

PROBING NEW PHYSICS ACROSS SCALES

Yotam Soreq

Theoretical Particle Physics Seminar, University of Zurich, Nov. 27, 2018

1

if the Standard Model is so successful, why do we look for new physics?

WHY NEW PHYSICS?

experimental evidences:
Baryogenesis
v oscillations
dark matter

theory issues:
tuning of the Higgs mass
the strong CP problem
the flavor puzzle

the quest for new physics

zoom

energy frontier

energy frontier

zoom

energy frontier intensity frontier

zoom

brightness

focus

energy frontier intensity frontier

zoom

brightness

focus

energy frontier intensity frontier precision frontier

Higgs

new force couples to matter

$$\frac{y_e y_A}{4\pi} \sin \theta \frac{e^{-m_\phi r}}{r}$$

PROBING NEW SPIN INDEPENDENT INTERACTIONS

 ϕ - a new force carrier (spin 0, 1 or 2), mass m_{ϕ}

at atomic systems

effective Yukawa like potential

interaction length~ $1/m_{\phi}$

PROBING NEW SPIN INDEPENDENT INTERACTIONS

 ϕ - a new force carrier (spin 0, 1 or 2), mass m_{ϕ}

at atomic systems

effective Yukawa like potential

 $\frac{y_e(y_p Z + (A - Z)y_n)}{4\pi} \frac{e^{-m_{\phi}r}}{r}$ electron-nucleus
interaction

 $\frac{y_e^2}{4\pi} \frac{e^{-m_{\phi}r_{12}}}{r_{12}}$ electron-electron
interaction

modify the electronic transition frequencies

interaction length~ $1/m_{\phi}$

ISOTOPE SHIFT

basic idea measure the same electronic transition in different isotopes

ISOTOPE SHIFT

basic idea measure the same electronic transition in different isotopes

probe the electron-neutron interaction $(y_e y_n)$

CURRENT BOUNDS: E-N INTERACTION

to maximize the sensitivity for new physics

to maximize the sensitivity for new physics

theory uncertainty smaller than experimental one

few electrons systems (hydrogen, helium)

to maximize the sensitivity for new physics

theory uncertainty smaller than experimental one

few electrons systems (hydrogen, helium) unique observable which are insensitive to theory error

heavy elements (calcium, strontium, ytterbium)

few electrons systems

for theory calculations: *e.g.* Pachucki, Patkos, Yerokhin, 1704.06902 Delaunay, Frugiuele, Fuchs, YS, PRD 1709.02817

Delaunay, Frugiuele, Fuchs, YS, PRD 1709.02817

for theory calculations: *e.g.* Pachucki, Patkos, Yerokhin, 1704.06902

15

Delaunay, Frugiuele, Fuchs, YS, PRD 1709.02817

heavy elements

HEAVY ELEMENTS - ISOTOPE SHIFT

theory error >> experimental error

$$\nu_i^{AA'} \equiv \nu_i^A - \nu_i^{A'}$$
theory error » experimental error

electronic nucleus factorization of effects effects $\nu_i^{AA'} \equiv \nu_i^A - \nu_i^{A'} = \frac{K_i \mu_{AA'}}{F_i \delta \langle r^2 \rangle_{AA'}} + \dots$

Mass Shift

Field Shift $\mu_{AA'} \equiv \frac{1}{m_A} - \frac{1}{m_{A'}}$ (short distance)

theory error » experimental error

electronic nucleus factorization of effects effects $\nu_i^{AA'} \equiv \nu_i^A - \nu_i^{A'} = \frac{K_i \mu_{AA'}}{F_i \delta \langle r^2 \rangle_{AA'}} + \dots$ Mass Shift Field Shift $\mu_{AA'} \equiv \frac{1}{m_A} - \frac{1}{m_{A'}}$ (short distance) *i*=1,2 $\left(\frac{\nu_2^{AA'}}{\mu_{AA'}}\right) = K_{21} + F_{21} \left(\frac{\nu_1^{AA'}}{\mu_{AA'}}\right)$ linear relation in the SM

 $\nu_i^{AA'} = K_i \mu_{A,A'} + F_i \left\langle r^2 \right\rangle_{A,A'} + y_e y_n X_i (A - A')$

(the *only* theory inputs)

Delaunay, Ozeri, Perez, **YS**, PRD 1601.05087 Berengut, Budker, Delaunay, Flambaum, Frugiuele, Fuchs, Grojean, Harnik, Ozeri, Perez, **YS**, 1704.05068

$$\nu_i^{AA'} = K_i \mu_{A,A'} + F_i \left\langle r^2 \right\rangle_{A,A'} + y_e y_n X_i (A - A')$$

(the *only* theory inputs)

long range new physics
misalignment between the new physics and the isotope shift

nonlinear King plot from new physics

similar to data driven background estimation at the LHC

Delaunay, Ozeri, Perez, **YS**, PRD 1601.05087 Berengut, Budker, Delaunay, Flambaum, Frugiuele, Fuchs, Grojean, Harnik, Ozeri, Perez, **YS**, 1704.05068

$$\nu_i^{AA'} = K_i \mu_{A,A'} + F_i \left\langle r^2 \right\rangle_{A,A'} + y_e y_n X_i (A - A')$$

(the *only* theory inputs)

long range new physics
misalignment between the new physics and the isotope shift

nonlinear King plot from new physics

data consistent with linearity

estimation of SM nonlinearity: Flambaum, Geddes, Viatkina 1709.00600 similar to data driven background estimation at the LHC

constrain NP

20

Delaunay, Ozeri, Perez, **YS**, PRD 1601.05087 Berengut, Budker, Delaunay, Flambaum, Frugiuele, Fuchs, Grojean, Harnik, Ozeri, Perez, **YS**, 1704.05068

ISOTOPE SHIFTS: SUMMARY

THE QUEST FOR NEW PHYSICS

THE QUEST FOR NEW PHYSICS

dark matter

standard model

dark matter

24

standard model

dark matter

a portal

dark photon - A' / Axion like particles - a (ALPs)

DARK PHOTON

portal between the standard model and dark matter

SM $\xrightarrow{A} \xrightarrow{c} A'$ dark matter (kinetic mixing)

 $m_{A'} \ll m_Z, \varepsilon \ll 1$

Holdom, 86'

DARK PHOTON

portal between the standard model and dark matter

SM $\sim A \sim A' dark matter$ (kinetic mixing)

 $m_{A'} \ll m_Z, \varepsilon \ll 1$

Holdom, 86'

electromagnetic process

dark photon process

+ mass effect

 $(m_{A'}>0)$

88

 $m_A=0$

DARK PHOTON SIGNAL

differential relation:

$$\frac{\mathrm{d}\sigma_{pp\to XA'\to X\mu^+\mu^-}}{\mathrm{d}\sigma_{pp\to X\gamma^*\to X\mu^+\mu^-}} = \epsilon^4 \frac{m_{\mu\mu}^4}{(m_{\mu\mu}^2 - m_{A'}^2)^2 + \Gamma_{A'}^2 m_{A'}^2}$$

Bjorken, Essig, Schuster, Toro, 0906.0580

DARK PHOTON SIGNAL

differential relation:

$$\frac{\mathrm{d}\sigma_{pp\to XA'\to X\mu^+\mu^-}}{\mathrm{d}\sigma_{pp\to X\gamma^*\to X\mu^+\mu^-}} = \epsilon^4 \frac{m_{\mu\mu}^4}{(m_{\mu\mu}^2 - m_{A'}^2)^2 + \Gamma_{A'}^2 m_{A'}^2}$$

per mass bin:

$$\frac{S}{B_{\rm EM}} \approx \epsilon^4 \frac{\pi}{8} \frac{m_{A'}^2}{\Gamma_{A'} \sigma_{m_{\mu\mu}}} \approx \frac{3\pi}{8} \frac{m_{A'}}{\sigma_{m_{\mu\mu}}} \frac{\epsilon^2}{\alpha_{\rm EM} (N_\ell + \mathcal{R}_\mu)}$$

 $\frac{\Gamma_{A'}}{m_{A'}} \approx \frac{\epsilon^2 \alpha_{\rm EM}}{3} \left(N_\ell + \mathcal{R}_\mu \right)$

number of leptons with mass below $m_{A'}/2$

 $\frac{\sigma_{e^+e^-\to \rm hadrons}}{\sigma_{e^+e^-\to\mu^+\mu^-}}$

Bjorken, Essig, Schuster, Toro, 0906.0580

DARK PHOTON AT LHCB

displaced

long lifetime smaller ε

Ilten, **YS**, Thaler, Williams, Xue, PRL 1603.08926

LHCB DARK PHOTON REACH

Ilten, **YS**, Thaler, Williams, Xue, PRL 1603.08926

LHCB DARK PHOTON REACH

Ilten, **YS**, Thaler, Williams, Xue, PRL 1603.08926

LHCB RESULT WITH 2016 DATA

LHCb, 1710.02867

LHCB RESULT WITH 2016 DATA

LHCb, 1710.02867

LHCB RESULT WITH 2016 DATA

BEYOND THE DARK PHOTON MODEL

BEYOND THE DARK PHOTON MODEL

generic vector resonances

$$\mathcal{L} \subset g_X \sum_f x_f \bar{f} \gamma^\mu f X_\mu + \sum_{\chi} \mathcal{L}_{X\chi\bar{\chi}}$$

33

rescaling of the production and branching ratio

$$\sigma_X \mathcal{B}_{X \to \mathcal{F}} \epsilon(\tau_X) = \sigma_{A'} \mathcal{B}_{A' \to \mathcal{F}} \epsilon(\tau_{A'})$$

see also <u>https://gitlab.com/philten/darkcast</u>

constrain generic vector resonances - X

$$g_X = \epsilon^2 \frac{\bar{\sigma}_{A'} \mathcal{B}_{A' \to \mathcal{F}} \epsilon(\tau_{A'})}{\bar{\sigma}_X \mathcal{B}_{X \to \mathcal{F}} \epsilon(\tau_X)}$$

Ilten, **YS**, Williams, Xue, 1801.04847

electron beam dump proton beam dump e+e- collider

pp collider meson decays *e* on fixed target 34

electron beam dump proton beam dump e⁺e⁻ collider

pp collider meson decays *e* on fixed target

invisible decays

electron beam dump proton beam dump e+e- collider pp collider
meson decays
e on fixed targe

35

invisible decays

electron beam dump proton beam dump e+e- collider pp collider
meson decays
e on fixed targe

35

invisible decays

electron beam dump proton beam dump e+e- collider *pp* collider meson decays *e* on fixed target

invisible decays

assuming dominant invisible decay

assuming dominant invisible decay

DARK PHOTON AT LHCB

AXION LIKE PARTICLES

pseudo scalars (appears in different BSM models)

$$\mathscr{L}_{\text{eff}} = -\frac{4\pi\alpha_s c_g}{\Lambda} a G^{\mu\nu} \tilde{G}_{\mu\nu} + \frac{c_{\gamma}}{4\Lambda} a F^{\mu\nu} \tilde{F}_{\mu\nu}$$

 $c_g \neq 0 \text{ or } c_\gamma \neq 0$

38

Aloni, YS, Williams, 1811.03474 Aloni, Fanelli, YS, Williams, work in progress

 $\mathscr{L}_{\rm eff} = \frac{c_{\gamma}}{4\Lambda} a F^{\mu\nu} \tilde{F}_{\mu\nu}$

Aloni, Fanelli, YS, Williams, work in progress

$$\mathscr{L}_{\rm eff} = \frac{c_{\gamma}}{4\Lambda} a F^{\mu\nu} \tilde{F}_{\mu\nu}$$

photon on fixed target

data driven signal estimation

Aloni, Fanelli, YS, Williams, work in progress

41

41

 $\mathscr{L}_{\rm eff} = -\frac{4\pi\alpha_s c_g}{\Lambda} a G^{\mu\nu} \tilde{G}_{\mu\nu}$

how to estimate hadronic rates for ALPs with GeV scale mass?

 $m_a \gtrsim 2GeV$ pQCD

ηc cross check

	This Work	Experiment	
	$\mathrm{VMD} \times \mathcal{F}(m) ^2$	Average	SU(3)
$\mathcal{B}(\eta_c \to \rho \rho)$	1.0%	$1.8\pm0.5\%$	$1.10\pm0.14\%$
$\mathcal{B}(\eta_c o \omega \omega)$	0.40%	$0.20\pm0.10\%$	$0.44\pm0.06\%$
$\mathcal{B}(\eta_c o \phi \phi)$	0.25%	$0.28\pm0.04\%$	$0.28\pm0.04\%$
$\mathcal{B}(\eta_c \to K^* \overline{K}^*)$	0.91%	$0.91\pm0.26\%$	$1.00\pm0.13\%$

OUTLOOK

- new physics beyond the standard model is well motivated, but with unknown scale
- we saw examples how to probe new forces in intensity and precision frontiers
- each of these examples probes unexplored territories and improve our understanding of Nature

