-level superamplitude

NMHV (super)amplitudes

Beyond MHV, amplitudes most efficiently organized by exploiting the (dual) superconformal symmetry of $\mathcal{N}=4 \mathrm{SYM}$.
$\Phi=G^{+}+\eta^{A} \Gamma_{A}+\frac{1}{2!} \eta^{A} \eta^{B} S_{A B}+\frac{1}{3!} \eta^{A} \eta^{B} \eta^{C} \epsilon_{A B C D} \bar{\Gamma}^{D}+\frac{1}{4!} \eta^{A} \eta^{B} \eta^{C} \eta^{D} \epsilon_{A B C D} G^{-}$
$\mathcal{A}_{n}^{\mathrm{MHV}}=(2 \pi)^{4} \delta^{(4)}\left(\sum_{i=1}^{n} p_{i}\right) \sum_{1 \leq j<k \leq n}\left(\eta_{j}\right)^{4}\left(\eta_{k}\right)^{4} A_{n}^{\mathrm{MHV}}\left(1^{+} \ldots j^{-} \ldots k^{-} \ldots n^{+}\right)+\ldots$,
$E \equiv \frac{\mathcal{A}_{7}^{\mathrm{NMHV}}}{\mathcal{A}_{7}^{\mathrm{BDS}} \text {-like }}=\mathcal{P}^{(0)} E_{0}+\left[(12) E_{12}+(14) E_{14}+\right.$ cyclic $]$.

- E_{0}, E_{12}, E_{14} the transcendental functions we wish to determine
- $\mathcal{P}_{7}^{(0)}=\frac{3}{7}(12)+\frac{1}{7}(13)+\frac{2}{7}(14)+$ cyclic the tree-level superamplitude
- $(67)=(76) \equiv[12345]$ Dual superconformal R-invariants, with

$$
[a b c d e]=\frac{\delta^{0 \mid 4}\left(\chi_{a}\langle b c d e\rangle+\text { cyclic }\right)}{\langle a b c d\rangle\langle b c d e\rangle\langle c d e a\rangle\langle d e a b\rangle\langle e a b c\rangle}, \quad \chi_{i}^{A}=\sum_{j=1}^{i-1}\langle j i\rangle \eta_{j}^{A} .
$$

NMHV final entry conditions

[Caron-Huot]
(34) $\log a_{21}, \quad$ (14) $\log a_{21}, \quad$ (15) $\log a_{21}, \quad$ (16) $\log a_{21}, \quad$ (13) $\log a_{21}, \quad$ (12) $\log a_{21}$,
(45) $\log a_{37}, \quad$ (47) $\log a_{37}, \quad$ (37) $\log a_{37}, \quad$ (27) $\log a_{37}, \quad$ (57) $\log a_{37}, \quad$ (67) $\log a_{37}$,
(45) $\log \frac{a_{34}}{a_{11}}$,
(14) $\log \frac{a_{34}}{a_{11}}$,
(14) $\log \frac{a_{11} a_{24}}{a_{46}}$,
(14) $\log \frac{a_{14} a_{31}}{a_{34}}$,
(24) $\log \frac{a_{44}}{a_{42}}$,
(56) $\log a_{57}$,
(12) $\log a_{57}$,
(16) $\log \frac{a_{67}}{a_{26}}$,
(13) $\log \frac{a_{41}}{a_{26} a_{33}}+((14)-(15)) \log a_{26}-(17) \log a_{26} a_{37}+(45) \log \frac{a_{22}}{a_{34} a_{35}}-(34) \log a_{33}$,

Results: 3-loop NMHV Heptagon

Loop order $L=$	1	2	3
Steinmann symbols	15×28	15×322	15×3192
NMHV final entry	42	85	226
Dihedral symmetry	5	11	31
Well-defined collinear	0	0	0

Results: 3-loop NMHV Heptagon

Loop order $L=$	1	2	3
Steinmann symbols	15×28	15×322	15×3192
NMHV final entry	42	85	226
Dihedral symmetry	5	11	31
Well-defined collinear	0	0	0

1. Independent R-invariants \times functions

Results: 3-loop NMHV Heptagon

Loop order $L=$	1	2	3
Steinmann symbols	15×28	15×322	15×3192
NMHV final entry	42	85	226
Dihedral symmetry	5	11	31
Well-defined collinear	0	0	0

1. Independent R-invariants \times functions
2. Relations between $15 \times 42 R$-invariants \times final entries [Caron-Huot]

Results: 3-loop NMHV Heptagon

Loop order $L=$	1	2	3
Steinmann symbols	15×28	15×322	15×3192
NMHV final entry	42	85	226
Dihedral symmetry	5	11	31
Well-defined collinear	0	0	0

1. Independent R-invariants \times functions
2. Relations between $15 \times 42 R$-invariants \times final entries [Caron-Huot]
3. Cyclic: $i \rightarrow i+1$ on all twistor labels and letters Flip: $i \rightarrow 8-i$ on all twistor labels and letters, except $a_{2 i} \leftrightarrow a_{3,8-i}$

Results: 3-loop NMHV Heptagon

Loop order $L=$	1	2	3
Steinmann symbols	15×28	15×322	15×3192
NMHV final entry	42	85	226
Dihedral symmetry	5	11	31
Well-defined collinear	0	0	0

1. Independent R-invariants \times functions
2. Relations between $15 \times 42 R$-invariants \times final entries [Caron-Huot]
3. Cyclic: $i \rightarrow i+1$ on all twistor labels and letters

Flip: $i \rightarrow 8-i$ on all twistor labels and letters, except $a_{2 i} \leftrightarrow a_{3,8-i}$
4. We also need collinear limit of R-invariants

Results: 4-loop MHV Heptagon

Loop order $L=$	1	2	3	4
Steinmann symbols	28	322	3192	$?$
MHV final entry	1	1	2	4
Well-defined collinear	0	0	0	0

Results: 4-loop MHV Heptagon

Loop order $L=$	1	2	3	4
Steinmann symbols	28	322	3192	$?$
MHV final entry	1	1	2	4
Well-defined collinear	0	0	0	0

For last step, we need to convert BDS-like normalized amplitude F to BDS normalized one \mathcal{F},

$$
\mathcal{F}=F e^{\frac{\Gamma_{\text {cusp }}}{4} Y_{7}} \underset{\Gamma_{\text {cusp }} \rightarrow 4 g^{2}}{\text { symbol }} \mathcal{F}^{(L)}=\sum_{k=0}^{L} F^{(k)} \frac{Y_{n}^{L-k}}{(L-k)!} .
$$

Results: 4-loop MHV Heptagon

Loop order $L=$	1	2	3	4
Steinmann symbols	28	322	3192	$?$
MHV final entry	1	1	2	4
Well-defined collinear	0	0	0	0

For last step, we need to convert BDS-like normalized amplitude F to BDS normalized one \mathcal{F},

$$
\mathcal{F}=F e^{\frac{\Gamma_{\text {cusp }}}{4} Y_{7}} \underset{\Gamma_{\text {cusp }} \rightarrow 4 g^{2}}{\text { symbol }} \mathcal{F}^{(L)}=\sum_{k=0}^{L} F^{(k)} \frac{Y_{n}^{L-k}}{(L-k)!} .
$$

Independence of $\lim _{i+1 \| i} \mathcal{F}$ on 9 additional letters no longer a homogeneous constraint, fixes amplitude completely!

Results: 4-loop MHV Heptagon

Loop order $L=$	1	2	3	4
Steinmann symbols	28	322	3192	$?$
MHV final entry	1	1	2	4
Well-defined collinear	0	0	0	0

For last step, we need to convert BDS-like normalized amplitude F to BDS normalized one \mathcal{F},

$$
\mathcal{F}=F e^{\frac{\Gamma_{\text {cusp }}}{4} Y_{7}} \underset{\Gamma_{\text {cusp }} \rightarrow 4 g^{2}}{\text { symbol }} \mathcal{F}^{(L)}=\sum_{k=0}^{L} F^{(k)} \frac{Y_{n}^{L-k}}{(L-k)!} .
$$

Independence of $\lim _{i+1 \| i} \mathcal{F}$ on 9 additional letters no longer a homogeneous constraint, fixes amplitude completely!

Strong tension between collinear properties and Steinmann relations.

Further check: Heptagon Wilson loop OPE

This is an expansion in two variables $e^{-\tau_{1}}, e^{-\tau_{2}}$ near the double collinear limit $\tau_{1} \rightarrow \infty, \tau_{2} \rightarrow \infty$.

Further check: Heptagon Wilson loop OPE

This is an expansion in two variables $e^{-\tau_{1}}, e^{-\tau_{2}}$ near the double collinear limit $\tau_{1} \rightarrow \infty, \tau_{2} \rightarrow \infty$.

Integrability predicts linear terms in $e^{-\tau_{i}}$ to
 all loops in integral form, e.g. ${ }^{\text {[Basso,Sever, Vieira 2] }}$

$$
\begin{aligned}
h=e^{i\left(\phi_{1}+\phi_{2}\right)} e^{-\tau_{1}-\tau_{2}} & \int \frac{d u d v}{(2 \pi)^{2}} \mu(u) P_{F F}(-u \mid v) \mu(v) \times \\
& \times e^{-\tau_{1} \gamma_{1}+i p_{1} \sigma_{1}-\tau_{2} \gamma_{2}+i p_{2} \sigma_{2}}
\end{aligned}
$$

Further check: Heptagon Wilson loop OPE

This is an expansion in two variables $e^{-\tau_{1}}, e^{-\tau_{2}}$ near the double collinear limit $\tau_{1} \rightarrow \infty, \tau_{2} \rightarrow \infty$.

Integrability predicts linear terms in $e^{-\tau_{i}}$ to
 all loops in integral form, e.g. ${ }^{\text {[Basso,Sever,Vieira 2] }}$

$$
\begin{aligned}
h=e^{i\left(\phi_{1}+\phi_{2}\right)} e^{-\tau_{1}-\tau_{2}} & \int \frac{d u d v}{(2 \pi)^{2}} \mu(u) P_{F F}(-u \mid v) \mu(v) \times \\
& \times e^{-\tau_{1} \gamma_{1}+i p_{1} \sigma_{1}-\tau_{2} \gamma_{2}+i p_{2} \sigma_{2}}
\end{aligned}
$$

1. Computed its weak-coupling expansion to 3 loops, employing the technology of Z-sums ${ }^{\left.\left[\text {Moch, Uwer, Weinzierr] [GP }{ }^{\prime} 13\right] \text { [GP' } 14\right]}$

Further check: Heptagon Wilson loop OPE

This is an expansion in two variables $e^{-\tau_{1}}, e^{-\tau_{2}}$ near the double collinear limit $\tau_{1} \rightarrow \infty, \tau_{2} \rightarrow \infty$.

Integrability predicts linear terms in $e^{-\tau_{i}}$ to
 all loops in integral form, e.g. ${ }^{\text {[Basso,Sever, Vieira 2] }}$

$$
\begin{aligned}
h=e^{i\left(\phi_{1}+\phi_{2}\right)} e^{-\tau_{1}-\tau_{2}} & \int \frac{d u d v}{(2 \pi)^{2}} \mu(u) P_{F F}(-u \mid v) \mu(v) \times \\
& \times e^{-\tau_{1} \gamma_{1}+i p_{1} \sigma_{1}-\tau_{2} \gamma_{2}+i p_{2} \sigma_{2}}
\end{aligned}
$$

1. Computed its weak-coupling expansion to 3 loops, employing the

2. Expanded our symbol for $R_{7}^{(3)}$ in the same kinematics, relying on [Dixon,Drummond,Duhr,Pennington]

Further check: Heptagon Wilson loop OPE

This is an expansion in two variables $e^{-\tau_{1}}, e^{-\tau_{2}}$ near the double collinear limit $\tau_{1} \rightarrow \infty, \tau_{2} \rightarrow \infty$.

Integrability predicts linear terms in $e^{-\tau_{i}}$ to
 all loops in integral form, e.g. ${ }^{\text {[Basso,Sever, Vieira 2] }}$

$$
\begin{aligned}
h=e^{i\left(\phi_{1}+\phi_{2}\right)} e^{-\tau_{1}-\tau_{2}} & \int \frac{d u d v}{(2 \pi)^{2}} \mu(u) P_{F F}(-u \mid v) \mu(v) \times \\
& \times e^{-\tau_{1} \gamma_{1}+i p_{1} \sigma_{1}-\tau_{2} \gamma_{2}+i p_{2} \sigma_{2}}
\end{aligned}
$$

Perfect match, currently computing 4 loops

1. Computed its weak-coupling expansion to 3 loops, employing the technology of Z-sums $\left.{ }^{[M o c h, ~ U w e r, ~ W e i n z i e r l] ~[G P ' ~}{ }^{\prime} 13\right]$ [GP' ${ }^{14]}$
2. Expanded our symbol for $R_{7}^{(3)}$ in the same kinematics, relying on [Dixon,Drummond,Duhr,Pennington]
