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Comparison	to	LHC	data	requires	precise	theore4cal	
calcula4ons

• To match the precision of experimental uncertainties 
NLOQCD calculations are required for most observables, 

and NNLO calculations are becoming more and more 
important 

• In some cases even N3LO calculations are available 
• While EW corrections are typically much smaller, NLOEW 

are of same order as NNLOQCD effects 
• EW corrections become more and more important as 

energy of collision increases.



For every power of !EW there are two powers of  

log(s / mW2) 

This means that the EW expansion is not in !EW but in  

!EW log(s / mW2)

Size	of	EW	correc4ons	grow	due	to	EW	Sudakov	logarithms	
and	can	become	dominant	effect

This means that for s ≫ mW EW corrections can become 
more important than QCD corrections



• Quick overview of EW Sudakov logarithms 

• Large logs in virtual and real contributions 

• DGLAP evolution in the full SM 

• Combining NLO and LL electroweak calculations



Higher	order	QCD	calcula4ons	involve	IR	divergent	
contribu4ons	that	cancel	when	calcula4ng	observables

Selection of diagrams contributing to jet production

Any observable gets contributions from virtual and real 
corrections

Both virtual and real are separately IR divergent
All divergences cancel when virtual and real 

are properly combined (KLN theorem)



Electroweak	Sudakov	logarithms	arise	from	exchanges	of	
electroweak	gauge	bosons

Similar set of diagrams for EW corrections, but with W/Z 
instead of gluons

For massive W,  IR divergences turn into log(mW2/s), and 
generally have two powers per power of alpha
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Both virtual and real sensitive to log(mW2/s)



The	numerical	effect	of	EW	Sudakov	logarithms	becomes	
large	at	high	energies
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Fixed	order	results	at	a	future	100	TeV	machine	show	that	EW	
correc:ons	are	much	larger	than	QcD	correc:ons
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QCD corrections

‣  mostly moderate and stable QCD corrections

EW corrections

‣  Sudakov behaviour in both tails: -20–100% EW corrections at 1-20 TeV  

‣  EW corrections everywhere larger than QCD uncertainties! 

‣  Still large difference between QCD+EW and QCDxEW!  
      
 

      ⟹ inclusive W+1jet requires W+2 jets at NLO QCD+EW! 
    ⟹ NLO QCD+EW multi-jet merging necessary!

Δ!j1j2 < 3π/4
(veto on dijet configurations)
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QCD corrections

‣  mostly moderate and stable QCD corrections

EW corrections

‣  Sudakov behaviour in both tails: -20–100% EW corrections at 1-20 TeV  

‣  EW corrections everywhere larger than QCD uncertainties! 
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Fixed	order	results	at	a	future	100	TeV	machine	show	that	EW	
correc:ons	are	much	larger	than	QcD	correc:ons
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Since	no	exis@ng	experiment	collides	SU(2)	singlets,	
cancella@on	between	virtual	and	real	logs	incomplete

7

For proton colliders, SU(2) breaking since fu/p(x,q) ≠ fd/p(x,q)
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Incomplete cancellation since the collider only collides 
electrons, not neutrinos. 



Lesson 1

Electroweak correction give rise to logarithmic 
terms in any observable
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Logarithmic	effects	in	virtual	correc@ons	have	been	
resummed	in	SCET	quite	a	while	ago

9

! = Q

! = mV

Full theory
SCETW,Z,! (M=0)

SCETW,Z,! (M≠0)

SCET!

!SCET

C(Q,!)

D(mV,!)

Problem is completely solved at NLL’ 
for any process

Chiu, Golf, Kelley, Manohar,  (’08)



Resumma'on	of	LL	logarithms	in	real	radia'on	can	be	
obtained	using	analogy	with	parton	shower

• Parton shower properly resums LL 
• Analytically compute first emission of parton shower 
• From virtual results know Sudakov factors 
• Combining  with splitting function get resummed 

emission probability 
• Integrating that result gives the 1-emission cross section 

integrated over phase space

CWB, Ferland (’16) 



This	gives	appreciable	effects	at	13	TeV	LHC	and	future	100	
TeV	collider
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This	gives	appreciable	effects	at	13	TeV	LHC	and	future	100	
TeV	collider
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Lesson 2

Resummation of electroweak corrections can 
lead to large effects, especially at 100 TeV
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(a) 13 TeV LHC (b) 100 TeV collider

Figure 3: The cross-section for e+e� for the 13 TeV LHC on the left, and 100 TeV pp

collider on the right. All colors are the same as in Fig. ??. Note that the scaling of the y

axis is di↵erent for the LHC and the 100 TeV collider.

at
p
s ⇠ 3 TeV, while the real corrections for a given gauge boson are about a factor of 3

smaller individually. However, as can be seen from the ratio plot in the middle, the relative

e↵ect of the resummation is more than twice bigger for the real correction compared to

the virtual correction. This clearly shows that the size of the resummation e↵ect cannot

be inferred from the size of the fixed order correction alone. The relative e↵ect of the

resummation for the virtual reaches from O(10%) at
p
s ⇠ 1 TeV to O(20%) at

p
s ⇠ 3

TeV while the relative e↵ect of the resummation for the real reaches from O(20%) at
p
s ⇠ 1 TeV to O(50%) at

p
s ⇠ 3 TeV.

In the lower part of the plot for the fixed order, one can see that after summing the

virtual and real, the perturbative corrections largely cancel, but a small e↵ect at the O(1%)

level persists. For a fully inclusive cross section the logarithmically enhanced virtual and

real corrections cancel against each other, up to the fact that the pp initial state is not

an iso-singlet. The large cancellation can be understood from Eq. (??), which shows that

switching the flavor of initial state anti-quark changes the sign of the partonic cross-section.

Since pdf’s for sea quarks are similar in magnitude, one expects fū/p ⇠ f
d̄/p

, explaining the

cancellation. For the resummed result on the other hand, there is no cancellation. That is

because even if the initial state is an SU(2) singlet, the cancellation would occur only for

an inclusive result, that is summing the virtual to the real for any number of gauge boson.

The remaining correction for the resummed result is thus mostly due to the production of

more than one gauge boson with also an order 1% correction due to the initial state not

– 18 –
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To	understand	the	irreducible	EW	logarithms	one	needs	to	
understand	PDF	evoltuion

• As already discussed, irreducible logarithms arise from 

the fact that initial states are not SU(2) singlets 
• For pp colliders, this manifests itself in the fact that fu ≠fd 

etc 
• However, logarithms from initial state radiation can be 

resummed using DGLAP evolution



Parton	distribu@on	func@ons	are	matrix	elements	of	collinear	
bi-local	operators

26

Diagramatically, can think of them as

2. The evolution of parton distributions in the full Standard model

2.1 Definition of the parton distribution functions

The standard definition of an x-weighted parton distribution is given by the matrix element

of a bi-local operator, separated along the lightcone. For fermions, one finds the standard

definition, but without spin averaging as we are separating the fermions into left and right

handed, thus each fermion has only one possible spin determined by its helicity and the

sign of its momentum.

fi(x) = x

Z
dy

2⇡
e
�i 2xn̄·p y⌦

p
��  ̄(i)(y) n̄/ (i)(�y)

��p
↵
, (2.1)

fī(x) = x

Z
dy

2⇡
e
�i 2xn̄·p y⌦

p
�� (i)(y) n̄/  ̄(i)(�y)

��p
↵
. (2.2)

To include all gauge interactions of the standard model, one needs to include separate

parton distribution functions for left- and right- handed fields. This implies that for each

generation, there are a total of 8 quark PDFs and 6 lepton PDFs to consider, for a total

of 42 fermion PDFs.

Parton distributions functions of the vector bosons are given by

fV (x) =
2

n̄·p

Z
dy

2⇡
e
�i 2xn̄·p y

n̄µn̄
⌫
⌦
p
��V µ�(y)V�⌫(�y)

��p
↵���
spin avg.

. (2.3)

Since SU(3) is unbroken, we consider a single PDF to describe the gluon field. For the

SU(2) ⌦ U(1) symmetry, on the other hand, one needs to take the symmetry breaking into

account. For the W
+ and W

� boson we simply include separate PDFs for each of the two

gauge bosons. For the B and W3, however, one needs to be more careful to take the mixing

between these two bosons into account. This implies that besides PDFs for each of these

two particles, one needs to include a mixed PDF, which is given by

fBW (x) =
1

2

✓
2

n̄·p

Z
dy

2⇡
e
�i 2xn̄·p y

n̄µn̄
⌫
⌦
p
��Bµ�(y)W 3

�⌫
(�y)

��p
↵���
spin avg.

+ h.c.

◆
. (2.4)

From these PDFs one can then construct the PDF for the Z, the photon and their mixed

state as a transformation of the PDF for the B, the W
3 and their mixed state. Using

A = cWB + sWW
3 and Z = �sWB + cWW

3 one finds
0

B@
f�

fZ

f�Z

1

CA =

0

B@
c
2
W

s
2
W

2cW sW

s
2
W

c
2
W

�2cW sW

�cW sW cW sW c
2
W

� s
2
W

1

CA

0

B@
fB

fW 3

fBW

1

CA . (2.5)

Finally, one needs to include PDFs for the scalar bosons. One writes

fH(x) =

Z
dy

2⇡
e
�i 2xn̄·p y ⌦

p
���(y)�(�y)

��p
↵
,

(2.6)

and PDFs for each of the 4 Higgs fields H0, H̄0, H+ and H
� are included.

In summary, there are a total of 52 parton distrbution functions that need to be

considered.

– 3 –

2. The evolution of parton distributions in the full Standard model

2.1 Definition of the parton distribution functions

The standard definition of an x-weighted parton distribution is given by the matrix element

of a bi-local operator, separated along the lightcone. For fermions, one finds the standard

definition, but without spin averaging as we are separating the fermions into left and right

handed, thus each fermion has only one possible spin determined by its helicity and the

sign of its momentum.
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fī(x) = x

Z
dy

2⇡
e
�i 2xn̄·p y⌦

p
�� (i)(y) n̄/  ̄(i)(�y)

��p
↵
. (2.2)

To include all gauge interactions of the standard model, one needs to include separate

parton distribution functions for left- and right- handed fields. This implies that for each

generation, there are a total of 8 quark PDFs and 6 lepton PDFs to consider, for a total
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Since SU(3) is unbroken, we consider a single PDF to describe the gluon field. For the

SU(2) ⌦ U(1) symmetry, on the other hand, one needs to take the symmetry breaking into
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+ and W
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gauge bosons. For the B and W3, however, one needs to be more careful to take the mixing
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From these PDFs one can then construct the PDF for the Z, the photon and their mixed

state as a transformation of the PDF for the B, the W
3 and their mixed state. Using
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Parton distribution functions are matrix elements of collinear 
operators of field separated along the light-cone

Once full SM evolution is considered, need pdf for every 
particle (including Higgs)

fi fV

CWB, Ferland, Webber (’17) 
see also Ciafaloni, Comelli (’00-’05)



Besides	these	“standard”	forward	pdf’s,	one	also	needs	to	
consider	non-forward,	mixed	pdf’s
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2. The evolution of parton distributions in the full Standard model
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+ and W
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and PDFs for each of the 4 Higgs fields H0, H̄0, H+ and H
� are included.
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This pdf is required to describe mixed processes with Z or 
gamma in initial state

p
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DGLAP	equa@ons	are	simply	renormaliza@on	group	equa@ons	
of	these	operators
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As for any operator in field theory depend on renormalization 
scale, and RGE is derived from divergent structure of loops

Virtual contributions have loop stay on same side of operator

Real contributions have loop go from one side to other



There	most	general	form	of	the	DGLAP	equa@on	has	a	very	
simple	form
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and PDFs for each of the 4 Higgs fields H0, H̄0, H+ and H
� are included. The relationship

to the 4 Higgs fields in the unbroken basis to the physical Higgs and the longitudinal gauge

bosons is as follows: The H
± PDFs correspond to those of the longitudinally polarized

W
±. In the notation of Ref. [8], the neutral Higgs fields are

H
0 =

(h� iZL)
p
2

, H̄
0 =

(h+ iZL)
p
2

, (2.8)

where h and ZL represent the Higgs and the longitudinal Z0 fields, respectively. The

corresponding PDFs are

fH0 =
1

2
[fh + fZL

+ i (fhZL
� fZLh

)] , (2.9)

f
H̄0 =

1

2
[fh + fZL

� i (fhZL
� fZLh

)] , (2.10)

and one can also define the mixed PDFs

f
H0H̄0 =

1

2
[fh � fZL

� i (fhZL
+ fZLh

)] , (2.11)

f
H̄0H0 =

1

2
[fh � fZL

+ i (fhZL
+ fZLh

)] . (2.12)

Both of these mixed PDF carry non-zero hypercharge, such that they are not produced by

the DGLAP evolution in the unbroken gauge theory as considered in this paper3. Thus,

one immediately finds

fh � fZL
= fhZL

+ fZLh
= 0 , (2.13)

and

fh = fZL
=

1

2
(fH0 + f

H̄0) , fhZL
= �fZLh

= �
i

2
(fH0 � f

H̄0) . (2.14)

In summary, there are a total of 52 parton distribution functions that need to be

considered. Apart from the QCD quark and gluon distributions and the electroweak PDFs

(2.6), all the other SM PDFs are set to zero at scale q0 = mV and evolve according to the

generalized DGLAP equations presented below.

2.2 General evolution equations

We consider the x-weighted PDFs of parton species i at momentum fraction x and scale q,

fi(x, q). In general they satisfy evolution equations of the following forms:

q
@

@q
fi(x, q) =

X

I

↵I(q)

⇡

2

4P V

i,I(q) fi(x, q) +
X

j

Cij,I

Z
z
ij,I

max(q)

x

dz PR

ij,I(z)fj(x/z, q)

3

5

⌘

X

I


q
@

@q
fi(x, q)

�

I

. (2.15)

3
They are only produced through insertions of the Higgs vacuum
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as well as a partial Sudakov factor for each interaction

�i,I(q) = exp

Z
q

q0

dq0

q0
↵I(q0)

⇡
P

V

i,I(q
0)

�
, (2.29)

where q0 is an arbitrary cuto↵, which for convenience we set equal to mV . This allows us

to write 
�i,I(q) q

@

@q

fi(x, q)

�i,I(q)

�

I

=
↵I(q)

⇡

X

j

Cij,IP
R

ij,I ⌦ fj , (2.30)

where again the notation [. . .]I implies that only terms from the interaction I are kept.

This gives

�i(q) q
@

@q


fi(x, q)

�i(q)

�
=

X

I


�i,I(q) q
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⇡

X

j

Cij,IP
R

ij,I ⌦ fj , (2.31)

where

P
R

ij,I ⌦ fj ⌘

Z
z
ij,I

max(q)

x

dz PR

ij,I(z)fj(x/z, q) . (2.32)

2.3 Splitting functions

The splitting functions depend only on the type of particles, which for the Standard Model

are the spin 1/2 fermions, denoted by f , spin 1 gauge bosons, denoted by V , as well as

spin 0 Higgs bosons, denoted by H.

Denoting the three gauge interactions of the Standard Model collectively by I = G,

the splitting functions involving gauge bosons are given by

P
R

ff,G
(z) =

1 + z
2

1� z
, (2.33)

P
R

V f,G
(z) = Pff,G(1� z) , (2.34)

P
R

fV,G
(z) =

1

2

⇥
z
2 + (1� z)2

⇤
, (2.35)

P
R

V V,G(z) = 2


z

1� z
+

1� z

z
+ z(1� z)

�
(2.36)

P
R

HH,G(z) =
2z

1� z
, (2.37)

P
R

VH,G(z) = P
R

HH,G(1� z) , (2.38)

P
R

HV,G(z) = z(1� z) . (2.39)

The factor of 1/2 in PfV has to be included since we are considering fermions with definite

chirality. For the Yukawa interaction (Y ), one obtains

P
R

ff,Y
(z) =

1� z

2
, (2.40)

P
R

Hf,Y
(z) = P

R

ff,Y
(1� z) , (2.41)

P
R

fH,Y
(z) =

1

2
. (2.42)
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Can define a Sudakov factor by exponentiating virtual piece

Allows to write a slightly simpler form of the DGLAP equation



DGLAP	equa@ons	are	very	similar	to	form	used	in	QCD,	just	
with	different	coefficients	(and	some	new	spli^ng	func@ons)
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In QCD reduces to the well known results
This gives for the evolution of a quark or gluon6


�q,3 q

@

@q

fq

�q,3

�

3

=
↵3

⇡

⇥
CFP

R

ff,G
⌦ fq + TRP

R

fV,G
⌦ fg

⇤
, (2.54)


�g,3 q

@

@q

fg

�g,3

�

3

=
↵3

⇡

2

4CAP
R

V V,G ⌦ fg +
X

f

CFP
R

V f,G
⌦ fq

3

5 . (2.55)

The Sudakov factor can be obtained from Eq. (2.21) using the coupling constants in

Eq. (2.53). This gives

P
V

q,3(q) = �CF

Z 1

0
z dz

⇥
P

R

ff,G
(z) + P

R

V f,G
(z)

⇤
, (2.56)

P
V

g,3(q) = �

Z 1

0
z dz

⇥
CA P

R

V V,G(z) + 8ng TR P
R

fV,G
(z)

⇤
, (2.57)

where we have used in the last line that there are 8 chiral quarks plus antiquarks per

generation.

Since the gluon is massless, the upper limit in all the z integrations is equal to 1 [see

Eq. (2.17)]. This implies that the convolutions PR

ff,G
⌦fq and P

R

V V,G
⌦fg in Eqs. (2.54) and

(2.55) are both divergent. However, at the same time the virtual splitting functions that

enter the Sudakov factors �q,3(q) and �g,3(q) defined in Eq. (2.29) are also divergent, such

that the divergences cancel in the evolution of the actual PDFs. Using +-distributions, as

explained in Sec. 3, one obtains evolution equations that are free of any divergences, and

which can be implemented numerically. Alternatively, for parton shower implementation,

one can impose a cuto↵ of the form Eq. (2.17) with mV replaced by a small parameter

mg > ⇤QCD.

2.6 I = 1: U(1) interactions

For U(1) the relevant degrees of freedom are left- and right-handed fermions (denoted by

the subscript f), as well as the U(1) gauge boson B. The couplings involving fermions and

gauge bosons are

Cff,1 = CBf,1 = Y
2
f
, CfB,1 = Nf Y

2
f
, CBB,1 = 0 (2.58)

where the hypercharges of the di↵erent fermions are given by

YqL =
1

6
, YuR

=
2

3
, YdR = �

1

3
, Y`L = �

1

2
, YeR = �1 , (2.59)

and the color factor Nf is equal to 3 for quarks and 1 for leptons. The couplings involving

the Higgs bosons are

Chh,1 = CBh,1 = ChB,1 =
1

4
, (2.60)

where h here stands for any of the four Higgs boson PDFs.

6
From now on we omit the arguments of functions for brevity.
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Lesson 3

DGLAP equation same as QCD, just need more 
splitting functions and new coefficients

as well as a partial Sudakov factor for each interaction

�i,I(q) = exp

Z
q

q0

dq0

q0
↵I(q0)

⇡
P

V

i,I(q
0)

�
, (2.29)

where q0 is an arbitrary cuto↵, which for convenience we set equal to mV . This allows us

to write 
�i,I(q) q

@

@q

fi(x, q)

�i,I(q)

�

I

=
↵I(q)

⇡

X

j

Cij,IP
R

ij,I ⌦ fj , (2.30)

where again the notation [. . .]I implies that only terms from the interaction I are kept.

This gives

�i(q) q
@

@q


fi(x, q)

�i(q)

�
=

X

I


�i,I(q) q

@

@q

fi(x, q)

�i,I(q)

�

I

=
X

I

↵I(q)

⇡

X

j

Cij,IP
R

ij,I ⌦ fj , (2.31)

where

P
R

ij,I ⌦ fj ⌘

Z
z
ij,I

max(q)

x

dz PR

ij,I(z)fj(x/z, q) . (2.32)

2.3 Splitting functions

The splitting functions depend only on the type of particles, which for the Standard Model

are the spin 1/2 fermions, denoted by f , spin 1 gauge bosons, denoted by V , as well as

spin 0 Higgs bosons, denoted by H.

Denoting the three gauge interactions of the Standard Model collectively by I = G,

the splitting functions involving gauge bosons are given by

P
R

ff,G
(z) =

1 + z
2

1� z
, (2.33)

P
R

V f,G
(z) = Pff,G(1� z) , (2.34)

P
R

fV,G
(z) =

1

2

⇥
z
2 + (1� z)2

⇤
, (2.35)

P
R

V V,G(z) = 2


z

1� z
+

1� z

z
+ z(1� z)

�
(2.36)

P
R

HH,G(z) =
2z

1� z
, (2.37)

P
R

VH,G(z) = P
R

HH,G(1� z) , (2.38)

P
R

HV,G(z) = z(1� z) . (2.39)

The factor of 1/2 in PfV has to be included since we are considering fermions with definite

chirality. For the Yukawa interaction (Y ), one obtains

P
R

ff,Y
(z) =

1� z

2
, (2.40)

P
R

Hf,Y
(z) = P

R

ff,Y
(1� z) , (2.41)

P
R

fH,Y
(z) =

1

2
. (2.42)
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For	usual	QCD	evolu@on	of	PDF’s	solu@on	to	DGLAP	is	only	
single	logarithmic

34

Consider evolution of quark pdf:

Virtual Real

Combination

Logarithmic singularity as z→1 vanishes

t
d

dt
fu(x, t) =

↵CF

⇡
PV
q (t)fu(x, t)

PV
q (t) = �

Z zmax(t)

0
dz Pqq(z)

t
d

dt
fq(x, t) =

↵CF

⇡

Z zmax(t)

x
dz Pqq(z)fq(x/z, t)

t
d

dt
fq(x, t) =

↵CF

⇡

Z zmax(t)

0
dz Pqq(z) [fq(x/z, t)� fq(x, t)] + . . .



Since	charged	W	bosons	can	change	the	flavor	of	the	
fermions,	cancella@on	between	virtual	and	real	broken

35

Consider evolution of an up-type pdf:

Virtual Real

t
d

dt
fu(x, t) =

↵CF

⇡
PV
q (t)fu(x, t)

Since fu ≠ fd (the proton is not SU(2) singlet), real and virtual 
contributions do not cancel

Double logarithmic terms remain

t
d

dt
fu(x, t) =

↵CF

⇡

Z zmax(t)

0
dz Pqq(z)

⇥

2

3
fd(x/z, t) +

1

3
fu(x/z, t)

�



By	studying	the	equa@ons	more	carefully,	one	finds	that	the	
double	logarithms	restore	electroweak	symmetry	breaking

36

By switching from a flavor basis to an isospin basis

f0(x, t) =
fu(x, t) + fd(x, t)

2
f1(x, t) =

fu(x, t)� fd(x, t)

2

f I(x, t) ⇠ exp


�I(I + 1)

2

↵2

⇡
ln2

t

mV

�

States with I ≠ 0 go double 
logarithmically to zero
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Lesson 4

Contributions violating SU(2) symmetry (I ≠ 0) 
go to zero as q → 0
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Quark	pdf’s	are	modified	from	their	value	obtained	with	only	
QCD	evolu:on	included
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The	isospin	asymmetry	is	driven	to	zero,	as	predicted	earlier

5

this, we plot in Fig. 2 the asymmetry

A
qL =

uL � dL

uL + dL
(4.1)

normalized to the result if only QCD evolution were turned on OR SHOULD WE

SHOW THE RESULT NORMALIZED TO ITS VALUE AT 100GEV AS WE

DID BEFORE? THE PLOTS LOOK QUALITATIVELY THE SAME.. This

asymmetry ratio is shown in Figure 2 for the 3 generation of quarks as a function of q, for

various values of x. For all generations the asymetry decreseases as q gets larger, driving

the pdf’s of the di↵erent isospin states towards each other. The fact that the results look

quite similar is due to the fact that the evolution behaves as

A
qL(x, q) ⇠ F

1
i (q)A

qL(x,mV ) (4.2)

where F
1
i
(q) is given in Eq. (3.13).

For the first generation, the asymmetry at low values of q is large, since the input at

100 GeV has the up quark roughtly twice as large as the down quark. This asymetry is

reduced faster at low x than at large x. At 100 TeV, it is reduced to 71% for x = 0.1 and

92% for x = 0.9. The result are essentially identical for the third generation even though

the asymmetry in inverted (which can not be seen from the plot due to the normalization),

that is the bottom PDF is larger than the top PDF. For the second generation, the initial

asymmetry is much weaker, and thus other e↵ects dominate the evolution at low value of

x and q.

Next, we study the size of the PDFs of particles not charged under the strong interac-

tion. Since these PDFs are only generated by emissions due to the U(1), SU(2) or Yukawa

interactions, they are vanishing at all scales if on is including only SU(3) evolution. The

only exception is the photon, which has a non-vanishing initial condition at q = 100 GeV.

Figure 3 shows results on the electroweak bosons PDF normalized to the gluon PDF, both

evolved using the full standard model. One can see that the SU(2) gauge boson PDFs

become a significant fraction of the gluon PDF, especially at large values of x. The PDF

for the W
+ boson is largest, which can be understodd from the fact that it is generated

through emissions from the up-quark. The W
� boson is smaller, since it comes predomi-

nantly from emissions from the down-quark, whose PDF is smaller. The Z boson is smaller

since the coupling to quarks is smaller than that of the W bosons.

We also show the PDFs for the Higgs bosons and the leptons. The Higgs boson PDFs

are shown in Fig. 4, and the leptons are shown in Fig. 5, both normalized to the gluon.

Both are expected to be much smaller than the vector boson PDFs. For the Higgs, this is

because they are only generated via emissions from the top and bottom quark, which are

much smaller than the up and down quark, which generate the vector bosons. Leptons are

only generated via a second order e↵ect via emissions from the vector bosons.

As a final result, we study several parton luminosities, choosing a future 100TeV pp

collider as a reference. While the energy scales that can be reached at such a collider are

not quite large enough to get O(1) e↵ects, the e↵ects of the full standard model evolution

still give numerically relevant e↵ects. In Figure 6 we show the qLq̄L luminosities for for
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The	probability	of	finding	a	vector	boson	in	the	proton	
becomes	comparable	to	that	to	find	a	gluon
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Even	have	probability	of	finding	a	Higgs	bosons	in	proton,	but		
much	smaller	than	gluon
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Luminosi:es	at	a	100TeV	collider	are	changed	no:ceably	from	
the	values	including	only	QCD	running
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Luminosi:es	including	vector	bosons	become	a	significant	
frac:on	of	more	standard	luminosi:es
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Lesson 5

As q ≫ mV, get O(1) differences from
QCD evolution
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Using	the	PDFs	discussed	so	far,	one	can	resum	the	LL	to	any	
fully	inclusive	observable

Fully inclusive: final state is completely SU(2) symmetric  
(sums complete fermion multiplets 

adds extra gauge bosons)

Logarithms arise only from initial state symmetry breaking and 
are therefore resummed by DGLAP evolution

the process, while mV is a scale of order the masses of the Z and W bosons. This means

that electroweak perturbation theory is always an expansion of the form

hOi = hOi
(0) + ↵2Ln

2

QhOi
(1) +

⇥
↵2Ln

2

Q

⇤2
hOi

(2) +O(↵2LnQ) , (1.1)

where

LnQ ⌘ ln
Q

2

m2

V

(1.2)

and ↵2 is the SU(2) coupling. Thus, EW perturbation theory becomes badly convergent

at large partonic energies. However, the convergence can be improved by identifying the

double-logarithmic terms and resumming them to all orders.

In this paper we present a way to resum double logarithms associated with the asym-

metry of the initial state, and to match the results with those of fixed-order electroweak

calculations. For this purpose we will study completely inclusive observables, which are

defined to sum over a completely SU(2) symmetric final state. The example we use later

in the paper is inclusive di-lepton production at a pp collider, which is defined to include

two leptons of a given generation and any number of extra gauge bosons in the final state.

So to NLO EW accuracy, this process sums over the final states `
+
`
�(+V ), `+⌫`(+V ),

⌫̄``
�(+V ), ⌫̄`⌫`(+V ). Here ` denotes, for example, the electron and ⌫` the electron neu-

trino and the (+V ) denotes the possible addition of a �, Z or W± boson. Since the final

state is SU(2) symmetric, the only SU(2) breaking e↵ect is coming from the fact that the

initial state protons are not SU(2) symmetric. The large logarithmic terms from the initial

state radiation can be resummed through a DGLAP evolution using the interactions of the

full standard model [1], which was performed recently in [2]. By performing the DGLAP

evolution to first order in electroweak e↵ects, one sums all double logarithms and a large

class (but not all) of the single logarithms. This resummation is called leading logarithmic

(LL). 1

This DGLAP evolution uses SU(3)⌦U(1)em for scales q less than some matching scale

qV of order mV , and the full SU(3)⌦ SU(2)⌦ U(1) for q > qV , resulting in the PDFs

f
SM

A (x,Q) (1.3)

for all SM parton species A. Given these PDFs, the logarithms are resummed at leading

logarithmic accuracy by writing

hOiLL =
X

AB

Z
d�nOn(�n)L

SM

AB(xA, xB;Q)BAB(b�n) , (1.4)

where b�n denotes the phase space of the partonic process, BAB(b�n) is the cross section for

the process initiated by partons A and B, d�n is the phase-space element including their

momentum fractions:

d�n = dxA dxB db�n , (1.5)

1A similar resummation of final-state logarithms in non-symmetric final states could be performed though

DGLAP evolution of electroweak fragmentation functions but will not be implemented here.
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This DGLAP evolution uses SU(3)⌦U(1)em for scales q less than some matching scale

qV of order mV , and the full SU(3)⌦ SU(2)⌦ U(1) for q > qV , resulting in the PDFs

f
SM

A (x,Q) (1.3)

for all SM parton species A. Given these PDFs, the logarithms are resummed at leading

logarithmic accuracy by writing

hOiLL =
X

AB

Z
d�nOn(�n)L

SM

AB(xA, xB;Q)BAB(b�n) , (1.4)

where b�n denotes the phase space of the partonic process, BAB(b�n) is the cross section for

the process initiated by partons A and B, d�n is the phase-space element including their

momentum fractions:

d�n = dxA dxB db�n , (1.5)

1A similar resummation of final-state logarithms in non-symmetric final states could be performed though

DGLAP evolution of electroweak fragmentation functions but will not be implemented here.
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Using	the	PDFs	discussed	so	far,	one	can	resum	the	LL	to	any	
fully	inclusive	observable

Fully inclusive: final state is completely SU(2) symmetric  
(sums complete fermion multiplets 

adds extra gauge bosons)

Logarithms arise only from initial state symmetry breaking and 
are therefore resummed by DGLAP evolution
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hOi = hOi
(0) + ↵2Ln

2

QhOi
(1) +

⇥
↵2Ln

2

Q

⇤2
hOi

(2) +O(↵2LnQ) , (1.1)

where

LnQ ⌘ ln
Q

2

m2

V

(1.2)
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+
`
�(+V ), `+⌫`(+V ),

⌫̄``
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Can	one	replace	the	first	order	in	!	with	the	exact	result	from	
fixed	order

Easily accomplished by writing

Since LL resummation does not include subleading logarithms 
or threshold effects, would improve precision to replace O(!) 

terms with fixed order expression

intermediate energies where ↵ ⌧ ↵ log2 rV ⌧ 1, one gets the best accuracy by combining

the two results, such that the final result includes both the LL resummation, as well as

the full ↵ corrections. In particular, this will produce the correct threshold behavior as

s ⇠ m
2

V . This can easily be done by adding the LL and NLO expression together, and

subtracting the pieces that are double counted in the two approaches. The final expression

is then given by

hOiNLO/LL = hOiNLO + hOiLL � [hOiLL]↵ , (1.11)

where [hOiLL]↵ denotes the expansion of hOiLL up to order ↵.

It is the purpose of this paper to evaluate the expansion of the PDFs to first order in

↵ and to obtain the correction term hOiLL � [hOiLL]↵ that needs to be added to an EW

NLO calculation to make it correct to LL. This paper is organized as follows: In Section 2

we review the evolution of the PDFs in the full SM, which was presented in [?]. We then

work out the expansion of these result to first order in ↵ in Section ??. We show numerical

results of this procedure for inclusive di-lepton production at a future 100 TeV collider.

2. The inclusive cross-section with LL resummation

As already mentioned in the previous section, the only logarithmic sensitivity for an ob-

servable that is completely inclusive over the final state arises from the SU(2) breaking of

the initial state. These logarithms can be captured through DGLAP evolution performed

in the full standard model, such that expectation value of such an inclusive observable at

LL is given by

hOiLL =

Z
d�nOn(�n)B

SM(�n) , (2.1)

with

B
SM(�n) =

X

AB

LSM

AB(xA, xB)BAB(b�n) , (2.2)

where LSM

AB(xA, xB) denotes the parton luminosity evaluated using PDF’s evolved in the

full standard model

LSM

AB(xA, xB) = f
SM

A (xA) f
SM

B (xB) , (2.3)

and BAB(b�n) denotes the di↵erential Born cross section for the process AB ! X, which

can be written as the flux factor multiplied by the square of the tree-level amplitude

BAB(b�n) ⌘
1

4pA ·pB
|M(AB ! X)|2 . (2.4)

The DGLAP equations describing the evolution of the PDFs can be written in the

general form

q
@

@q
fi(x, q) =

X

I

↵I(q)

⇡

2

4P V
i,I(q) fi(x, q) +

X

j

Cij,I

Z zij,Imax(q)

x
dz PR

ij,I(z)fj(x/z, q)

3

5 . (2.5)
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O(�n) denotes the value fo the given observable calculated from the phase space point �n,

and

L
SM

AB(xA, xB;Q) = f
SM

A (xA, Q) fSM

B (xB, Q) (1.6)

is the parton luminosity evaluated with the full SM PDFs. Note that since the parton

luminosity in the full SM has contributions from initial states not usually present, such as

electroweak gauge bosons, one requires knowledge of partonic cross sections that are not

usually considered.

Since the DGLAP evolution assumes the unbroken standard model (SM) above the

matching scale qV ⇠ mV , it drops all terms of order mV /Q, which clearly misses important

threshold e↵ects around the electroweak scale. Furthermore, single logarithmic terms of

order ↵LnQ are not fully accounted for in the DGLAP evolution. While these e↵ects do

not need to be resummed for any scale Q of interest, at first order they can still give a

relatively large e↵ect and introduce an uncertainty in the SM PDFs even for Q � qV .

One way to estimate their size is to vary the value of qV and mV chosen in the DGLAP

evolution, and it was shown in [2] that this can give an e↵ect for certain PDFs at the 10%

level, even for Q ⇠ 10 TeV.

The threshold e↵ects, as well as the single logarithmic terms, are properly included

in any fixed-order (FO) EW calculation. This means that one way to obtain a result

that includes the resummation of the LL logarithms, threshold e↵ects, as well as single

logarithmic terms is to combine a fixed-order EW calculation with the LL resummation.

This is accomplished by the simple equation

hOiNLO/LL = hOiNLO + hOiLL � [hOiLL]↵ . (1.7)

Here hOiNLO denotes the fixed order EW calculation at next-to-leading order (NLO), and

[hOiLL]↵ denotes the expansion of hOiLL in ↵ up to the same order as included in the

fixed-order expansion; in our case that requires an expansion to first order. This term is

required to subtract the O(1) and O(↵) terms that are double counted between the NLO

and the LL result. It can be written as

[hOiLL]↵ =
X

AB

Z
d�nOn(�n)

⇥
L
SM

AB(xA, xB;Q)
⇤
↵
BAB(b�n) , (1.8)

where
⇥
L
SM

AB(xA, xB;Q)
⇤
↵
is the expansion of the SM parton luminosity.

In summary, to combine a FO EW calculation with the LL resummation of the log-

arithms one requires only knowledge of the partonic cross sections BAB(�n) with A,B

including any SM particle (which are already required for the LL resummed result), as well

as the expansion of the SM parton luminosity. We perform the calculation of the latter

in Section 2, where we also study the convergence of the PDFs and parton luminosities in

detail. In Section 3 we outline the computation of the partonic cross sections, and then

proceed to show the numerical impact of adding the LL resummation to a fixed order

computation. We present our conclusions in Section 4, and give some details about the

calculation of the partonic cross sections in Appendix A.
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The	a	DGLAP	equa'on	for	the	expanded	PDFs	can	be	easily	
derived	from	the	previous	results

To perform the expansion, we write

mass. It is also required, since contrary to the standard SU(3) and U(1) evolution equations,

which are regular as z ! 1 due to a cancellation between real and virtual contributions,

the SU(2) evolution equations are not regular as z ! 1 due to the non-singlet nature of

the initial state.

Before we expand the resulting PDFs, it is worth pointing out where the double loga-

rithmic sensitivity is coming from, since this is not present in the usual DGLAP evolution.

It is this non-cancellation between virtual and real contributions which gives rise to the

double logarithmic terms mentioned above. One can understand this better by looking at

the evolution of an up-type left handed fermion due to the SU(2) interaction. From [2] one

obtains


q
@

@q
f
SM

uL

�

2

=
↵2

⇡

⇢Z
1�mV

Q

0

dz

z
P

R
ff,G(z)

"
f
SM

dL
(x/z, q)

2
+

f
SM
uL

(x/z, q)

4
�

3zfSM
uL

(x, q)

4

#

+Nf

Z
1

0

dz

z
P

R
fV,G(z)

"
f
SM

W+(x/z, q)

2
+

f
SM

W3
(x/z, q)

4

#
,

�
3

4

Z
1

0

dzPR
V f,G(z)f

SM

uL
(x, q)

�
. (2.5)

The splitting function P
R
ff,G(z) appearing in the first line of each of the two equations is

singular as z ! 1. If the initial state were SU(2) symmetric, one would have fuL(x, q) =

fdL(x, q) ⌘ fQL(x, q), such that the combination in the square bracket would be of the

form 3/4 [fQL(x/z, q)� z fQL(x, q)], such that the divergence in z ! 1 would cancel in

the di↵erence. Since fuL(x, q) 6= fdL(x, q), this cancellation does not happen, generating

logarithmic sensitivity to the ratio mV /q from the integral over z. This soft dependence

gives rise to the double logarithmic sensitivity in the solution of the DGLAP equation. As

was shown in [2], in a basis of definite weak isospin, this double logarithmic sensitivity

drives any terms with I 6= 0 to zero as q ! 1, therefore restoring EW symmetry.

As discussed, the emission of charged W bosons from the initial state gives rise to

double logarithmic sensitivity. Taking the PDFs evaluated in the combined QCD / QED

running (quarks, gluons and photons) as O(1), one needs to include also the massive vector

bosons as initial states. However, leptons and scalar particles lead to suppressed e↵ects

and are omitted here. For the PDFs included, we will include all DGLAP e↵ects, even

those that don’t give rise to double logarithmic terms.

To expand these PDFs to first order in ↵I we define

f
SM,Exp
i (x, q) = f

noEW

i (x, q) + gi(x, q) (2.6)

such that fSM,Exp
i (x, q) only includes the linear terms in ↵I . This implies

f
SM

i (x, q) = f
SM,Exp
i (x, q) +O(↵2

I) (2.7)

The boundary condition for gi is

gi(x, q < qV ) = 0 . (2.8)
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The expanded PDF reproduces all terms up to O(!2) 

The definition of the function gi(x, q) depends obviously on the definition of fnoEW

i (x, q).

Since for q < qV the function gi vanishes, fnoEW

i coincides f
SM

i for those q values. Since

the SM evolution for q > qv is adding the full SU(2) ⌦ U(1) evolution, it makes sense to

choose f
noEW

i (x, q) to only include the SU(3) evolution above that scale. In other words,

we choose

f
noEW

i (x, q) =

(
QCEDevolution q < qV

QCDevolution q > qV
(2.9)

One can also choose a definition that includes the QED running for q > qV . This would

introduce spurious single logarithmic [↵LnQ]n terms in the di↵erence between f
SM

i and

f
SM,Exp
i , which are in principle beyond the claimed accuracy. However, since the definition

Eq. (2.9) trivially avoids these spurious terms, we choose this in the following discussion.

The DGLAP equation f
SM,Exp
i (x, q) can easily be obtained by expanding Eq. (2.1) to

obtain

q
@

@q
f
SM,Exp
i (x, q)

=
↵3(q)

⇡

2

4P V
i,3(q) f

SM,Exp
i (x, q) +

X

j

Cij,I

Z
1

x
dz PR

ij,3(z)f
SM,Exp
j (x/z, q)

3

5 (2.10)

+
X

I21,2,M

↵I(q)

⇡

2

4P V
i,I(q) f

noEW

i (x, q) +
X

j

Cij,I

Z zij,Imax(q)

x
dz PR

ij,I(z)f
noEW

j (x/z, q)

3

5 .

In other words, we have simply set fSM,Exp
i = f

noEW

i in the second line, since the dropped

terms give rise to second order e↵ects. This gives

q
@

@q
gi(x, q)

=
↵3(q)

⇡

2

4P V
i,3(q) gi(x, q) +

X

j

Cij,I

Z
1

x
dz PR

ij,3(z)gj(x/z, q)

3

5 (2.11)

+
X

I21,2,M

↵I(q)

⇡

2

4P V
i,I(q) f

noEW

i (x, q) +
X

j

Cij,I

Z zij,Imax(q)

x
dz PR

ij,I(z)f
noEW

j (x/z, q)

3

5 .

We have implemented the DGLAP equation Eq. (2.10) with boundary Eq. (2.8) and

solved for f
SM

i (x, q). As a cross check on the resulting expanded PDFs one can validate

that the result is indeed linear in the coupling constants ↵I=1,2,M . For this, we perform the

rescaling ↵I ! r↵I , and then plot fSM,Exp
i for various values of r. Figure 1 clearly verifies

the expected linear behavior.

Given the resummed result for the SM PDFs, together with this first order expansion,

one can obtain a first estimate of the higher order e↵ects, and the convergence of electroweak

perturbation theory. We define the two ratios
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Most natural choice:

linear in !



The	a	DGLAP	equa'on	for	the	expanded	PDFs	can	be	easily	
derived	from	the	previous	results

By performing simple expansion of previous DGLAP equation 
to linear order, one finds
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Figure 1: Scaling of the expanded PDFs with the parameter r, which multiplies ↵I=1,2,M . On the
left, we show the left-handed quarks of the first generation, in the middle the right-handed quarks
of the first generation, and on the right the vector bosons. One can clearly see that the expanded
PDFs are linear in ↵I .

Defining the function hi(x, q) to be the di↵erence between f
SM,Exp
i and f

SM

i we can write

f
SM

i (x, q) = f
noEW

i (x, q) + gi(x, q) + hi(x, q) (2.13)

where gi(x, q) is the same function used in Eq. (2.6). As already discussed, the function

gi(x, q) is of order ↵I , while the function hi(x, q) contains terms of ↵2

I and higher. With

these definitions, one can write

r
noEW

f (x, q) = 1�
gi(x, q) + hi(x, q)

fSM

i (x, q)
⇠ 1 +O(↵I) ,

r
SM,Exp
f (x, q) = 1�

hi(x, q)

fSM

i (x, q)
⇠ 1 +O(↵2

I) . (2.14)

Thus, the deviation from unity of the first ratio shows the size of the first order correction,

while the deviation of the second ratio shows the size of the higher order corrections. Note

that for PDFs for which f
noEW

i (x, q) vanishes (in our case the massive vector bosons) the

first ratio vanishes, and the second ratio gives

r
SM,Exp
f (x, q) = 1�

hi(x, q)

gi(x, q)
⇠ 1 +O(↵I) (2.15)

and is therefore an estimate of the size of the second order term relative to the first order

term.

The results are shown in Fig. 2 for left handed up and down (anti)quarks. One can

clearly see that at low values of q the second order correction is much smaller than the first

order correction, which is indicative of an absence of large logarithmic corrections. For

q & 104 GeV, however, the logarithmic contributions become noticeable, and the second

order correction grows relative to the first order correction, and by q ⇠ 106 GeV it has

become the same order of magnitude as the first order correction, at least for some of the

PDFs. Notice that the logarithmic e↵ect is largest for the left-handed down quark.

For the gluon and photon, the results are shown in Fig. 3. Since the gluon does not

couple to the massive vector bosons directly, the electroweak e↵ect is strongly suppressed.

The photon, on the other hand, can couple directly to the massive bosons, and its PDF

is double logarithmically sensitive to the ratio mV /q. This explains why the electroweak
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Figure 2: The ratio of the QCED and expanded SM PDFs relative to the PDF evaluated in the
full SM for left handed quarks.

to the latter, at least for some of the PDFs. Notice that the left-handed up and down quarks

always move in opposite directions, to restore isospin symmetry asymptotically.

For the gluon and photon, the results are shown in Fig. 3. Since the gluon does not

couple to the massive vector bosons directly, the electroweak e↵ect is strongly suppressed.

The photon, on the other hand, can couple directly to the massive bosons, and its PDF

is double-logarithmically sensitive to the ratio mV /q. This explains why its electroweak

corrections are much larger than for the gluon. For q ⇠ mV , the second-order corrections

are much smaller than the first order, but it grows much more rapidly, BW: I don’t see

the following and for q & 106 GeV is exceeding the first order correction.

For massive vector bosons r
noEW(x, q) is zero, since their PDFs vanish when only

QCED e↵ects are included. Therefore, given our results, the validity of the perturbative

expansion can only be studied through the ratio r
SM,Exp(x, q), whose deviation from unity

is a first-order e↵ect in ↵I as given in Eq. (2.15). One can see clearly that the deviation from

unity is much larger than one power of ↵I , which of course is due to the double-logarithmic

dependence on mV /q.

Given these PDFs and their expansions, one can find the first-order expansion of the

SM luminosity

⇥
L
SM

AB(xA, xB;Q)
⇤
↵
= f

noEW

A (xA, Q) fnoEW

B (xB, Q) + f
noEW

A (xA, Q) gB(xB, Q)

+ gA(xA, Q) fnoEW

B (xB, Q) . (2.16)
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Figure 3: The ratio of the QCED and expanded SM PDFs relative to the PDF evaluated in the
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From the definition Eq. (2.6) this obviously satisfies

L
SM

AB(xA, xB;Q)�
⇥
L
SM

AB(xA, xB;Q)
⇤
↵
= O(↵2

I) . (2.17)

Thus the di↵erence in Eq. (2.17) can be used to add resummation terms to a NLO calcula-

tion, since it excludes all terms in the luminosity L
SM

AB at O(1) and O(↵I) while including

all LL terms of higher order.

Parton luminosities involving two heavy gauge bosons (such as LZZ , LW+W�) only

start to contribute at order ↵
2

I , since the PDF of each such boson is suppressed by one
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Thus the di↵erence in Eq. (2.17) can be used to add resummation terms to a NLO calcula-

tion, since it excludes all terms in the luminosity L
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AB at O(1) and O(↵I) while including

all LL terms of higher order.

Parton luminosities involving two heavy gauge bosons (such as LZZ , LW+W�) only

start to contribute at order ↵
2

I , since the PDF of each such boson is suppressed by one
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Perturba've	expansion	verifies	the	breakdown	of	
perturba'on	theory	at	large	Q

Figure 1: Scaling of the expanded PDFs with the parameter r, which multiplies ↵I=1,2,M . On the
left, we show the left-handed quarks of the first generation, in the middle the right-handed quarks
of the first generation, and on the right the vector bosons. One can clearly see that the expanded
PDFs are linear in ↵I .

Defining the function hi(x, q) to be the di↵erence between f
SM,Exp
i and f

SM

i we can write

f
SM

i (x, q) = f
noEW

i (x, q) + gi(x, q) + hi(x, q) (2.13)

where gi(x, q) is the same function used in Eq. (2.6). As already discussed, the function

gi(x, q) is of order ↵I , while the function hi(x, q) contains terms of ↵2

I and higher. With

these definitions, one can write

r
noEW

f (x, q) = 1�
gi(x, q) + hi(x, q)

fSM

i (x, q)
⇠ 1 +O(↵I) ,

r
SM,Exp
f (x, q) = 1�

hi(x, q)

fSM

i (x, q)
⇠ 1 +O(↵2

I) . (2.14)

Thus, the deviation from unity of the first ratio shows the size of the first order correction,

while the deviation of the second ratio shows the size of the higher order corrections. Note

that for PDFs for which f
noEW

i (x, q) vanishes (in our case the massive vector bosons) the

first ratio vanishes, and the second ratio gives

r
SM,Exp
f (x, q) = 1�

hi(x, q)

gi(x, q)
⇠ 1 +O(↵I) (2.15)

and is therefore an estimate of the size of the second order term relative to the first order

term.

The results are shown in Fig. 2 for left handed up and down (anti)quarks. One can

clearly see that at low values of q the second order correction is much smaller than the first

order correction, which is indicative of an absence of large logarithmic corrections. For

q & 104 GeV, however, the logarithmic contributions become noticeable, and the second

order correction grows relative to the first order correction, and by q ⇠ 106 GeV it has

become the same order of magnitude as the first order correction, at least for some of the

PDFs. Notice that the logarithmic e↵ect is largest for the left-handed down quark.

For the gluon and photon, the results are shown in Fig. 3. Since the gluon does not

couple to the massive vector bosons directly, the electroweak e↵ect is strongly suppressed.

The photon, on the other hand, can couple directly to the massive bosons, and its PDF

is double logarithmically sensitive to the ratio mV /q. This explains why the electroweak
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Figure 4: The ratio of the QCED and expanded SM PDFs relative to the PDF evaluated in the
full SM for the massive vector bososn.

power of ↵I . This means that their e↵ect is not included in the expansion of the luminosity

discussed so far. Due to the double logarithmic term, the heavy boson PDFs can numeri-

cally be quite significant. This poorly behaved perturbative expansion can be clearly seen

from Fig. 4, which shows that the ratio of the expanded PDFs and the full PDF can de-

viate from unity numerically by an amount of order 10%. This means that while V -fusion

processes (those involving two heavy gauge bosons in the initial state) are of order ↵
2

I ,

their contribution is numerically quite large. For this reason, one might want to include

the e↵ect of V -fusion exactly at fixed order, and only rely on the LL approximation to
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This	leads	to	very	interes'ng	effects	at	for	fully	inclusive	di-
lepton	produc'on	at	a	future	100	TeV	collider

predict the higher order terms. This requires to subtract the O(↵2

I) terms from LV V which

computing the expanded luminosity. This expanded luminosity is given by

⇥
L
SM

AB(xA, xB;Q)
⇤V�fusion

↵
= f

noEW

A (xA, Q) fnoEW

B (xB, Q) + f
noEW

A (xA, Q) gB(xB, Q)

+ gA(xA, Q) fnoEW

B (xB, Q) + gA(xA, Q) gB(xB, Q)�AB,V V .

(2.18)

As already mentioned, this expanded luminosity to combine a fixed order calculation in-

cluding all EW e↵ects at NLO, as well as the V-fusion process at LO as

hOi[NLO+V�fusion]/LL = hOiNLO+V�fusion + hOiLL � [hOiLL]
V�fusion

↵ . (2.19)

where

[hOiLL]
V�fusion

↵ =
X

AB

Z
d�nOn(�n)

⇥
L
SM

AB(xA, xB;Q)
⇤V�fusion

↵
BAB(�n) . (2.20)

• SM luminosity plots

• SMexp - SM di↵erence (ratio) plots

3. Resummation of logarithms in inclusive di-lepton production

In this section we will apply the combination of fixed order calculations and LL resumma-

tion to the example of fully inclusive di-lepton production. The precise definition of this

process was given in the introduction, but we will repeat it here for completeness. This

inclusive process is defined to include two leptons of a given generation and any number

of extra gauge bosons in the final state. So to NLO EW accuracy, this process sums over

the final states `
+
`
�(+V ), `+⌫`(+V ), ⌫̄``�(+V ), ⌫̄`⌫`(+V ). Here ` denotes, for example,

the electron and ⌫` the electron neutrino and the (+V ) denotes the possible addition of

a �, Z or W
± boson. Since we are summing over both electrons and neutrinos, and we

are including the extra radiation of extra electroweak gauge bosons, the final state of this

process is SU(2) symmetric, as required.

Which partons A and B are required, depends on how one counts powers of the coupling

constants. We summarize the scaling of the various PDFs with the electroweak coupling

in Table 1. One can see that in the strict LL limit, where one only requires to reproduce

↵
nLn2nQ terms, one only needs to keep quarks in the initial state. However, transverse vector

bosons (the photon as well as massive vector bosons) are only suppressed by one power of

the logarithm, and their relative contribution grows with growing partonic center of mass

energy. This makes them phenomenologically quite relevant and we will keep them in our

analysis. Leptons, longitudinal gauge bosons2 and Higgs bosons are further suppressed,

and will be neglected in the following discussion.

2Note that longitudinal gauge bosons can become very important in situations where the partonic process

involving them is enhanced, as is the case for example in heave quark production.
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Inclusive di-lepton production defined by summing  
over following final states [to be SU(2) symmetric]

Which initial states do we need?

PDF leading ↵ power log scaling

q, g 0 ↵
nLn2nQ

� 1 ↵
nLn2n�1

Q

VT 1 ↵
nLn2n�1

Q

VL 2 ↵
nLn2n�2

Q

` 2 ↵
nLn2n�2

Q

h 2 ↵
nLn2n�2

Q

Table 1: The scaling of the PDFs with the EW coupling constant.

reproduce ↵
nLn2nQ terms, one only needs to keep quarks in the initial state. However,

transverse vector bosons (the photon as well as massive vector bosons) are only suppressed

by one power of the logarithm, and their relative contribution grows with growing partonic

center of mass energy. This makes them phenomenologically quite relevant and we will keep

them in our analysis. Leptons, longitudinal gauge bosons2 and Higgs bosons are further

suppressed, and will be neglected in the following discussion. BW: Mention Yukawa

interactions?

To compute the partonic cross section BAB(�̂n), one relates it to the the square of the

matrix element for the process AB ! `¯̀ via

BAB(�n) ⌘
1

4pA ·pB
|M(AB ! X)|2 , (3.1)

where ` denotes either a charged lepton or a neutrino. As discussed above, for the initial

states A and B one needs qq̄ of all possible quark flavors and helicities, as well as V V ,

where V can be any one of the electroweak gauge boson PDFs, �, Z0
,W

±
, or the mixed

�/Z
0 PDF representing interference contributions. Details of the cross-section calculations

are given in the Appendix.

4. Results

The di↵erential cross section d�/dM`` is shown for a 100 TeV pp collider in Fig 5. In order

to make the plot easier to read, we have multiplied the di↵erential cross section by M
4

`` to

overcome the steeply falling nature of the distribution. We have stacked the contributions

of various initial states qq̄ W
±
W

⌥, W
±
N and NN (where N denotes a neutral gauge

boson) on top of each other. In the lower part of the plot, we show the ratio to the total

contribution, giving a better estimate of the relative size of each contribution. One can

see that the dominant contribution is from the qq̄ initial states, but the relative size of the

initial states with 2 vector bosons grows with increasing M``. For a 100 TeV collider the

contribution with vector bosons in the initial state are around 25% for q = 104.5 GeV ⇠ 30

TeV.

2Note that longitudinal gauge bosons can become very important in situations where the partonic process

involving them is enhanced, as is the case for example in heave quark production.
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This	leads	to	very	interes'ng	effects	at	for	fully	inclusive	di-
lepton	produc'on	at	a	future	100	TeV	collider

predict the higher order terms. This requires to subtract the O(↵2

I) terms from LV V which

computing the expanded luminosity. This expanded luminosity is given by

⇥
L
SM

AB(xA, xB;Q)
⇤V�fusion

↵
= f

noEW

A (xA, Q) fnoEW

B (xB, Q) + f
noEW

A (xA, Q) gB(xB, Q)

+ gA(xA, Q) fnoEW

B (xB, Q) + gA(xA, Q) gB(xB, Q)�AB,V V .

(2.18)

As already mentioned, this expanded luminosity to combine a fixed order calculation in-

cluding all EW e↵ects at NLO, as well as the V-fusion process at LO as

hOi[NLO+V�fusion]/LL = hOiNLO+V�fusion + hOiLL � [hOiLL]
V�fusion

↵ . (2.19)

where

[hOiLL]
V�fusion

↵ =
X

AB

Z
d�nOn(�n)

⇥
L
SM

AB(xA, xB;Q)
⇤V�fusion

↵
BAB(�n) . (2.20)

• SM luminosity plots

• SMexp - SM di↵erence (ratio) plots

3. Resummation of logarithms in inclusive di-lepton production

In this section we will apply the combination of fixed order calculations and LL resumma-

tion to the example of fully inclusive di-lepton production. The precise definition of this

process was given in the introduction, but we will repeat it here for completeness. This

inclusive process is defined to include two leptons of a given generation and any number

of extra gauge bosons in the final state. So to NLO EW accuracy, this process sums over

the final states `
+
`
�(+V ), `+⌫`(+V ), ⌫̄``�(+V ), ⌫̄`⌫`(+V ). Here ` denotes, for example,

the electron and ⌫` the electron neutrino and the (+V ) denotes the possible addition of

a �, Z or W
± boson. Since we are summing over both electrons and neutrinos, and we

are including the extra radiation of extra electroweak gauge bosons, the final state of this

process is SU(2) symmetric, as required.

Which partons A and B are required, depends on how one counts powers of the coupling

constants. We summarize the scaling of the various PDFs with the electroweak coupling

in Table 1. One can see that in the strict LL limit, where one only requires to reproduce

↵
nLn2nQ terms, one only needs to keep quarks in the initial state. However, transverse vector

bosons (the photon as well as massive vector bosons) are only suppressed by one power of

the logarithm, and their relative contribution grows with growing partonic center of mass

energy. This makes them phenomenologically quite relevant and we will keep them in our

analysis. Leptons, longitudinal gauge bosons2 and Higgs bosons are further suppressed,

and will be neglected in the following discussion.

2Note that longitudinal gauge bosons can become very important in situations where the partonic process

involving them is enhanced, as is the case for example in heave quark production.
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center of mass energy. This makes them phenomenologically quite relevant and we will keep

them in our analysis. Leptons, longitudinal gauge bosons2 and Higgs bosons are further

suppressed, and will be neglected in the following discussion. BW: Mention Yukawa

interactions?

To compute the partonic cross section BAB(�̂n), one relates it to the the square of the

matrix element for the process AB ! `¯̀ via

BAB(�n) ⌘
1

4pA ·pB
|M(AB ! X)|2 , (3.1)

where ` denotes either a charged lepton or a neutrino. As discussed above, for the initial

states A and B one needs qq̄ of all possible quark flavors and helicities, as well as V V ,

where V can be any one of the electroweak gauge boson PDFs, �, Z0
,W

±
, or the mixed

�/Z
0 PDF representing interference contributions. Details of the cross-section calculations

are given in the Appendix.

4. Results

The di↵erential cross section d�/dM`` is shown for a 100 TeV pp collider in Fig 5. In order

to make the plot easier to read, we have multiplied the di↵erential cross section by M
4

`` to

overcome the steeply falling nature of the distribution. We have stacked the contributions

of various initial states qq̄ W
±
W

⌥, W
±
N and NN (where N denotes a neutral gauge

boson) on top of each other. In the lower part of the plot, we show the ratio to the total

contribution, giving a better estimate of the relative size of each contribution. One can

see that the dominant contribution is from the qq̄ initial states, but the relative size of the

initial states with 2 vector bosons grows with increasing M``. For a 100 TeV collider the

contribution with vector bosons in the initial state are around 25% for q = 104.5 GeV ⇠ 30

TeV.

2Note that longitudinal gauge bosons can become very important in situations where the partonic process

involving them is enhanced, as is the case for example in heave quark production.
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This	leads	to	very	interes'ng	effects	at	for	fully	inclusive	di-
lepton	produc'on	at	a	future	100	TeV	collider
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Figure 5: The di↵erential cross section M
4
``d�/dM``, showing the makeup of the total cross section

in terms of the individual initial states.

using the QCED parton luminosities. As one can see, for the qq̄ channel, the expansion of

the LL result is almost indistinguishable from the full LL result, indicating that the higher

order corrections are quite small. This is due ????.

For � � � initial states, one needs to keep in mind that our definition of fnoEW does

not include any QED evolution for q > qV . This means that the photon PDF freezes out at

the scale qV for this PDF. Since the e↵ect of the evolution is of the same size as the value

of the PDF at q = qV , the first order (di↵erence of red and black) gives an O(1) e↵ect.

The second order (di↵erence of blue and black) is considerably smaller than the first order

for all values of M``, but from the absolute value of the correction it is also clear that the

expansion parameter is much larger than ↵em/⇡ as one naively expects. For example, for

M`` ⇠ 10 TeV, the second order correction is still almost 5%.

Any process with massive bosons in the initial states vanishes at tree level in QCED, as

indicated by the vanishing red lines in the last two plots. This is obvious, since any process

with at least one massive vector boson is suppressed by at least one power of ↵I . However,
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predict the higher order terms. This requires to subtract the O(↵2

I) terms from LV V which

computing the expanded luminosity. This expanded luminosity is given by

⇥
L
SM

AB(xA, xB;Q)
⇤V�fusion

↵
= f

noEW

A (xA, Q) fnoEW

B (xB, Q) + f
noEW

A (xA, Q) gB(xB, Q)

+ gA(xA, Q) fnoEW

B (xB, Q) + gA(xA, Q) gB(xB, Q)�AB,V V .

(2.18)

As already mentioned, this expanded luminosity to combine a fixed order calculation in-

cluding all EW e↵ects at NLO, as well as the V-fusion process at LO as

hOi[NLO+V�fusion]/LL = hOiNLO+V�fusion + hOiLL � [hOiLL]
V�fusion

↵ . (2.19)

where

[hOiLL]
V�fusion

↵ =
X

AB

Z
d�nOn(�n)

⇥
L
SM

AB(xA, xB;Q)
⇤V�fusion

↵
BAB(�n) . (2.20)

• SM luminosity plots

• SMexp - SM di↵erence (ratio) plots
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In this section we will apply the combination of fixed order calculations and LL resumma-

tion to the example of fully inclusive di-lepton production. The precise definition of this

process was given in the introduction, but we will repeat it here for completeness. This

inclusive process is defined to include two leptons of a given generation and any number

of extra gauge bosons in the final state. So to NLO EW accuracy, this process sums over

the final states `
+
`
�(+V ), `+⌫`(+V ), ⌫̄``�(+V ), ⌫̄`⌫`(+V ). Here ` denotes, for example,

the electron and ⌫` the electron neutrino and the (+V ) denotes the possible addition of

a �, Z or W
± boson. Since we are summing over both electrons and neutrinos, and we

are including the extra radiation of extra electroweak gauge bosons, the final state of this

process is SU(2) symmetric, as required.

Which partons A and B are required, depends on how one counts powers of the coupling

constants. We summarize the scaling of the various PDFs with the electroweak coupling

in Table 1. One can see that in the strict LL limit, where one only requires to reproduce

↵
nLn2nQ terms, one only needs to keep quarks in the initial state. However, transverse vector

bosons (the photon as well as massive vector bosons) are only suppressed by one power of

the logarithm, and their relative contribution grows with growing partonic center of mass

energy. This makes them phenomenologically quite relevant and we will keep them in our

analysis. Leptons, longitudinal gauge bosons2 and Higgs bosons are further suppressed,

and will be neglected in the following discussion.

2Note that longitudinal gauge bosons can become very important in situations where the partonic process

involving them is enhanced, as is the case for example in heave quark production.
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This	leads	to	very	interes'ng	effects	at	for	fully	inclusive	di-
lepton	produc'on	at	a	future	100	TeV	collider

The perturbative expansion reveals that there are large 
corrections at O(!2)
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Figure 6:

the second order correction (the di↵erence between the blue and the black line) reaches

10’s of percent at high M``, indicating that the higher order perturbative corrections are

significant. Finally initial states containing two massive vector bosons, are suppressed by

two orders of magnitude and is therefore included neither in the QCED nor SM,Exp results.

As one can see from Fig. 5, this initital states contributes O(5%) to the total result, and

any precise prediction requires a reasonable estimate of this contribution. We will come

back to this issue in the next section.

Putting these results together, we show in Fig. 7 the combination of the various chan-

nels. One can see that perturbation theory is not very well behaved and for M`` & 5 TeV,

the second order correction is essentially of the same size as the first order correction (there
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Figure 7:

is an accidental cancellation for very large M`` which makes the first order correction be-

come small). The overall e↵ect of the corrections of order ↵
2

I and higher for M`` & few

TeV is of the order of 5%.

To understand how these results depend on the center of mass energy of the collider,

we also show results for a 27 TeV pp collider, which is the energy of the proposed high

energy upgrade of the LHC, and a fictitious 1PeV collider. In Fig. 8 the relative importance

of the various channels are show, and as expected, the relative importance of the initial

states with vector bosons is diminished (enhanced) for a 27 TeV (1 PeV) collider. For a 1

PeV collider at the highest accessible di-lepton invariant mass, the contribution of vector

boson initial state is almost 50% of the total cross section. Next, we study the convergence

of perturbation theory for individual channels for a 27 TeV and 1 PeV collider in Figs. 9

and 10, respectively, and the complete result in Fig. 11. Qualitatively the e↵ects are the

same as for a 100 TeV collider, but the overall size of the e↵ects are decresed (increased)

for the 27 TeV (1 PeV) collider.
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Lesson 6

At a 100 TeV collider, corrections beyond NLO are 
important, but can be understood using resummation
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come small). The overall e↵ect of the corrections of order ↵
2

I and higher for M`` & few

TeV is of the order of 5%.

To understand how these results depend on the center of mass energy of the collider,

we also show results for a 27 TeV pp collider, which is the energy of the proposed high

energy upgrade of the LHC, and a fictitious 1PeV collider. In Fig. 8 the relative importance

of the various channels are show, and as expected, the relative importance of the initial

states with vector bosons is diminished (enhanced) for a 27 TeV (1 PeV) collider. For a 1

PeV collider at the highest accessible di-lepton invariant mass, the contribution of vector

boson initial state is almost 50% of the total cross section. Next, we study the convergence

of perturbation theory for individual channels for a 27 TeV and 1 PeV collider in Figs. 9

and 10, respectively, and the complete result in Fig. 11. Qualitatively the e↵ects are the

same as for a 100 TeV collider, but the overall size of the e↵ects are decresed (increased)

for the 27 TeV (1 PeV) collider.
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Lesson 1

Electroweak 
correction give rise 
to logarithmic terms 

in any observable 

Lesson 2

Resummation of 
electroweak 

corrections can lead 
to large effects

Lesson 3

DGLAP equations 
same as QCD, just 
need more splitting 

functions and coeffs

Lesson 4

Contribution 
violating SU(2) 
symmetry go to 

zero as q gets large

Lesson 5

As q≫mV, get O(1) 
differences from 
QCD evolutions

Lesson 6

Corrections beyond 
NLO important, but 
can be understood 
using resummation

Questions?


