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Outline
➔ Introduction

➔ Sector-improved residue subtraction

➔ Two-loop five-point amplitude for ud → W (→lv) b bbar

➔ W+2 b-jet production @ LHC

● Phenomenology and flavour jet definitions

➔ Summary and Outlook
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SM measurements at the LHC

New physics around the 
corner?

Precise measurements
<->

 Precise theory

Win-Win situation
● improved SM understanding
● search for indirect NP signals
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Precision predictions

Precision theory predictions

Fixed order
perturbation theory

Resummation

Parton-showers

Parametric input:
PDFs and αS

Soft physics:
MPI, colour reconnection,
... Fragmentation/hadronisation
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Perturbative QCD

Hadronic cross section:

Perturbative expansion of partonic cross section:

Parton distribution functions: δ~1-3%

Typical uncertainties from scale variations: δLO ~20-30%  δNLO ~5-20%  δNNLO ~1-5%
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Next-to-leading order case
Perturbative expansion of partonic cross section:

Each term separately infrared (IR) divergent.
→ KLN theorem: sum is finite for sufficiently inclusive 
observables and regularization scheme independent 

Real corrections: Virtual corrections:
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Slicing and Subtraction

Slicing:
Central idea: Divergences arise from IR limits → Factorization!

Subtraction:

Slicing:
● Conceptually simple
● Recycling of lower computations
● Non-local cancellations

→ computationally expensive

Subtraction:
● Conceptually more difficult
● Local subtraction → efficient
● Better numerical stability
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Slicing and Subtraction

Slicing:
Central idea: Divergences arise from IR limits → Factorization!

Subtraction:

Slicing: Subtraction:
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Antenna [Gehrmann’05-’08], Colorful [DelDuca‘05-’15],
Projetction [Cacciari‘15], Geometric [Herzog‘18],
Unsubtraction [Aguilera-Verdugo’19],
Nested collinear [Caola’17],
Sector-improved residue subtraction [Czakon’10-’14]

qT-slicing [Catain’07],
N-jettiness slicing [Gaunt‘15/Boughezal‘15]
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Partonic cross section beyond NLO
Perturbative expansion of partonic cross section:

Contributions with different multiplicities and # convolutions:
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Sector-improved residue subtraction
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Sector decomposition I
Considering working in CDR:
→ Virtuals are usually done in this regularization:
→ Can we write the real radiation as such expansion?

→ Difficult integrals, analytical impractical (except very simple observables)!
→ Numerics not possible, integrals are divergent → ε-poles!

How to extract these poles? → Sector decomposition!

Divide and conquer the phase space:
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Sector decomposition II
Divide and conquer the phase space:
● Each                    has simpler divergences.

(Soft and collinear (w.r.t parton k,l) of partons i and j)
Parametrization w.r.t. reference parton
(makes divergences explicit:)

● Example: Splitting function

●  Subdivide to factorize divergences
→ double soft factorization:
→ triple collinear factorization

[Czakon’10,Caola’17]
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Sector decomposition III

Factorized singular limits in each sector:

Regularization of divergences:
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Finite NNLO cross section

sector decomposition and master formula

re-arrangement of terms → 4-dim. formulation [Czakon’14,Czakon’19] 

separately finite: ε poles cancel
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Two-loop five-point amplitude

Massless:
[Chawdry’19’20’21] (3A+2j,2A+3j)
[Abreu’20’21] (3A+2j,5j)
[Agarwal’21] (2A+3j)
[Badger’21’] (5j,gggAA)

1 external mass:
[Abreu’21] (W+4j)
[Badger’21’22] (Hqqgg,W4q,WAjjj)
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Overview

Feynman
diagrams

Scalar
integrals

Master
integrals

Pentagon
functions

Old school approach:
Projection Integration-by-parts Differential equations

Automated framework using finite fields
to avoid expression swell based on
FiniteFlow [Peraro’19]

13



27.9.22 UZH Theoretical Particle Physics seminar Rene Poncelet - Cambridge

Projection to scalar integrals

f

Generate diagrams (contributing to leading-colour) with QGRAF

Factorizing decay:

Projection on scalar functions (FORM+Mathematica):
→ anti-commuting γ5 + Larin prescription

14



27.9.22 UZH Theoretical Particle Physics seminar Rene Poncelet - Cambridge

Integration-By-Parts reduction

Prohibitively large number of integrals

Integration-By-Parts identities connect different integrals → system of equations
→ only a small number of independent “master” integrals

LiteRed (+ Finite Fields)
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Master integrals & finite remainder

Canonical basis:

Differential Equations:

Putting everything together (and removing of IR poles):
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Simple iterative solution Chen-iterated integrals
”Pentagon”-functions

[Remiddi, 97]
[Gehrmann, Remiddi, 99]
[Henn, 13]

[Chicherin, Sotnikov, 20]
[Chicherin, Sotnikov, Zoia, 21]
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Scalar
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Master
integrals
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functions
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FiniteFlow [Peraro’19]
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W+2 b-jet production @ LHC
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Experiment: [D0,1210.0627,0410062] [ATLAS,1109.1470,1302.2929][CMS,1312.6608,1608.07561]
Theory W+1 b-jet: [Campbell et al,0611348,0809.3003][Caola et.al.,1107.3714]
Theory W+2 b-jet: mb=0 [Ellis et al,9810489] onshell W: [Cordero et al,0606102 ]W(lv)bb: [Campbell et al,1011.6647]

NLO+PS: [Oleari et al,1105.4488][Frederix et al,1110.5502] W(lv)bb: [Luisoni et al,1502.01213 ]
W(lv)bb+≤3j: [Anger et al, 1712.05721]

W + b - jets
Motivation: → testing perturbative QCD: large NLO QCD corrections, 4FS vs. 5 FS

→ modelling of flavoured jets

W + 1b-jet W + 2b-jet

→ probe b quark PDFs background for:
→ WH(H→ bb)
→ single top

18



27.9.22 UZH Theoretical Particle Physics seminar Rene Poncelet - Cambridge

NLO QCD corrections
[Anger et al, 1712.05721]

● Large NLO QCD corrections + scale 
dependence

● Opening of qg-channel

● Computation of NNLO QCD corrections
● Amplitudes:

● Born: AvH library [Bury’15]
● Oneloop: OpenLoops2 [Buccioni’19]
● Twoloop [Bager’21,Hartanto’22]

● Subtraction → Stripper [Czakon’10’14’19] 
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Setup

● LHC @ 8 TeV in 5 FS, NNPDF31, scale: HT = ET(lv) + pT(b1) + pT(b2)
● Phasespace definition to model [CMS, 1608.07561]:

pT(l) ≥ 30 GeV |y(l)| < 2.1 pT(j) ≥ 25 GeV, |y(j)| < 2.4
● Inclusive (at least 2 b-jets) and exclusive (exactly 2 b-jets, no other jets) jet phase spaces

(defined by the flavour-kT jet algorithm [Banfi’06])

● Inclusive:
~ +20% corrections
~ 7% scale dependence

● Exclusive:
~ + 6% corrections
~ 2.5% scale dependence (7-pt)
Compare decorrelated model: [Steward’12]
~ 11% scale dependence
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NNLO QCD corrections to Wbb production at the LHC
Hartanto, Poncelet, Popescu, Zoia 2205.01687
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Differential cross sections
Transverse momentum of lepton Invariant mass b-jet pair
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Fixed order flavoured jets beyond NLO
What is the problem with FO flavoured jets?
Example NNLO: double real radiation and subtraction

Fixed flavour structureFlavour structure depends on the 
angular configuration

● If F(n+2) does not treat the flavour pair appropriately:
→ double soft singularity not subtracted

➔ Implies correlated treatment of kinematics and flavour information 

Double real matrix element

Double soft subtraction term:
Double soft function * tree ME

IR safety:
Have to match in
double soft limit
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Solution: Modified jet algorithms

Flavour kT algorithm:
Standard kT algorithm:

Pair distance:

“Beam” distance for
determination condition:

Pair distance:

Beam distance:

➔ Implies correlated treatment of kinematics and flavour information 

Infrared safe definition of jet flavor,
Banfi, Salam, Zanderighi hep-ph/0601139 
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Problem solved, isn’t it?
Example: W+c-jet at NNLO QCD with flavour-kT

NNLO QCD with flavour kT

ATLAS data with standard anti-kT

A proper comparison would require to
unfold experimental data
→ (flavour-) kT and anti-kT cluster partonic jets 
differently → Non-trivial procedure. 

NNLO QCD predictions for W+c-jet production at the LHC
Czakon, Mitov, Pellen, Poncelet 2011.01011

Towards Jetography
Salam 0906.1833
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Old problem, new approaches

QCD-aware partonic jet clustering for truth-jet flavour
labelling Buckley, Pollard 1507.00508

Practical Jet Flavour Through NNLO
Caletti, Larkoski, Marzani, Reichelt 2205.01109

A Fragmentation Approach to Jet Flavor
Caletti, Larkoski, Marzani, Reichelt 2205.01117

Infrared-safe flavoured anti-kT jets,
Czakon, Mitov, Poncelet 2205.11879 Proposed modification:

A soft term designed to modify the distance of flavoured pairs.

Renewed interest:
● Anti-kT + flv.-kT flavour matching:

● Fixed-order fragmentation:

● Modified anti-kT algorithm:

B-hadron production in NNLO QCD: application to LHC ttbar events
with leptonic decays,Czakon, Generet, Mitov and Poncelet, 2102.08267

A dress of flavour to suit any jet
Gauld, Huss, Stagnitto 2208.11138
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Tests of IR safety with parton showers
Dress tree-level di-jet events (definite flavour structure: “qq”, “qg” or “gg”)
with radiation and study jet flavour (q or g) as function of kinematics.
In the di-jet limit the flavour needs to correspond to tree level flavours
→  misidentification rate needs to vanish in di-jet back-to-back limit
Flavour kT vs. kT: Flavour anti-kT:

Infrared safe definition of jet flavor,
Banfi, Salam, Zanderighi hep-ph/0601139 
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Tests of IR safety with NNLO FO computations
IR sensitivity of jet cross sections on
(technical) IR regulating parameter x

In the limit x_cut → 0:
IR safe jet flavour → no dependence on x_cut
IR non-safe jet flavour→ logarithmic divergent
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Z+b-jet Phenomenology: Tunable parameter
pp → Z(ll) + b-jetBenchmark process:

Tunable parameter a:
● Limit a → 0 <=> original anti-kT (IR unsafe)
● Large a <=> large modification of cluster sequence

Flavour kT: Flavour anti-kT:
Comparison of different
parameter a to data:
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Z+b-jet Phenomenology: Tunable parameter II
What happens in the presence of many flavoured partons? → NLO PS

Tunable parameter a:
● Small a: Flavour anti-kT results are 

more similar to standard anti-kT
→ small unfolding factors

● Larger a: Larger modification of 
clustering

Good FO perturbative convergence +
Small difference to standard anti-kT

→ a~0.1 is a good candidate
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W+2 bjets: flavour anti-kT

Measurement of the production cross section of a W boson in
association with two b jets in pp collisions at \sqrt{s} = 8 TeV,
CMS 1608.07561

Significant differences between kT and anti-kT
In small DeltaR(bb) region? Beam-function?!

Comparison to data

(assumes small unfolding corrections → wip)

Flavour anti-kT algorithm applied to Wbb production at the LHC
Hartanto, Poncelet, Popescu, Zoia 2209.03280
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Summary & Outlook
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Summary & Outlook

31

Summary
● Sector-improved residue subtraction scheme
● Two-loop five-point amplitudes with external mass
● NNLO QCD corrections to W+2b-jet production at the LHC
● Flavour sensitive jet-algorithms

Outlook
● Application of Stripper to further 5-point signatures
● Working towards non-planar contributions (also for 1 ext. mass)

→ See Abreu’s summary at (HP)2

● Flavour-tagging
→ more studies and comparisons between different algorithms needed
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Backup
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Improved phase space generation
Phase space cut and differential observable introduce
   mis-binning : mismatch between kinematics in subtraction terms

→ leads to increased variance of the integrand
→ slow Monte Carlo convergence

New phase space parametrization [Czakon’19]:
      Minimization of # of different subtraction kinematics in each sector 
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Improved phase space generation
New phase space parametrization:
      Minimization of # of different subtraction kinematics in each sector 

Mapping from n+2 to n particle phase space: 
Requirements:
● Keep direction of reference r fixed
● Invertible for fixed      :
● Preserve Born invariant mass:
Main steps:
● Generate Born configuration
● Generate unresolved partons
● Rescale reference momentum
● Boost non-reference momenta of the Born configuration
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Further technical developments
● Narrow-width-approximation and Double-Pole-Approximation for resonant particles:

● Top-quark pairs + decays [Czakon’19’20]
● W+W- polarization [Poncelet’21]

● Automated interfaces to OpenLoops, Recola and Njet
● Implementation of state-of-the-art twoloop matrix-elements:

● 2→ 2(1) : pp → VV, pp→ Vj, pp → H (j), e+e- → jets, DIS
● 2 → 3: Pp → 3γ, pp → 2γ + j, pp → 3j

● Fragmentation of massless partons into hadrons
● First application to pp → tt +X → l+l- v v~ B + X (NWA) [Czakon’21]

● Countless small improvements in terms of organization and efficiency
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Flavour tagging and fixed order fragmentation

16

● Fixed order QCD predictions with a final state hadron
● Partonic computation + transition of parton to hadron

(collinear fragmentation of massless partons)
● Non-perturbative fragmentation function (similar to PDFs):

Probability to find a hadron with a fraction x of a parton
● Advantage is that the hadrons momentum is measurable

→ usage as b-tag?
● Implementation in the STRIPPER framework

through NNLO QCD:
B-hadron production in NNLO QCD: application to LHC ttbar events with leptonic decays,
Czakon, Generet, Mitov and Poncelet, 2102.08267

B

https://inspirehep.net/literature/1846911
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Subtleties

17

● pT(B) requirement necessary since NNLO fragmentation
function divergent for x → 0 due to g → bbar splitting:

● Also: sensitivity to jet radius
→ Usage as b-tag needs tuning 

Jet radius variation R = 0.8,0.6,0.4
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