Flavour Anomalies: stepping stones to New Physics?

David Marzocca INFN Trieste

U. Zurich - 12/10/2021

stepping stone

/ˈstɛpɪŋ stəʊn/

noun

plural noun: stepping stones

a raised stone used singly or in a series as a place on which to step when crossing a stream or muddy area. - an action or event that helps one to make progress towards a specified goal.

The Standard Model of particle physics describes a huge variety of phenomena in a unified and simple theory.

However, we know it must be extended at some energy scales:

- neutrino masses
- astrophysical/cosmological obs.

(dark matter, dark energy, baryonic asymmetry, inflation)

Our desire for *simplicity* and a sense of *beauty* also motivates extensions of the SM for other reasons:

- hierarchy problem of the EW scale (and CC)
- understanding the hierarchies in fermion masses and mixings
- unification of gauge interactions and fermion representations
- understanding the smallness of CP-violation in strong interactions

2

Many experiments are exploring the *terra incognita* in all possible directions, but we still don't have a confirmed discovery of a new land.

Some of these anomalies might just be mirages, however some could also be the first genuine hints of a New Land.

> It is important to take each into consideration, in order to understand how realistic it could be and to point out the searches in promising directions

- ... every once in a while, possible land is sighted.

not including cosmological anomalies from the ACDM

γγ @ 750 151 GeV

Neutrino anomalies: LSND, Miniboone, reactor, Gallium 5MeV "bump"

Atomki: 17 MeV excess in ⁸Be decays

$\mathbf{R}_{\mathbf{K}}$ and the other $b \rightarrow s \mu^+ \mu^-$ probes

Compilation of "clean" observables

Also the leptonic decay $B_s \rightarrow \mu^+ \mu^$ can be predicted precisely in the SM, and is measured by ATLAS, CMS, and LHC DE the numerical analysis we use the open source code flavio [51]. Based on the experimental measurements

and theory predictions for the LFU ratios $R_{K^{(*)}}$ and the LFU differences of $B \to K^*_* \ell^+ \ell^-$ angular observ-ables $D_{P'_{4,5}}$ (see below), we construct a χ^2 function that **It shows a consistent reduction w.r.t. the SN** depends on the Wilson coefficients and that takes into

Lepton Flavour Universality (LFU) ratios

TABLE I. Best-fit values and pulls for scenaridsOwith NP in one individual Wilson coefficient. 6

ATLAS 2018 and the corresponding Wilson coefficients C_i^{ℓ} , CMS 2019 e, μ . We do not consider other dimension-six operators that can contribute to $b \to s\ell\ell$ transitions. Dipole Oper 2021 ators and four-quark operators [46] cannot leafull comb. lation of LFU and are therefore irrelevant for this work. Four-fermion contact interactions containing scalar containing rents would be a natural source of LFU wolation ever, they are strongly constrained by existing measure ments of the $B_s \rightarrow \mu \mu$ and B_s $\rightarrow ee$ branching ratios [47, 48]. Imposing $SU(2)_L$ in **3** an iance, these bounds cannot be avoided [49]. We have checked explicitly that $SU(2)_L$ invariant scalar operators cannot lead to any ap-

different observables. The experimental uncertainties are presently dominated by statistics, so their correlations can be neglected. For the SM we find $\chi^2_{\rm SM} = 24.4$ for 5 degrees of freedom.

Tab. I lists the best fit values and pulls, defined as the

$\mathbf{R}_{\mathbf{K}}$ and the other $b \rightarrow s \mu^+ \mu^-$ probes

Compilation of "clean" observables

The global significance of the **New Physics hypothesis** in b \rightarrow sµ+µ- (very conservative SM uncertainties estimate) is:

> 3.9σ _ancierini, Isidori, Owen, Serra [2104.05631]

Angular observables and Br's

Specific NP hypothesis, with less conservative estimates of SM uncertainties show significances in the 5.9 - 7σ range. Altmannshofera and Staub [2103.13370], Algueró et al. [2104.08921], Geng et al. [2103.12738]

Very good fit to all these deviations with:

$$\begin{aligned} \mathcal{L}_{LCFT} &= C_{S,b,\mu,\mu,\nu} \left(\overline{S}_{L} \partial_{\mu} b_{L} \right) \left(\overline{\mu}_{L} \partial^{\mu} \mu_{\nu} \right) \\ &= C_{S,b,\mu,\mu,\nu} \approx \left(37 \text{ TeV} \right)^{-2} \end{aligned}$$

Charged-current B-anomalies $b \rightarrow c \tau v$ vs. $b \rightarrow c \ell v$

$$R(D^{(*)}) \equiv \frac{\mathcal{B}(B^0 \to D^{(*)+}\tau\nu)}{\mathcal{B}(B^0 \to D^{(*)+}\ell\nu)}$$
$$\ell = \mu,$$

Tree-level SM process with V_{cb} suppression.

20% enhancements since 2012 cor4gister 11 above the SM predictions

~ 3σ from the SM (3.7 σ when combined)

While μ /e universality well tested

 $R(D)^{\mu/e} = 0.995 \pm 0.045$ Belle - [1510.03657]

New Physics interpretations (LEFT):

$$\mathcal{O}_{V_L} = (ar{c} \gamma_\mu P_L b) (ar{\tau} \gamma^\mu P_L
u)$$
 and/or

$$\mathcal{O}_{S_L} = (\overline{c}P_L b)(\overline{\tau}P_L \nu),$$
$$\mathcal{O}_T = (\overline{c}\sigma^{\mu\nu}P_L b)(\overline{\tau}\sigma_{\mu\nu}P_L \nu)$$

With a New Physics scale of

$$C_{cb\tau v} \sim (4 \text{ TeV})^{-2}$$

Muon g-2

NP is enhanced if the chirality flip happens in an internal line with a heavy fermion, as the top quark:

> semileptonic tensor dim-6 operator with top quark

$$C_{leqc}^{(3)} = (\bar{l}_{L} \bar{v}_{rv} e_{R}) (\bar{q}_{L} \bar{v}^{\mu\nu} u_{R})$$

$$\left[L_{e_{v}}(\mu_{cw}) \right]_{\mu\mu} = - \frac{e_{v}N_{c}W_{t}}{6\pi^{2}} \left[C_{equ}^{(3)}(\Lambda) \right]_{\mu\mu tt} \log \frac{\Lambda^{2}}{M_{t}^{2}}$$

tL

tR

Dar

 $a_{\mu}^{exp} = (116592061 \pm 41) \times 10^{-11} \text{ FNAL '21 + BNL '04}$

 a_{μ} ^{THin} = (11659**1810 ± 43**)×10-11 TH initiative WP 2006.04822 $a_{\mu}BMW = (116591954 \pm 55) \times 10^{-11}$ Borsanyi et al. Nature 2021, 2002.12347

4.2σ or **1.6σ ??**

Let us entertain the possibility that the 4.2σ deviation is real. **New physics** contribution arises via the **dipole operator**:

$$=\frac{4M_{r}}{e}Re\left[L_{e}\left[M_{r}\right]\right]_{\mu\mu}\left[O_{e}\right]_{\mu\mu}=\bar{e}_{z}^{*}\sigma^{\mu\nu}e_{R}^{*}F_{\mu\nu}$$

the deviation (I put Λ =2TeV in the log):

The same structure of operator can also help in **R(D^(*)): possible connection?**

$$C_{lequ}^{(3)}(zTeV) \approx -\frac{1}{(83TeV)}$$

$$Re\left[L_{e}\left(M_{r}\right)\right]_{\mu\mu}$$

Cabibbo Angle Anomaly

Unitarity of the first row of the CKM matrix: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

Neglecting the very small V_{ub} : $V_{ud}^2 + V_{us}^2 = 1$

Assuming unitarity, we can extract the Cabibbo angle from:

- V_{ud} : superallowed O+→O+ β -decays. SGPR 1807.10197, CMS 1907.06737
- V_{us} : semileptonic Kl3 decays.
- $-|V_{us}|/|V_{ud}|: (K \rightarrow \mu \nu) / (\pi \rightarrow \mu \nu).$
- T decays

The effect is very small: (few) \times 10⁻³ of the SM, but SM is large: tree x Cabibbo.

Possible New Physics: deviation in the muon decay: mismatch from G_F and G_{μ}

Enhancement ~ 20! This modifies the $|V_{us}| = 0.22333(60) \times (1 + \delta_{\mu})$ $|V_{us}/V_{ud}| = 0.23130(50)$ $|V_{ud}| = 0.97370(14) \times (1 + \delta_{\mu}) \rightarrow |V_{us}| = |V_{us}^{(0)}|$ $|V_{us}/V_{ud}| = 0.23130(50)$ decays as: 1906.02714

Coutinho, Crivellin, Manzari 1912.08823

$$G_{\mu} = G_{F} \left(1 + \delta_{\mu}\right)$$

Including the EW fit constraints: $\delta(\mu ightarrow e u u) = 0.00065(15)$

Belfatto, Beradze, Berezhiani 1906.02714, Crivellin, Kirk, Manzari, Panizzi 2012.09845, 2102.02825

Combined explanations: why?

be an **elegant** and **economical** way to explain the data.

Combined explanations are typically **more constrained by data**, can provide sharper predictions.

- New Physics in muons

IF all turn out to be due to NP, a **combined explanation** could

Combined interpretation of R_K, R(D^(*)), (g-2)_μ

11

We must start with $R(D^{(*)})$: lowest NP scale \rightarrow most stringent requirements

Tree-level mediators of:

$$\mathcal{O}_{V_L} = (\bar{c}\gamma_\mu P_L b)(\bar{\tau}\gamma^\mu P_L \nu)$$

and/or

$$\mathcal{O}_{S_L} = (\overline{c}P_L b)(\overline{\tau}P_L \nu) ,$$
$$\mathcal{O}_T = (\overline{c}\sigma^{\mu\nu}P_L b)(\overline{\tau}\sigma_{\mu\nu}P_L \nu)$$

Needs to escape the constraints from:

Meson mixing

$$B \rightarrow K^{(*)} vv$$

 $Z \rightarrow \tau \tau$
 $pp \rightarrow \tau \tau$

Scalar Leptoquarks $S_1 = (\bar{3}, 1, 1/3),$ $[S_3 = (\bar{\mathbf{3}}, \mathbf{3}, 1/3)]$ >1,3

Crivellin et al. 1703.09226; Buttazzo, Greljo, Isidori/DM 1706.07808; D.M. <u>1803.1097</u>2; Arnan et al 1901.06315; Bigaran et al. 1906.01870; llin et al. 1912.04224; Saad 2005.04352; V. Crive Gherardi, E. Venturini, D.M. <u>2003.1252</u> 08.09548; Bordone, Catà, Feldmann, Mandal 2010.03297; Crivellin et al. 2010.06593 2101.07811; ETC...

CVL

verge of exclusion from mono-t at LHC

 (C_{SL}, C_T)

12

What about **R(K(*))**?

$$\mathcal{L}_{ ext{eff}} \supset rac{e^{ilpha_{bs}}}{\Lambda_{bs}^2} (ar{s}_L \gamma^\mu b_L) (ar{\mu}_L \gamma_\mu \mu_L) + h.c.$$

Best-fit for $\alpha_{bs}=0$: $\Lambda_{bs}\approx 37 \text{ TeV}$

 U_1 and S_3 can mediate bL \rightarrow s_L μ_L μ_L

Barbieri et al 1512.01560; Buttazzo, Greljo, Isidori, DM 1706.07808; Di Luzio et al 1708.08450; Bordone et al. 1712.01368; Calibbi et al. '17; Blanke, Crivellin '18; Cornella et al 2103.16558; Angelescu et al 1808.08179

Crivellin et al. 1703.09226; Buttazzo, Greljo, Isidori, DM 1706.07808; D.M. <u>1803.10972;</u> Arnan et al 1901.06315; Bigaran et al. 1906.01870; Crivellin et al. 1912.04224; Saad 2005.04352; V. Gherardi, E. Venturini, D.M. 2003.12525, 2008.09548; Bordone, Catà, Feldmann, Mandal 2010.03297; Crivellin et al. 2010.06593, 2101.07811; ETC...

Angelescu et al. 2103.12504; ETC...

TeV-scale U_1 or S_3 LQs can fit the anomaly with small couplings.

What about **muon (g-2)**?

Leptoquarks with couplings to $\mu_L \mu_R t_L t_R$ can generate a_μ with TeV masses and small couplings:

S₁ Or **R**₂

Barbieri et al 1512.01560; Buttazzo, Greljo, Isidori, DM 1706.07808; Di Luzio et al 1708.08450; Bordone et al. 1712.01368; Calibbi et al. '17; Blanke, Crivellin '18; Cornella et al 2103.16558; Angelescu et al 1808.08179

 $\left[L_{e_{v}}(\mu_{cw}) \right]_{\mu\mu} = - \frac{e_{v}N_{c}W_{t}}{6\pi^{2}} \left[C_{equ}^{(3)}(\Lambda) \right]_{\mu\mu tt} \log \frac{\Lambda^{2}}{M_{t}^{2}}$ $C_{lequ}^{(3)} = \left(\bar{l}_{L} \bar{v}_{rv} e_{R}\right) \left(\bar{q}_{L} \bar{v}^{\mu\nu} u_{R}\right)$

Crivellin et al. 1703.09226; Buttazzo, Greljo, Isidori, DM 1706.07808; D.M. <u>1803.10972;</u> Arnan et al 1901.06315; Bigaran et al. 1906.01870; Crivellin et al. 1912.04224: Saad 2005.04352: V. Gherardi, E. Venturini, D.M. 2003.12525, 2008.09548; Bordone, Catà, Feldmann, Mandal 2010.03297; Crivellin et al. 2010.06593, 2101.07811; ETC...

14

Angelescu et al. 2103.12504; ETC...

S₁ and S₃ scalar leptoquarks

Crivellin et al. 1703.09226; Buttazzo, Greljo, Isidori, DM 1706.07808; D.M. <u>1803.10972</u>; Arnan et al 1901.06315; Bigaran et al. 1906.01870; Crivellin et al. 1912.04224; Saad 2005.04352; V. Gherardi, E. Venturini, D.M. 2003.12525, 2008.09548; Bordone, Catà, Feldmann, Mandal 2010.03297; Crivellin et al. 2010.06593, 2101.07811; S. Trifinopoulos, E. Venturini, D.M. [2106.15630]; ETC...

Why?

-Can address the muon (g-2).

-Potential UV origin from a Composite Higgs Model scenario, interesting for the potential connection to the EW hierarchy problem.

Several important **observables** constraining this model are induced at one-loop.

We decided to approach this problem systematically in an **EFT approach**, performing a complete one-loop SMEFT matching and including and exhaustive list of observables.

$$\mathcal{L}_{int} \sim \left(\lambda_{ij}^{\prime \prime} q_{\ell}^{i} \varepsilon l_{\lambda}^{j} + \lambda_{ij}^{\prime \prime \prime} u_{R}^{i} e_{R}^{j} \right) S_{1} + \lambda_{ij}^{3 \prime} q_{\ell}^{i} \varepsilon \sigma^{A} l_{\lambda}^{j} S_{3}^{A} + h.c.$$

-*Fully calculable* already at the simplified model level (unlike vector LQ)

[D.M. <u>1803.10972</u>]

S₁ and S₃ scalar leptoquarks

Match SM + S₁+S₃ to SMEFT @ 1-loop 1) (SMEFT RGE, SMEFT-LEFT 1-loop matching, LEFT RGE already done in literature) V. Gherardi, E. Venturini, D.M. [2003.12525]

Analysis of B-anomalies, including all observables 2) sensitive to the relevant couplings

3) Turn on 1st gen couplings and study Kaon & $\mu \rightarrow e$ observables.

Flavor symmetries correlate 1st gen to 2nd and 3rd gen couplings: > case of $U(2)^5$ flavor symmetry.

[Alonso, Jenkins, Manohar, Trott '13] [Dekens, Stoffer 1908.05295] [Jenkins, Manohar, Stoffer 1711.05270]

V. Gherardi, E. Venturini, D.M. [2008.09548]

S. Trifinopoulos, E. Venturini, D.M. [2106.15630]

Matching to SMEFT V. Gherardi, E. Venturini, D.M. [2003.12525]

We match off-shell Green's functions for One-Light-Particle-Irreducible (1LPI) diagrams

 $\mathcal{G} \equiv \langle e_{\beta}(p_1)\bar{e}_{\alpha}(p_2)H_b(q_1)H_a^{\dagger}(q_2)\rangle$ Example:

Figure 1: Diagrams for the matching of the $\langle \bar{e}eH^{\dagger}H \rangle$ Green function.

This procedure gives the matching for **operators** that are **independent under IBP and Fierz**, but are redundant upon using field redefinitions: Green's basis. Jiang et al. [1811.08878] We obtained the *complete Green's basis at dim-6* and set of reduction equations to the Warsaw basis

Ours is the first such complete matching for a **very rich scenario**: most dim-6 operators are induced. **Useful as cross-check** for *functional* techniques and upcoming *computational* methods.

"Universal Scalar Leptoquark Action for Matching" Dedes, Mantzaropoulos [2108.10055]

$$\begin{split} &[\mathcal{O}_{He}]_{\alpha\beta} = (\bar{e}_{\alpha}\gamma^{\mu}e_{\beta})(H^{\dagger}i\overleftrightarrow{D}_{\mu}H) ,\\ &[\mathcal{O}_{He}']_{\alpha\beta} = (\bar{e}_{\alpha}i\overleftrightarrow{D}e_{\beta})(H^{\dagger}H) ,\\ &[\mathcal{O}_{He}'']_{\alpha\beta} = (\bar{e}_{\alpha}\gamma^{\mu}e_{\beta})\partial_{\mu}(H^{\dagger}H) . \end{split}$$

CoDEx Bakshi, Chakrabortty, Patra Matchete Fuentes-Martin, König, Pagès, Thomsen, Wilsch Matchmaker Anastasiou, Carmona, Lazopoulos, Santiago

S1 and S3 - global analysis V. Gherardi, E. Venturini, D.M. [2008.09548]

Using the complete one-loop matching to SMEFT, we include in our analysis the following observables.

All these are used to build a global likelihood.

$$-2\log \mathcal{L} \equiv \chi^2(\lambda_x, M_x) = \sum_i \frac{\left(\mathcal{O}_i(\lambda_x, M_x) - \mu_i\right)^2}{\sigma_i^2}$$

Observable	Experimental bounds
Z boson couplings	App. A.12
$\delta g^Z_{\mu_L}$	$(0.3 \pm 1.1)10^{-3}$ [99]
$\delta g^Z_{\mu_R}$	$(0.2 \pm 1.3)10^{-3}$ [99]
$\delta g^Z_{ au_L}$	$(-0.11 \pm 0.61)10^{-3}$ [99]
$\delta g^Z_{ au_R}$	$(0.66 \pm 0.65)10^{-3}$ [99]
$\delta g^Z_{b_L}$	$(2.9 \pm 1.6)10^{-3}$ [99]
$\delta g^Z_{c_R}$	$(-3.3\pm5.1)10^{-3}$ [99]
$N_{ u}$	2.9963 ± 0.0074 [100]

Observable	SM prediction		Experimental bounds		
$b \rightarrow s\ell\ell$ observables			[37]		
$\Delta \mathcal{C}_9^{sb\mu\mu}$	0		-0.43 ± 0.09 [79]		
$\mathcal{C}_9^{\mathrm{univ}}$	0		-0.48 ± 0.24 [79]		
$b \to c \tau(\ell) \nu$ observables			[37]		
R_D	0.299 ± 0.003 [12]	0	$.34 \pm 0.027 \pm 0.013$ [12]		
R_D^*	0.258 ± 0.005 [12]	0.	$295 \pm 0.011 \pm 0.008$ [12]		
$P^{D^*}_{ au}$	-0.488 ± 0.018 [80]	-0.3	$38 \pm 0.51 \pm 0.2 \pm 0.018$ [7]		
F_L	0.470 ± 0.012 [80]	0.60	$\pm 0.08 \pm 0.038 \pm 0.012$ [81]		
$\mathcal{B}(B_c^+ \to \tau^+ \nu)$	2.3%		< 10% (95% CL) [82]		
$R_D^{\mu/e}$	1		0.978 ± 0.035 [83, 84]		
$b \to s \nu \nu$ and $s \to d \nu \nu$			[37]		
$R_K^{ u}$	1 [85]		< 4.7 [86]		
$R_{K^*}^{ u}$	1 [85]		< 3.2 [86]		
$b \rightarrow d\mu\mu$ and $b \rightarrow dee$			App. A.5		
$\mathcal{B}(B^0 o \mu\mu)$	$(1.06 \pm 0.09) \times 10^{-10}$ [87,88]	(1.	$1 \pm 1.4) \times 10^{-10}$ [89,90]		
$\mathcal{B}(B^+ \to \pi^+ \mu \mu)$	$(2.04 \pm 0.21) \times 10^{-8}$ [87,88]	(1.8	$83 \pm 0.24) \times 10^{-8}$ [89,90]		
$\mathcal{B}(B^0 o ee)$	$(2.48 \pm 0.21) \times 10^{-15} \ [87, 88]$		$< 8.3 \times 10^{-8}$ [51]		
$\mathcal{B}(B^+ \to \pi^+ ee)$	$(2.04 \pm 0.24) \times 10^{-8}$ [87,88]		$< 8 imes 10^{-8}$ [51]		
B LFV decays			[37]		
$\mathcal{B}(B_d o au^{\pm} \mu^{\mp})$	0		$< 1.4 \times 10^{-5}$ [91]		
$\mathcal{B}(B_s \to \tau^{\pm} \mu^{\mp})$	0		$< 4.2 \times 10^{-5}$ [91]		
$\mathcal{B}(B^+ \to K^+ \tau^- \mu^+)$	0		$< 5.4 \times 10^{-5}$ [92]		
$\mathcal{B}(B^+ \to K^+ \tau^+ \mu^-)$	0		$< 3.3 \times 10^{-5}$ [92]		
$\mathcal{L}(\mathcal{D} \cap \mathcal{H} \cap \mathcal{\mu})$			$< 4.5 \times 10^{-5}$ [93]		
Observable	SM prediction		Experimental bounds		
D leptonic decay			[37] and App. A.4		
$\mathcal{B}(D_s \to \tau \nu)$	$(5.169 \pm 0.004) \times 10^{-2}$ [94	[]	$(5.48 \pm 0.23) \times 10^{-2} [51]$		
$\mathcal{B}(D^0 o \mu\mu)$	$\approx 10^{-11} [95]$		$< 7.6 \times 10^{-9}$ [96]		
$\mathcal{B}(D^+ \to \pi^+ \mu \mu)$	$O(10^{-12})$ [97]		$< 7.4 \times 10^{-8}$ [98]		
Rare Kaon decays $(\nu\nu)$			App. A.1		
$\mathcal{B}(K^+ \to \pi^+ \nu \nu)$	8.64×10^{-11} [99]		$(11.0 \pm 4.0) \times 10^{-11}$ [100		
$\mathcal{B}(K_L \to \pi^0 \nu \nu)$	3.4×10^{-11} [99]		$< 3.6 \times 10^{-9}$ [101]		
Rare Kaon decays $(\ell \ell)$			App. A.3 and A.2		
$\mathcal{B}(K_L \to \mu\mu)_{SD}$	8.4×10^{-10} [102]		$< 2.5 \times 10^{-9}$ [76]		
$\frac{\mathcal{B}(K_S \to \mu\mu)}{\mathcal{B}(K_S \to \mu\mu)}$	$(5.18 \pm 1.5) \times 10^{-12}$ [76, 103,	104]	$< 2.5 \times 10^{-10}$ [105]		
$\mathcal{B}(K_L \to \pi^0 \mu \mu)$	$(1.5 \pm 0.3) \times 10^{-11}$ [106]		$< 4.5 \times 10^{-10}$ [107]		
$\mathcal{B}(K_L \to \pi^0 ee)$	$(3.2^{+1.2}_{-0.8}) \times 10^{-11}$ [108]		$< 2.8 \times 10^{-10}$ [109]		
LFV in Kaon decays			App. A.3 and A.2		
$\mathcal{B}(K_L \to \mu e)$	0		$< 4.7 \times 10^{-12}$ [110]		
$\mathcal{B}(K^+ \to \pi^+ \mu^- e^+)$	0		$< 7.9 \times 10^{-11}$ [111]		
$\mathcal{B}(K^+ \to \pi^+ e^- \mu^+)$	0		$< 1.5 \times 10^{-11}$ [112]		

Observable	SM prediction	Experimental bounds
$b \rightarrow s\ell\ell$ observables		[37]
$\Delta {\cal C}^{sb\mu\mu}_{9}$	0	-0.43 ± 0.09 [79]
$\mathcal{C}_9^{\mathrm{univ}}$	0	-0.48 ± 0.24 [79]
$b \to c\tau(\ell)\nu$ observables		[37]
R_D	0.299 ± 0.003 [12]	$0.34 \pm 0.027 \pm 0.013$ [12]
R_D^*	0.258 ± 0.005 [12]	$0.295 \pm 0.011 \pm 0.008$ [12]
$P_{ au}^{D^*}$	-0.488 ± 0.018 [80]	$-0.38 \pm 0.51 \pm 0.2 \pm 0.018 \ [7]$
F_L	0.470 ± 0.012 [80]	$0.60 \pm 0.08 \pm 0.038 \pm 0.012$ [81]
$\mathcal{B}(B_c^+ \to \tau^+ \nu)$	2.3%	< 10% (95% CL) [82]
$R_D^{\mu/e}$	1	0.978 ± 0.035 [83,84]
$b \to s \nu \nu$ and $s \to d \nu \nu$		[37]
R_K^{ν}	1 [85]	< 4.7 [86]
$R_{K^*}^{\nu}$	1 [85]	< 3.2 [86]
$b \rightarrow d\mu\mu$ and $b \rightarrow dee$	10	App. A.5
$\mathcal{B}(B^0 \to \mu\mu)$	$(1.06 \pm 0.09) \times 10^{-10}$ [87,88]	$(1.1 \pm 1.4) \times 10^{-10} \ [89,90]$
$\mathcal{B}(B^+ \to \pi^+ \mu \mu)$	$(2.04 \pm 0.21) \times 10^{-8}$ [87,88]	$(1.83 \pm 0.24) \times 10^{-8}$ [89,90]
$\mathcal{B}(B^0 \to ee)$	$(2.48 \pm 0.21) \times 10^{-15}$ [87,88]	$< 8.3 \times 10^{-6}$ [51]
$\mathcal{B}(B^+ \to \pi^+ ee)$	$(2.04 \pm 0.24) \times 10^{-6}$ [87,88]	< 8 × 10 ⁻⁶ [51]
B LFV decays		
$\mathcal{B}(B_d \to \tau^{\perp} \mu^+)$	0	$< 1.4 \times 10^{-5}$ [91]
$\mathcal{B}(B_s \to \tau^+ \mu^+)$	0	$< 4.2 \times 10^{-5}$ [91]
$\mathcal{D}(D^+ \to K^+ \gamma^- \mu^+)$	0	$< 3.4 \times 10^{-5}$ [92]
$\mathcal{B}(B^+ \to K^+ \tau^+ \mu^-)$	0	$< 3.5 \times 10^{-5}$ [92] $< 4.5 \times 10^{-5}$ [93]
Observable	SM prediction	Experimental bounds
D leptonic decay		[37] and App. A.4
$\mathcal{B}(D_s \to \tau \nu)$	$(5.169 \pm 0.004) \times 10^{-2}$ [94]	$(5.48 \pm 0.23) \times 10^{-2} [51]$
${\cal B}(D^0 o \mu \mu)$	$\approx 10^{-11} [95]$	$< 7.6 \times 10^{-9}$ [96]
$\mathcal{B}(D^+ o \pi^+ \mu \mu)$	$O(10^{-12})$ [97]	$< 7.4 \times 10^{-8}$ [98]
Rare Kaon decays $(\nu\nu)$		App. A.1
$\mathcal{B}(K^+ \to \pi^+ \nu \nu)$	8.64×10^{-11} [99]	$(11.0 \pm 4.0) \times 10^{-11} \ [100]$
${\cal B}(K_L o \pi^0 u u)$	3.4×10^{-11} [99]	$< 3.6 \times 10^{-9} \ [101]$
Rare Kaon decays $(\ell \ell)$		App. A.3 and A.2
$\mathcal{B}(K_L o \mu \mu)_{SD}$	8.4×10^{-10} [102]	$< 2.5 \times 10^{-9}$ [76]
$\mathcal{B}(K_S o \mu \mu)$	$(5.18 \pm 1.5) \times 10^{-12} [76, 103,$	$104] < 2.5 \times 10^{-10} [105]$
${\cal B}(K_L o \pi^0 \mu \mu)$	$(1.5 \pm 0.3) \times 10^{-11} \ [106]$	$< 4.5 \times 10^{-10} \ [107]$
${\cal B}(K_L o \pi^0 ee)$	$(3.2^{+1.2}_{-0.8}) \times 10^{-11} \ [108]$	$< 2.8 \times 10^{-10} \ [109]$
LFV in Kaon decays		App. A.3 and A.2
$\mathcal{B}(K_L \to \mu e)$	0	$< 4.7 \times 10^{-12} \ [110]$
$\mathcal{B}(K^+ \to \pi^+ \mu^- e^+)$	0	$< 7.9 \times 10^{-11} [111]$
$\mathcal{B}(K^+ \to \pi^+ e^- \mu^+)$	0	$< 1.5 \times 10^{-11} [112]$
CP-violation		App. A.8
ϵ_K'/ϵ_K	$(15\pm7)\times10^{-4}$ [113]	$(16.6 \pm 2.3) \times 10^{-4} \ [51]$

Observable	SM prediction	Experimental	
$\Delta F = 2$ processes		[37]	
$B^0 - \overline{B}^0$: $ C^1_{B_d} $	0	$< 9.1 \times 10^{-7} \text{ TeV}^-$	
$B_s^0 - \overline{B}_s^0$: $ C_{B_s}^1 $	0	$< 2.0 \times 10^{-5} \text{ TeV}^-$	
$\overline{K^0} - \overline{K}^0$: $\operatorname{Re}[C_K^1]$	0	$< 8.0 \times 10^{-7} \text{ TeV}^{-1}$	
$K^0 - \overline{K}^0$: Im $[C_K^1]$	0	$< 3.0 \times 10^{-9} \text{ TeV}^{-1}$	
$D^0 - \overline{D}^0$: $\operatorname{Re}[C_D^1]$	0	$< 3.6 \times 10^{-7} \text{ TeV}^{-1}$	
$D^0 - \overline{D}^0$: Im $[C_D^1]$	0	$< 2.2 \times 10^{-8} \text{ TeV}^{-1}$	
$D^0 - \overline{D}^0$: $\operatorname{Re}[C_D^4]$	0	$< 3.2 \times 10^{-8} \text{ TeV}^{-1}$	
$D^0 - \overline{D}^0$: Im $[C_D^4]$	0	$< 1.2 \times 10^{-9} \text{ TeV}^{-1}$	
$D^0 - \overline{D}^0$: Re[C_D^5]	0	$< 2.7 \times 10^{-7} \text{ TeV}^{-1}$	
$D^0 - \overline{D}^0$: Im $[C_D^5]$	0	$< 1.1 \times 10^{-8} \text{ TeV}^{-1}$	
LFU in τ decays		[37]	
$\frac{ q_{\mu}/q_{e} ^{2}}{ q_{\mu}/q_{e} ^{2}}$	1	1.0036 ± 0.002	
$ g_{ au}/g_{\mu} ^2$	1	1.0022 ± 0.003	
$ g_{ au}/g_e ^2$	1	1.0058 ± 0.003	
LFV observables		[37]	
$\mathcal{B}(au o \mu \phi)$	0	$< 1.00 \times 10^{-7}$	
$\mathcal{B}(\tau \to 3\mu)$	0	$<2.5\times10^{-8}$	
$\mathcal{B}(au o \mu \gamma)$	0	$< 5.2 \times 10^{-8}$	
$\mathcal{B}(au o e\gamma)$	0	$< 3.9 \times 10^{-8}$	
${\cal B}(\mu o e \gamma)$	0	$< 5.0 \times 10^{-13}$	
$\mathcal{B}(\mu \to 3e)$	0	$< 1.2 \times 10^{-12}$	
$\mathcal{B}_{\mu e}^{(\mathrm{Ti})}$	0	$< 5.1 \times 10^{-12}$	
$\mathcal{B}^{(\mathrm{Au})}_{\mu e}$	0	$< 8.3 \times 10^{-13}$	
EDMs		[37]	
$ d_e $	$< 10^{-44} \mathrm{e} \cdot \mathrm{cm} [124, 125]$	$< 1.3 \times 10^{-29} \mathrm{e} \cdot$	
$ d_{\mu} $	$< 10^{-42} \mathrm{e} \cdot \mathrm{cm} [125]$	$< 1.9 \times 10^{-19} \mathrm{e} \cdot$	
$d_{ au}$	$< 10^{-41} \mathrm{e} \cdot \mathrm{cm} [125]$	$(1.15 \pm 1.70) \times 10^{-1}$	
d_n	$< 10^{-33} \mathrm{e} \cdot \mathrm{cm} [128]$	$<2.1\times10^{-26}{\rm e}\cdot$	
Anomalous		[37]	
Magnetic Moments			
$a_e - a_e^{SM}$	$\pm 2.3 \times 10^{-13} \ [130, 131]$	$(-8.9 \pm 3.6) \times 10$	
$a_\mu - a_\mu^{SM}$	$\pm 43 \times 10^{-11}$ [42]	$(279 \pm 76) \times 10^{-1}$	
$a_ au - a_ au^{SM}$	$\pm 3.9 \times 10^{-8}$ [130]	$(-2.1 \pm 1.7) \times 1$	

S₁ and S₃ - contributions to anomalies

 $\mathcal{L}_{int} \sim \left(\lambda_{ij}^{\prime \prime} q_{i}^{\prime} \varepsilon l_{i}^{j} + \lambda_{ij}^{\prime \prime} u_{k}^{\prime} e_{k}^{j} \right) \leq_{1}^{3} + \lambda_{ij}^{3} q_{i}^{\prime} \varepsilon \varepsilon^{4} l_{i}^{j} \leq_{3}^{4} + h.c.$

S₁ and S₃ - benchmarks

Two **benchmark** scenarios:

LH + RH

$$\lambda^{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 5^{*} \\ 0 & b^{*} & b^{*} \end{pmatrix} \qquad \lambda^{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 5^{*} & 0 \\ 0 & b^{*} & 0 \end{pmatrix}$$

Only LH

$$\lambda^{1\ell} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 5\ell \\ 0 & 0 & b\ell \end{pmatrix}$$

$$\lambda^{3\ell} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 5\ell & 5\ell \\ 0 & b\ell & b\ell \end{pmatrix}$$

$$\mathcal{L}_{int} \sim \left(\lambda_{ij}^{\prime \prime} q_{\ell}^{i} \varepsilon l_{\perp}^{j} + \lambda_{ij}^{\prime \prime \prime} U_{R}^{i} e_{R}^{j} \right) S_{\eta} + \lambda_{ij}^{3 \prime} q_{\ell}^{i} \varepsilon \varsigma^{A} l_{\perp}^{j} S_{3}^{A}$$

Ô 52 br

 $\lambda^{1R} = \mathbf{0}$

 $M_{S_{L3}} \sim 1 \text{ TeV}$

S_1 and S_3 : $R(K^{(*)}) + R(D^{(*)}) + (g-2)_{\mu}$

The large couplings to τ imply signatures in DY tails of $pp \rightarrow \tau \tau$, deviations in τLFU tests and $\tau \rightarrow \mu LFV$ tests (Belle-II). Also **B**_s-mixing is typically close to present bounds.

From B to Kaon physics with scalar leptoquarks and U(2)⁵ flavor symmetry

D.M., S. Trifinopoulos, E. Venturini, in preparation [2106.yyyy]

The motivation $b \rightarrow c \tau v + b \rightarrow s \mu \mu$

What are the implications of this for: $s \rightarrow d$ i.e. Kaon physics $\mu \rightarrow e \, \text{LFV} \, \text{processes}$

TeV-scale leptoquark coupled to 2nd and 3rd generation

In "realistic" flavor models LQ must also couple to **1st** generation fermions.

A hint towards $U(2)^5$

CC & NC B-anomalies fit with only LH couplings seems to be consistent with a $U(2)^5$ flavor symmetry relation

$$\lambda^{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 5t \\ 0 & 0 & bt \end{pmatrix} \qquad \lambda^{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 5t & 5t \\ 0 & bt & bt \end{pmatrix}$$

A flavor model typically also predicts **couplings to 1st generation**

Does the picture remain the same?

Similar question addressed in EFT context or in relation to $b \rightarrow s\mu\mu$ only in:

Bordone, Buttazzo, Isidori, Monnard [1705.10729]; Borsato, Gligorov, Guadagnoli, Martinez Santos, Sumensari [1808.02006] Fajfer, Kosnik, Vale-Silva [1802.00786]

$$\lambda_{IR=0} \qquad \lambda_{s\alpha} = c_{\mathrm{U}(2)} V_{ts} \lambda_b$$
$$c_{\mathrm{U}(2)} \sim \mathcal{O}(1)$$

What is the impact of Kaon or $\mu \rightarrow e$ observables?

U(2)⁵ flavour symmetry

In the limit where only 3rd gen fermions are massive, SM enjoys a global symmetry

The **minimal breaking** of this symmetry due to Yukawas can be described in terms of some *spurions*, transforming under G_F:

$$Y_{u(d)} = y_{t(b)} \begin{pmatrix} \Delta_{u(d)} & x_{t(b)} \mathbf{V}_q \\ 0 & 1 \end{pmatrix},$$

This is a very good approximate symmetry: the largest breaking has size $\epsilon \approx y_t |V_{ts}| \approx 0.04$

Diagonalizing quark masses, the V_q doublet spurion is fixed to be $\mathbf{V}_q = \kappa_q (V_{td}^*, V_{ts}^*)^T$ $\kappa_q \sim O(1)$

Barbieri et al. [1105.2296, 1203.4218, 1211.5085]

 $G_F = U(2)_a \times U(2)_\ell \times U(2)_u \times U(2)_d \times U(2)_e$

 ${f V}_q \sim ({f 2},{f 1},{f 1},{f 1},{f 1},{f 1})\;, \quad {f V}_\ell \sim ({f 1},{f 2},{f 1},{f 1},{f 1})\;,$ $m{\Delta}_u \sim (m{2},m{1},ar{m{2}},m{1},m{1}) \;, \quad m{\Delta}_d \sim (m{2},m{1},m{1},ar{m{2}},m{1}) \;, \quad m{\Delta}_e \sim (m{1},m{2},m{1},m{1},ar{m{2}}) \;.$

$$Y_e = y_{ au} \left(egin{array}{ccc} \Delta_e & x_{ au} \mathbf{V}_\ell \ 0 & 1 \end{array}
ight) \quad _{x_{t,b, au}} ext{ are } \mathcal{O}(1)$$

See also Fuentes-Martin, Isidori, Pagès, Yamamoto [1909.02519]

U(2)⁵ flavour symmetry and leptoquarks

Applying the same symmetry assumptions to the leptoquark couplings to SM fermions we get a structure:

$$\lambda^{1/3)L} = \lambda^{1/3} \begin{pmatrix} \chi_{q\ell}^{1/3} & \xi_{\ell} & V_{\ell} & V_{\ell} & \chi_{q\ell}^{1/3} & V_{\ell} & V_{\ell} & \chi_{q\ell}^{1/3} & V_{\ell} \\ \chi_{q\ell}^{1/3} & \xi_{\ell} & V_{\ell} & V_{\ell} & \chi_{q\ell}^{1/3} & V_{\ell} & V_{\ell} & \chi_{q\ell}^{1/3} & V_{\ell} \\ \chi_{q\ell}^{1/3} & \xi_{\ell} & V_{\ell} & \chi_{\ell}^{1/3} & V_{\ell} & V_{\ell} & \chi_{q\ell}^{1/3} & V_{\ell} \\ \chi_{\ell}^{1/3} & \xi_{\ell} & V_{\ell} & \chi_{\ell}^{1/3} & V_{\ell} & \chi_{\ell} & \chi_{\ell}^{1/3} & V_{\ell} \\ \chi_{\ell}^{1/3} & \xi_{\ell} & V_{\ell} & \chi_{\ell}^{1/3} & V_{\ell} & \chi_{\ell} & \chi_{\ell}^{1/3} & V_{\ell} \\ \chi_{\ell}^{1/3} & \xi_{\ell} & \chi_{\ell}^{1/3} & V_{\ell} & \chi_{\ell} & \chi_{\ell} & \chi_{\ell}^{1/3} & V_{\ell} \\ \chi_{\ell}^{1/3} & \xi_{\ell} & \chi_{\ell}^{1/3} & V_{\ell} & \chi_{\ell} & \chi_{\ell}^{1/3} & V_{\ell} & \chi_{\ell} & \chi_{\ell}^{1/3} & V_{\ell} \\ \chi_{\ell}^{1/3} & \xi_{\ell} & \chi_{\ell}^{1/3} & V_{\ell} & \chi_{\ell} & \chi_{\ell}^{1/3} & V_{\ell} & \chi_{\ell} & \chi_{\ell}^{1/3} & V_{\ell} \\ \chi_{\ell}^{1/3} & \xi_{\ell} & \chi_{\ell}^{1/3} & V_{\ell} & \chi_{\ell} & \chi_{\ell}^{1/3} & V_{\ell} & \chi_{\ell} & \chi_{\ell}^{1/3} & V_{\ell} \\ \chi_{\ell}^{1/3} & \xi_{\ell} & \chi_{\ell}^{1/3} & V_{\ell} & \chi_{\ell} & \chi_{\ell}^{1/3} & \chi_{\ell}^{1/3} & \chi_{\ell} & \chi_{\ell}^{1/3} & \chi_{\ell} & \chi_{\ell$$

 $S_{\rho} = S_{in} \partial_{e}$: rotation diagonalizing electrons and muon masses V_q : leptonic doublet spurion $x^{1(3)}$: **O(1)** arbitrary complex parameters.

Generic features of U(2)⁵ symmetry:

- Coupl. to S_L suppressed by ~ V_{ts} ,
- Coupl. to d_{L} suppressed by ~ V_{td} ,
- Coupl. to μ_{L} suppressed by V_{ℓ} ,
- Coupl. to e_{L} suppressed by $s_{e} V_{\ell}$.

owed is to $t_R \tau_R$.

Arbitrary parameters

• Largest couplings to b_L , t_L , τ_L and v_{τ} ,

28

U(2)⁵ flavour symmetry and leptoquarks

Applying the same symmetry assumptions to the leptoquark couplings to SM fermions we get a structure:

$$\lambda^{1/3} \mathcal{L}_{z} = \lambda^{1/3} \begin{pmatrix} \chi_{q\ell}^{1/3} & \varsigma_{\ell} & V_{\ell} & V_{q\ell} & \chi_{q\ell}^{1/3} & V_{\ell} & V_{\ell} & \chi_{q\ell}^{1/3} & V_{\ell} \\ \chi_{q\ell}^{1/3} & \varsigma_{\ell} & V_{\ell} & V_{\ell} & \chi_{q\ell}^{1/3} & V_{\ell} & V_{\ell} & \chi_{q}^{1/3} & V_{\ell} \\ \chi_{q\ell}^{1/3} & \varsigma_{\ell} & V_{\ell} & \chi_{q\ell}^{1/3} & V_{\ell} & V_{\ell} & \chi_{q}^{1/3} & V_{\ell} \\ \chi_{\ell}^{1/3} & \varsigma_{\ell} & V_{\ell} & \chi_{\ell}^{1/3} & V_{\ell} & \chi_{q} & \chi_{\ell} \\ \chi_{\ell}^{1/3} & \varsigma_{\ell} & V_{\ell} & \chi_{\ell}^{1/3} & V_{\ell} & \chi_{q} & \chi_{\ell} \\ \end{pmatrix} \begin{pmatrix} \mathsf{d}_{\mathsf{L}} & & \lambda^{1R} \\ \mathsf{s}_{\mathsf{L}} & & \lambda^{1R} \\ \mathsf{s}_{\mathsf{L}} & & \mathsf{s}_{\mathsf{L}} \\ \mathsf{s}_{\mathsf{L}} & & \mathsf{s}_{\mathsf{L}} \\ \mathsf{s}_{\mathsf{L}} & \mathsf{s}_{\mathsf{L}} & \mathsf{s}_{\mathsf{L}} \\ \end{pmatrix} \end{pmatrix} \\ \rightarrow \text{ only RH coupling allows}$$

 $S_{\rho} = S_{in} \partial_{e}$: rotation diagonalizing electrons and muon masses V_q : leptonic doublet spurion $x^{1(3)}$: **O(1)** arbitrary complex parameters.

The leptoquark couplings to first generations are now **fixed** in terms of couplings to the second generation:

owed is to $t_R \tau_R$.

Arbitrary parameters

s
$$\lambda_{d,a}^{1} = \lambda_{s,a}^{1} \frac{\sqrt{t_d}}{\sqrt{t_s}}$$
 Exact relations
 $\lambda_{i,e}^{1} = \lambda_{i,\mu}^{1} \frac{\sqrt{t_d}}{\sqrt{t_s}}$ (selection rules)

We can now **correlate Kaon physics** observables to **B-anomalies**!

From B to K with LQ and U(2)⁵

We perform a global fit in the U(2)⁵ flavour structure.

- The parameters are indeed consistent with a U(2)⁵ structure: **all x's are O(1)**.
- $V_{\ell} \sim 0.1$, $|s_e| \leq 0.02$

From B to K with LQ and U(2)⁵

$b \rightarrow s\mu\mu$ can be addressed:

R(D^(*)) instead can only be addressed at 2o:

This is due to the combination of the constraints from $Z \rightarrow \tau \tau$ and $K^+ \rightarrow \pi^+ vv$

Leading effects in Kaon physics

+ e conversion

Combined interpretation of R_{K} , $R(D^{(*)})$, $(g-2)_{\mu}$, and CAA

DM, Sokratis Trifinopoulos PRL **127**, 061803 (2021) [2104.05730]

$S_1 \sim ({f \bar 3},{f 1})_{1/3} \;,$

 $\phi^+ \sim (\mathbf{1}, \mathbf{1})_1$

A do-it-all model?

Let us consider a simplified model with only these two new weak-singlets states:

Note: same gauge quantum numbers as **sbottom** and **stau**, but different L and B assignments.

$$\phi^{+} + \lambda_{i\alpha}^{1L} \bar{q}_{i}^{c} \epsilon \ell_{\alpha} S_{1} + \lambda_{i\alpha}^{1R} \bar{u}_{i}^{c} e_{\alpha} S_{1} + \text{h.c.}$$

$$e\nu\nu) \approx \frac{v^2|\lambda_{12}|^2}{4M_{\phi}^2} + \frac{3m_t^2|\lambda_{b\mu}^{1L}|^2}{32\pi^2 M_1^2} \left(\frac{1}{2} - \log\frac{M_1^2}{m_t^2}\right)$$

 $S_1 + Φ^+$

$$C_{LL} \approx -\lambda_{b\tau}^{1L} \lambda_{s\tau}^{1L*} \left(\frac{|\lambda_{b\mu}^{1L}|^2}{64\pi^2 M_1^2} + \frac{|\lambda_{\mu\tau}|^2 \log M_1^2}{64\pi^2 (M_{\phi}^2 - M_1^2)} \right)$$
$$C_{LR} \approx -\frac{|\lambda_{c\mu}^{1R}|^2 \lambda_{b\tau}^{1L} \lambda_{s\tau}^{1L*}}{64\pi^2 M_1^2} .$$

Felkl, Herrero-Garcia, Schmidt 2102.09898

A do-it-all model?

We do a global analysis including all the observables

Observable	Experimental value	
R_D	0.34 ± 0.029 [56]	
R_{D^*}	0.295 ± 0.013 [56]	_
ΔC_9^{μ}	-0.675 ± 0.16 [20]	
ΔC_{10}^{μ}	0.244 ± 0.13 [20]	$\lambda_{\mathrm{s} au}^{1L}$
Δa_{μ}	$(2.51 \pm 0.59) \times 10^{-9} [27, 28]$	_
$\delta(\mu \to e\nu\nu)$	$(6.5 \pm 1.5) \times 10^{-4} \ [41]$	
$R_D^{\mu/e}$	$0.978 \pm 0.035 \; [57, 58]$	_
$\mathcal{B}(B_c \to \tau \nu)$	< 0.1 [59]	
$R_{K^{(*)}}^{\nu}$	< 2.7 [60]	
$C^1_{B_s}$	$< 2.01 \times 10^{-5} \text{ TeV}^{-2} [61]$	
$ \operatorname{Re}(C_D^1) $	$< 3.57 \times 10^{-7} \text{ TeV}^{-2} [61]$	
$\left \operatorname{Im}(C_D^1)\right $	$< 2.23 \times 10^{-8} \text{ TeV}^{-2}$ [61]	
$\frac{g_{ au}}{g_{e}}$	1.0058 ± 0.0030 [56]	
$\frac{g_{\tau}}{g_{\mu}}$	1.0022 ± 0.0030 [56]	
$\frac{g_{\mu}}{q_{e}}$	1.0036 ± 0.0028 [56]	$\Delta \mathrm{C}_{10}^{\mu}$
$\delta g^Z_{ au_L}$	$(-0.11 \pm 0.61) \times 10^{-3}$ [62]	
$\delta g^Z_{\tau_R}$	$(0.66 \pm 0.65) \times 10^{-3} \ [62]$	
$\delta g^Z_{\mu L}$	$(0.3 \pm 1.1) \times 10^{-3} \ [62]$	
$\delta g^Z_{\mu R}$	$(0.2 \pm 1.3) \times 10^{-3} \ [62]$	
$\mathcal{B}(\tau \to \mu \gamma)$	$< 4.4 \times 10^{-8}$ [63]	
$\mathcal{B}(\tau \to 3\mu)$	$< 2.1 \times 10^{-8} [63]$	

• **Good fit** of all anomalies

DM, Sokratis Trifinopoulos 2104.05730

 $M_1 = M_\phi = 5.5 \text{TeV}$

• Cancellation of approx. 1 part in 3 required to avoid $\tau \rightarrow \mu \gamma$: via $\lambda^{IR}_{c\mu}$ • Large couplings required, due to the large masses needed to avoid meson mixing.

Conclusions

• Flavor anomalies still require data (and theory) to give us a definitive picture, some could stay, some could go.

• If any will remain, it will be a revolutionary stepping stone to an unexpected New Physics sector!

- Exploring combined explanations is a useful exploratory exercise, it allows us to **connect B-anomalies with other observables**, both at high and low energy.
- Observations or limits from correlated effects in completely different processes will be crucial to understand the underlying UV physics and its flavor structure.

We must keep an open mind and explore all possibilities.

Thank you!

Backup

From R_K to $R(D^{(*)})$ anomalies

A large coupling to the t induces an RGenhanced lepton-flavor universal contribution proportional to C_{9^u} Capdevila et al. 1712.01919, Crivellin et al. 1807.02068

Correct size obtained with the preferred value of

 $\mathbf{R}(\mathbf{D}^{(*)})$ $\Lambda/\sqrt{g_{\tau}} \sim 1$

UV completions for $b \rightarrow s \mu^+ \mu^-$ anomalies

Z

Leptoquark vector U₁ or scalar S₃

LOOP LEVEL

LFU anomalies from boxes

e.g. Arcadi, Calibbi, Fedele, Mescia 2104.03228

Top-philic Z'

Kamenik, Soreq, Zupan [1704.06005]

40

Complete one-loop matching to SMEFT V. Gherardi, E. Venturini, D.M. [2003.12525]

Motivations:

Meson mixing, magnetic dipole moments, Z couplings, LFV leptonic decays, etc..

2. Once the matching is performed, a large number of observables can be readily evaluated.

З.

automatically. MatchMaker (diagrammatic approach) [Anastasiou, Carmona, Lazopoulos, Santiago, in progress], methods based on *Covariant Derivative Expansion* (CDE) [Henning, Lu, Murayama '14, Drozd, Ellis, Quevillion, You, Zhang '15, '16, '17, Fuentes-Martin, Portoles, Ruiz-Femenia]

The alternative is to compute on-shell loops for each observable, as in:

Crivellin et al. 1912.04224; Saad 2005.04352;

Other necessary contributions:

SMEFT 1-loop RGE

[Alonso, Jenkins, Manohar, Trott '13]

SMEFT > LEFT matching @1-loop

[Dekens, Stoffer 1908.05295]

LEFT 1-loop RGE

[Jenkins, Manohar, Stoffer 1711.05270]

finite terms (non logs) of loop contributions are important for several observables:

It is the first such complete matching for a very rich scenario, many operators are induced.

Useful as cross-check for other techniques that aim to do this more

"Green's Basis" of the SMEFT

When off-shell one-loop diagrams are evaluated, also operators outside of the chosen basis (e.g. Warsaw) are generated, which must be reduced to the basis via E.O.M. The complete set of independent operators independent upon integration by parts (but possibly redundant under EOM), is called "Green's basis"

Figure 1: Diagrams for the matching of the $\langle \bar{e}eH^{\dagger}H \rangle$ Green function.

Relevant Green's basis operators: While the first operators receives contributions also from other ones: $[\mathcal{O}_{He}]_{\alpha\beta} = (\bar{e}_{\alpha}\gamma^{\mu}e_{\beta})(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)$ $[\mathcal{O}'_{He}]_{\alpha\beta} = (\bar{e}_{\alpha}i\overleftrightarrow{D}e_{\beta})(H^{\dagger}H) ,$ $[C_{He}]^{(1)}_{\alpha\beta}$ $[\mathcal{O}''_{He}]_{\alpha\beta} = (\bar{e}_{\alpha}\gamma^{\mu}e_{\beta})\partial_{\mu}(H^{\dagger}H) \; .$

Matching conditions in the Green's basis:

$$\begin{split} [G_{He}(\mu_M)]_{\alpha\beta} &= -\frac{N_c (\lambda^{1R\dagger} y_U^T y_U^* \lambda^{1R})_{\alpha\beta}}{32\pi^2 M_1^2} \left(1 + \log \frac{\mu_M^2}{M_1^2}\right) ,\\ [G'_{He}(\mu_M)]_{\alpha\beta} &= -\frac{N_c (\lambda^{1R\dagger} y_U^T y_U^* \lambda^{1R})_{\alpha\beta}}{64\pi^2 M_1^2} + \frac{N_c \lambda_{H1} (\lambda^{1R\dagger} \lambda^{1R})_{\alpha\beta}}{64\pi^2 M_1^2} ,\\ [G''_{He}(\mu_M)]_{\alpha\beta} &= 0 . \end{split}$$

The last two must be rotated to the Warsaw basis:

$$(O'_{He})_{\alpha\beta} \longrightarrow (y_E^*)_{\gamma\beta} (O_{eH})_{\gamma\alpha}^{\dagger} + (y_E)_{\gamma\alpha} (O_{eH})_{\gamma\beta}$$
$$[O''_{He}]_{\alpha\beta} \rightarrow i(y_E^*)_{\gamma\beta} [O_{eH}]_{\gamma\alpha}^{\dagger} - i(y_E)_{\gamma\alpha} (O_{eH})_{\gamma\beta}$$

$$= -\frac{N_c}{30}g'^4 Y_H Y_e \delta_{\alpha\beta} \left(\frac{3Y_{S_3}^2}{M_3^2} + \frac{Y_{S_1}^2}{M_1^2}\right) + \frac{N_c}{12} \left(3\frac{(y_E^{\dagger}\Lambda_\ell^{(3)}y_E)_{\alpha\beta}}{M_3^2} + \frac{(y_E^{\dagger}\Lambda_\ell^{(1)}y_E)_{\alpha\beta}}{M_1^2}\right) + \frac{N_c}{3}g'^2 Y_H \left(\frac{8Y_u - Y_{S_1}}{6} + Y_u L_1\right)\frac{(\Lambda_e)_{\alpha\beta}}{M_1^2} - \frac{N_c}{2}(1+L_1)\frac{(X_{2U}^{1R})_{\alpha\beta}}{M_1^2}.$$

"Green's Basis" of the SMEFT

The grey ones are those already present in the Warsaw basis

	X^3	X^2H^2		H^2D^4	
\mathcal{O}_{3G}	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	\mathcal{O}_{HG}	$G^{A}_{\mu\nu}G^{A\mu\nu}(H^{\dagger}H)$	\mathcal{O}_{DH}	$(D_{\mu}D^{\mu}H)^{\dagger}(D_{\nu}D^{\nu}H)$
$\mathcal{O}_{\widetilde{3G}}$	$f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	$\mathcal{O}_{H\widetilde{G}}$	$\widetilde{G}^{A}_{\mu u}G^{A\mu u}(H^{\dagger}H)$		H^4D^2
\mathcal{O}_{3W}	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	\mathcal{O}_{HW}	$W^{I}_{\mu\nu}W^{I\mu\nu}(H^{\dagger}H)$	$\mathcal{O}_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$
$\mathcal{O}_{\widetilde{3W}}$	$\epsilon^{IJK}\widetilde{W}^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$	$\mathcal{O}_{H\widetilde{W}}$	$\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}(H^{\dagger}H)$	\mathcal{O}_{HD}	$(H^{\dagger}D^{\mu}H)^{\dagger}(H^{\dagger}D_{\mu}H)$
	X^2D^2	\mathcal{O}_{HB}	$B_{\mu u}B^{\mu u}(H^{\dagger}H)$	$\mathcal{O}_{HD}^{\prime}$	$(H^{\dagger}H)(D_{\mu}H)^{\dagger}(D^{\mu}H)$
\mathcal{O}_{2G}	$-\frac{1}{2}(D_{\mu}G^{A\mu\nu})(D^{\rho}G^{A}_{\rho\nu})$	$\mathcal{O}_{H\widetilde{B}}$	$\widetilde{B}_{\mu u}B^{\mu u}(H^{\dagger}H)$	\mathcal{O}_{HD}''	$(H^{\dagger}H)D_{\mu}(H^{\dagger}i\overleftrightarrow{D}^{\mu}H)$
\mathcal{O}_{2W}	$-\frac{1}{2}(D_{\mu}W^{I\mu\nu})(D^{\rho}W^{I}_{\rho\nu})$	\mathcal{O}_{HWB}	$W^{I}_{\mu\nu}B^{\mu\nu}(H^{\dagger}\sigma^{I}H)$		H^6
\mathcal{O}_{2B}	$-rac{1}{2}(\partial_{\mu}B^{\mu u})(\partial^{ ho}B_{ ho u})$	$\mathcal{O}_{H\widetilde{W}B}$	$\widetilde{W}^{I}_{\mu u}B^{\mu u}(H^{\dagger}\sigma^{I}H)$	\mathcal{O}_H	$(H^{\dagger}H)^3$
			$H^2 X D^2$		
		\mathcal{O}_{WDH}	$D_{\nu}W^{I\mu\nu}(H^{\dagger}i\widetilde{D}_{\mu}^{I}H)$		
		\mathcal{O}_{BDH}	$\partial_{\nu}B^{\mu\nu}(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)$		

Four-quark		Four-lepton		Semileptonic		
$\mathcal{O}_{qq}^{(1)}$	$(\overline{q}\gamma^{\mu}q)(\overline{q}\gamma_{\mu}q)$	$\mathcal{O}_{\ell\ell}$	$(\overline{\ell}\gamma^{\mu}\ell)(\overline{\ell}\gamma_{\mu}\ell)$	$\mathcal{O}_{\ell q}^{(1)}$	$(\overline{\ell}\gamma^{\mu}\ell)(\overline{q}\gamma_{\mu}q)$	
${\cal O}_{qq}^{(3)}$	$(\overline{q}\gamma^{\mu}\sigma^{I}q)(\overline{q}\gamma_{\mu}\sigma^{I}q)$	\mathcal{O}_{ee}	$(\overline{e}\gamma^{\mu}e)(\overline{e}\gamma_{\mu}e)$	$\mathcal{O}_{\ell q}^{(3)}$	$(\overline{\ell}\gamma^{\mu}\sigma^{I}\ell)(\overline{q}\gamma_{\mu}\sigma^{I}q)$	
\mathcal{O}_{uu}	$(\overline{u}\gamma^{\mu}u)(\overline{u}\gamma_{\mu}u)$	$\mathcal{O}_{\ell e}$	$(\overline{\ell}\gamma^{\mu}\ell)(\overline{e}\gamma_{\mu}e)$	\mathcal{O}_{eu}^{+}	$(\overline{e}\gamma^{\mu}e)(\overline{u}\gamma_{\mu}u)$	
\mathcal{O}_{dd}	$(\overline{d}\gamma^{\mu}d)(\overline{d}\gamma_{\mu}d)$			\mathcal{O}_{ed}	$(\overline{e}\gamma^{\mu}e)(\overline{d}\gamma_{\mu}d)$	
$\mathcal{O}_{ud}^{(1)}$	$(\overline{u}\gamma^{\mu}u)(\overline{d}\gamma_{\mu}d)$			\mathcal{O}_{qe}	$(\overline{q}\gamma^{\mu}q)(\overline{e}\gamma_{\mu}e)$	
$\mathcal{O}_{ud}^{(8)}$	$(\overline{u}\gamma^{\mu}T^{A}u)(\overline{d}\gamma_{\mu}T^{A}d)$			$\mathcal{O}_{\ell u}$	$(\overline{\ell}\gamma^{\mu}\ell)(\overline{u}\gamma_{\mu}u)$	
${\cal O}_{qu}^{(1)}$	$(\overline{q}\gamma^{\mu}q)(\overline{u}\gamma_{\mu}u)$			$\mathcal{O}_{\ell d}$	$(\overline{\ell}\gamma^{\mu}\ell)(\overline{d}\gamma_{\mu}d)$	
${\cal O}_{qu}^{(8)}$	$(\overline{q}\gamma^{\mu}T^{A}q)(\overline{u}\gamma_{\mu}T^{A}u)$			$\mathcal{O}_{\ell edq}$	$(\overline{\ell} e)(\overline{d} q)$	
$\mathcal{O}_{qd}^{(1)}$	$(\overline{q}\gamma^{\mu}q)(\overline{d}\gamma_{\mu}d)$			$\mathcal{O}_{\ell equ}^{(1)}$	$(\overline{\ell}^r e)\epsilon_{rs}(\overline{q}^s u)$	
$\mathcal{O}_{qd}^{(8)}$	$(\overline{q}\gamma^{\mu}T^{A}q)(\overline{d}\gamma_{\mu}T^{A}d)$			$\mathcal{O}_{\ell equ}^{(3)}$	$(\overline{\ell}^r \sigma^{\mu\nu} e) \epsilon_{rs} (\overline{q}^s \sigma_{\mu\nu} u)$	
$\mathcal{O}_{quqd}^{(1)}$	$(\overline{q}^r u)\epsilon_{rs}(\overline{q}^s d)$			-		
$\mathcal{O}_{quqd}^{(8)}$	$(\overline{q}^r T^A u)\epsilon_{rs}(\overline{q}^s T^A d)$					

V. Gherardi, E. Venturini, D.M. <u>[2003.12525]</u>

$\psi^2 D^3$		$\psi^2 X D$		$\psi^2 D H^2$,		
\mathcal{O}_{qD}	$\frac{i}{2}\overline{q}\left\{D_{\mu}D^{\mu},D\right\}q$	\mathcal{O}_{Gq}	$(\overline{q}T^A\gamma^\mu q)D^\nu G^A_{\mu\nu}$	$\mathcal{O}_{Hq}^{(1)}$	$(\overline{q}\gamma^{\mu}q)(H^{\dagger}i\overleftarrow{D}_{\mu}I)$	
\mathcal{O}_{uD}	$\frac{i}{2}\overline{u}\left\{D_{\mu}D^{\mu}, D\right\}u$	\mathcal{O}_{Gq}'	$\frac{1}{2} (\overline{q} T^A \gamma^\mu i \overleftrightarrow{D}^\nu q) G^A_{\mu\nu}$	$\mathcal{O}_{Hq}^{\prime(1)}$	$(\overline{q}i D q)(H^{\dagger}H)$	
\mathcal{O}_{dD}	$\frac{i}{2}\overline{d}\left\{D_{\mu}D^{\mu}, \not\!\!\!D\right\}d$	$\mathcal{O}'_{\widetilde{G}q}$	$\frac{1}{2} (\overline{q} T^A \gamma^\mu i \overleftrightarrow{D}^\nu q) \widetilde{G}^A_{\mu\nu}$	$\mathcal{O}_{Hq}^{\prime\prime(1)}$	$(\overline{q}\gamma^{\mu}q)\partial_{\mu}(H^{\dagger}H)$	
$\mathcal{O}_{\ell D}$	$\frac{i}{2}\overline{\ell}\left\{ D_{\mu}D^{\mu},D^{\mu} ight\} \ell$	\mathcal{O}_{Wq}	$(\overline{q}\sigma^I\gamma^\mu q)D^ u W^I_{\mu u}$	$\mathcal{O}_{Hq}^{(3)}$	$\left(\overline{q} \sigma^{I} \gamma^{\mu} q \right) (H^{\dagger} i \overleftrightarrow{D}^{I}_{\mu})$	
\mathcal{O}_{eD}	$\frac{i}{2}\overline{e}\left\{D_{\mu}D^{\mu},D^{\mu}\right\}e$	\mathcal{O}'_{Wq}	$\frac{1}{2} (\overline{q} \sigma^I \gamma^\mu i \overleftrightarrow{D}^\nu q) W^I_{\mu\nu}$	${\cal O}_{Hq}^{\prime(3)}$	$(\overline{q}i\overleftrightarrow{D}^{I}q)(H^{\dagger}\sigma^{I}h)$	
ψ^2]	$HD^2 + h.c.$	$\mathcal{O}'_{\widetilde{W}q}$	$\frac{1}{2} (\overline{q} \sigma^I \gamma^\mu i \overleftrightarrow{D}^\nu q) \widetilde{W}^I_{\mu\nu}$	$\mathcal{O}_{Hq}^{\prime\prime(\hat{3})}$	$(\overline{q}\sigma^{I}\gamma^{\mu}q)D_{\mu}(H^{\dagger}\sigma$	
\mathcal{O}_{uHD1}	$(\overline{q}u)D_{\mu}D^{\mu}\widetilde{H}$	\mathcal{O}_{Bq}	$(\overline{q}\gamma^{\mu}q)\partial^{\nu}B_{\mu\nu}$	\mathcal{O}_{Hu}	$(\overline{u}\gamma^{\mu}u)(H^{\dagger}i\overleftarrow{D}_{\mu})$	
\mathcal{O}_{uHD2}	$(\overline{q}i\sigma_{\mu\nu}D^{\mu}u)D^{\nu}\widetilde{H}$	\mathcal{O}_{Bq}'	$\frac{1}{2}(\overline{q}\gamma^{\mu}i\overleftrightarrow{D}^{\nu}q)B_{\mu\nu}$	\mathcal{O}_{Hu}'	$(\overline{u}i) u (H^{\dagger}H)$	
\mathcal{O}_{uHD3}	$(\overline{q}D_{\mu}D^{\mu}u)\widetilde{H}$	$\mathcal{O}'_{\widetilde{B}q}$	$\frac{1}{2}(\overline{q}\gamma^{\mu}i\overleftarrow{D}^{\nu}q)\widetilde{B}_{\mu\nu}$	\mathcal{O}_{Hu}''	$(\overline{u}\gamma^{\mu}u)\partial_{\mu}(H^{\dagger}H$	
\mathcal{O}_{uHD4}	$(\overline{q}D_{\mu}u)D^{\mu}\widetilde{H}$	\mathcal{O}_{Gu}	$(\overline{u}T^A\gamma^\mu u)D^\nu G^A_{\mu\nu}$	\mathcal{O}_{Hd}	$ (\overline{d}\gamma^{\mu}d) (H^{\dagger}i\overleftrightarrow{D}_{\mu}) $	
\mathcal{O}_{dHD1}	$(\overline{q}d)D_{\mu}D^{\mu}H$	\mathcal{O}_{Gu}'	$\frac{1}{2} (\overline{u} T^A \gamma^\mu i \overleftrightarrow{D}^\nu u) G^A_{\mu\nu}$	\mathcal{O}_{Hd}'	$(\overline{d}i D d) (H^{\dagger}H)$	
\mathcal{O}_{dHD2}	$(\overline{q}i\sigma_{\mu\nu}D^{\mu}d)D^{\nu}H$	$\mathcal{O}_{\widetilde{G}u}'$	$\frac{1}{2} (\overline{u} T^A \gamma^\mu i \overleftrightarrow{D}^\nu u) \widetilde{G}^A_{\mu\nu}$	\mathcal{O}_{Hd}''	$(\overline{d}\gamma^{\mu}d)\partial_{\mu}(H^{\dagger}H)$	
\mathcal{O}_{dHD3}	$(\overline{q}D_{\mu}D^{\mu}d)H$	\mathcal{O}_{Bu}	$(\overline{u}\gamma^{\mu}\underline{u})\partial^{\nu}B_{\mu\nu}$	\mathcal{O}_{Hud}	$ (\overline{u}\gamma^{\mu}d)(\widetilde{H}^{\dagger}iD_{\mu}H) $	
\mathcal{O}_{dHD4}	$(\overline{q}D_{\mu}d)D^{\mu}H$	\mathcal{O}_{Bu}'	$\frac{1}{2}(\overline{u}\gamma^{\mu}i\overset{`}{D}^{\nu}u)B_{\mu\nu}$	$\mathcal{O}_{H\ell}^{(1)}$	$ (\overline{\ell}\gamma^{\mu}\ell)(H^{\dagger}iD_{\mu}) $	
\mathcal{O}_{eHD1}	$(\overline{\ell}e)D_{\mu}D^{\mu}H$	$\mathcal{O}'_{\widetilde{B}u}$	$\frac{1}{2}(\overline{u}\gamma^{\mu}iD^{\nu}u)B_{\mu\nu}$	$\mathcal{O}_{H\ell}^{\prime(1)}$	$(\overline{\ell}iD\!\!\!/\ell)(H^{\dagger}H)$	
\mathcal{O}_{eHD2}	$(\bar{\ell} i \sigma_{\mu\nu} D^{\mu} e) D^{\nu} H$	\mathcal{O}_{Gd}	$(\overline{d}T^A\gamma^\mu d)D^\nu G^A_{\mu\nu}$	$\mathcal{O}_{H\ell}^{\prime\prime(1)}$	$(\overline{\ell}\gamma^{\mu}\ell)\partial_{\mu}(H^{\dagger}H) \longleftrightarrow$	
\mathcal{O}_{eHD3}	$(\ell D_{\mu}D^{\mu}e)H$	\mathcal{O}_{Gd}'	$ \begin{bmatrix} \frac{1}{2} (dT^A \gamma^\mu i D^\nu d) G^A_{\mu\nu} \\ \longleftrightarrow \\ \sim \end{bmatrix} $	$\mathcal{O}_{H\ell}^{(3)}$	$ \left \begin{array}{c} (\ell \sigma^{I} \gamma^{\mu} \ell) (H^{\dagger} i D^{I}_{\mu}) \\ \longleftrightarrow \end{array} \right. $	
\mathcal{O}_{eHD4}	$(\overline{\ell}D_{\mu}e)D^{\mu}H$	$\mathcal{O}_{\widetilde{G}d}'$	$\frac{1}{2} (\overline{d}T^A \gamma^\mu i D^\nu d) G^A_{\mu\nu}$	$\mathcal{O}_{H\ell}^{\prime(3)}$	$(\overline{\ell}iD^{I}\ell)(H^{\dagger}\sigma^{I}H)$	
ψ^2 .	$XH + ext{h.c.}$	\mathcal{O}_{Bd}	$(d\gamma^{\mu}d)\partial^{\nu}B_{\mu\nu}$	$\mathcal{O}_{H\ell}^{\prime\prime(3)}$	$\left \begin{array}{c} (\ell \sigma^{I} \gamma^{\mu} \ell) D_{\mu} (H^{\dagger} \sigma) \\ \longleftrightarrow \end{array} \right.$	
\mathcal{O}_{uG}	$\left(\overline{q}T^{A}\sigma^{\mu\nu}u)HG^{A}_{\mu\nu}\right)$	\mathcal{O}_{Bd}'	$\frac{\frac{1}{2}(d\gamma^{\mu}iD^{\nu}d)B_{\mu\nu}}{\overleftrightarrow} \approx 2$	\mathcal{O}_{He}	$ (\overline{e}\gamma^{\mu} e)(H^{\dagger}i D_{\mu}I) $	
\mathcal{O}_{uW}	$(\overline{q}\sigma^{\mu\nu}u)\sigma^{I}HW^{I}_{\mu\nu}$	$\mathcal{O}_{\widetilde{B}d}'$	$\frac{\frac{1}{2}(d\gamma^{\mu}iD^{\nu}d)B_{\mu\nu}}{\sqrt{2}}$	\mathcal{O}_{He}'	$(\overline{e}i \not\!\!\!D e)(H^{\dagger}H)$	
\mathcal{O}_{uB}	$(\overline{q}\sigma^{\mu\nu}u)HB_{\mu\nu}$	$\mathcal{O}_{W\ell}$	$\left \begin{array}{c} (\ell\sigma^{I}\gamma^{\mu}\ell)D^{\nu}W^{I}_{\mu\nu} \\ 1 \overleftarrow{\sigma} \mu \overrightarrow{\sigma} \mu \mu \overrightarrow{\sigma} \mu \mu \overrightarrow{\sigma} \mu \mu \mu \mu \mu \mu \mu \mu \mu $	$\mathcal{O}_{He}^{\prime\prime}$	$\frac{(\overline{e}\gamma^{\mu}e)\partial_{\mu}(H^{\dagger}H)}{(\overline{e}\gamma^{\mu}e)}$	
\mathcal{O}_{dG}	$\left(\overline{q}I^{A}\sigma^{\mu\nu}d\right)HG^{A}_{\mu\nu}$	$\mathcal{O}'_{W\ell}$	$\begin{bmatrix} \frac{1}{2} (\ell \sigma^{I} \gamma^{\mu} i D^{\nu} \ell) W^{I}_{\mu\nu} \\ \frac{1}{2} (\overline{\rho} I \mu i \overleftrightarrow{\rho} \nu \rho) \widetilde{W}^{I}_{\mu\nu} \end{bmatrix}$		$\psi^2 H^3 + \text{h.c.}$	
\mathcal{O}_{dW}	$(q\sigma^{\mu\nu} d)\sigma^{T}HW^{T}_{\mu\nu}$	$\mathcal{O}_{\widetilde{W}\ell}$	$\frac{\frac{1}{2}(\ell\sigma^{\prime}\gamma^{\mu}i D^{\nu}\ell)W_{\mu\nu}}{(\bar{\ell}\gamma^{\mu}\ell)\partial^{\nu}B}$	O_{uH}	(H'H)qHu $(H^{\dagger}H)\overline{q}Hd$	
\mathcal{O}_{dB}	$(qo^{\mu\nu}a)\Pi D_{\mu\nu}$ $(\bar{\ell}\sigma^{\mu\nu}e)\sigma^{I}HW^{I}$	$\mathcal{O}'_{B\ell}$	$\frac{(\ell \gamma^{\mu} \ell) O D_{\mu\nu}}{\frac{1}{(\bar{\ell} \gamma^{\mu} i D^{\nu} \ell) B}}$	\mathcal{O}_{dH}	$(H^{\dagger}H)\overline{\ell}He$	
\mathcal{O}_{eW}	$(\bar{\ell}\sigma^{\mu\nu}e)HB$	$\mathcal{O}_{B\ell}$ \mathcal{O}_{\sim}'	$ \begin{array}{c} 2 \left(\overbrace{\ell}^{\nu} \rho \mu i D \overbrace{\ell}^{\nu} \rho \right) D \mu \nu \\ \frac{1}{2} \left(\overbrace{\ell}^{\nu} \rho \mu i D \rho \mu \right) \widetilde{P} \dots \end{array} $	VeH		
► eB	(000)	$\mathcal{O}_{Be}^{B\ell}$	$\Big \frac{2(\overline{e}\gamma^{\mu}e)\partial^{\nu}B_{\mu\nu}}{(\overline{e}\gamma^{\mu}e)\partial^{\nu}B_{\mu\nu}} \Big $			
		\mathcal{O}_{Be}'	$\frac{1}{2} (\overline{e} \gamma^{\mu} i \overleftrightarrow{D}^{\nu} e) B_{\mu\nu}$			
		$\mathcal{O}'_{\widetilde{R}e}$	$\left \frac{1}{2} (\overline{e} \gamma^{\mu} i \overleftrightarrow{D}^{\nu} e) \widetilde{B}_{\mu\nu} \right $			
		~ 0				

The Threefold Way of LQ Searches at LHC

QCD pair-production

single-production

High-pT Drell-Yan

[Diaz, Schmaltz, Zhong 1706.05033, 1810.10017; Dorsner, Greljo 1801.07641]

In order to cover all couplings it is important to consider all combinations of different lepton & quark combinations in final state!

Leptoquark searches at CMS and ATLAS

<u>CMS</u>

-eptoquarks

scalar LQ (pair prod.), coupling to 1st gen. fermions, $\beta = 1$ scalar LQ (pair prod.), coupling to 1st gen. fermions, $\beta = 0.5$ scalar LQ (pair prod.), coupling to 2nd gen. fermions, $\beta = 1$ scalar LQ (pair prod.), coupling to 2nd gen. fermions, $\beta = 1$ scalar LQ (pair prod.), coupling to 2nd gen. fermions, $\beta = 0.5$ scalar LQ (pair prod.), coupling to 3rd gen. fermions, $\beta = 1$ scalar LQ (pair prod.), coupling to 3rd gen. fermions, $\beta = 1$

CMS ττbb <u>1703.03995</u>, <u>1811.00806</u> CMS ττtt <u>1803.02864</u> CMS μμjj & μνjj <u>CMS PAS EXO-17-003</u> CMS μμtt <u>1809.05558</u> CMS νν+(jj,bb,tt) <u>1805.10228</u>

ATLAS IIji, Ivji <u>1902.00377</u> ATLAS IIji <u>2006.05872</u> ATLAS tt(ee,µµ) <u>2010.02098</u> ATLAS LQ→(tv,bt) <u>1902.08103</u> ATLAS LQ→(bv,tt) <u>2101.12527</u> ATLAS ttrt <u>2101.11582</u>

