Flavour Anomalies: stepping stones to New Physics?

The Standard Model of particle physics
describes a huge variety of phenomena in a unified and simple theory.

However, we know it must be extended at some energy scales:

- neutrino masses
- astrophysical/cosmological obs.
(dark matter, dark energy, baryonic asymmetry, inflation)

Our desire for simplicity and a sense of beauty also motivates extensions of the SM for other reasons:

- hierarchy problem of the EW scale (and CC)
- understanding the hierarchies in fermion masses and mixings
- unification of gauge interactions and fermion representations
- understanding the smallness of CP-violation in strong interactions

Many experiments are exploring the terra incognita in all possible directions, but we still don't have a confirmed discovery of a new land.

... every once in a while, possible land is sighted.

Some of these anomalies might just be mirages, however some could also be the first genuine hints of a New Land.

It is important to take each into consideration, in order to understand how realistic it could be and to point out the searches in promising directions

A selection of "anomalies" from the SM -

Flavour Anomalies
 This talk

$p p \rightarrow e^{+} e^{-}$

$$
\gamma \gamma @ 750151 \mathrm{GeV}
$$

Standard Model

Neutrino anomalies:

LSND, Miniboone, reactor, Gallium 5MeV "bump"

Atomki: 17 MeV excess in 8 Be decays

No viable NP
$\mathrm{B}_{\mathrm{q}} \longrightarrow \mathrm{D}_{\mathrm{q}}^{(*)} \mathrm{R}^{\left(\mathrm{K}^{*}\right)}$
Bordone, Greljo, DM [2103.10332] $\mathrm{B}_{\mathrm{d}, \mathrm{o}} \rightarrow \mathbf{\mathrm { K }} \boldsymbol{\mathrm { * } 0} \overline{\overline{\mathrm{K}} * \boldsymbol{*}}$
Alguerò et al. [2011.07867]

R_{K} and the other $b \rightarrow s \mu^{+} \mu^{-}$probes

Compilation of "clean" observables

Also the leptonic decay $\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}$ can be predicted precisely in the SM, and is measured by ATLAS, CMS, and LHCb.

It shows a consistent reduction w.r.t. the SM.

Lepton Flavour Universality (LFU) ratios

$$
R_{H} \equiv \frac{\int_{q_{\min }^{2}}^{q_{\max }^{2}} \frac{\mathrm{~d} \mathcal{B}\left(B \rightarrow H \mu^{+} \mu^{-}\right)}{\mathrm{d} q^{2}} \mathrm{~d} q^{2}}{\int_{q_{\min }^{2}}^{q_{\max }^{2}} \frac{\mathrm{~d} \mathcal{B}\left(B \rightarrow H e^{+} e^{-}\right)}{\mathrm{d} q^{2}} \mathrm{~d} q^{2}}
$$

E.g. the most recent one from LHCb [2103.11769]

R_{K} and the other $b \rightarrow s \mu^{+} \mu^{-}$probes

Compilation of "clean" observables

Angular observables and Br's

Specific NP hypothesis, with less conservative estimates of SM uncertainties show significances in the 5.9-7б range. Altmannshofera and Staub [2103.13370], Algueró et al. [2104.08921], Geng et al. [2103.12738]

The global significance of the New Physics hypothesis in $\mathrm{b} \rightarrow \mathrm{s} \mu^{+} \mu^{-}$(very conservative SM uncertainties estimate) is:

Very good fit to all these deviations with:

$$
\mathcal{L}_{L \text { LEFT }}=C_{S_{2} b_{2} \mu_{1} \mu_{L}}\left(\bar{S}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\mu}_{c} \gamma^{\mu} \mu_{2}\right)
$$

$$
C_{S_{1}, b_{1} t_{1} y_{c}} \approx(37 \mathrm{TeV})^{-2}
$$

Charged-current B-anomalies

$b \rightarrow c \tau v$ vs. $b \rightarrow c \ell v$

$$
\begin{array}{r}
R\left(D^{(*)}\right) \equiv \frac{\mathcal{B}\left(B^{0} \rightarrow D^{(*)+} \tau \nu\right)}{\mathcal{B}\left(B^{0} \rightarrow D^{(*)+} \ell \nu\right)} \\
\ell=\mu, e
\end{array}
$$

Tree-level SM process with $\bigvee_{c b}$ suppression.
All measurements since 2012
consistently above the SM predictions

New Physics interpretations (LEFT):

$$
\begin{aligned}
\mathcal{O}_{V_{L}} & =\left(\bar{c} \gamma_{\mu} P_{L} b\right)\left(\bar{\tau} \gamma^{\mu} P_{L} \nu\right) \\
& \text { and/or } \\
\mathcal{O}_{S_{L}}= & \left(\bar{c} P_{L} b\right)\left(\bar{\tau} P_{L} \nu\right), \\
\mathcal{O}_{T}= & \left(\bar{c} \sigma^{\mu \nu} P_{L} b\right)\left(\bar{\tau} \sigma_{\mu \nu} P_{L} \nu\right)
\end{aligned}
$$

With a New Physics scale of

$$
\mathrm{C}_{\mathrm{cb} \tau v} \sim(4 \mathrm{TeV})^{-2}
$$

Muon g-2

NP is enhanced if the chirality flip happens in an internal line with a heavy fermion, as the top quark:
$a_{\mu}{ }^{\exp }=(116592061 \pm \mathbf{4 1}) \times 10^{-11}$ fNAL $21+$ BNL ${ }^{\circ} 04$
$a_{\mu}{ }_{\mu}^{\text {THin }}=(116591810 \pm 43) \times 10^{-11}$ TH initiditue WP 2006.04822

4.2σ or 1.6σ ??

Let us entertain the possibility that the 4.2σ deviation is real
New physics contribution arises via the dipole operator

$$
\left.\Delta a_{\mu}=\frac{4 m_{\mu}}{e} \operatorname{Re}\left[L_{e \gamma} \mid m_{r}\right)\right]_{\mu \mu} \quad\left[O_{e \gamma}\right]_{\alpha \beta}=\bar{e}_{e}^{\alpha} \nabla^{\mu \nu} e_{R}^{\beta} F_{\mu \nu}
$$

$$
\left[L_{e r}\left(\mu_{\text {ew }}\right)\right]_{\mu \mu}=-\frac{e N_{c} w_{t}}{6 \pi^{2}}\left[C_{\text {lequ }}^{(3)}(\Lambda)\right]_{\mu \mu+t} \log \frac{\Lambda^{2}}{w_{t}^{2}}
$$

To fit the deviation (I put $\Lambda=2 \mathrm{TeV}$ in the log): $\quad C_{\text {lequ }}^{(3)}(2 \mathrm{TeV}) \approx-\frac{1}{(83 \mathrm{TeV})^{2}}$
The same structure of operator can also help in $R\left(D^{*}\right)$: possible connection?

Cabibbo Angle Anomaly

Unitarity of the first row of the CKM matrix: $\quad\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1$
Neglecting the very small $V_{u b}: \quad V_{u d}^{2}+V_{u s}^{2}=1$
Assuming unitarity, we can extract the Cabibbo angle from:

- $V_{u d}$: superallowed $\mathrm{O}^{+} \rightarrow \mathrm{O}^{+} \beta$-decays. SGPR 1807.10197, CMS 1907.06737
- $V_{u s}$: semileptonic Kl3 decays.
$-\left|V_{u s}\right| /\left|V_{u d}\right|:(K \rightarrow \mu \mathrm{~V}) /(\pi \rightarrow \mu \mathrm{V})$.
- t decays

Coutinho, Crivellin, Manzari 1912.08823

The effect is very small: (few) $\times 10^{-3}$ of the SM , but $\mathbf{S M}$ is large: tree \times Cabibbo.
Possible New Physics: deviation in the muon decay: mismatch from G_{F} and G_{μ}

$$
\mathrm{G}_{\mu}=\mathrm{G}_{\mathrm{F}}\left(1+\delta_{\mu}\right)
$$

$\begin{array}{lll}\text { This modifies the } & \left|V_{u s}\right|=0.22333(60) \times\left(1+\delta_{\mu}\right) & \text { Enhancement } \sim 20! \\ \text { decays as: } & \left|V_{u s} / V_{u d}\right|=0.23130(50) \\ 1900.02714 & \left|V_{u d}\right|=0.97370(14) \times\left(1+\delta_{\mu}\right) \rightarrow & \left|V_{u s}\right|=\left|V_{u s}^{(0)}\right|\left(1-\frac{\left|v_{u d}^{(0)}\right|^{2}}{\left|V_{u s}^{(0)}\right|^{2}} \delta_{\mu}\right)\end{array}$
Including the EW fit constraints: $\delta(\mu \rightarrow e \nu \nu)=0.00065(15)$
Belfatto, Beradze, Berezhiani 1906.02714
Crivellin, Kirk, Manzari, Panizzi 2012.09845, 2102.02825

Combined explanations: why?

IF all turn out to be due to NP, a combined explanation could be an elegant and economical way to explain the data.

Combined explanations are typically more constrained by data can provide sharper predictions

Combined interpretation of $\mathrm{R}_{\mathrm{K}}, \mathrm{R}\left(\mathrm{D}^{(*)}\right)$, (g-2) ${ }^{\prime}$

Tree-level mediators of:

$$
\mathcal{O}_{V_{L}}=\left(\bar{c} \gamma_{\mu} P_{L} b\right)\left(\bar{\tau} \gamma^{\mu} P_{L} \nu\right)
$$

and/or

$$
\begin{aligned}
& \mathcal{O}_{S_{L}}=\left(\bar{c} P_{L} b\right)\left(\bar{\tau} P_{L} \nu\right), \\
& \mathcal{O}_{T}=\left(\bar{c} \sigma^{\mu \nu} P_{L} b\right)\left(\bar{\tau} \sigma_{\mu \nu} P_{L} \nu\right)
\end{aligned}
$$

Needs to escape the constraints from:
Meson mixing
$B \rightarrow K^{(*)} W$
$Z \rightarrow \tau \tau$
$p p \rightarrow \tau \tau$

Barbieri et al 1512.01560; Buttazzo, Greljo, Isidd DM 1706.07808; Di Luzio et al 1708.08450 Bordone et al. 1712.01368; Calibbi et al. '1 Blanke, Crivellin '18; Cornella et al 2103.16558 Angelescu et al 1808.08179

Scalar Leptoquarks
$S_{1}=(\overline{\mathbf{3}}, \mathbf{1}, 1 / 3)$,
$\left[S_{3}=(\overline{\mathbf{3}}, 3,1 / 3)\right]$
 Criv\&llin et al. 1703.09226; Buttazzo, Greljo,
Isidori DM 1706.07808; D.M. 1803.109才, Arnan sidori DM 1706.07808; D.M. 1803.10971; Arna
et 1901.06315; Bigaran et al. 1906. O870; et 1901.06315; Bigaran et al. 1906.01870; riy llin et al. 1912.04224; Saad 2005.04 352 ; V
Gherardi, E. Venturini, D.M. 2003.1252 Gherardi, E. Venturini, D.M. 2003.1252 ,
B8.09548; Bordone, Catà, Feldmann, Matda 2010.03297; Crivellin et al. 2010.06593 2101.07811; ETC

Scalar Leptoquarks $R_{2}=(\mathbf{3}, \mathbf{2}, 7 / 6)$,

Becirevic et al. 1806.05689; Becirevic,
Becirevic et al. 1806.05689; Becirevic,
nsari 1704.05835: Popov et al. 1905.0633 Angelescu et al. 2103.12504; ETC
mild tension with
$B C \rightarrow T \vee$ and on the
verge of exclusion
from mono- τ at LHC

What about $\mathbf{R (K} \mathbf{K}^{(*)}$?

$\mathcal{L}_{\text {eff }} \supset \frac{e^{i \alpha_{b s}}}{\Lambda_{b s}^{2}}\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\mu}_{L} \gamma_{\mu} \mu_{L}\right)+$ h.c.
Best-fit for $\alpha_{\mathrm{bs}}=0: \Lambda_{\mathrm{bs}} \approx 37 \mathrm{TeV}$
$\mathbf{U}_{\mathbf{1}}$ and $\mathbf{S}_{\mathbf{3}}$ can mediate $\mathrm{bL} \rightarrow \mathrm{SL} \mu \mathrm{L} \mu \mathrm{L}$

TeV-scale U_{1} or $S_{3} L Q s$ can fit the anomaly with small couplings.

Scalar Leptoquarks
$R_{2}=(\mathbf{3}, \mathbf{2}, 7 / 6)$,
$S_{3}=(\overline{\mathbf{3}}, \mathbf{3}, 1 / 3)$,

$: R_{2}$
S_{3}

Scalar Leptoquarks
$S_{1}=(\overline{\mathbf{3}}, \mathbf{1}, 1 / 3)$,
$S_{3}=(\overline{\mathbf{3}}, \mathbf{3}, 1 / 3)$,

Crivellin et al. 1703.09226; Buttazzo, Greljo, Isidori, DM 1706.07808; D.M. 1803.10972; Arnan et al 1901.06315; Bigaran et al. 1906.01870; Crivellin et al. 1912.04224; Saad 2005.04352; Gherardi, E. Venturini, D.M. 2003.12525,
0008 09548. Bordone Catà Feldmann Mand 2010.03297; Crivellin et al. 2010.06593, 2101.07811; ETC.

Barbieri et al 1512.01560; Buttazzo, Greljo, Isidori, DM 1706.07808; Di Luzio et al 1708.08450; Bordone et al. 1712.01368; Calibbi et al. '17 Blanke, Crivellin '18; Cornella et al 2103.16558 Angelescu et al 1808.08179
gex

Vector Leptoquark
$U_{1}=(\mathbf{3}, \mathbf{1}, 2 / 3)$,

Becirevic et al. 1806.05689; Becirevic, Sumensari 1704.05835: Popov et al. 1905.06339: Angelescu et al. 2103.12504; ETC

What about muon (g-2)?

Leptoquarks with couplings to
$\boldsymbol{\mu}_{\mathbf{L}} \boldsymbol{\mu}_{\mathbf{R}} \mathbf{t}_{\mathbf{L}} \mathbf{t}_{\mathbf{R}}$ can generate a_{μ} with TeV masses and small couplings:

$$
\mathbf{S}_{1} \text { or } \mathbf{R}_{\mathbf{2}}
$$

$\left[L_{e r}\left(\mu_{e v}\right)\right]_{\mu \mu}=-\frac{e N_{c} m_{t}}{6 \pi^{2}}\left[C_{\text {lequ }}^{(3)}(\Lambda)\right]_{\mu \mu t t} \log \frac{\Lambda^{2}}{\omega_{t}^{2}}$
$C_{\text {lequ }}^{(3)}=\left(\bar{l}_{L} \sigma_{\mu} e_{R}\right)\left(\bar{q}_{c} c^{\mu \nu} u_{R}\right)$

Barbieri et al 1512.01560; Buttazzo, Greljo, Isidori, DM 1706.07808; Di Luzio et al 1708.08450; Bordone et al. 1712.01368; Calibbi et al. '1 Blanke, Crivellin '18; Cornella et al 2103.16558; Angelescu et al 1808.08179

Scalar Leptoquarks

$$
\begin{aligned}
& S_{1}=(\overline{\mathbf{3}}, \mathbf{1}, 1 / 3), \\
& S_{3}=(\overline{\mathbf{3}}, \mathbf{3}, 1 / 3),
\end{aligned}
$$

Crivellin et al. 1703.09226; Buttazzo, Greljo, Isidori, DM 1706.07808; D.M. 1803.10972; Arnan et al 1901.06315: Bigaran et al. 1906.01870; et al 1901.06315; Bigaran et al. 1906.01870; Crivellin et al. 1912.04224; Saad 2005.04352;
Gherardi, E. Venturini, D.M. 2003.12525, 2008.09548; Bordone, Catà, Feldmann, Mandal 2010.03297; Crivellin et al. 2010.06593, 2101.07811; ETC.

Scalar Leptoquarks
$R_{2}=(\mathbf{3}, \mathbf{2}, 7 / 6)$,
$S_{3}=(3,3,1 / 3)$,

Becirevic et al. 1806.05689; Becirevic Sumensari 1704.05835; Popov et al. 1905.06339; Angelescu et al. 2103.12504; ETC

\mathbf{S}_{1} and \mathbf{S}_{3} scalar leptoquarks

Crivellin et al. 1703.09226; Buttazzo, Greljo, Isidori DM 1706.07808; D.M. 1803.10972; Arnan et al 1901.06315; Bigaran et al. 1906.01870; Crivellin et al.
1912.04224; Saad 2005.04352; V. Gherardi, E Venturini, D.M. 2003.12525, 2008.09548; Bordone Catà, Feldmann, Mandal 2010.03297; Crivellin et al 2010.06593, 2101.07811; S. Trifinopoulos, E. Venturini, D.M. [2106.15630]; ETC

Why?

- Fully calculable already at the simplified model level (unlike vector LQ)
-Can address the muon (g-2).
-Potential UV origin from a Composite Higgs Model scenario, interesting for the potential connection to the EW hierarchy problem.
[D.M. 1803.10972]
Several important observables constraining this model are induced at one-loop.

We decided to approach this problem systematically in an EFT approach, performing a complete one-loop SMEFT matching and including and exhaustive list of observables.

\mathbf{S}_{1} and \mathbf{S}_{3} scalar leptoquarks

1) Match $\mathbf{S M}+\mathbf{S}_{1}+\mathbf{S}_{3}$ to $\mathbf{S M E F T}$ @ 1-loop (SMEFT RGE, SMEFT-LEFT 1-loop matching, LEFT RGE already done in literature)
2) Analysis of B-anomalies, including all observables

3) Turn on 1st gen couplings and study Kaon $\& \mu \rightarrow e$ observables.

Flavor symmetries correlate 1st gen to 2nd and 3rd gen couplings:
$>$ case of $\mathrm{U}(2)^{5}$ flavor symmetry. S. Trifinopoulos, E. Venturini, D.M. [2106.16630]

Matching to SMEFT

We match off-shell Green's functions for One-Light-Particle-Irreducible (1LPI) diagrams
Example: $\quad \mathcal{G} \equiv\left\langle e_{\beta}\left(p_{1}\right) \bar{e}_{\alpha}\left(p_{2}\right) H_{b}\left(q_{1}\right) H_{a}^{\dagger}\left(q_{2}\right)\right\rangle$

$$
\begin{aligned}
{\left[\mathcal{O}_{H e}\right]_{\alpha \beta} } & =\left(\bar{e}_{\alpha} \gamma^{\mu} e_{\beta}\right)\left(H^{\dagger} i \overleftrightarrow{D_{\mu}} H\right) \\
{\left[\mathcal{O}_{H e}^{\prime}\right]_{\alpha \beta} } & =\left(\bar{e}_{\alpha} i \overleftrightarrow{D} e_{\beta}\right)\left(H^{\dagger} H\right), \\
{\left[\mathcal{O}_{H e}^{\prime \prime}\right]_{\alpha \beta} } & =\left(\bar{e}_{\alpha} \gamma^{\mu} e_{\beta}\right) \partial_{\mu}\left(H^{\dagger} H\right)
\end{aligned}
$$

Figure 1: Diagrams for the matching of the $\left\langle\bar{e} e H^{\dagger} H\right\rangle$ Green function.
This procedure gives the matching for operators that are independent under IBP and Fierz, but are redundant upon using field redefinitions: Green's basis. Jiang et al. [1811.08878]
We obtained the complete Green's basis at dim-6 and set of reduction equations to the Warsaw basis

Ours is the first such complete matching for a very rich scenario: most dim-6 operators are induced. Useful as cross-check for functional techniques and upcoming computational methods.

S_{1} and $S_{3}-$ global analysis

Using the complete one-loop matching to SMEFT, we include in our analysis the following observables.

All these are used to build a global likelihood

$$
-2 \log \mathcal{L} \equiv \chi^{2}\left(\lambda_{x}, M_{x}\right)=\sum_{i} \frac{\left(\mathcal{O}_{i}\left(\lambda_{x}, M_{x}\right)-\mu_{i}\right)^{2}}{\sigma_{i}^{2}}
$$

Observable	Experimental bounds
Z boson couplings	App. A.12
$\delta g_{\mu_{L}}^{Z}$	$(0.3 \pm 1.1) 10^{-3}[99]$
$\delta g_{\mu_{R}}^{Z}$	$(0.2 \pm 1.3) 10^{-3}[99]$
$\delta g_{\tau_{L}}^{Z}$	$(-0.11 \pm 0.61) 10^{-3}[99]$
$\delta g_{\tau_{R}}^{Z}$	$(0.66 \pm 0.65) 10^{-3}[99]$
$\delta g_{b_{L}}^{Z}$	$(2.9 \pm 1.6) 10^{-3}[99]$
$\delta g_{c_{R}}^{Z}$	$(-3.3 \pm 5.1) 10^{-3}[99]$
N_{ν}	$2.9963 \pm 0.0074[100]$

Observable	SM prediction	Experimental bounds
D leptonic decay		$[37]$ and App. A.4
$\mathcal{B}\left(D_{s} \rightarrow \tau \nu\right)$	$(5.169 \pm 0.004) \times 10^{-2}[94]$	$(5.48 \pm 0.23) \times 10^{-2}[51]$
$\mathcal{B}\left(D^{0} \rightarrow \mu \mu\right)$	$\approx 10^{-11}[95]$	$<7.6 \times 10^{-9}[96]$
$\mathcal{B}\left(D^{+} \rightarrow \pi^{+} \mu \mu\right)$	$\mathcal{O}\left(10^{-12}\right)[97]$	$<7.4 \times 10^{-8}[98]$
Rare Kaon decays $(\nu \nu)$	$8.64 \times 10^{-11}[99]$	App. A.1
$\mathcal{B}\left(K^{+} \rightarrow \pi^{+} \nu\right)$	$3.4 \times 11.0 \pm 4.0) \times 10^{-11}[99]$	$<3.6 \times 1000^{-9}[101]$
$\mathcal{B}\left(K_{L} \rightarrow \pi^{0} \nu \nu\right)$	$8.4 \times 10^{-10}[102]$	App. A.3 and A.2
Rare Kaon decays $(\ell \ell)$	$<2.5 \times 10^{-9}[76]$	
$\mathcal{B}\left(K_{L} \rightarrow \mu \mu \mu S D\right.$		$<2.5 \times 10^{-10}[105]$
$\mathcal{B}\left(K_{S} \rightarrow \mu \mu\right)$	$(5.18 \pm 1.5) \times 10^{-12}[76,103,104]$	$<4.5 \times 10^{-10}[107]$
$\mathcal{B}\left(K_{L} \rightarrow \pi^{0} \mu \mu\right)$	$(1.5 \pm 0.3) \times 10^{-11}[106]$	$<2.8 \times 10^{-10}[109]$
$\mathcal{B}\left(K_{L} \rightarrow \pi^{0} e e\right)$	$\left(3.2_{-0.8}^{+1.2}\right) \times 10^{-11}[108]$	App. A.3 and A.2
LFV in Kaon decays		$<4.7 \times 10^{-12}[110]$
$\mathcal{B}\left(K_{L} \rightarrow \mu e\right)$	0	$<7.9 \times 10^{-11}[111]$
$\mathcal{B}\left(K^{+} \rightarrow \pi^{+} \mu^{-} e^{+}\right)$	0	$<1.5 \times 10^{-11}[112]$
$\mathcal{B}\left(K^{+} \rightarrow \pi^{+} e^{-} \mu^{+}\right)$		App. A.8
CP-violation	0	$(16.6 \pm 2.3) \times 10^{-4}[51]$
$\epsilon_{K}^{\prime} / \epsilon_{K}$		

Observable	SM prediction	Experimental bounds
$\Delta F=2$ processes		[37]
$B^{0}-\bar{B}^{0}:\left\|C_{B_{d}}^{1}\right\|$	0	$<9.1 \times 10^{-7} \mathrm{TeV}^{-2}[114,115]$
$B_{s}^{0}-\bar{B}_{s}^{0}:\left\|C_{B_{s}}^{1}\right\|$	0	$<2.0 \times 10^{-5} \mathrm{TeV}^{-2}[114,115]$
$K^{0}-\bar{K}^{0}: \operatorname{Re}\left[C_{K}^{1}\right]$	0	$<8.0 \times 10^{-7} \mathrm{TeV}^{-2}[114,115]$
$K^{0}-\bar{K}^{0}: \operatorname{Im}\left[C_{K}^{1}\right]$	0	$<3.0 \times 10^{-9} \mathrm{TeV}^{-2}[114,115]$
$D^{0}-\bar{D}^{0}: \operatorname{Re}\left[C_{D}^{1}\right]$	0	$<3.6 \times 10^{-7} \mathrm{TeV}^{-2}[114,115]$
$D^{0}-\bar{D}^{0}: \operatorname{Im}\left[C_{D}^{1}\right]$	0	$<2.2 \times 10^{-8} \mathrm{TeV}^{-2}[114,115]$
$D^{0}-\bar{D}^{0}: \operatorname{Re}\left[C_{D}^{4}\right]$	0	$<3.2 \times 10^{-8} \mathrm{TeV}^{-2}[114,115]$
$D^{0}-\bar{D}^{0}: \operatorname{Im}\left[C_{D}^{4}\right]$	0	$<1.2 \times 10^{-9} \mathrm{TeV}^{-2}[114,115]$
$D^{0}-\bar{D}^{0}: \operatorname{Re}\left[C_{D}^{5}\right]$	0	$<2.7 \times 10^{-7} \mathrm{TeV}^{-2}[114,115]$
$D^{0}-\bar{D}^{0}: \operatorname{Im}\left[C_{D}^{5}\right]$	0	$<1.1 \times 10^{-8} \mathrm{TeV}^{-2}[114,115]$
LFU in τ decays		[37]
$\left\|g_{\mu} / g_{e}\right\|^{2}$	1	1.0036 ± 0.0028 [116]
$\left\|g_{\tau} / g_{\mu}\right\|^{2}$	1	1.0022 ± 0.0030 [116]
$\left\|g_{\tau} / g_{e}\right\|^{2}$	1	1.0058 ± 0.0030 [116]
LFV observables		[37]
$\mathcal{B}(\tau \rightarrow \mu \phi)$	0	$<1.00 \times 10^{-7}[117]$
$\mathcal{B}(\tau \rightarrow 3 \mu)$	0	$<2.5 \times 10^{-8}$ [118]
$\mathcal{B}(\tau \rightarrow \mu \gamma)$	0	$<5.2 \times 10^{-8}$ [119]
$\mathcal{B}(\tau \rightarrow e \gamma)$	0	$<3.9 \times 10^{-8}[119]$
$\mathcal{B}(\mu \rightarrow e \gamma)$	0	$<5.0 \times 10^{-13}$ [120]
$\mathcal{B}(\mu \rightarrow 3 e)$	0	$<1.2 \times 10^{-12}$ [121]
$\mathcal{B}_{\mu e}^{(T i)}$	0	$<5.1 \times 10^{-12}$ [122]
$\mathcal{B}_{\mu e}^{(\mathrm{Au})}$	0	$<8.3 \times 10^{-13}$ [123]
EDMs		[37]
$\left\|d_{e}\right\|$	$<10^{-44} \mathrm{e} \cdot \mathrm{cm}[124,125]$	$<1.3 \times 10^{-29} \mathrm{e} \cdot \mathrm{cm}[126]$
$\left\|d_{\mu}\right\|$	$<10^{-42} \mathrm{e} \cdot \mathrm{cm}[125]$	$<1.9 \times 10^{-19} \mathrm{e} \cdot \mathrm{cm}[127]$
d_{τ}	$<10^{-41} \mathrm{e} \cdot \mathrm{cm}[125]$	$(1.15 \pm 1.70) \times 10^{-17} \mathrm{e} \cdot \mathrm{cm}$ [37]
d_{n}	$<10^{-33} \mathrm{e} \cdot \mathrm{cm}[128]$	$<2.1 \times 10^{-26} \mathrm{e} \cdot \mathrm{cm}[129]$
Anomalous Magnetic Moments		[37]
$a_{e}-a_{e}^{S M}$	$\pm 2.3 \times 10^{-13}[130,131]$	$(-8.9 \pm 3.6) \times 10^{-13}[132]$
$a_{\mu}-a_{\mu}^{S M}$	$\pm 43 \times 10^{-11}$ [42]	$(279 \pm 76) \times 10^{-11}[40,42]$
$a_{\tau}-a_{\tau}^{S M}$	$\pm 3.9 \times 10^{-8}$ [130]	$(-2.1 \pm 1.7) \times 10^{-7}[133]$

S_{1} and S_{3} - contributions to anomalies

S_{1} and S_{3} - benchmarks

Two benchmark scenarios:

$$
\mathcal{L}_{i t} \sim\left(\lambda_{i j}^{1 k} q_{l^{i}}=l_{l}^{j}+\lambda_{i j}^{1 R} u_{k}^{\prime} e_{k}^{\prime}\right) S_{1}+\lambda_{i j}^{3 k} q_{L}^{i} z c^{\prime} l_{l}^{i} S_{3}^{A}+h c .
$$

LH + RH

$$
\lambda^{\lambda}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & s r \\
0 & b \mu & b r
\end{array}\right) \quad \lambda^{3 k}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & s \mu & s r \\
0 & b \mu & b r
\end{array}\right) \quad \lambda^{1 R}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & c r \\
0 & t \mu & t r
\end{array}\right)
$$

$$
\begin{aligned}
& R\left(\Delta^{(x)}\right) \\
& b \rightarrow s \mu \mu
\end{aligned}
$$

Only LH

$$
(g-2)_{\mu}
$$

$$
\lambda^{\lambda}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & s \tau \\
0 & 0 & b r
\end{array}\right) \quad \lambda^{3 L}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & s \mu & 5 \tau \\
0 & b \mu & b r
\end{array}\right) \quad \lambda 1 R=0
$$

S_{1} and $S_{3}: R\left(K^{(*)}\right)+R\left(D^{(*)}\right)+(g-2) \mu$

$$
\begin{aligned}
& \lambda^{1 L}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & s r \\
0 & b \mu & b r
\end{array}\right) \quad \lambda^{3 L}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & s \mu & s r \\
0 & b \mu & b r
\end{array}\right) \\
& \lambda^{1 R}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & c \tau \\
0 & t \mu & t r
\end{array}\right)
\end{aligned}
$$

The fit to $b \rightarrow s \mu \mu$ is very good (same as next slide)
Contribution to $\mathbf{R}\left(\mathbf{D}^{(*)}\right)$ dominated by \mathbf{S}_{1} : scalar+tensor op. Can also fit $(g-2)_{\mu}$.

Very good fit of all anomalies!

S_{1} and $S_{3}-$ only LH couplings: $R\left(K^{(*)}\right)+R\left(D^{(*)}\right)$

Predictions

Typical for all models addressing B -anomalies

The large couplings to τ imply signatures in DY tails of $p p \rightarrow \tau \tau$, \longrightarrow deviations in $\boldsymbol{\tau}$ LFU tests and $\boldsymbol{\tau} \rightarrow \mu$ LFV tests (Belle-II). Also B_{s}-mixing is typically close to present bounds.

Large effects are also expected in $\mathbf{b} \boldsymbol{\rightarrow} \mathbf{s} \mathbf{~} \mathbf{~}$ and $\mathbf{b} \rightarrow \mathbf{s} \mathbf{~} \boldsymbol{\mu}$ transitions:

From B to Kaon physics with scalar leptoquarks and U(2) ${ }^{5}$ flavor symmetry

D.M., S. Trifinopoulos, E. Venturini, in preparation [2106.yyyy]

The motivation

$$
\begin{array}{ll}
b \rightarrow c \tau v \quad & +\quad b \rightarrow s \mu \mu \\
& \downarrow
\end{array}
$$

TeV-scale leptoquark coupled to 2nd and 3rd generation

In "realistic" flavor models LQ must also couple to 1st generation fermions.

> What are the implications of this for: $s \rightarrow d$ i.e. Kaon physics $\quad \mu \rightarrow e$ LFV processes

A hint towards $\mathbf{U (2)}{ }^{5}$

CC \& NC B-anomalies fit with only LH couplings
seems to be consistent with a $U(2)^{5}$ flavor symmetry relation

$$
\lambda^{\mu}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & s \tau \\
0 & 0 & b r
\end{array}\right) \quad \lambda^{3 L}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & s \mu & s \tau \\
0 & b \mu & b r
\end{array}\right) \quad \lambda^{1 \mathrm{R}=0} \quad \lambda_{s \alpha}=C_{\mathrm{U}(2)} V_{t s} \lambda_{b \alpha}
$$

A flavor model typically also predicts couplings to 1st generation
Does the picture remain the same?
What is the impact of Kaon or $\mu \rightarrow e$ observables?

[^0]
$\mathrm{U}(2)^{5}$ flavour symmetry

In the limit where only 3rd gen fermions are massive, SM enjoys a global symmetry

$$
G_{F}=U(2)_{q} \times U(2)_{\ell} \times U(2)_{u} \times U(2)_{d} \times U(2)_{e}
$$

The minimal breaking of this symmetry due to Yukawas can be described in terms of some spurions, transforming under G_{F} :

$$
\begin{array}{ll}
\mathbf{V}_{q} \sim(\mathbf{2}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}), & \mathbf{V}_{\ell} \sim(\mathbf{1}, \mathbf{2}, \mathbf{1}, \mathbf{1}, \mathbf{1}), \\
\Delta_{u} \sim(\mathbf{2}, \mathbf{1}, \overline{\mathbf{2}}, \mathbf{1}, \mathbf{1}), & \Delta_{d} \sim(\mathbf{2}, \mathbf{1}, \mathbf{1}, \overline{\mathbf{2}}, \mathbf{1}), \quad \Delta_{e} \sim(\mathbf{1}, \mathbf{2}, \mathbf{1}, \mathbf{1}, \overline{\mathbf{2}}) .
\end{array}
$$

$$
Y_{u(d)}=y_{t(b)}\left(\begin{array}{cc}
\boldsymbol{\Delta}_{u(d)} & x_{t(b)} \mathbf{V}_{q} \\
0 & 1
\end{array}\right), \quad Y_{e}=y_{\tau}\left(\begin{array}{cc}
\boldsymbol{\Delta}_{e} & x_{\tau} \mathbf{V}_{\ell} \\
0 & 1
\end{array}\right) x_{x_{t, b, \tau} \text { are } \mathcal{O}(1)}
$$

This is a very good approximate symmetry: the largest breaking has size $\quad \epsilon \approx y_{t}\left|V_{t s}\right| \approx 0.04$
Diagonalizing quark masses, the V_{q} doublet spurion is fixed to be $\mathbf{V}_{q}=\kappa_{q}\left(V_{t d}^{*}, V_{t s}^{*}\right)^{T} \quad \kappa_{q} \sim O(1)$

$U(2)^{5}$ flavour symmetry and leptoquarks

Applying the same symmetry assumptions to the leptoquark couplings to SM fermions we get a structure:

$$
\lambda^{1 R} \approx \lambda_{R}^{1}\left(\begin{array}{cc}
0 & 0 \\
0 & \tilde{x}_{t \tau}^{1 R}
\end{array}\right)
$$

\rightarrow only RH coupling allowed is to $t_{R} \tau_{R}$.
$S_{e}=\sin \vartheta_{e}$: rotation diagonalizing electrons and muon masses
V_{ℓ} : leptonic doublet spurion

Arbitrary parameters

$\boldsymbol{x}^{1(3): ~} \boldsymbol{O}(1)$ arbitrary complex parameters.

- Largest couplings to $\mathbf{b}_{\mathrm{L}}, \mathrm{t}_{\mathrm{L}}, \mathbf{T}_{\mathrm{L}}$ and \mathbf{v}_{T},
- Coupl. to sl suppressed by $\sim V_{\text {ts }}$,

Generic features of $U(2)^{5}$ symmetry:

- Coupl. to dı suppressed by $\sim V_{\text {td }}$,
- Coupl. to μ_{L} suppressed by V_{ℓ},
- Coupl. to e e suppressed by $\mathrm{se}_{\mathrm{e}} \mathrm{V}_{\ell}$.

$U(2)^{5}$ flavour symmetry and leptoquarks

Applying the same symmetry assumptions to the leptoquark couplings to SM fermions we get a structure:

$$
\lambda^{1 R} \approx \lambda_{R}^{1}\left(\begin{array}{cc}
0 & 0 \\
0 & \tilde{x}_{t \tau}^{1 R}
\end{array}\right)
$$

\rightarrow only RH coupling allowed is to $t_{R} \tau_{R}$.
$S_{e}=\sin \theta_{e}$: rotation diagonalizing electrons and muon masses
V_{ℓ} : leptonic doublet spurion
Arbitrary parameters
$\boldsymbol{x}^{\mathbf{1 (3)}}: \boldsymbol{O}(\mathbf{1})$ arbitrary complex parameters.

The leptoquark couplings to first generations are now fixed in terms of couplings to the second generation:

$$
\begin{array}{ll}
\lambda_{d \alpha}^{1(3) L}=\lambda_{S \alpha}^{1(3) L} \frac{V_{t d}}{V_{t s}} & \text { Exact relations } \\
\lambda_{i e}^{1(3) L}=\lambda_{i \mu}^{1(3) L} \sin \partial_{e} & \text { (selection rules) } \\
\lambda_{i l} &
\end{array}
$$

From B to K with LQ and $\mathrm{U}(2)^{5}$

We perform a global fit in the $U(2)^{5}$ flavour structure.

- The parameters are indeed consistent with a $U(2)^{5}$ structure: all x's are $O(1)$.
- $V_{\ell} \sim 0.1, \quad\left|s_{e}\right| \lesssim 0.02$

From B to K with LQ and U(2)5

$b \rightarrow s \mu \mu$ can be addressed:

$R\left(D^{(*)}\right)$ instead can only be addressed at 2б:

This is due to the combination of the constraints from $\mathrm{Z} \rightarrow \tau \tau$ and $\mathrm{K}^{+} \rightarrow \mathrm{T}^{+} \mathrm{Vv}$

Leading effects in Kaon physics

Dominated by tau neutrinos, due to largest couplings.
The NA62 bound is already very constraining for this setup, future updated will put even more tension with $R\left(D^{(*)}\right)$, or eventually a signal could be observed.

The correlation in the full model is stronger than just in EFT.
[see: Bordone, Buttazzo, Isidori, Monnard 1705.10729]
The phase of NP contributi

$$
\left[L_{\nu d}^{V L L}\right]_{\nu_{\tau} \nu_{\tau} d s}
$$

$\mu \rightarrow e$ conversion

$\mu \rightarrow e$ conversion in gold nuclei sets the strongest constraint on \mathbf{S}_{e}.

COMET and Mu2e will push this bound to ~10-16, while Mu3e at PSI will push the limit on $\operatorname{Br}(\boldsymbol{\mu} \rightarrow \mathbf{3 e})$ to $\sim 10^{-16}$.

These will set much stronger bounds on $\mathbf{s e}$, or could see a New Physics effect.

Combined interpretation of $R_{K}, R\left(D^{(*)}\right)$, (g-2) , and CAA

DM, Sokratis Trifinopoulos

PRL 127, 061803 (2021) [2104.05730]

$$
S_{1} \sim(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3}, \quad \phi^{+} \sim(\mathbf{1}, \mathbf{1})_{1}
$$

A do-it-all model?

Let us consider a simplified model with only these two new weak-singlets states:

$$
S_{1} \sim(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3}, \quad \phi^{+} \sim(\mathbf{1}, \mathbf{1})_{1}
$$

ϕ^{+}couples to di-leptons: $\quad \mathcal{L}_{S 1+\phi}=\frac{1}{2} \lambda_{\alpha \beta} \bar{\ell}_{\alpha}^{c} \epsilon \ell_{\beta} \phi^{+}+\lambda_{i \alpha}^{1 L} \bar{q}_{i}^{c} \epsilon \ell_{\alpha} S_{1}+\lambda_{i \alpha}^{1 R} \bar{u}_{i}^{c} e_{\alpha} S_{1}+$ h.c.
Note: same gauge quantum numbers as sbottom and stau, but different \mathbf{L} and \mathbf{B} assignments.
S_{1}

$$
\begin{array}{r}
R_{D} \approx 0.299-0.235 \frac{\lambda_{b \tau}^{1 L} \lambda_{c \tau}^{1 R}}{m_{1}^{2}}\left(1+0.05 \log m_{1}^{2}\right) \\
R_{D^{*}} \approx 0.258-0.088 \frac{\lambda_{b \tau}^{1 L} \lambda_{c \tau}^{1 R}}{m_{1}^{2}}\left(1+0.02 \log m_{1}^{2}\right)
\end{array}
$$

$\Delta a_{\mu} \approx \frac{m_{\mu} m_{t} \lambda_{b \mu}^{1 L} \lambda_{t \mu}^{1 R}}{4 \pi^{2} M_{1}^{2}}\left(\log M_{1}^{2} / m_{t}^{2}-\frac{7}{4}\right)$
$C_{B_{s}}^{1}=\frac{\left(\lambda_{b \tau}^{1 L *} \lambda_{s \tau}^{1 L}\right)^{2}}{128 \pi^{2} M_{1}^{2}}$
$C_{D}^{1}=\frac{\left(V_{c i} \lambda_{i \alpha}^{1 L *} \lambda_{j \alpha}^{1 L} V_{u j}^{*}\right)^{2}}{128 \pi^{2} M_{1}^{2}}$

Large masses are preferred to avoid meson mixing.

$$
\text { We fix: } \quad M_{1}=M_{\phi}=5.5 \mathrm{TeV}
$$

$\mathbf{S}_{1}+\boldsymbol{\Phi}^{+}$

Felkl, Herrero-Garcia, Schmidt 2102.09898

$$
\delta(\mu \rightarrow e \nu \nu) \approx \frac{v^{2}\left|\lambda_{12}\right|^{2}}{4 M_{\phi}^{2}}+\frac{3 m_{t}^{2}\left|\lambda_{b \mu}^{1 L}\right|^{2}}{32 \pi^{2} M_{1}^{2}}\left(\frac{1}{2}-\log \frac{M_{1}^{2}}{m_{t}^{2}}\right)
$$

A do-it-all model?

We do a global analysis including all the observables

Observable	Experimental value
R_{D}	$0.34 \pm 0.029[56]$
$R_{D^{*}}$	$0.295 \pm 0.013[56]$
ΔC_{9}^{μ}	$-0.675 \pm 0.16[20]$
ΔC_{10}^{μ}	$0.244 \pm 0.13[20]$
Δa_{μ}	$(2.51 \pm 0.59) \times 10^{-9}[27,28]$
$\delta(\mu \rightarrow e \nu \nu)$	$(6.5 \pm 1.5) \times 10^{-4}[41]$
$R_{D}^{\mu / e}$	$0.978 \pm 0.035[57,58]$
$\mathcal{B}\left(B_{c} \rightarrow \tau \nu\right)$	$<0.1[59]$
$R_{K(*)}^{\nu}$	$<2.7[60]$
$C_{B_{s}}^{1}$	$<2.01 \times 10^{-5} \mathrm{TeV}^{-2}[61]$
$\left\|\operatorname{Re}\left(C_{D}^{1}\right)\right\|$	$<3.57 \times 10^{-7} \mathrm{TeV}^{-2}[61]$
$\left\|\operatorname{Im}\left(C_{D}^{1}\right)\right\|$	$<2.23 \times 10^{-8} \mathrm{TeV}^{-2}[61]$
$\frac{g_{\tau}}{g_{e}}$	$1.0058 \pm 0.0030[56]$
$\frac{g_{\tau}}{g_{\mu}}$	$1.0022 \pm 0.0030[56]$
$\frac{g_{\mu}}{g_{e}}$	$1.0036 \pm 0.0028[56]$
$\delta g_{\tau_{L}}^{Z}$	$(-0.11 \pm 0.61) \times 10^{-3}[62]$
$\delta g_{\tau_{R}}$	$(0.66 \pm 0.65) \times 10^{-3}[62]$
$\delta g_{\mu L}^{Z}$	$(0.3 \pm 1.1) \times 10^{-3}[62]$
$\delta g_{\mu R}^{Z}$	$(0.2 \pm 1.3) \times 10^{-3}[62]$
$\mathcal{B}(\tau \rightarrow \mu \gamma)$	$<4.4 \times 10^{-8}[63]$
$\mathcal{B}(\tau \rightarrow 3 \mu)$	$<2.1 \times 10^{-8}[63]$

- Good fit of all anomalies
- Cancellation of approx. 1 part in 3 required to avoid $\tau \rightarrow \mu \gamma$: via $\lambda^{I R_{c \mu}}$
- Large couplings required, due to the large masses needed to avoid meson mixing.

Conclusions

- Flavor anomalies still require data (and theory) to give us a definitive picture, some could stay, some could go.
- If any will remain, it will be a revolutionary stepping stone to an unexpected New Physics sector!

We must keep an open mind and explore all possibilities.

- Exploring combined explanations is a useful exploratory exercise, it allows us to connect B-anomalies with other observables, both at high and low energy.
- Observations or limits from correlated effects in completely different processes will be crucial to understand the underlying UV physics and its flavor structure.

Thank you!

Backup

From R_{k} to $R\left(D^{(*)}\right)$ anomalies

A large coupling to the τ induces an RGenhanced lepton-flavor universal contribution proportional to Cg^{u}

Capdevila et al. 1712.01919, Crivellin et al. 1807.02068

$\mathcal{C}_{9}^{\mathrm{U}} \approx 7.5\left(1-\sqrt{\frac{R_{D^{(*)}}}{R_{D^{(*)} \mathrm{SM}}}}\right)\left(1+\frac{\log \left(\Lambda^{2} /\left(1 \mathrm{TeV}^{2}\right)\right)}{10.5}\right)$

$$
\mathbf{R}_{\mathbf{K}} \longrightarrow \sim \frac{g_{\mu} V_{t s}}{\Lambda^{2}}\left(\bar{b}_{L} \gamma_{\alpha} s_{L}\right)\left(\bar{\mu}_{L} \gamma^{\alpha} \mu_{L}\right)
$$

Charged-current in muons

- Generalising lepton flavour

$$
\sim \frac{g_{\tau} V_{c b}}{\Lambda^{2}}\left(\bar{b}_{L} \gamma_{\alpha} c_{L}\right)\left(\bar{\nu}_{L}^{\tau} \gamma^{\alpha} \tau_{L}\right)
$$

$\mathbf{R}\left(\mathbf{D}^{(*)}\right)$
$\Lambda / \operatorname{Vg}_{\tau} \sim \mathbf{1} \mathbf{~ T e V}$
If $g_{e} \ll g_{\mu} \ll g_{\tau}$ same hierarchy as

$$
m_{e} \ll m_{\mu} \ll m_{\tau}
$$

Required for R_{K}

UV completions for $b \rightarrow s \mu^{+} \mu^{-}$anomalies

LOOP LEVEL

TREE LEVEL

Leptoquark
vector U_{1} or scalar S_{3}

LFU anomalies from boxes
e.g. Arcadi, Calibbi, Fedele, Mescia 2104.03228

Top-philic Z'

Kamenik, Soreq, Zupan [1704.06005]

Complete one-loop matching to SMEFT

Other necessary contributions:
SMEFT 1-loop RGE
[Alonso, Jenkins, Manohar, Trott '13]
SMEFT > LEFT matching @1-loop
[Dekens, Stoffer 1908.05295]
LEFT 1-Ioop RGE

Motivations:

1. finite terms (non logs) of loop contributions are important for several observables:
Meson mixing, magnetic dipole moments, Z couplings, LFV leptonic decays, etc..
2. Once the matching is performed, a large number of observables can be readily evaluated.
3. It is the first such complete matching for a very rich scenario, many operators are induced.
Useful as cross-check for other techniques that aim to do this more automatically.
MatchMaker (diagrammatic approach) [Anastasiou, Carmona, Lazopoulos, Santiago, in progress], methods based on Covariant Derivative Expansion (CDE)
[Henning, Lu, Murayama '14, Drozd, Ellis, Quevillion, You, Zhang '15, '16, '17, Fuentes-Martin, Portoles, Ruiz-Femenia]
The alternative is to compute on-shell loops for each observable, as in:

Crivellin et al. 1912.04224; Saad 2005.04352;

"Green's Basis" of the SMEFT

When off-shell one-loop diagrams are evaluated, also operators outside of the chosen basis (e.g. Warsaw) are generated, which must be reduced to the basis via E.O.M.

The complete set of independent operators independent upon integration by parts (but possibly redundant under EOM), is called "Green's basis"

$$
\mathcal{G} \equiv\left\langle e_{\beta}\left(p_{1}\right) \bar{e}_{\alpha}\left(p_{2}\right) H_{b}\left(q_{1}\right) H_{a}^{\dagger}\left(q_{2}\right)\right\rangle
$$

Matching conditions in the Green's basis:

$$
\begin{aligned}
& {\left[G_{H e}\left(\mu_{M}\right)\right]_{\alpha \beta}=-\frac{N_{c}\left(\lambda^{1 R \dagger} y_{U}^{T} y_{U}^{*} \lambda^{1 R}\right)_{\alpha \beta}}{32 \pi^{2} M_{1}^{2}}\left(1+\log \frac{\mu_{M}^{2}}{M_{1}^{2}}\right)} \\
& {\left[G_{H e}^{\prime}\left(\mu_{M}\right)\right]_{\alpha \beta}=-\frac{N_{c}\left(\lambda^{1 R \dagger} y_{U}^{T} y_{U}^{*} \lambda^{1 R}\right)_{\alpha \beta}}{64 \pi^{2} M_{1}^{2}}+\frac{N_{c} \lambda_{H 1}\left(\lambda^{1 R \dagger} \lambda^{1 R}\right)_{\alpha \beta}}{64 \pi^{2} M_{1}^{2}},} \\
& {\left[G_{H e}^{\prime \prime}\left(\mu_{M}\right)\right]_{\alpha \beta}=0 .}
\end{aligned}
$$

The last two must be rotated to the Warsaw basis:
Figure 1: Diagrams for the matching of the $\left\langle\bar{e} e H^{\dagger} H\right\rangle$ Green function.

$$
\begin{aligned}
& \left(O_{H e}^{\prime}\right)_{\alpha \beta} \rightarrow\left(y_{E}^{*}\right)_{\gamma \beta}\left(O_{e H}\right)_{\gamma \alpha}^{\dagger}+\left(y_{E}\right)_{\gamma \alpha}\left(O_{e H}\right)_{\gamma \beta} \\
& {\left[O_{H e}^{\prime \prime}\right]_{\alpha \beta} \rightarrow i\left(y_{E}^{*}\right)_{\gamma \beta}\left[O_{e H}\right]_{\gamma \alpha}^{\dagger}-i\left(y_{E}\right)_{\gamma \alpha}\left(O_{e H}\right)_{\gamma \beta}}
\end{aligned}
$$

Relevant Green's basis operators:
While the first operators receives contributions also from other ones:

$$
\begin{aligned}
& {\left[\mathcal{O}_{H e}\right]_{\alpha \beta}=\left(\bar{e}_{\alpha} \gamma^{\mu} e_{\beta}\right)\left(H^{\dagger} i \overleftrightarrow{D_{\mu}} H\right)} \\
& {\left[\mathcal{O}_{H e}^{\prime}\right]_{\alpha \beta}=\left(\bar{e}_{\alpha} \stackrel{\overleftrightarrow{D}}{ } e_{\beta}\right)\left(H^{\dagger} H\right)} \\
& {\left[\mathcal{O}_{H e}^{\prime \prime}\right]_{\alpha \beta}=\left(\bar{e}_{\alpha} \gamma^{\mu} e_{\beta}\right) \partial_{\mu}\left(H^{\dagger} H\right)}
\end{aligned}
$$

$$
\begin{aligned}
{\left[C_{H e} e_{\alpha \beta}^{(1)}=\right.} & -\frac{N_{c}}{30} g^{{ }^{4}} Y_{H} Y_{e} \delta_{\alpha \beta}\left(\frac{3 Y_{S_{3}}^{2}}{M_{3}^{2}}+\frac{Y_{S_{1}}^{2}}{M_{1}^{2}}\right)+\frac{N_{c}}{12}\left(3 \frac{\left(y_{E}^{\dagger} \Lambda_{e}^{(3)} y_{E}\right)_{\alpha \beta}}{M_{3}^{2}}+\frac{\left(y_{E}^{\dagger} \Lambda_{e}^{(1)} y_{E}\right)_{\alpha \beta}}{M_{1}^{2}}\right)+ \\
& +\frac{\left.N_{c} g^{\prime 2} Y_{H}\left(\frac{8 Y_{u}-Y_{S_{1}}}{6}+Y_{u} L_{1}\right) \frac{\left(\Lambda_{e}\right)_{\alpha \beta}}{M_{1}^{2}}\right)-\frac{N_{c}}{2}\left(1+L_{1}\right) \frac{\left(X_{Z Z}^{1 R}\right)_{\alpha \beta}}{M_{1}^{2}} .}{} .
\end{aligned}
$$

The grey ones are those already present in the Warsaw basis

\boldsymbol{X}^{3}		$X^{2} H^{2}$		$\boldsymbol{H}^{2} \boldsymbol{D}^{4}$	
$\mathcal{O}_{3 G} \quad f^{A B C} G^{A \nu} G_{\nu}^{B \rho} G^{C \mu}$		$\mathcal{O}_{H G} \quad G_{\mu \nu}^{A} G^{A \mu \nu}\left(H^{\dagger} H\right)$		$\mathcal{O}_{\text {DH }}$	$\left(D_{\mu} D^{\mu} H\right)^{\dagger}\left(D_{\nu} D^{\nu} H\right)$
$\mathcal{O}_{\widetilde{3 G}}$	$f^{A B C} \widetilde{G}_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{\text {C }}{ }^{\prime \prime}$	$\begin{aligned} & \mathcal{O}_{H \widetilde{G}} \\ & \mathcal{O}_{H W} \end{aligned}$	$\widetilde{G}_{\mu \nu}^{A} G^{A \mu \nu}\left(H^{\dagger} H\right)$	$\boldsymbol{H}^{4} \boldsymbol{D}^{2}$	
$\mathcal{O}_{3 W}$	$\epsilon^{I J K} W_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu}$		$W_{\mu \nu}^{I} W^{I \mu \nu}\left(H^{\dagger} H\right)$	$\mathcal{O}_{H \square}$	$\left(H^{\dagger} H\right) \square\left(H^{\dagger} H\right)$
$\mathcal{O}_{\widetilde{3 W}}$	$\epsilon^{I J K} \widetilde{W}_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu}$	$\mathcal{O}_{H \widetilde{W}}$	$\widetilde{W}_{\mu \nu}^{I} W^{I \mu \nu}\left(H^{\dagger} H\right)$	$\mathcal{O}_{H D}$$\mathcal{O}_{H D}^{\prime}$	$\left(H^{\dagger} D^{\mu} H\right)^{\dagger}\left(H^{\dagger} D_{\mu} H\right)$
$\boldsymbol{X}^{2} \boldsymbol{D}^{2}$		$\mathcal{O}_{H B}$	$B_{\mu \nu} B^{\mu \nu}\left(H^{\dagger} H\right)$		$\begin{aligned} & \left(H^{\dagger} H\right)\left(D_{\mu} H\right)^{\dagger}\left(D^{\mu} H\right) \\ & \left(H^{\dagger} H\right) D_{\mu}\left(H^{\dagger} i \stackrel{\rightharpoonup}{D^{\mu}} H\right) \end{aligned}$
$\begin{gathered} \mathcal{O}_{2 G} \\ \mathcal{O}_{2 W} \\ \mathcal{O}_{2 B} \end{gathered}$	$\begin{gathered} \hline-\frac{1}{2}\left(D_{\mu} G^{A \mu \nu}\right)\left(D^{\rho} G_{\rho \nu}^{A}\right) \\ -\frac{1}{2}\left(D_{\mu} W^{I \mu \nu}\right)\left(D^{\rho} W_{\rho \nu}^{I}\right) \\ -\frac{1}{2}\left(\partial_{\mu} B^{\mu \nu}\right)\left(\partial^{\rho} B_{\rho \nu}\right) \end{gathered}$	$\begin{gathered} \mathcal{O}_{H \widetilde{B}} \\ \mathcal{O}_{H W B} \\ \mathcal{O}_{H \widetilde{W} B} \end{gathered}$	$\begin{gathered} \widetilde{B}_{\mu \nu} B^{\mu \nu}\left(H^{\dagger} H\right) \\ W_{\mu \nu}^{I} B^{\mu \nu}\left(H^{\dagger} \sigma^{I} H\right) \\ \widetilde{W}_{\mu \nu}^{I} B^{\mu \nu}\left(H^{\dagger} \sigma^{I} H\right) \\ \boldsymbol{H}^{\mu} \boldsymbol{X} \boldsymbol{D}^{2} \end{gathered}$	$\mathcal{O}_{H D}^{\prime \prime}$	
				\boldsymbol{H}^{6}	
				\mathcal{O}_{H}	$\left(H^{\dagger} H\right)^{3}$
		$\begin{gathered} \mathcal{O}_{W D H} \\ \mathcal{O}_{B D H} \end{gathered}$	$\begin{gathered} D_{\nu} W^{I \mu \nu}\left(H^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} H\right) \\ \partial_{\nu} B^{\mu \nu}\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right) \end{gathered}$		

Four-quark		Four-lepton		Semileptonic	
$\mathcal{O}_{q q}^{(1)}$	$\left(\bar{q} \gamma^{\mu} q\right)\left(\bar{q} \gamma_{\mu} q\right)$	$\mathcal{O}_{\ell \ell}$	$\left(\bar{\ell} \gamma^{\mu} \ell\right)\left(\bar{\ell} \gamma_{\mu} \ell\right)$	$\mathcal{O}_{\ell q}^{(1)}$	$\left(\bar{\ell} \gamma^{\mu} \ell\right)\left(\bar{q} \gamma_{\mu} q\right)$
$\mathcal{O}_{q q}^{(3)}$	$\left(\bar{q} \gamma^{\mu} \sigma^{I} q\right)\left(\bar{q} \gamma_{\mu} \sigma^{I} q\right)$	$\mathcal{O}_{e e}$	$\left(\bar{e} \gamma^{\mu} e\right)\left(\bar{e} \gamma_{\mu} e\right)$	$\mathcal{O}_{\ell q}^{(3)}$	$\left(\bar{\ell} \gamma^{\mu} \sigma^{I} \ell\right)\left(\bar{q} \gamma_{\mu} \sigma^{I} q\right)$
$\mathcal{O}_{u u}$	$\left(\bar{u} \gamma^{\mu} u\right)\left(\bar{u} \gamma_{\mu} u\right)$	$\mathcal{O}_{\ell e}$	$\left(\bar{\ell} \gamma^{\mu} \ell\right)\left(\bar{e} \gamma_{\mu} e\right)$	$\mathcal{O}_{e u}$	$\left(\bar{e} \gamma^{\mu} e\right)\left(\bar{u} \gamma_{\mu} u\right)$
$\mathcal{O}_{d d}$	$\left(\bar{d} \gamma^{\mu} d\right)\left(\bar{d} \gamma_{\mu} d\right)$			$\mathcal{O}_{e d}$	$\left(\bar{e} \gamma^{\mu} e\right)\left(\bar{d} \gamma_{\mu} d\right)$
$\mathcal{O}_{u d}^{(1)}$	$\left(\bar{u} \gamma^{\mu} u\right)\left(\bar{d} \gamma_{\mu} d\right)$			$\mathcal{O}_{q e}$	$\left(\bar{q} \gamma^{\mu} q\right)\left(\bar{e} \gamma_{\mu} e\right)$
$\mathcal{O}_{u d}^{(8)}$	$\left(\bar{u} \gamma^{\mu} T^{A} u\right)\left(\bar{d} \gamma_{\mu} T^{A} d\right)$			$\mathcal{O}_{\ell u}$	$\left(\bar{\ell} \gamma^{\mu} \ell\right)\left(\bar{u} \gamma_{\mu} u\right)$
$\mathcal{O}_{q u}^{(1)}$	$\left(\bar{q} \gamma^{\mu} q\right)\left(\bar{u} \gamma_{\mu} u\right)$			$\mathcal{O}_{\ell d}$	$\left(\bar{\ell} \gamma^{\mu} \ell\right)\left(\bar{d} \gamma_{\mu} d\right)$
$\mathcal{O}_{q u}^{(8)}$	$\left(\bar{q} \gamma^{\mu} T^{A} q\right)\left(\bar{u} \gamma_{\mu} T^{A} u\right)$			$\mathcal{O}_{\ell e d q}$	$(\bar{\ell} e)(\bar{d} q)$
$\mathcal{O}_{q d}^{(1)}$	$\left(\bar{q} \gamma^{\mu} q\right)\left(\bar{d} \gamma_{\mu} d\right)$			$\mathcal{O}_{\ell \ell q u}^{(1)}$	$\left(\bar{\ell}^{r} e\right) \epsilon_{r s}\left(\bar{q}^{s} u\right)$
$\mathcal{O}_{q d}^{(8)}$	$\left(\bar{q} \gamma^{\mu} T^{A} q\right)\left(\bar{d} \gamma_{\mu} T^{A} d\right)$			$\mathcal{O}_{\ell e q u}^{(3)}$	$\left(\bar{\ell}^{r} \sigma^{\mu \nu} e\right) \epsilon_{r s}\left(\bar{q} \sigma_{\mu \nu}^{s} u\right)$
$\mathcal{O}_{q u q d}^{(1)}$	$\left(\bar{q}^{r} u\right) \epsilon_{r s}\left(\bar{q}^{s} d\right)$				
$\mathcal{O}_{q u q d}^{(8)}$	$\left(\bar{q} T^{A} u\right) \epsilon_{r s}\left(\bar{q} T^{s} T^{A} d\right)$				

$\psi^{2} D^{3}$		$\psi^{2} \boldsymbol{X} D$		$\psi^{2} \boldsymbol{D} \boldsymbol{H}^{\mathbf{2}}$	
$\mathcal{O}_{q D}$	$\frac{i}{2} \bar{q}\left\{D_{\mu} D^{\mu}, \not D\right\} q$	$\mathcal{O}_{G q}$	$\left(\bar{q} T^{A} \gamma^{\mu} q\right) D^{\nu} G_{\mu \nu}^{A}$	$\mathcal{O}_{\text {Hq }}^{(1)}$	$\left(\bar{q} \gamma^{\mu} q\right)\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)$
$\mathcal{O}_{u D}$	$\frac{i}{2} \bar{u}\left\{D_{\mu} D^{\mu}, \not D\right\} u$	$\mathcal{O}_{G q}^{\prime}$	$\frac{1}{2}\left(\bar{q} T^{A} \gamma^{\mu} i \overleftrightarrow{D^{\nu}}{ }^{\nu} q\right) G_{\mu \nu}^{A}$	$\mathcal{O}_{H q}^{(1)}$	$(\bar{q} i \overleftrightarrow{D} q)\left(H^{\dagger} H\right)$
$\mathcal{O}_{d D}$	$\frac{i}{2} \bar{d}\left\{D_{\mu} D^{\mu}, \not D\right\} d$	$\mathcal{O}_{\widetilde{G} q}^{\prime}$	$\frac{1}{2}\left(\bar{q} T^{A} \gamma^{\mu} i \overleftrightarrow{D^{\nu}} q\right) \widetilde{G}_{\mu \nu}^{A}$	$\mathcal{O}_{H q}^{\prime \prime(1)}$	$\left(\bar{q} \gamma^{\mu} q\right) \partial_{\mu}\left(H^{\dagger} H\right)$
$\mathcal{O}_{\ell D}$	$\frac{i}{2} \bar{\ell}\left\{D_{\mu} D^{\mu}, \not D\right\} \ell$	$\mathcal{O}_{W q}$	$\left(\bar{q} \sigma^{I} \gamma^{\mu} q\right) D^{\nu} W_{\mu \nu}^{I}$	$\mathcal{O}_{\text {Hq }}{ }^{(3)}$	$\left(\bar{q} \sigma^{I} \chi^{\mu} q\right)\left(H^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} H\right)$
$\mathcal{O}_{e D}$	$\left.\frac{i}{2} e D_{\mu} D^{\mu}, \not D\right\} e$	$\mathcal{O}_{W q}^{\prime}$	$\frac{1}{2}\left(\bar{q} \sigma^{I} \gamma^{\mu} \overleftrightarrow{D}^{\nu} q\right) W_{\mu \nu}^{I}$	$\mathcal{O}_{H q}^{\prime(3)}$	$\left(\bar{q} i \not \overleftrightarrow{D}^{I} q\right)\left(H^{\dagger} \sigma^{I} H\right)$
$\psi^{\mathbf{2}} \boldsymbol{H} \boldsymbol{D}^{2}+$ h.c.		$\begin{aligned} & \mathcal{O}_{\widehat{W} q}^{\prime} \\ & \mathcal{O}_{B q}^{\prime} \end{aligned}$	$\begin{gathered} \frac{1}{2}\left(\bar{q} \sigma^{I} \gamma^{\mu} i \overleftrightarrow{D}^{\nu} q\right) \widehat{W}_{\mu \nu}^{I} \\ \left(\bar{q} \gamma^{\mu} q\right) \partial^{\nu} B_{\mu \nu} \end{gathered}$	$\begin{gathered} \mathcal{O}_{H q}^{\prime \prime \prime(3)} \\ \hline \end{gathered}$	$\left(\bar{q} \sigma^{I} \gamma^{\mu} q\right) D_{\mu}\left(H^{\dagger} \sigma^{I} H\right)$
				$\mathcal{O}_{H u}$	$\left(\bar{u} \gamma^{\mu} u\right)\left(H^{\dagger} i \overleftrightarrow{D}{ }_{\mu} H\right)$
$\mathcal{O}_{u H D 2}$	$\left(\bar{q} i \sigma_{\mu \nu} D^{\mu} u\right) D^{\nu} \widetilde{H}$	$\begin{aligned} & \mathcal{O}_{B q} \\ & \mathcal{O}_{B q}^{\prime} \end{aligned}$	$\begin{gathered} \left(\bar{q} \gamma^{\mu} q\right) \partial^{\nu} B_{\mu \nu} \\ \frac{1}{2}\left(\bar{q} \gamma^{i} i \overleftrightarrow{D}^{\nu}{ }^{\nu} q\right) B_{\mu \nu} \end{gathered}$	$\mathcal{O}_{H u}^{\prime}$	$\left(\bar{u} i \overleftrightarrow{\square}{ }^{\text {a }}\right.$) $\left(H^{\dagger} H\right)$
$\mathcal{O}_{u H D 3}$	$\left(\bar{q} D_{\mu} D^{\mu} u\right) \widetilde{H}$	$\mathcal{O}_{\widetilde{B} q}^{\prime}$	$\frac{1}{2}\left(\bar{q} \gamma^{\mu} i \overleftrightarrow{D^{\nu}} q\right) \widetilde{B}_{\mu \nu}$	$\mathcal{O}_{H u}^{\prime \prime}$	$\left(\bar{u} \gamma^{\mu} u\right) \partial_{\mu}\left(H^{\dagger} H\right)$
$\mathcal{O}_{u H D 4}$	$\left(\bar{q} D_{\mu} u\right) D^{\mu} \widetilde{H}$	$\mathcal{O}_{G u}$	$\left(\bar{u} T^{A} \gamma^{\mu} u\right) D^{\nu} G_{\mu \nu}^{A}$	$\mathcal{O}_{H d}$	$\left(\bar{d} \gamma^{\mu} d\right)\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)$
$\mathcal{O}_{d H D 1}$	$(\bar{q} d) D_{\mu} D^{\mu} H$	$\mathcal{O}_{G u}^{\prime}$	$\frac{1}{2}\left(\bar{u} T^{A} \gamma^{\mu} i \overleftrightarrow{\left.\overleftrightarrow{D}^{\nu} u\right) G_{\mu \nu}^{A}}\right.$	$\mathcal{O}_{H d}^{\prime}$	$\begin{aligned} & (\bar{d} i \overleftrightarrow{\Delta D} d)\left(H^{\dagger} H\right) \\ & \left(\bar{d} \gamma^{\mu} d\right) \partial_{\mu}\left(H^{\dagger} H\right) \end{aligned}$
$\mathcal{O}_{d H D 2}$	$\left(\bar{q} i \sigma_{\mu \nu} D^{\mu} d\right) D^{\nu} H$	$\mathcal{O}_{\widetilde{G} u}^{\prime}$	$\frac{1}{2}\left(\bar{u} T^{A} \gamma^{\mu} i \overleftrightarrow{D^{\nu}} u\right) \widetilde{G}_{\mu \nu}^{A}$	$\mathcal{O}_{H d}^{\prime \prime}$	
$\mathcal{O}_{\text {dHD3 }}$	$\left(\bar{q} D_{\mu} D^{\mu} d\right) H$	$\mathcal{O}_{B u}$	$\left(\bar{u} \gamma^{\mu} u\right) \partial^{\nu} B_{\mu \nu}$	$\mathcal{O}_{H u d}$	$\begin{aligned} & \left(\bar{u} \gamma^{\mu} d\right)\left(\widetilde{H}^{\dagger} i D_{\mu} H\right) \\ & \left(\bar{\ell} \gamma^{\mu} \ell\right)\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right) \end{aligned}$
$\mathcal{O}_{\text {dHD4 }}$	$\left(\bar{q} D_{\mu} d\right) D^{\mu} H$	$\mathcal{O}_{B u}^{\prime}$	$\frac{1}{2}\left(\bar{u} \gamma^{\mu} i \overleftrightarrow{D}^{\nu} u\right) B_{\mu \nu}$	$\mathcal{O}_{H \ell}^{(1)}$	
$\mathcal{O}_{\text {eHD1 }}$	$\left(\bar{\ell}_{e}\right) D_{\mu} D^{\mu} H$	$\mathcal{O}_{\tilde{B} u}^{\prime}$	$\frac{1}{2}\left(\bar{u} \gamma^{\mu} i \overleftrightarrow{D^{\nu}} u\right) \widetilde{B}_{\mu \nu}$	$\mathcal{O}_{H \ell}^{(1)}$	$\begin{gathered} (\bar{\ell} i \overleftrightarrow{D} \ell)\left(H^{\dagger} H\right) \\ \left(\bar{\ell} \gamma^{\mu} \ell\right) \partial_{\mu}\left(H^{\dagger} H\right) \end{gathered}$
$\mathcal{O}_{\text {eHD2 }}$	$\left(\bar{\chi} i \sigma_{\mu \nu} D^{\mu} e\right) D^{\nu} H$	$\mathcal{O}_{G d}$	$\left(\bar{d} T^{A} \gamma^{\mu} d\right) D^{\nu} G_{\mu \nu}^{A}$	$\mathcal{O}_{H \ell}^{\prime \prime(1)}$	
$\mathcal{O}_{e H D 3}$	$\left(\bar{\ell} D_{\mu} D^{\mu} e\right) H$	$\mathcal{O}_{G d}^{\prime}$	$\frac{1}{2}\left(\bar{d} T^{A} \gamma^{\mu} i \overleftrightarrow{D}^{\nu} d\right) G_{\mu \nu}^{A}$	$\mathcal{O}_{\text {He }}{ }^{(3)}$	$\begin{gathered} \left(\bar{\ell} \gamma^{\mu} \ell\right) \partial_{\mu}\left(H^{\dagger} H\right) \\ \left(\bar{\ell} \sigma^{I} \gamma^{\mu} \ell\right)\left(H^{\dagger} i \stackrel{\overleftrightarrow{D}}{\mu}{ }_{\mu}^{I} H\right) \end{gathered}$
$\mathcal{O}_{\text {eHD } 4}$	$\left(\bar{\ell} D_{\mu} e\right) D^{\mu} H$	$\mathcal{O}_{\widetilde{G} d}^{\prime}$	$\begin{gathered} \left(\bar{d} \gamma^{\mu} d\right) \partial^{\nu} B_{\mu \nu} \\ \frac{1}{2}\left(\bar{d} \gamma^{\mu} i \stackrel{D^{\nu}}{ }{ }^{\nu} d\right) B_{\mu \nu} \end{gathered}$	$\mathcal{O}_{H \ell}^{(13)}$	$\left(\bar{\ell} i \not \mathbb{D}^{I} \ell\right)\left(H^{\dagger} \sigma^{I} H\right)$
$\boldsymbol{\psi}^{2} \boldsymbol{X} \boldsymbol{H}+$ h.c.		$\mathcal{O}_{\text {Bd }}$		$\mathcal{O}_{H \ell}^{\prime \prime(3)}$	$\left(\bar{\ell} \sigma^{I} \gamma^{\mu} \ell\right) D_{\mu}\left(H^{\dagger} \sigma^{I} H\right)$
\mathcal{O}^{*}	$\left(\bar{q} T^{A} \sigma^{\mu \nu} u\right) \widetilde{H} G_{\mu \nu}^{A}$	$\begin{aligned} & \mathcal{O}_{B d}^{\prime} \\ & \mathcal{O}_{\tilde{\tilde{n}}}^{\prime} \end{aligned}$		$\mathcal{O}_{\text {He }}$	$\left(\bar{e} \gamma^{\mu} e\right)\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)$
$\mathcal{O}_{u W}$	$\left(\bar{q} \sigma^{\mu \nu} u\right) \sigma^{I} \widetilde{H} W_{\mu \nu}^{I}$		$\begin{aligned} & \frac{1}{2}\left(\bar{d} \gamma^{\mu} i \overleftrightarrow{D} d\right) B_{\mu \nu} \\ & \frac{1}{2}\left(\bar{d} \gamma^{\mu} i \overleftrightarrow{D}^{\nu} d\right) \widetilde{B}_{\mu \nu} \end{aligned}$	$\mathcal{O}_{\text {He }}^{\prime}$	$(\bar{e} i \not \subset D e)\left(H^{\dagger} H\right)$
$\mathcal{O}_{u B}$	$\left(\bar{q} \sigma^{\mu \nu} u\right) \widetilde{H} B_{\mu \nu}$	$\begin{aligned} & \widetilde{B} d \\ & \mathcal{O}_{W e} \end{aligned}$	$\begin{aligned} & \frac{1}{2}\left(\bar{d} \gamma^{\mu} i \overleftrightarrow{D}^{\nu} d\right) \widetilde{B}_{\mu \nu} \\ & \left(\bar{\ell} \sigma^{I} \gamma^{\mu} \ell\right) D^{\nu} W_{\mu \nu}^{I} \end{aligned}$	$\mathcal{O}_{\text {He }}^{\prime \prime}$	$\left(\bar{e} \gamma^{\mu} e\right) \partial_{\mu}\left(H^{\dagger} H\right)$
$\mathcal{O}_{d G}$	$\begin{gathered} \left(\bar{q} T^{A} \sigma^{\mu \nu} d\right) H G_{\mu \nu}^{A} \\ \left(\bar{q} \sigma^{\mu \nu} d\right) \sigma^{I} H W_{\mu \nu}^{I} \\ \left(\bar{q} \sigma^{\mu \nu} d\right) H B_{\mu \nu} \\ \left(\bar{\ell} \sigma^{\mu \nu} e\right) \sigma^{I} H W_{\mu \nu}^{I} \\ \left(\bar{\ell} \sigma^{\mu \nu} e\right) H B_{\mu \nu} \end{gathered}$		$\frac{1}{2}\left(\bar{\ell} \sigma^{I} \gamma^{\mu} i \overleftrightarrow{D}^{\nu} \ell\right) W_{\mu \nu}^{I}$	$\boldsymbol{\psi}^{\mathbf{2}} \boldsymbol{H}^{\mathbf{3}}+\mathbf{h . c}$.	
$\mathcal{O}_{d W}$		$\begin{aligned} & \mathcal{O}_{W \ell}^{\prime} \\ & \mathcal{O}_{\tilde{W}}^{\prime} \end{aligned}$	$\frac{1}{2}\left(\bar{\ell} \sigma^{I} \gamma^{\mu} \overleftrightarrow{D}^{\nu} \ell\right) \widetilde{W}_{\mu \nu}^{I}$	$\mathcal{O}_{u H}$	$\left(H^{\dagger} H\right) \widetilde{q} \widetilde{H} u$
$\mathcal{O}_{d B}$		$\mathcal{O}_{B \ell}$	$\left(\bar{\ell} \gamma^{\mu}\right) \partial^{\nu} B_{\mu \nu}$	$\mathcal{O}_{\text {dH }}$	$\left(H^{\dagger} H\right) \bar{q} H d$
$\mathcal{O}_{e W}$		$\mathcal{O}_{B \ell}^{\prime}$	$\frac{1}{2}\left(\bar{\ell} \gamma^{\mu} i \overleftrightarrow{D}^{\nu} \ell\right) B_{\mu \nu}$	$\mathcal{O}_{e H}$	$\left(H^{\dagger} H\right) \bar{\ell} H e$
$\mathcal{O}_{e B}$		$\mathcal{O}_{\widetilde{B} \ell}^{\prime}$	$\frac{1}{2}\left(\bar{\ell} \gamma^{\mu} i \overleftrightarrow{D}^{\nu} \ell\right) \widetilde{B}_{\mu \nu}$		
		$\mathcal{O}_{\text {Be }}$	$\left(\bar{e} \gamma^{\mu} e\right) \partial^{\nu} B_{\mu \nu}$		
		$\mathcal{O}_{\text {Be }}^{\prime}$	$\frac{1}{2}\left(\bar{e} \gamma^{\mu} i \overleftrightarrow{D^{\nu}} e\right) B_{\mu \nu}$		
		$\mathcal{O}^{\prime}{ }_{\text {Be }}^{\prime}$	$\frac{1}{2}\left(\bar{e} \gamma^{\mu} i \overleftrightarrow{D^{\nu}} e\right) \widetilde{B}_{\mu \nu}$		

The Threefold Way of LQ Searches at LHC

QCD
pair-production

single-production

[Diaz, Schmaltz, Zhong 1706.05033, 1810.10017; Dorsner, Greljo 1801.07641]

In order to cover all couplings it is important to consider all combinations of different lepton \& quark combinations in final state!

Leptoquark searches at CMS and ATLAS

scalar LQ (pair prod.), coupling to $1^{\text {st }}$ gen. fermions, $\beta=1$ scalar LQ (pair prod.), coupling to $1^{\text {st }}$ gen. fermions, $\beta=0.5$ scalar LQ (pair prod.), coupling to $2^{\text {nd }}$ gen. fermions, $\beta=1$ scalar LQ (pair prod.), coupling to $2^{\text {nd }}$ gen. fermions, $\beta=1$ scalar LQ (pair prod.), coupling to $2^{\text {nd }}$ gen. fermions, $\beta=0.5$ scalar LQ (pair prod.), coupling to $3^{\text {rd }}$ gen. fermions, $\beta=1$ scalar LQ (single prod.), coup. to $3^{\text {rd }}$ gen. ferm., $\beta=1, \lambda=1$

CMS тTbb 1703.03995, 1811.00806
CMS titt 1803.02864
CMS $\mu \mu \mathrm{j}$ \& $\mu \mathrm{vij}$ CMS PAS EXO-17-003
CMS Hutt 1809.05558
CMS w+(j, bb,tt) 1805.10228

```
ATLAS ljj, lvjj 1902.00377
ATLAS lij 2006.05872
ATLAS tt(ee,\mu\mu) 2010.02098
ATLAS LQ }->(\textrm{tv,bT})1902.0810
```



```
ATLAS ttt 2101.11582
```


[^0]: Similar question addressed in EFT context or in relation to $b \rightarrow$ su only in:
 Bordone, Buttazzo, Isidori, Monnard [1705.10729];
 Borsato, Gligorov, Guadagnoli, Martinez Santos, Sumensari [1808.02006]
 Fajfer, Kosnik, Vale-Silva [1802.00786]

