PROBING NEW PHYSICS across scales

Yotam Soreq

Theoretical Particle Physics Seminar, University of Zurich, Nov. 27, 2018

if the Standard Model is so successful, why do we look for new physics?

WHY NEW PHYSICS?

experimental evidences:

- Baryogenesis
- v oscillations
- dark matter
theory issues:
- tuning of the Higgs mass
- the strong CP problem
- the flavor puzzle
the quest for new physics

THE QUEST FOR NEW PHYSICS

THE QUEST FOR NEW PHYSICS

Z00m

energy
frontier

THE QUEST FOR NEW PHYSICS

zoom
brightness

energy
frontier

THE QUEST FOR NEW PHYSICS

zoom

energy
frontier

brightness

intensity frontier

THE QUEST FOR NEW PHYSICS

zoom
brightness
focus

energy
frontier
intensity frontier

THE QUEST FOR NEW PHYSICS

zoom

brightness
focus

energy
frontier
intensity frontier
precision frontier

THE QUEST FOR NEW PHYSICS

coupling

energy
 frontier

MeV
GeV weak scale TeV new force mass
$2 \times 10^{-13} \mathrm{~m}$
2×10^{-16}
7
$2 \times 10^{-18} \mathrm{~m} \quad 2 \times 10^{-19} \mathrm{~m}$ interaction length

THE QUEST FOR NEW PHYSICS

coupling

energy
 frontier

intensity frontier
weak scale TeV new force mass
$2 \times 10^{-18} \mathrm{~m} \quad 2 \times 10^{-19} \mathrm{~m}$ interaction length

THE QUEST FOR NEW PHYSICS

coupling

energy frontier

intensity frontier
indirect
indirect

frontier

THE QUEST FOR NEW PHYSICS

coupling

10^{-7}
precision frontier

MeV
$2 \times 10^{-13} \mathrm{~m}$
2. dark photons at LHCb 3. ALP at the GeV Scale

THE QUEST FOR NEW PHYSICS

coupling

10^{-4}
10^{-7} precision

1. probing long range
force carriers
$\mathrm{MeV} \quad \mathrm{GeV}$ weak scale TeV new force mass
$2 \times 10^{-13} \mathrm{~m}$
$2 \times 10^{-16} \mathrm{~m}$
$2 \times 10^{-18} \mathrm{~m} \quad 2 \times 10^{-19} \mathrm{~m}$ interaction length

Higgs

Higgs
mixing
θ
light new particles

new force couples to matter

$$
\frac{y_{e} y_{A}}{4 \pi} \sin \theta \frac{e^{-m_{\phi} r}}{r}
$$

PROBING NEW SPIN INDEPENDENT INTERACTIONS

ϕ - a new force carrier (spin 0,1 or 2), mass m_{ϕ}
at atomic systems

PROBING NEW SPIN INDEPENDENT INTERACTIONS

ϕ - a new force carrier (spin 0,1 or 2), mass m_{ϕ}

at atomic systems

$$
\frac{y_{e}\left(y_{p} Z+(A-Z) y_{n}\right)}{4 \pi} \frac{e^{-m_{\phi} r}}{r}
$$

electron-nucleus interaction
effective Yukawa like potential

$$
\frac{y_{e}^{2}}{4 \pi} \frac{e^{-m_{\phi} r_{12}}}{r_{12}}
$$

electron-electron interaction

modify the electronic transition frequencies

ISOTOPE SHIFT

basic idea

measure the same electronic transition in different isotopes

ISOTOPE SHIFT

basic idea
measure the same electronic transition in different isotopes

probe the electron-neutron interaction $\left(y_{e} y_{n}\right)$

CURRENT BOUNDS: E-N INTERACTION

to maximize the sensitivity for new physics

to maximize the sensitivity for new physics

theory uncertainty smaller than
experimental one
few electrons systems
(hydrogen, helium)

to maximize the sensitivity for new physics

theory uncertainty smaller than
experimental one
few electrons systems
(hydrogen, helium)
unique observable which are insensitive to theory error
heavy elements
(calcium, strontium, ytterbium)
few electrons systems

FEW ELECTRONS SYSTEMS -ISOTOPE SHIFT

$$
\nu_{i}^{A, A^{\prime}}=\nu_{i}^{A}-\nu_{i}^{A^{\prime}}=\nu_{i, 0}^{A, A^{\prime}}+F_{i}\left\langle r^{2}\right\rangle_{A, A^{\prime}}
$$

point like

FEW ELECTRONS SYSTEMS -ISOTOPE SHIFT

FEW ELECTRONS SYSTEMS -ISOTOPE SHIFT

the charged radius is the dominant error (from e-scattering)

combing two transitions

no need for charge
radius from scattering

Delaunay, Frugiuele, Fuchs, YS, PRD 1709.02817

FEW ELECTRONS SYSTEMS -ISOTOPE SHIFT

heavy elements

HEAVY ELEMENTS - ISOTOPE SHIFT

theory error \gg experimental error

$$
\nu_{i}^{A A^{\prime}} \equiv \nu_{i}^{A}-\nu_{i}^{A^{\prime}}
$$

HEAVY ELEMENTS - ISOTOPE SHIFT

theory error \gg experimental error

factorization of electronic \(\begin{gathered}nucleus
effects
effects\end{gathered}\)

$$
\nu_{i}^{A A^{\prime}} \equiv \nu_{i}^{A}-\nu_{i}^{A^{\prime}}=K_{i} \mu_{A A^{\prime}}+F_{i} \delta\left\langle r^{2}\right\rangle_{A A^{\prime}}+\ldots
$$

Mass Shift
Field Shift $\mu_{A A^{\prime}} \equiv \frac{1}{m_{A}}-\frac{1}{m_{A^{\prime}}}$ (short distance)

HEAVY ELEMENTS - ISOTOPE SHIFT

theory error \gg experimental error

$$
\begin{aligned}
& \text { factorization of } \begin{array}{c}
\text { electronic } \\
\text { effects }
\end{array} \\
& \nu_{i}^{A A^{\prime}} \equiv \nu_{i}^{A}-\nu_{i}^{A^{\prime}}=K_{i} \mu_{A A^{\prime}}+F_{i} \delta\left\langle r^{2}\right\rangle_{A A^{\prime}}+\ldots
\end{aligned}
$$

Mass Shift
Field Shift
$\mu_{A A^{\prime}} \equiv \frac{1}{m_{A}}-\frac{1}{m_{A^{\prime}}}$ (short distance)

$$
i=1,2>\left(\frac{\nu_{2}^{A A^{\prime}}}{\mu_{A A^{\prime}}}\right)=K_{21}+F_{21}\left(\frac{\nu_{1}^{A A^{\prime}}}{\mu_{A A^{\prime}}}\right)
$$

linear relation in the SM

$$
K_{21} \equiv K_{2}-F_{21} K_{1} \quad F_{21} \equiv F_{2} / F_{1}
$$

HEAVY ELEMENTS - ISOTOPE SHIFT

isotope shift of Ca^{+}

Gebert et al. 2015

$$
4 \mathrm{~S} \rightarrow 4 \mathrm{P}_{1} / 2
$$

HEAVY ELEMENTS - ISOTOPE SHIFT

isotope shift of Ca^{+}

Gebert et al. 2015

$$
4 \mathrm{~S} \rightarrow 4 \mathrm{P}_{1} / 2
$$

HEAVY ELEMENTS - ISOTOPE SHIFT

$$
\nu_{i}^{A A^{\prime}}=K_{i} \mu_{A, A^{\prime}}+F_{i}\left\langle r^{2}\right\rangle_{A, A^{\prime}}+y_{e} y_{n} X_{i}\left(A-A^{\prime}\right)
$$

Delaunay, Ozeri, Perez, YS, PRD 1601.05087
Berengut, Budker, Delaunay, Flambaum, Frugiuele,

HEAVY ELEMENTS - ISOTOPE SHIFT

$$
\nu_{i}^{A A^{\prime}}=K_{i} \mu_{A, A^{\prime}}+F_{i}\left\langle r^{2}\right\rangle_{A, A^{\prime}}+y_{e} y_{n} X_{i}\left(A-A^{\prime}\right)
$$

- long range new physics
(the only theory inputs)
- misalignment between the new physics and the isotope shift
nonlinear King plot from new physics

similar to data driven background estimation at the LHC

Delaunay, Ozeri, Perez, YS, PRD 1601.05087
Berengut, Budker, Delaunay, Flambaum, Frugiuele,

HEAVY ELEMENTS - ISOTOPE SHIFT

$$
\nu_{i}^{A A^{\prime}}=K_{i} \mu_{A, A^{\prime}}+F_{i}\left\langle r^{2}\right\rangle_{A, A^{\prime}}+y_{e} y_{n} X_{i}\left(A-A^{\prime}\right)
$$

- long range new physics
- misalignment between the new physics and the isotope shift
nonlinear King plot from new physics

similar to data driven background estimation at the LHC
data consistent with linearity

constrain NP

Delaunay, Ozeri, Perez, YS, PRD 1601.05087
Berengut, Budker, Delaunay, Flambaum, Frugiuele,

HEAVY ELEMENTS - ISOTOPE SHIFT

ISOTOPE SHIFTS: SUMMARY

Higgs

light new particles

new force couples
 to matter

THE QUEST FOR NEW PHYSICS

coupling

10^{-7}

intensity

 frontier

THE QUEST FOR NEW PHYSICS

coupling

10^{-7}
2. dark photons at LHCb 3. ALP at the GeV Scale

dark matter

dark photon - $A^{\prime} /$ Axion like particles - a (ALPs)

DARK PHOTON

portal between the standard model and dark matter

$$
m_{A^{\prime} \ll} m_{Z}, \varepsilon \ll 1
$$

DARK PHOTON

portal between the standard model and dark matter

$$
\mathrm{SM} \sim_{\text {(kinetic mixing) }}^{A} \overbrace{\text { matter }}^{A^{\prime}}
$$

$$
m_{A^{\prime} \ll m_{Z}, \varepsilon \ll 1}
$$

electromagnetic process

$m_{A}=0$
dark photon process

($m_{A^{\prime}}>0$)

DARK PHOTON SIGNAL

differential relation:

$$
\frac{\mathrm{d} \sigma_{p p \rightarrow X A^{\prime} \rightarrow X \mu^{+} \mu^{-}}}{\mathrm{d} \sigma_{p p \rightarrow X \gamma^{*} \rightarrow X \mu^{+} \mu^{-}}}=\epsilon^{4} \frac{m_{\mu \mu}^{4}}{\left(m_{\mu \mu}^{2}-m_{A^{\prime}}^{2}\right)^{2}+\Gamma_{A^{\prime}}^{2} m_{A^{\prime}}^{2}}
$$

DARK PHOTON SIGNAL

differential relation:

$$
\frac{\mathrm{d} \sigma_{p p \rightarrow X A^{\prime} \rightarrow X \mu^{+} \mu^{-}}}{\mathrm{d} \sigma_{p p \rightarrow X \gamma^{*} \rightarrow X \mu^{+} \mu^{-}}}=\epsilon^{4} \frac{m_{\mu \mu}^{4}}{\left(m_{\mu \mu}^{2}-m_{A^{\prime}}^{2}\right)^{2}+\Gamma_{A^{\prime}}^{2} m_{A^{\prime}}^{2}}
$$

per mass bin:

DARK PHOTON AT LHCB

SIGNAL AND BACKGROUNDS

prompt short lifetime larger ε

dimuon

Ilten, YS, Thaler, Williams, Xue, PRL 1603.08926

SIGNAL AND BACKGROUNDS

prompt

short lifetime
larger ε

$S_{A^{\prime}} \propto B_{\mathrm{EM}}$
$\boldsymbol{\gamma}^{*} \sim \mu^{-}$Drell-Yan

Ilten, YS, Thaler, Williams, Xue,

SIGNAL AND BACKGROUNDS

prompt

short lifetime
larger ε

"good" ${ }^{\mu-}$ backgrounds "bad"

$$
S_{A^{\prime}} \propto B_{\mathrm{EM}} \quad S_{A^{\prime}} \not \propto B_{\mathrm{EM}}
$$

$\boldsymbol{\gamma}^{*} \sim \mu^{-}$Drell-Yan
misidentified hadrons (pions, kaons)

SIGNAL AND BACKGROUNDS

prompt
short lifetime
larger ε

"good" $\mu^{\mu^{-}}$backgrounds "bad"
$S_{A^{\prime}} \propto B_{\mathrm{EM}}$
$S_{A^{\prime}} \not \nless B_{\mathrm{EM}}$
$\boldsymbol{\gamma}^{*} \sim \mu^{-}$Drell-Yan
misidentified hadrons (pions, kaons)
displaced long lifetime smaller ε

Ilten, YS, Thaler, Williams, Xue,

BOUNDS ON A'

LHCB DARK PHOTON REACH

Ilten, YS, Thaler, Williams, Xue, PRL 1603.08926

LHCB DARK PHOTON REACH

Ilten, YS, Thaler, Williams, Xue,

LHCB RESULT WITH 2016 DATA

LHCB RESULT WITH 2016 DATA

LHCB RESULT WITH 2016 DATA

$D^{*} \rightarrow D A^{\prime}, A^{\prime} \rightarrow e^{+} e^{-}$
Ilten, Thaler, Williams, Xue,

BEYOND THE DARK PHOTON MODEL

LHCb, 1710.02867

BEYOND THE DARK PHOTON MODEL

LHCb, 1710.02867
generic vector resonances

$$
\mathcal{L} \subset g_{X} \sum_{f} x_{f} \bar{f} \gamma^{\mu} f X_{\mu}+\sum_{\chi} \mathcal{L}_{X \chi \bar{\chi}}
$$

rescaling of the production and branching ratio

$$
\sigma_{X} \mathcal{B}_{X \rightarrow \mathcal{F}} \epsilon\left(\tau_{X}\right)=\sigma_{A^{\prime}} \mathcal{B}_{A^{\prime} \rightarrow \mathcal{F}} \epsilon\left(\tau_{A^{\prime}}\right)
$$

constrain generic vector resonances - X

$$
g_{X}=\epsilon^{2} \frac{\bar{\sigma}_{A^{\prime}} \mathcal{B}_{A^{\prime} \rightarrow \mathcal{F}} \epsilon\left(\tau_{A^{\prime}}\right)}{\bar{\sigma}_{X} \mathcal{B}_{X \rightarrow \mathcal{F}} \epsilon\left(\tau_{X}\right)}
$$

BEYOND THE DARK PHOTON MODEL

electron beam dump $p p$ collider proton beam dump meson decays $e^{+} e^{-}$collider

BEYOND THE DARK PHOTON MODEL

electron beam dump proton beam dump $e^{+} e^{-}$collider
$p p$ collider
meson decays

BEYOND THE DARK PHOTON MODEL

electron beam dump $p p$ collider proton beam dump meson decays $e^{+} e^{-}$collider

BEYOND THE DARK PHOTON MODEL

electron beam dump $p p$ collider proton beam dump meson decays $e^{+} e^{-}$collider

BEYOND THE DARK PHOTON MODEL

electron beam dump $p p$ collider proton beam dump meson decays $e^{+} e^{-}$collider

BEYOND THE DARK PHOTON MODEL

assuming dominant invisible decay

BEYOND THE DARK PHOTON MODEL

assuming dominant invisible decay

DARK PHOTON AT LHCB

a portal, dark photon

standard model dark matter

Ilten, YS, Thaler, Williams, Xue, PRL 1603.08926

LHCb, 1710.02867
dark photon

Ilten, YS, Williams, Xue, 1801.04847

axion like particles

pseudo scalars
 (appears in different BSM models)

$$
\mathscr{L}_{\mathrm{eff}}=-\frac{4 \pi \alpha_{s} c_{g}}{\Lambda} a G^{\mu \nu} \tilde{G}_{\mu \nu}+\frac{c_{\gamma}}{4 \Lambda} a F^{\mu \nu} \tilde{F}_{\mu \nu}
$$

$$
c_{g} \neq 0 \text { or } c_{\gamma} \neq 0
$$

Aloni, YS, Williams, 1811.03474
Aloni, Fanelli, YS, Williams, work in progress

PRIMAKOFF ALP PRODUCTION

$$
\mathscr{L}_{\mathrm{eff}}=\frac{c_{\gamma}}{4 \Lambda} a F^{\mu \nu} \tilde{F}_{\mu \nu}
$$

PRIMAKOFF ALP PRODUCTION

$$
\mathscr{L}_{\mathrm{eff}}=\frac{c_{\gamma}}{4 \Lambda} a F^{\mu \nu} \tilde{F}_{\mu \nu}
$$

photon on fixed target

data driven signal estimation

PRIMAKOFF ALP PRODUCTION

$$
\mathscr{L}_{\text {eff }}=\frac{c_{\gamma}}{4 \Lambda} a F^{\mu \nu} \tilde{F}_{\mu \nu}
$$

photon on fixed target

data driven signal estimation

Aloni, Fanelli, YS, Williams, work in progress

PRIMAKOFF ALP PRODUCTION

$$
\begin{aligned}
& \qquad \mathscr{L}_{\text {eff }}=\frac{c_{\gamma}}{4 \Lambda} a F^{\mu \nu} \tilde{F}_{\mu \nu} \\
& \text { photon on fixed target }
\end{aligned}
$$

PRIMAKOFF ALP PRODUCTION

$\mathscr{L}_{\text {eff }}=\frac{c_{\gamma}}{4 \Lambda} a F^{\mu \nu} \tilde{F}_{\mu \nu}$ photon on fixed target

Aloni, Fanelli, YS, Williams, work in progress

PRIMAKOFF ALP PRODUCTION

PRIMAKOFF ALP PRODUCTION

ALPS AT THE GEV SCALE

$\mathscr{L}_{\text {eff }}=-\frac{4 \pi \alpha_{s} c_{g}}{\Lambda} a G^{\mu \nu} \tilde{G}_{\mu \nu}$ how to estimate hadronic rates for ALPs with GeV scale mass?

ALPS AT THE GEVSCALE

$\mathscr{L}_{\text {eff }}=-\frac{4 \pi \alpha_{s} c_{g}}{\Lambda} a G^{\mu \nu} \tilde{G}_{\mu \nu} \quad$ how to estimate hadronic rates for ALPs with GeV scale mass?

$$
\begin{array}{ccc}
m_{a} \lesssim \mathrm{GeV} \\
\text { chiral PT } & & m_{a} \gtrsim 2 \mathrm{GeV} \\
\text { pQCD }
\end{array}
$$

ALPS AT THE GEV SCALE

$\mathscr{L}_{\text {eff }}=-\frac{4 \pi \alpha_{s} c_{g}}{\Lambda} a G^{\mu \nu} \tilde{G}_{\mu \nu}$ how to estimate hadronic rates for ALPs with GeV scale mass?

$m_{a} \lesssim G e V$		
chiral PT	use data!	$m_{a} \gtrsim 2 G e V$
pQCD		

Aloni, YS, Williams, 1811.03474

ALPS AT THE GEV SCALE

$\mathscr{L}_{\text {eff }}=-\frac{4 \pi \alpha_{s} c_{g}}{\Lambda} a G^{\mu \nu} \tilde{G}_{\mu u}$ how to estimate hadronic rates for

ALPs with GeV scale mass?

$m_{a} \lesssim \mathrm{GeV} \quad$??? $\quad m_{a} \gtrsim 2 \mathrm{GeV}$
 chiral PT
 use data! pQCD

Aloni, YS, Williams, 1811.03474

ALPS AT THE GEV SCALE

$\mathscr{L}_{\text {eff }}=-\frac{4 \pi \alpha_{s} c_{g}}{\Lambda} a G^{\mu \nu} \tilde{G}_{\mu \nu}$ how to estimate hadronic rates for

ALPs with GeV scale mass?

$m_{a} \lesssim G e V$
 chiral PT

ηc cross check

	This Work	Experiment	
	VMD $\times\|\mathcal{F}(m)\|^{2}$	Average	$S U(3)$
$\mathcal{B}\left(\eta_{c} \rightarrow \rho \rho\right)$	1.0%	$1.8 \pm 0.5 \%$	$1.10 \pm 0.14 \%$
$\mathcal{B}\left(\eta_{c} \rightarrow \omega \omega\right)$	0.40%	$0.20 \pm 0.10 \%$	$0.44 \pm 0.06 \%$
$\mathcal{B}\left(\eta_{c} \rightarrow \phi \phi\right)$	0.25%	$0.28 \pm 0.04 \%$	$0.28 \pm 0.04 \%$
$\mathcal{B}\left(\eta_{c} \rightarrow K^{*} \bar{K}^{*}\right)$	0.91%	$0.91 \pm 0.26 \%$	$1.00 \pm 0.13 \%$

Aloni, YS, Williams, 1811.03474

ALPS AT THE GEV SCALE

$$
\mathscr{L}_{\mathrm{eff}}=-\frac{4 \pi \alpha_{s} c_{g}}{\Lambda} a G^{\mu \nu} \tilde{G}_{\mu \nu}
$$

how to estimate hadronic rates for

ALPs with GeV scale mass?

Aloni, YS, Williams, 1811.03474

OUTLOOK

- new physics beyond the standard model is well motivated, but with unknown scale
- we saw examples how to probe new forces in intensity and precision frontiers
- each of these examples probes unexplored territories and improve our understanding of Nature

