Reconstructing complex multi-loop results with FiniteFlow

Tiziano Peraro

University of Zurich - 24 September 2019

Based on:

T. P., JHEP 1907 (2019) 031, arXiv:1905.08019

Introduction & motivation

Experiments at LHC

- high-accuracy (% level)
- large SM background
- high c.o.m. energy \Rightarrow multi-particle states

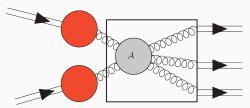
We need scattering amplitudes

- describe hard partonic interaction
- high accuracy \Rightarrow loops (% level \sim 2 loops)
- multi-particle \Rightarrow high multiplicity

Theoretical studies of amplitudes

• structures of QFT/gauge theories

Scattering amplitudes



• Hadron collider interactions

- Scattering amplitudes
 - main process-dependent part of a physical event
- They can be computed in perturbation theory

$$\mathcal{A} \sim \mathcal{A}_{\mathsf{tree}} + \alpha \, \mathcal{A}_{1\mathsf{-loop}} + \alpha^2 \, \mathcal{A}_{2\mathsf{-loops}} + \dots$$

• %-level accuracy \sim 2 loops

- Tree-level and one loop
 - today, mostly numeric
 - essentially solved
 - automated
- Two and higher loops
 - many calculations in recent years ...
 - ... but still some open issues
 - until recently, restricted to $2 \rightarrow 2 \ {\rm processes}$
 - beyond MPLs not well understood

Two and higher loops

- Algebraic calculations for multi-loop amplitudes
 - preferred strategy @ $\ell \geq 2$ loops
 - faster/more stable evaluation
 - better suited for many multi-loop techniques
 - allows more tests, studies, etc...and better control
 - often characterized by high complexity

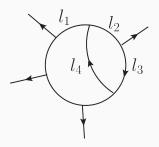
- Complexity can be a combination of
 - number of loops for high accuracy
 - number of legs for high multiplicity
 - numbers of scales (invariants, external/internal masses)

Loop amplitudes

• An integrand contribution to ℓ -loop amplitude

$$\mathcal{A} = \int_{-\infty}^{\infty} \left(\prod_{i=1}^{\ell} d^d k_i \right) \frac{\mathcal{N}}{D_1 D_2 D_3 \cdots}$$

- rational function in the components of loop momenta k_j
- polynomial numerator ${\cal N}$
- quadratic denominators corresp. to loop propagators



$$D_j = l_j^2 - m_j^2$$

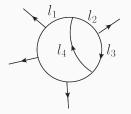
Computing amplitudes: Step 1/3

• Write amplitudes as I.c. of Feynman integrals

$$\mathcal{A} = \sum_{j} a_{j} I_{j}$$

- Dependence on particle-content in rational coeff.s a_i
- The integrals should have a "nice" / "standard" form

$$I = \int_{-\infty}^{\infty} \left(\prod_{i=1}^{\ell} d^d k_i \right) \frac{1}{D_1^{\alpha_1} D_2^{\alpha_2} D_3^{\alpha_3} \cdots}, \qquad \alpha_j \leq 0$$



$$D_j = \begin{cases} l_j^2 - m_j^2 \\ l_j \cdot v_j - m_j^2 \end{cases}$$

Hard to do at high multiplicity

Computing amplitudes: Step 2/3

Chetyrkin, Tkachov (1981), Laporta (2000)

• Feynman integrals obey linear relations, e.g. IBPs

$$\int \left(\prod_{j} d^{d} k_{j}\right) \frac{\partial}{\partial k_{j}^{\mu}} v^{\mu} \frac{1}{D_{1}^{\alpha_{1}} D_{2}^{\alpha_{2}} \cdots} = 0, \qquad v^{\mu} = \begin{cases} p_{i}^{\mu} & \text{external} \\ k_{i}^{\mu} & \text{loop} \end{cases}$$

- Very large and sparse linear systems
- Reduce to linearly independent Master Integrals (MIs) $\{G_1, G_2, \ldots\} \subset \{I_j\}$

$$I_j = \sum_k c_{jk} G_k$$

Computing amplitudes: Step 3/3

- The MIs can often be computed analytically
 - in terms of special functions (MPLs, elliptic, ...)
 - most effective method is differential equations (DEs) Kotikov (1991), Gehrmann, Remiddi (2000)
 - can be simplified by the choice of MIs, e.g. UT integrals Henn (2013)
- Numerical methods may work depending on the process
 - the most successful is sector decomposition Binoth, Heinrich (2000)
 - can be improved via IBP reduction to a "better" basis of MIs

Computing amplitudes

Computing amplitudes (summary)

- 1. Integral representation $\mathcal{A} = \sum_j a_j I_j$
- 2. IBP reduction $I_j = \sum_k c_{jk} G_k$
- 3. Compute MIs G_k

A major bottleneck

- Large intermediate expressions
- Intermediate stages much more complicated than final result

Main idea of the talk

- Reconstruct analytic results from "numerical" evaluations
- Can be used for steps 1, 2 and help with step 3 (e.g. using DEs)

Functional reconstruction

- reconstruct analytic results from numerical evaluations
 - evaluation over finite fields Z_p (i.e. modulo prime integers p)
 - use machine-size integers, $p<2^{64}\Rightarrow {\rm fast}$ and exact
 - collect numerical evaluations and infer analytic result
- sidesteps large intermediate expressions & highly parallelizable
- applicable to any rational algorithm
- first applications
 - IBPs and univ. reconstruction von Manteuffel, Schabinger (2014)
 - helicity amplitudes and multivariate reconstruction T.P. (2016)

Some notable examples

- FINRED (private) [von Manteuffel]
 - several results for 4-loop form factors [von Manteuffel, Schabinger]
- FINITEFLOW [T.P.]
 - Several two-loop five-point amplitudes [Badger, Brønnum-Hansen, Hartanto, T.P.;

Badger, Chicherin, Gehrmann, Heinrich, Henn, T.P., Wasser, Zhang, Zoia]

- Matter dependence of the four-loop cusp anomalous dimension [Henn, T.P., Stahlhofen, Wasser]
- Private code

[Abreu, Dormans, Febres Cordero, Ita, Page, Sotnikov, Zeng]

- analytic five-parton amplitudes
- FIRE 6 [A.V. Smirnov, F.S. Chuharev]
 - Four-loop quark form factor with quartic fundamental colour factor [Lee, Smirnov, Smirnov, Steinhauser]

The black-box interpolation problem

Given a rational function f in the variables $\boldsymbol{z} = (z_1, \ldots, z_n)$ over \mathcal{Q}

• Reconstruct analytic form of f, given a numerical procedure

$$(\boldsymbol{z},p) \longrightarrow \begin{tabular}{c} f \end{tabular} \longrightarrow f(\boldsymbol{z}) \mbox{ mod } p. \end{tabular}$$

- evaluate f numerically for several \boldsymbol{z} and p
- efficient multivariate reconstruction algorithms exist e.g. T.P. (2016,2019), Klappert, Lange (2019)
- upgrade analytic f over Q using rational reconstruction algorithm [Wang (1981)] and Chinese remainder theorem

The black-box interpolation problem

Given a rational function f in the variables $\boldsymbol{z} = (z_1, \ldots, z_n)$ over \mathcal{Q}

• Reconstruct analytic form of f, given a numerical procedure

$$(\boldsymbol{z},p) \longrightarrow \begin{tabular}{c} f \end{tabular} \longrightarrow f(\boldsymbol{z}) \mbox{ mod } p. \end{tabular}$$

- evaluate f numerically for several \boldsymbol{z} and p
- efficient multivariate reconstruction algorithms exist e.g. T.P. (2016,2019), Klappert, Lange (2019)
- upgrade analytic f over Q using rational reconstruction algorithm [Wang (1981)] and Chinese remainder theorem

Question in this talk

How to build the black box?

Example: Scattering amplitudes over finite fields

T.P. (2016)

- External states (momenta and polarizations)
 - rational parametrization with momentum twistors variables Hodges (2009), Badger, Frellesvig, Zhang (2013), Badger (2016)
- Tree-level
 - diagrams or recursion relations (e.g. Berends-Giele)
- Loop integrands
 - Feynman diagrams and t'Hooft algebra
 - Unitarity cuts sewing tree-level currents
 - higher finite-dim. representation of internal states in dim. reg.
- Integrand reduction
 - linear fit to a "nice" integrand basis

How to build a code for fast numerical evaluations of finite fields? We can consider a few options:

- 1. Low-level coding (e.g. in C/C++/FORTRAN)?
 - \checkmark very good runtime efficiency
 - **X** harder to program
 - X limits usability
- 2. Low-level coding + high-level interfaces?
 - common algorithms in C++ (e.g. linear solvers, fits, etc...)
 - high-level wrapper (e.g. for MATHEMATICA/PYTHON)
 - \checkmark good efficiency and usability
 - X not flexible
 - $\pmb{\mathsf{X}}$ these algorithms are often intermediate steps

Observations:

- A typical multi-loop algorithm involves several steps
 - solving linear systems
 - substitutions / changes of variables
 - etc...
- Large simplifications often occur at the very last stages
 - it's best to do everything numerically
 - only the final expression reconstructed analytically
- Many algorithms share common "building blocks"

FiniteFlow: using data flow graphs

 $\operatorname{FINITEFLOW}$ [T.P. (2019)] has three main components

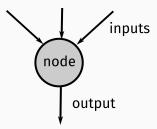
- 1. "basic" algorithms in $\mathrm{C}{++}$ over finite fields
 - dense/sparse linear solvers, linear fits, evaluating rat. functions, list manipulations, etc...
- 2. higher-level framework to combine them into complex ones
 - output of a basic algorithm is input of others
 - graphical representation of your calculation (dataflow graphs)
- 3. multivariate reconstruction algorithms

FiniteFlow

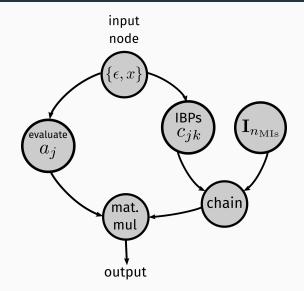
- build complex algorithms without any low-level programming (e.g. from MATHEMATICA interface)
- many methods for amplitudes can be cast in this framework

FiniteFlow: using data flow graphs

- FINITEFLOW uses (simplified) data flow graphs
 - Nodes represent numerical algorithms
 - Arrows represent lists of numerical values
- In my implementation, a node has
 - 0 or more lists (arrows) of input values
 - 1 list (arrow) of output values



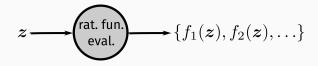
Example of a graph



Example: Evaluation of rational functions

- input: a list of values $\boldsymbol{z} = (z_1, \dots, z_n)$
- output: a list of rational functions $\{f_1, f_2, \ldots\}$ at \boldsymbol{z}

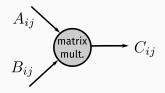
$$f_i(oldsymbol{z}) = rac{p_i(oldsymbol{z})}{q_i(oldsymbol{z})} = rac{\sum_lpha n_{i,lpha} \,oldsymbol{z}^lpha}{\sum_eta d_{i,eta} \,oldsymbol{z}^eta},$$



Example: Matrix multiplication

- Two lists as input
 - 1. entries of a matrix A
 - 2. entries of a matrix \boldsymbol{B}
- use row-major order to store them as a list
- $\bullet\,$ ouput: entries of matrix C such that

$$C_{ij} = \sum_{k} A_{ik} B_{kj}$$



Example: Linear solver

• A $n \times m$ linear system with parametric rational entries

$$\sum_{j=1}^{m} A_{ij} x_j = b_i, \quad (i = 1, \dots, n), \qquad A_{ij} = A_{ij}(z), \quad b_i = b_i(z)$$

- input: list of values for paramers $\boldsymbol{z} = (z_1, \dots, z_n)$
- output: solution $c_{ij} = c_{ij}(\boldsymbol{z})$ such that

$$x_i = \sum_{j \in \mathsf{indep}} c_{ij} \, x_j + c_{i0} \qquad (i \not\in \mathsf{indep})$$

$$z \longrightarrow \{c_{ij}(z)\}$$

- Some algorithms have a learning phase
 - used to learn information for defining its output
 - must be completed before using them
- Example: linear solver
 - learn: its rank, dep. and indep. unknowns, indep. eq.s
 - learning phase: solve the system numerically a few times
 - optional: mark & sweep equations (sparse solver)

- IBPs are large and sparse linear systems
- they reduce Feynman integrals I_i to a lin. indep. set of MIs G_i

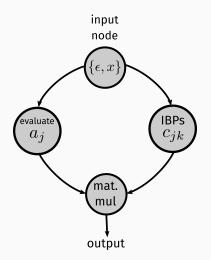
$$I_i = \sum_j c_{ij} \, G_j$$

• amplitudes and other multi-loop objects can be reduced mod IBPs

$$A = \sum_{j} a_j I_j = \sum_{jk} a_j c_{jk} G_k = \sum_{j} A_j G_j, \quad \text{with } A_j = \sum_{k} a_k c_{kj}$$

- final results for A_k often much simpler than c_{ij}
- \Rightarrow solve IBPs numerically and compute A_j via a matrix multiplication

IBP reduction



Differential equations for MIs

• The MIs G_k satisfy differential equations Kotikov (1991), Gehrmann, Remiddi (2000)

$$\partial_x \, G_i = \sum_j A_{ij}^{(x)} \, G_j$$

- Identify MIs G_i (e.g. by solving IBPs numerically)
- Compute their derivatives in terms of (non-master) loop integrals

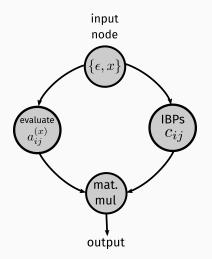
$$\partial_x G_i = \sum_j a_{ij}^{(x)} I_j$$

- Reduce the needed integrals modulo IBPs: $I_i = \sum_j c_{ij} G_j$
- The final result is given by a matrix multiplication

$$A_{ij}^{(x)} = \sum_k a_{ik}^{(x)} c_{kj}$$

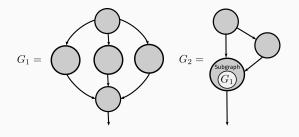
• Reconstruct $A_{ij}^{(x)}$ analytically from its numerical evaluations

Differential equations for MIs



Subgraphs

- Any graph G_1 can be used as a subgraph by an algorithm (a node) A belonging to another graph G_2
 - A will evaluate G_1 several times to compute its output
 - input of G_1 = auxiliary variables chained with inputs of A



Examples:

- Laurent expansion
- maps: evaluate G₁ for several inputs
- partial reconstructions
- (total or partial) fits
 w.r.t. an ansatz

Coefficients of the ϵ -expansion

• If MIs are known analytically in terms of special functions f_k

$$G_j = \sum_k g_{jk}(\epsilon, x) f_k + \mathcal{O}(\epsilon),$$

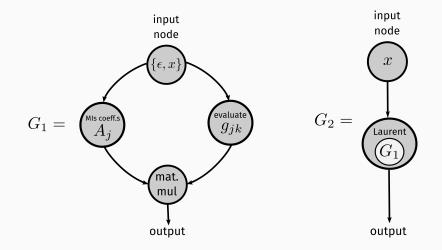
we can compute

$$A = \sum_{k} u_k(\epsilon, x) f_k + O(\epsilon), \quad \text{where } u_k(\epsilon, x) = \sum_{j} A_j(\epsilon, x) g_{jk}(\epsilon, x)$$

• what we want is the $\epsilon\text{-expansion}$ of the $u_k(\epsilon,x)$

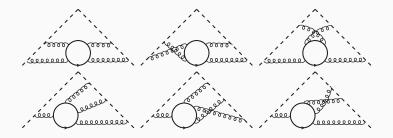
$$u_k(\epsilon, x) = \sum_{j=-p}^{0} u_k^{(j)}(x) \,\epsilon^j + \mathcal{O}(\epsilon),$$

Coefficients of the ϵ -expansion



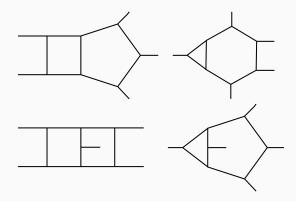
Cutting-edge applications of FiniteFlow

• Matter dependence of the 4-loop cusp anomalous dimension [Henn, T.P., Stahlhofen, Wasser (2019)]



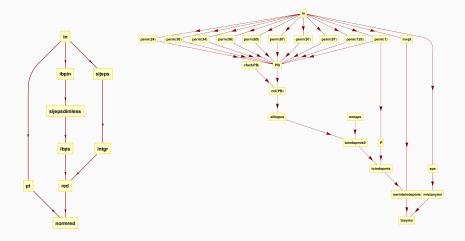
Cutting-edge applications of FiniteFlow

- Five-point two-loop amplitudes
 - Several planar results for five partons and W + 4 partons [Badger, Brønnum-Hansen, Hartanto, T.P. (2017-2019)]
 - all-plus five gluon non-planar [Badger, Chicherin, Gehrmann, Heinrich, Henn, T.P., Wasser, Zhang, Zoia (2019)]



Example of graphs in FiniteFlow

Piecing together the all-plus five gluon amplitude (only planar contributions are shown)



• FINITEFLOW

https://github.com/peraro/finiteflow

- C++ code
- MATHEMATICA interface (strongly recommended)
- FINITEFLOW MATHTOOLS

https://github.com/peraro/finiteflow-mathtools

- packages FFUTILS, LITEMOMENTUM, LITEIBP, SYMBOLS
- examples (amplitudes, IBPs, diff. equations and many more)

Summary & Outlook

Summary

- Finite fields and functional reconstruction
 - enhance the possibilities of our theoretical predictions
 - new results unattainable with traditional computer algebra
 - public code **FINITEFLOW**
- Progress on 2-loop 5-point and other complex processes

Outlook

- More applications
 - massive processes, phase-space integrals, ...
- High level of automation for higher-loop predictions