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Abstract

We review the theory of black holes in de Sitter spacetime and discuss a way to classify

them based on the relative position of their event horizons. Following some papers, we

implement numerical methods to compute the quasinormal mode frequency spectra of Kerr-

de Sitter black holes. By means of these methods, we investigate the fundamental modes of

some astrophysical black hole types, focusing on gravitational perturbations. We study the

qualitative and quantitative di�erences between these spectra and the known spectrum of

Kerr-Minkowski black holes, in the attempt to quantify the e�ects of a positive cosmological

constant on quasinormal mode frequencies. We �nd that these di�erences are extremely tiny

and thus not detectable.
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1 Introduction

The no-hair theorem states that the external gravitational and electromagnetic

�elds of a stationary black hole are determined uniquely by the hole's mass

M, charge Q and intrinsic angular momentum J (cf. [1]). Observation of

electromagnetic and gravitational radiation emitted by the black hole allows

therefore to infer the value of its parameters. Of particular interest are the so-

called quasinormal modes, damped single-frequency oscillations that dominate

the black hole's response to external perturbations at late times.

The recovery of the black hole parameters is done by measuring the quasinor-

mal mode frequencies and damping times, and by comparing the values with

the quasinormal mode spectra determined by means of black hole perturbation

theory. The study of these spectra is therefore of fundamental importance for

observational tests of the no-hair theorem. Typically, one focuses on grav-

itational radiation, which interacts extremely weekly with matter and thus

reaches the gravitational wave detectors while remaining unchanged.

The quasinormal modes of the Schwarzschild black hole in asymptotically

Minkowski spacetime were �rst studied by Vishveshwara [2], based on the

pioneering work of Regge and Wheeler [3], and further investigated by Chan-

drasekhar and Detweiler ([4], [5]). Thanks to the work of Teukolsky and Press

([6], [7], [8]), who derived the master equations for perturbations of rotating

black holes, the quasinormal modes of Kerr-Minkowski black holes began to

be studied (see Chandrasekhar and Detweiler [9], Detweiler [10]). Ferrari and

Mashhoon [11] developed an analytic method to compute quasinormal mode

frequencies by rewriting the master equation in a Schrödinger-like form and

by approximating the potential with a Pöschl-Teller potential. An alternative

method, which is not based on an approximation, was developed by Leaver

[12] and is called the continued fractions technique.

Later, the computation of quasinormal mode spectra was extended to black

holes in an asymptotically de Sitter spacetime, characterized by the presence

of a positive cosmological constant. Otsuki and Futamase ([13]) �rst computed

the quasinormal mode frequencies of a Schwarzschild-de Sitter black hole based

on the WKB approximation. The Pöschl-Teller approximation devised by Fer-

rari and Mashhoon and the continued fractions method developed by Leaver

were also extended and applied to Schwarzschild-de Sitter black holes by Moss

and Norman [14], Cardoso and Lemos [15] and Yoshida and Futamase [16].

Based on Leaver's method and on the work of Suzuki, Takasugi and Umetsu

([17], [18]), who showed that the Teukolsky equation for Kerr-de Sitter black

holes can be mapped to the so-called Heun's equation, Yoshida, Uchikata and

Futamase [19] �rst computed the quasinormal mode frequencies of Kerr-de

Sitter black holes numerically. Their work was recently improved by Hatsuda
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[20], who made use of the 'HeunG' function implemented in Mathematica 12.1

to compute the quasinormal mode solutions.

Quasinormal modes of Anti-de Sitter black holes, i.e. black holes in a spacetime

with a negative cosmological constant, were also studied (cf. [14], [21]).

So far, the recovery of black hole parameters has been achieved by making

use of a Kerr-Minkowski spectrum. However, observations (cf. [22]) suggest

that the cosmological constant has a positive value, although very small. For

this reason, one should use a Kerr-de Sitter model instead.

The goal of this thesis is to establish whether the use of a Kerr-de Sitter

quasinormal mode spectrum rather than a Kerr-Minkowski one causes some

di�erences in the parameter estimation of astrophysical black holes. To do

this, we examine both qualitative and quantitative di�erences between the

two frequency spectra and determine whether these di�erences are detectable

or not with current gravitational wave detectors. We restrict ourselves to

gravitational perturbations.

In writing this thesis, we noticed a lack of clarity in de�ning the scale of the

problem and in determining the most convenient units to use. For this reason,

we decided to elaborate a clear explanation for this, which also allowed us to

�nd a way to classify Kerr-de Sitter black holes.

This thesis is organised as follows. In Section 2 we provide the necessary

theoretical background to study black holes in a de Sitter universe. In Sec-

tion 3 we �rst introduce quasinormal modes and then discuss possible methods

to compute the frequency spectra of Schwarzschild-de Sitter and Kerr-de Sit-

ter black holes numerically. Finally, we discuss the di�erences between Kerr-

Minkowski and Kerr-de Sitter spectra, focusing on their detectability.
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2 Theoretical background

2.1 De Sitter universe

It is known from observations that the universe is expanding in an accelerated

way. A model that describes this universe rather well is the de Sitter model,

which attributes the expansion entirely to the presence of a positive cosmo-

logical constant. In this chapter, we �rst motivate the choice of this model,

referring to [23] and [24], and then give a more mathematical description of the

de Sitter spacetime, following [25] and [26]. We use the signature (−,+,+,+)

and work in geometrized units (G = c = 1).

We start by brie�y recapitulating some important concepts of cosmology.

As it is well known, the Einstein �eld equations (EFE) read:

Rµν −
1

2
Rgµν + Λgµν = 8πTµν , (2.1)

where Λ is the cosmological constant. Assuming spatial homogeneity and

isotropy, one can make the following ansatz:

ds2 = −dt2 + a2(t)d~x2, (2.2)

Tµν = (ρ+ p)uµuν + pgµν , (2.3)

where ρ and p indicate the �uid density and pressure, respectively. a(t) is the

scale factor which parametrizes the expansion of the universe. By inserting this

ansatz into equation (2.1) and by considering the following transformation,

ρ̃ = ρ+
1

8π
Λ, (2.4)

p̃ = p− 1

8π
Λ, (2.5)

the EFE can be rewritten as

Rµν −
1

2
Rgµν = 8πT̃µν , (2.6)

where

T̃µν = (ρ̃+ p̃)uµuν + p̃gµν . (2.7)

The cosmological constant is therefore absorbed by the stress-energy tensor,

and one can de�ne

ρΛ :=
1

8π
Λ, (2.8)

pΛ := − 1

8π
Λ, (2.9)
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with pΛ = −ρΛ. By solving the EFE with this ansatz, one obtains the Fried-

mann equations (cf. [24]), which lead to

H2 = H2
0

(
Ωr0a(t)−4 + Ωm0a(t)−3 + ΩKa(t)−2 + ΩΛ

)
, (2.10)

where H(t) := ȧ(t)
a(t)

is the Hubble constant and Ωi0 := 8π
3H2

0
ρi0 is called density

parameter, with 1 = Ωr0 + Ωm0 + ΩK + ΩΛ. The subscript 0 indicates the

quantities at the present epoch, r stands for "radiation", m for "matter" and

K for "curvature". As can be seen from equation (2.10), the di�erent energy

densities scale di�erently with the expansion of the universe. The energy den-

sities of the components other than the cosmological constant decrease as the

universe expands. At some point in the past, the cosmological constant Λ

became the dominant term in the total energy density, and the other compo-

nents' densities became smaller than ΩΛ. As time moves forward, the universe

approaches a universe described by

ρ = −p, Tµν = −Λgµν , ΩΛ = 1, H2 = H2
0 =

Λ

3
. (2.11)

From the de�nition of the Hubble constant, one easily derives the scale factor

a(t) for this universe:

a(t) = a0e
Ht = eHt = e

√
Λ
3
t, (2.12)

where we have set a0 = 1.

Observations suggest that the value of Λ is positive. This value can be

obtained from the observational values (cf. [22])

H0 = (67.36± 0.54) km s−1Mpc−1, (2.13)

ΩΛ = 0.6847± 0.0073, (2.14)

using relation (2.11), which in SI units is given by:

Λ = 3

(
H0

c

)2

ΩΛ. (2.15)

The result, in geometrized units, is

Λ = (1.089± 0.029) · 10−52m−2. (2.16)

For Λ > 0, the model described by (2.11) and (2.12) represents an empty

universe expanding forever due to the presence of the cosmological constant,

and is indeed the de Sitter (henceforth dS) universe.

One peculiarity of the dS universe is that it expands so rapidly that, for

each observer, there are regions from which not even light can ever reach him.
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The boundary of this region is called the cosmological event horizon (CEH) of

the observer and its radius, rC , can be determined using the Hubble law,

v = H0D, (2.17)

where v is the recessional velocity of galaxies and D is the proper distance

between the galaxy and the observer (cf. e.g. [27]). By setting v = c = 1 and

D = rC , one can determine the position of the CEH in the reference system of

(2.2):

rC =
1

H0

=

√
3

Λ
. (2.18)

Note that, because of the assumptions of homogeneity and isotropy, the posi-

tion of the CEH is observer-dependent, and the observer lies at r = 0.

We now move to a more formal description of the dS spacetime. One can

write the dS metric by combining (2.2) and (2.12):

ds2 = −dt2 + a(t)2d ~x2 = −dt2 + e2
√

Λ
3
td ~x2 (2.19)

= −dt2 + e2t/rCd ~x2 = −dt2 + e2t/rC (dx2 + dy2 + dz2). (2.20)

The following coordinate transformations will clarify the mathematical struc-

ture of dS spacetime. First, one can consider the transformation

X0 = rCsinh(t/rC) + r2et/rC/2rC , (2.21)

X1 = rCcosh(t/rC)− r2et/rC/2rC , (2.22)

X2 = et/rCx, (2.23)

X3 = et/rCy, (2.24)

X4 = et/rCz, (2.25)

where r2 = x2 + y2 + z2. One notices that the relation

−X2
0 +X2

1 +X2
2 +X2

3 +X2
4 = r2

C (2.26)

is ful�lled. The dS spacetime can therefore be represented as a 4-dimensional

hyperboloid embedded in a 5-dimensional �at Minkowski spacetime ds2 =

−dX2
0 + dX2

1 + dX2
2 + dX2

3 + dX2
4 . However, these coordinates only cover half

of the hyperboloid (X0 +X1 > 0).

One can also choose another set of coordinates, (t′, r′, θ, φ), and consider

the transformation (t′, r′, θ, φ)→ (X0, X1, X2, X3, X4) given by:

X0 =
√
r2
C − r′2cosh(t′/rC), (2.27)

X1 =
√
r2
C − r′2sinh(t′/rC) (2.28)

X2 = r′sinθcosφ, (2.29)

X3 = r′sinθsinφ, (2.30)

X4 = r′cosθ. (2.31)
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The coordinates (t′, r′, θ, φ) are called static coordinates and the metric in these

coordinates is given by:

ds2 = −f(r′)dt′2 + f(r′)−1dr′2 + r′2(dθ2 + sin2 θdφ2), (2.32)

where f(r′) =
(
1− Λ

3
r′2
)
. Static coordinates are relevant for two reasons.

First, one sees that the static slicing has a null boundary where 1− Λ
3
r′2 = 0,

i.e. at r′ = rC =
√

3
Λ
, which corresponds to the position of the cosmological

horizon. Second, when a black hole (BH) is present in dS spacetime, their

metric is usually presented in terms of them, and the horizon strucuture is

more transparent in these coordinates, as we will see later.

Static coordinates are valid only for r < rC , but the singularity at r = rC in

the metric (2.32) is not physical. Coordinate systems in which the metric can

be extended analytically to the whole spacetime are, e.g., the "Kruskal coordi-

nates" (U, V, θ′, φ′). The coordinate transformation (U, V, θ′, φ′) → (t′, r′, θ, φ)

is given by

r′ = 31/2Λ−1/2(UV + 1)(1− UV ), (2.33)

e2Λ1/23−1/2t′ = −V U−1 (2.34)

θ = θ′ (2.35)

φ = φ′ (2.36)

The metric in these coordinates is

ds2 = 3Λ−1(UV − 1)−2 ·
[
−4dUdV + (UV + 1)2(dθ2 + sin2θdφ2)

]
. (2.37)

In this work, we are interested in considering BHs in dS spacetime. There-

fore, we will not make use of Kruskal coordinates, but we will use the static

coordinates for the reasons stated above.

2.2 Black holes in de Sitter universe

In this section, we discuss the BH solutions of the EFE in a non-�at dS back-

ground, following [25], [26] and [19]. We start with the simple case of an

uncharged non-rotating solution (the Schwarzschild-de Sitter BH) and then

move to the more complicated case of an uncharged rotating solution (the

Kerr-de Sitter BH), which represents the most astrophysically relevant BH.

2.2.1 Schwarzschild-de Sitter black holes

Schwarzschild-de Sitter (SdS) spacetime is a spherically symmetric uncharged

BH solution of the EFE which is described by two parameters: the massM ≥ 0

of the BH and the cosmological constant Λ ≥ 0.
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In static coordinates, the metric is given by the expression:

ds2 = −f(r)dt2 + f(r)−1dr2 + r2(dθ2 + sin2 θdφ2), (2.38)

where f(r) = 1 − 2M
r
− Λr2

3
. As for dS spacetime, the positions of the event

horizons correspond to the coordinate singularities of the metric (2.38), which

are given by the solutions of the equation:

f(r) = 1− 2M

r
− Λr2

3
= 0. (2.39)

Equation (2.39) is a truncated cubic equation and generally yields three

complex roots. In order for the solutions of (2.39) to represent physical posi-

tions, they must be real. The condition for this to happen is 0 ≤ Λ ≤ 1/(9M2),

which means that, for a �xed value of M , the value Λmax(M) = 1/(9M2) gives

an upper bound for the value of the cosmological constant3. However, even if

this condition is satis�ed, only two of these three solutions are positive. The

smaller positive solution, r+, represents the black hole event horizon (BEH),

while the larger one, r′+, corresponds to the CEH. The negative solution has

no physical meaning. For Λ < Λmax(M), then the two positive solutions are

distinct and r+ < r′+, i.e. the size of the BEH is smaller than the size of the

CEH. If Λ = Λmax(M), the two horizons coincide, i.e. r+ = r′+, and the BH is

said to be extremal.

2.2.2 Kerr-de Sitter black holes

The axially symmetric uncharged solution of the EFE representing a rotating

BH in dS spacetime is called Kerr-de Sitter (KdS) BH. It is described by three

parameters: the mass M ≥ 0, the spin parameter a = J/M ≥ 0 (J is the

angular momentum, which we choose to be positive) and the cosmological

constant Λ ≥ 0.

In Boyer-Lindquist coordinates, the metric takes the form

ds2 = − ∆r

(1 + α)2ρ2
(dt− a sin2 θdφ)2

+
∆θ sin2 θ

(1 + α)2ρ2
·
[
adt− (r2 + a2)dφ

]2
+ ρ2

(
dr2

∆r

+
dθ2

∆θ

)
,

(2.40)

3Or, equivalently, for a �xed value of Λ, the value Mmax(Λ) = 1/(3
√

Λ) gives an upper

bound for the BH mass. Note that, if Λ = 0, the black hole's mass M has no upper limit.

Since M determines the size of the black hole's horizon, a positive cosmological constant

has the e�ect to restrict the size of the universe.

Throughout the report, we will often �x a value of M and allow the value of Λ to vary,

even if we know that, to study astrophysical BHs, we should do the opposite. However,

as we will also discuss in section 2.3, �xing M and varying Λ is equivalent to �xing Λ and

varying M . We choose the �rst possibility because it will allow us to compare BHs in dS

background with BHs in Minkowski background (Λ = 0) in a more convenient way.
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where

∆r = (r2 + a2)
(

1− α

a2
r2
)
− 2Mr, (2.41)

∆θ = 1 + α cos2 θ, (2.42)

ρ2 = r2 + a2 cos2 θ, (2.43)

α =
Λa2

3
. (2.44)

We now study the limits of the metric (2.41) for a→ 0,M → 0 and Λ→ 0.

In the limit a → 0, one sees that the metric (2.41) becomes the SdS metric

(2.38). In the limit Λ → 0, the KdS metric reduces to the KM metric (cf.

[28]):

ds2 =−
(

1− 2Mr

Σ

)
dt2 +

Σ

∆
dr2 + Σdθ2

+

(
r2 + a2 +

2Mra2

Σ
sin2 θ

)
sin2 θdφ2 − 2Mra sin2 θ

Σ
dtdφ,

(2.45)

where

Σ = r2 + a2 cos2 θ, (2.46)

∆ = r2 − 2Mr + a2. (2.47)

This metric has coordinate singularities where ∆ = 0, i.e. for r± = M ±√
M2 − a2, which are the positions of the inner and outer BEH. Finally, in the

limit M → 0, the KdS metric (2.41) reduces to the metric

ds2 = (r2 + a2 cos2 θ)

[
dr2

(r2 + a2)(1− Λr2

3
)

+
dθ2

1 + Λ
3
a2 cos2 θ

]

+ sin2 θ
1 + Λ

3
a2 cos2 θ

r2 + a2 cos2 θ

[
adt− (r2 + a2)dφ

1 + Λ
3
a2

]2

−
(r2 + a2)(1− Λr2

3
)

r2 + a2 cos2 θ

[
dt− a sin2 θdφ

1 + Λ
3
a2

]2

.

(2.48)

This metric is the dS metric in Boyer-Lindquist coordinates. These coordinates

can be "untwisted" by the following coordinate transformation

T =
t

1 + Λ
3
a2
, φ̄ = φ− aΛt

3(1 + Λ
3
a2)

, y cos Θ = r cos θ

y2 =
1

1 + Λ
3
a2

[
r2∆θ + a2 sin2 θ

] , (2.49)

and one obtains the dS metric in the known form (static coordinates):

ds2 = −
(

1− Λy2

3

)
dT 2 +

1

1− Λy2

3

dy2 + y2(dΘ2 + sin2 Θdφ̄2). (2.50)
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To understand the horizon structure of the KdS spacetime, one can look

for the locations of the apparent radial singularities of the metric (2.41), in the

same way as it was done for the SdS case. The position of the event horizons

is then given by the equation:

∆r = (r2 + a2)
(

1− α

a2
r2
)
− 2Mr = 0. (2.51)

This equation is a quartic equation and generally yields four complex solu-

tions. As before, the solutions are required to be all real in order to represent

positions. Even in the case of four real solutions, equation (2.51) gives only

three positive roots. Real roots can be written in ascending order

r′− < r− < r+ < r′+, (2.52)

where r′− is the negative root and has no physical meaning, r− represents the

position of the inner BEH, r+ is the position of the outer BEH and r′+ is the

position of the CEH.

If we �x a value of M and a, for example, the condition for the solutions

to be real translates into two relations, which determine an upper bound and

a lower bound for the value of Λ.

The upper bound for the value of Λ, which we call Λmax = Λmax(a,M), must

satisfy the following relation:

0 =

[
1

Λmax
(1− αmax)− 4a2

]3

− 1

Λmax

[
(1− αmax)

[
1

Λmax
(1− αmax)

2 + 12a2

]
− 18M2

]2

,

(2.53)

where αmax = Λmaxa
2/3. For Λ = Λmax, the outer BEH and the CEH coincide

(r+ = r′+) and the BH is extremal.

The second condition, which determines a lower bound for Λ, re�ects another

extremal case where the inner and the outer BEHs coincide, i.e. when r− = r+.

Since r± are roots of the fourth order polynomial ∆r(r), the only possibility

to have r+ = r− is when the two roots merge at a local extremum of ∆r(r) (cf.

[25]). The lower bound Λmin = Λmin(a,M) must then satisfy the equation

∂r∆r(r = r±) = 0. (2.54)

This equations gives positive solutions for Λmin only for a > 1. We therefore

consider max{0,Λmin(a,M)} as a lower bound for Λ at �xed a and M .

These results are summarized in Figure 1. Here, we choose units4 ofM = 1

and plot Λmax (in blue) and Λmin (in red) as functions of the spin parameter

4See section 2.3 for a more detailed discussion about the units and scale system.
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Figure 1: Here, we plot Λmax and Λmin versus the spin parameter a in units of

M = 1. The grey region represents the parameter space for BH solutions.

a. The grey region contains all pairs (Λ, a) for which Λ > 0 and for which

equation (2.51) has four distinct real solutions. Hence, it represents the space

of parameters for which a BH solution exists. The blue line represents the

extremal case r+ = r′+. For a > 1, the red line represents the extremal case

r− = r+, while for a ≤ 1 it represents the Λ = 0 (KM) case. The point where

the blue line meets the red line is the triply degenerate limit of KdS, where

the three horizons coincide (r− = r+ = r′+).

We check that in the limit a → 0, equation (2.53) yields Λmax = 1/(9M2)

(which is equal to 0, 1̄ in units ofM = 1) that corresponds to the upper bound

of the SdS case. In the limit Λ → 0, one obtains amax(Λ) = M (equal to 1

in units of M = 1), which is the upper bound for the spin parameter in the

KM case. We note that a BH solution with a spin a > M is only possible

in presence of a non-zero cosmological constant, and that if the cosmological

constant exceeds 1/(9M2), a BH solution is only possible if the BH is spinning.

We conclude the discussion about the horizons structure with a remark on

the comparative horizon size of the empty dS, the SdS and the KdS BHs. We

report here a list of results derived in Appendix A of [26]:

• The increase of M (holding a and Λ �x) increases the size of the BEHs

but decreases the size of the CEH.

• The increase of Λ (holding a and M �x) increases the size of the BEHs

but decreases the size of the CEH.

• The increase of a (holding M and Λ �x) decreases the size of the BEHs

but increases the size of the CEH.

13



Therefore, the CEH of empty dS spacetime is not at rC =
√

3/Λ anymore

when a BH is present. In the same way, the event horizons of a Kerr BH

are not in the same position (r± = M ±
√
M2 + a2) anymore in presence of a

non-zero cosmological constant.

From the considerations reported in this section, we see that the horizon

structure of the KdS spacetime only depends on the parameters M , Λ and

a. In the next section, we analyze how these parameters set the scale of the

problem and we discuss a choice of units suitable for our purposes.

2.3 Scales and units

When dealing with the spacetimes which we have discussed above, the relevant

quantities are the massM of the BH, the cosmological constant Λ and the BH's

spin parameter a (which determine the position of the horizons). Another

important quantity for this work, which we include in our discussion on units,

is the frequency ω of the so-called quasinormal modes, which will be de�ned

in the next section.

Throughout this report, we make use of geometrized units (G = c = 1). In

this unit system, the mass and the spin parameter have the geometric dimen-

sion of a length (L), the frequency has dimension L−1 and the cosmological

constant has dimension L−2. We denote by a, ω, M and Λ (without any sub-

script) the quantities expressed in these units. Depending on the spacetime

considered, other quantities besides G and c can be set to unity in order to

simplify the notation and to make the problem scale-invariant. In the follow-

ing, we �x a value of the spin parameter a and discuss the possible length

scales of the various spacetimes.

In the KM spacetime, for �xed a, the only length scale is given by the mass

M , which determines the position of the event horizons. Therefore, setting

M = 1 is equivalent to rescaling all the quantities by the mass in geometrized

units. If we denote by aM and ωM the quantities in these units, this means that

aM = a/M and ωM = ωM . All the quantities become therefore adimensional

and scale-invariant. Note that all KM BHs can be scaled into each other.

In dS spacetime, the length scale is given by the position of the CEH

rC =
√

3/Λ (cf. above and [25]). For this reason, it makes sense to set rC = 1,

i.e. Λ = 3 (as in [19]). This is equivalent to rescaling all the quantities by rC .

If we denote with ωΛ the frequency in these units, we have ωΛ = ωrC .

If one considers KdS spacetime, the situation becomes slightly more com-

plicated, because the spacetime is characterized by the relative position of the

BEH and of the CEH, and it is not possible to de�ne a single length scale. For

this reason, either the BH mass or the position of the CEH can be chosen as a

scale for the problem. Setting rC = 1 (choosing rC as a length scale) is equiv-
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alent to writing aΛ = a/rC , MΛ = M/rC and ωΛ = ωrC , while setting M = 1

(choosing M as a length scale) is equivalent to writing aM = a/M , ωM = ωM

and ΛM = ΛM2 (the subscripts Λ and M denote the quantities expressed in

units of rC = 1 and M = 1, respectively, as we have de�ned above).

Depending on the situation, either one or the other unit system is more

convenient. If we are interested in studying BHs with �xed mass for Λ→ 0, we

choose the M = 1 system. In fact, rC = 1 units are not suitable in this case,

because some quantities such as the frequency would tend to in�nity as Λ→ 0

in this unit system5. Conversely, if we want to study a spacetime characterized

by a �xed value of Λ containing BHs with very small masses, we choose rC = 1

units, because some quantities such as the spin parameter tend to in�nity6 as

M → 0. In cases where we do not intend to study these limits, both systems

are good.

In KdS spacetime, for �xed a, the quantity ΛM2 (or M/rC , which corre-

sponds to
√

ΛM2/3) characterizes the spacetime in the sense that it contains

information about the relative positions of the horizons. This means that BH

solutions with the same value of ΛM2 can be scaled one into the other. Note

that the case ΛM2 = 0 describes both KM (which is KdS in the limit Λ→ 0, as

we have seen), dS universe (which is KdS in the limit M → 0) and Minkowski

spacetime (M = Λ = 0).

In the following, we are interested in studying quasinormal mode frequen-

cies of KdS spacetime for M 6= 0. Since all the quantities which are relevant

for this problem scale with the BH mass, we can de�ne an equivalence relation

by saying that two BH solutions are equivalent if they can be scaled into each

other. From this de�nition, it follows that all KM BHs are equivalent to each

other, while KdS BHs can be subdivided into equivalence classes labeled by the

value of ΛM2 (KM BHs form the equivalence class with ΛM2 = 0). Note that

this de�nition only makes sense for problems which scale with the BH mass

M and with the cosmological constant Λ, but not for other kinds of problems.

For example, as mentioned also in [29], if we were studying the emission of

determined massive particle species (characterized by a speci�c mass) by BHs

due to Hawking radiation, the problem would not scale with M , because the

mass of the particles is �xed for a particle species and does not scale with the

black hole's mass. Therefore, in this case, it would not make sense to de�ne

this equivalence relation.

5limΛ→0 ωΛ = limΛ→0 ωrC = limΛ→0 ω
√

3/Λ =∞.
6limM→0 aM = limM→0 a/M =∞.
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2.3.1 Astrophysical black holes

In our work, we want to study astrophysical BHs. For this purpose, we need

to determine the equivalence class, as de�ned above, to which they belong. To

do this, we estimate the value of ΛM2 that characterizes them.

Astrophysical black holes have masses between 10−1 and 109 solar masses,

which in geometrized units corresponds to

(10−1 − 109)M� = (10−1 − 109) · 1.989 · 1030 kg · G
c2

m

kg

∼ (102 − 1012)m,

(2.55)

where we have used that M� = 1.989 · 1030 is the mass of the sun, G is the

gravitational constant and c is the speed of light. Observations suggest that

the cosmological constant has a value of Λ ∼ 10−52m−2 in geometrized units

(cf. (2.16)). Therefore, for astrophysical black holes, we expect

ΛM2 ∼ 10−48 − 10−28. (2.56)

The values of ΛM2 for some types of astrophysical BHs are reported in Table

1.

BH type BH mass (in M� units) Value of ΛM2

sub-solar mass BH 10−1 10−48

stellar mass BH 10 10−44

intermediate BH 104 10−38

supermassive BH 109 10−28

Table 1: Values of ΛM2 for four types of astrophysical black holes.
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3 Quasinormal modes of black holes in de Sitter

spacetime

3.1 Introduction on quasinormal modes

When a black hole undergoes a gravitational, electromagnetic or scalar per-

turbation, the time evolution of the initial displacement from its equilibrium

state is dominated at late times by 'quasinormal modes' (henceforth QNMs),

damped oscillations with single complex frequencies whose real and imaginary

parts represent the oscillation frequency and the damping rate, respectively.

The 'normal' part in the name refers to the close analogy to normal modes

(although there are some important di�erences), while the 'quasi' expresses

the fact that they are not stationary in time, as normal modes are, but are

strongly damped. These oscillations involve the spacetime metric between the

black hole horizon and the cosmological horizon (or spatial in�nity, if no CEH

is present, i.e. if Λ = 0).

According to the no-hair theorem in standard general relativity, the QNM

frequencies only depend on the parameters of the black hole (mass, angular

momentum and charge), but they are independent of the initial perturbation

that excited them, which only a�ects their amplitude. It was �rst shown

by Otsuki and Futamase in [13] that they also depend on the value of the

cosmological constant Λ.

In this section, which is taken from Nollert [30], Chandrasekhar [31] and

from Yoshida, Uchikata and Futamase [19], we de�ne QNMs and explain how

to derive them in a general case. In particular, we focus on gravitational

perturbations. Typically, one is interested in studying the gravitational QNMs

emitted after the coalescence of two compact objects while settling down to a

BH, in a stage called "ringdown" ([32]).

QNMs are a concept that arises from linearized perturbation calculations.

Hence, the starting point to derive them is perturbation theory. For gravita-

tional perturbations, the standard method to apply consists in regarding the

metric as the sum of the unperturbed background metric ḡµν and a perturba-

tion hµν (|hµν | � 1):

gµν = ḡµν + hµν , (3.1)

inserting this ansatz into the Einstein �eld equations and keeping terms up to

the �rst order in hµν . However, this method is not convenient for the study

of BH perturbations, since the calculations become too complicated. Instead,

one prefers to make use of the Newman-Penrose tetrad formalism7 to obtain

7We do not describe this formalism in detail, but we refer the reader to chapters 7 and
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the master equations of linear perturbations. In this formalism, gravitational

perturbations are described by the Newman-Penrose scalar quantities:

Ψ0 := −Cµνλσlµmνlλmσ, (3.2)

Ψ4 := −Cµνλσnµm̄νnλm̄σ, (3.3)

where Cµνλσ is the Weyl tensor. These quantities encode all information about

the gauge invariant part of the ingoing and the outgoing radiation, respectively.

In this work, we only focus on the outgoing part, described by Ψ4.

The gravitational perturbation of a KM BH is described by a second-order

partial di�erential equation. In general, the master equations for linear pertur-

bations on a stationary and axially symmetric spacetime are not separable into

ordinary di�erential equations for each variable. One surprising fact, which was

�rst shown by Teukolsky [33], is that BHs are an exception. Because of the

spacetime symmetries, the variables time t and azimuthal angle ϕ only con-

tribute to the perturbation amplitude with a phase factor e−iωteimϕ, where ω is

the complex QNM frequency. The remaining variables can then be separated

by making the following ansatz:

Ψ = R(r)S(θ)e−iωt+imϕ. (3.4)

After inserting this ansatz in the master equations, one obtains two ordinary

di�erential equations, which are named the Teukolsky equations. Thanks to

these equations, together with appropriate boundary conditions, one can cal-

culate the QNMs of a KM BH. The same applies to KdS BHs, as was shown

in [19].

The handling of the QNM problem is to some extent similar to the study of

normal modes. In normal-mode analysis, one usually has a system of ordinary

di�erential equations and imposes boundary conditions such that the solutions

must vanish outside a �nite region of space. However, perturbations of black

holes are di�erent. In fact, the region which one considers is the metric between

the BEH and the CEH (or spatial in�nity), but the perturbations propagate

throughout all space and cannot be zero outside a �nite region. Instead, one

requires the perturbation to be purely ingoing at the BEH and purely outgo-

ing at the CEH (or at spatial in�nity). These boundary conditions, applied to

the radial Teukolsy equation, re�ect the physical fact that nothing can escape

from the BH horizon or come in through the CEH. If the CEH is not present,

the condition simply means that one does not want gravitational radiation un-

related to the original perturbation to come from spatial in�nity and disturb

the system.

8 of [31] for a complete handling.
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Another important di�erence between QNMs and normal modes is that quasi-

normal modes do not form a complete basis set for the space of solutions, in

general, while normal modes do. Therefore, it is not possible to describe the

time evolution of any initial perturbation as a superposition of such quasinor-

mal modes. However, a signal may be analysed in terms of quasinormal modes,

in the attempt to extract parameters such as frequency and damping factor.

The QNMs are labeled with quantum numbers (s, l,m), where s is the

spin weight (which is related to the spin S by S = |s|), m is the azimuthal

quantum number and l is an integer satisfying l ≥ max(|s|, |m|), which is

called angular quantum number. This is due to the fact that, mathematically,

their angular part is represented by spin-weighted spheroidal harmonics (cf.

Appendix A). As shown by Leaver [12], for each set of angular quantum

numbers (s, l,m), a black hole possesses an in�nite number of QNM frequencies

{ωnlm : n = 0, 1, 2, ...}. These are labeled by an additional quantum number n,

that be interpreted as the radial mode number, and the frequencies are labeled

by the rule |Im(ω(n+1)lm)| > |Im(ωnlm)| at the limit a → 0. This means that

the fundamental mode (n = 0) has the smallest damping factor and therefore

predominates the QNM evolution at late times.

The QNM spectrum of KM, depicted in Figure 2, is very well known. Let

us revise it and comment on its features.

Figure 2: QNM spectrum representing the (s, l) = (−2, 2) mode of a KM BH.

This plot was generated using the 'qnm' package for Python [34] (cf. Appendix

C).

As mentioned in [19], the e�ects of the BH rotation on the KM QNM

spectrum can be summarized as follows:
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• At a = 0 and for a given value of l, the frequencies do not depend on the

value of the azimuthal quantum number m.

• When increasing a, the azimuthal degeneracy is resolved in a way that

resembles the Zeeman splitting, and the dependency on m appears. The

real part of the modes associated to positive values of m increases signif-

icantly, while the real part of those having m < 0 decreases slowly. The

imaginary part of modes associated to m > 0 increases rapidly, making

the modes less damped, while the imaginary part of modes with m ≤ 0

increases less signi�cantly.

Yoshida, Uchikata and Futamase de�ne the modes with negative m as "ret-

rograde", suggesting that the decrease in the real part of the frequency with

increasing spin is due to frame dragging e�ect caused by the rotation of the

system, similarly to what happens in presence of the Coriolis force in New-

tonian mechanics. Inspired by this hint, we attempt to give a more precise

explanation of the phenomenon.

We begin by brie�y reminding the reader of the frame-dragging e�ect (cf.

chapter 33.4 of [1] for a more detailed discussion). As it is well known, the

KM metric is given in Boyer-Lindquist coordinates as in (2.45) with respect to

an observer lying in�nitely far away from the BH, who is at rest with respect

to the "�xed stars". With respect to this reference system, the local inertial

frame at radius r rotates with an angular velocity given by (cf. eq. (7) in [19]):

Ω(r) =
a

r2 + a2
. (3.5)

We note that, because of the way it is de�ned in (3.4), the frequency ω

is directly related to the angular phase velocity of the wave pattern revolving

the axis with respect to the observer at in�nity (as it was already suggested

in [19]). This can be seen by rewriting the phase factor in (3.4) as:

eimϕ−iωt = e−Im(ω)tei(mϕ−Re(ω)t). (3.6)

Here, m acts as a wavenumber and Re(ω) as an angular frequency. Therefore,

the angular phase velocity with respect to the observer at in�nity Ω∞ can be

expressed as Ω∞ = Re(ω)/m. Note that, once a positive direction (clockwise

or counterclockwise) is �xed, this also determines the sign of m and hence

the direction of the wave pattern. Modes associated to positive (negative)

values of m have positive (negative) angular velocity, and therefore the wave

pattern associated to them moves in (positive) negative direction ("prograde"

and "retrograde" motion, respectively). For m = 0, the dependence of the

wave on ϕ disappears, and so the wave pattern becomes constant in space (for

�xed r, θ and t). Note that, as we have seen above, reversing the direction of
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positive rotation is a symmetry which leaves the phase velocity, as well as the

damping factor, invariant8.

If the BH is non-rotating, one sees that the real part of all modes is the

same. If the BH has a non-zero spin, then, due to frame-dragging e�ect, all

modes would have the same Re(ω) only with respect to a local observer near

the BH, which rotates with the same angular velocity as the BH9, but not

with respect to the global system de�ned by (2.45). For the latter observer,

the velocity of the frame is summed to the one of the modes and, since the

Re(ω) correspond to the observed phase velocity divided by m, the frequencies

of the various modes are not the same anymore. To see this, we can write the

angular velocity of the m-mode in the local frame at radius r, Ω̄(r), as

Ω̄(r) = Ω∞ − Ω(r), (3.7)

or

ω = ω̄(r) +mΩ(r) = ω̄(r) +m
a

r2 + a2
, (3.8)

where ω̄(r) = mΩ̄(r) (also note that limr→∞ ω̄(r) = ω). Equation (3.8) also

appears in [19]. From this equation, the dependence of the real part of the

QNM frequencies on m becomes clear. In fact, a local observer which lies at

a small radius r will rotate with an angular velocity ω̄(r) which is similar to

the one of the BH. From his point of view, the BH will appear to be close to

a Schwarzschild BH, and he would not see the splitting in the frequencies. So,

ω̄(r) would not depend on m. The splitting as observed in the system de�ned

by (2.45) is then due to thema/(r2+a2) term, which causes the frequency of the

modes associated to negative m's to decrease, while the frequency associated

to positive m's to increase as a increases (at least from a = 0 to a = r).

The imaginary part of the spectrum, which represents the damping factor as

a function of a, splits in a way similar to real part, but the values always remain

negative. Unlike for the real part, we do not know a physical explanation for

the splitting.

3.2 Motivation and goal

There are two main motivations to study QNMs of a BH: The �rst one is that

they allow to determine whether the spacetime is stable under perturbations
8The QNMs of the KM BH ([12]) and the ones of the KdS BH ([19]) present the symmetry

(ω,m) → (−ω∗,−m), which means that the two QNMs characterized by the same phase

velocities of the wave pattern revolving the symmetry axis, Re(ω)/m and Re(−ω∗)/ −m,

and the same damping time Im(ω) and Im(−ω∗), are identical. This is clear from a physical

point of view, and will become clear also mathematically once we will write the Teukolsky

equations explicitly. Because of this symmetry, one normally considers only the modes whose

real part of the frequency is positive in the limit a→ 0.
9although we are not sure whether this is possible.
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or not, the second is that they contain information about the fundamental

parameters of the BH solution, such as M , a and Λ.

To study the stability, one assumes a harmonic time dependence e−iωt of the

perturbations (this is possible since all spacetimes considered are stationary,

as mentioned above), where ω is the complex QNM frequency. If Im(ω) is

negative, the amplitude decays in time and the spacetime is stable under the

considered perturbation. If Im(ω) = 0, the oscillations are not damped and the

spacetime is said to be neutrally stable. If Im(ω) is positive, the amplitudes

of the solutions grow exponentially in time and the spacetime is said to be

unstable. The stability of the SM and KM BH has been studied ([35], [2],

[36], [37]) and it has been shown that these types of BHs are stable under

gravitational perturbations. For the KdS BH, the stability under gravitational

and electromagnetic perturbations was studied in [19], and no unstable modes

were found.

To extract information about the fundamental parameters of the BH from

the complex QNM frequencies, one needs to know the QNM frequency spec-

trum of the considered spacetime model as a function of M and a, which can

be determined numerically.

Currently, one assumes the spacetimes to be asymptotically Minkowski

and uses the known KM spectrum, depicted in Figure 2, to infer the BH

parameters from the detected QNM frequencies. As discussed in section 2.3,

for a �xed value of ΛM2 (ΛM2 = 0 for KM BH), the frequency and the

angular momentum scale with the BH mass. Therefore, if one knows one or

more complex frequencies with su�cient accuracy, the mass and the angular

momentum of the BH can be determined from the spectrum.

However, observational tests suggest that the spacetime is not asymptoti-

cally �at, and therefore one should consider the spectrum of KdS QNMs rather

than the KM one as a model to recover the BH parameters. Such a spectrum

was �rst determined in [19] for some values of ΛM2, but not for the values

corresponding to astrophysical BHs (see Table 1).

In this work, we aim to quantify the e�ects of assuming a KdS model instead

of a KM one to determine mass and angular momentum of astrophysical BHs.

To do this, we �rst need to compute the QNM frequency spectra of KdS BHs

described in Table 1. Then, we need to study how these spectra di�er from

the KM QNM spectrum qualitatively and quantitatively, and whether these

di�erences are measurable with the existing gravitational wave detectors. If

it was the case, then the mass and the angular momentum of astrophysical

BHs should be computed using the KdS QNM model instead of the KM one

to obtain more accurate values.

To study qualitative di�erences, we have to plot the spectra corresponding
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to the di�erent cases in the same graph. Since we want to compare the case

ΛM2 = 0 to the cases of Table 1, it is convenient to make use of units of

M = 1. We therefore plot ωM = ωM versus aM = a/M to obtain the spectra,

like in Figure 2.

Once the QNM spectra as a function of M , a and Λ is determined, we

quantify the di�erences between them. Concretely, we proceed in the following

way: We �rst choose two modes with large amplitude10, like e.g. (l = 2,m = 2)

and (l = 3,m = 3) and, for �xed M and a, we compute:

∆Λ := |ω(2,2)(Λ)− ω(3,3)(Λ)|, (3.9)

where ω(l,m)(Λ) indicates the complex QNM frequency of the (l,m) mode at a

given value of Λ. We compute this for Λ = 0 and for Λ = Λobs ∼ 10−52m−2

and for the BH masses of Table 1. Then, we determine whether the di�erence

∆ := |∆Λ=0 −∆Λ=Λobs| (3.10)

is measurable or not11.

In the next sections, we describe in detail how QNMs of BHs in a dS

background can be derived and computed numerically, and we apply these

numerical methods to solve the problems described above. We begin by dis-

cussing the SdS case and then move to the more general case of KdS QNMs.

The reason why we start with SdS, which is a special case of KdS, is that it

represents the easiest case. Moreover, the SdS QNM frequencies will be used

as starting values for numerical algorithms that allow to compute the KdS

QNM frequencies. After this, in section 3.5, we will discuss the measurability

of the above mentioned frequency di�erences.

3.3 Schwarzschild-de Sitter spacetime

In this section, we investigate QNMs of SdS spacetime following Otsuki and

Futamase [13], Ferrari and Mashhoon [11] and Zhidenko [38].

We begin by presenting how to obtain the master equations using Newman-

Penrose formalism and then focus on their solutions.
10As explained in [32], the ringdown phase is dominated by the mode (2, 2), also called

dominant mode. Depending on the mass ratio of the compact objects that merged forming

the BH, the (3, 3) mode can become the subdominant mode with highest amplitude, and

hence the easiest to detect with high accuracy.
11As mentioned above, if one assumes the black hole to be KM, to every measured dif-

ference |ω(2,2) − ω(3,3)| one can associate a value of (M,a). However, if the di�erence ∆

is resolvable, the cosmological constant cannot be neglected. In this case, the same val-

ues of (M,a) must be associated to a di�erent Λ or, equivalently, to a measured value of

|ω(2,2) − ω(3,3)| one must associate di�erent values of (M,a).
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For applying perturbation theory, a convenient choice of the tetrad basis is

represented by the principle Newman-Penrose null tetrad (lµ, nµ,mµ, m̄µ):

lµ =

((
1− 2M

r
− Λr2

3

)−1

, 1, 0, 0

)
, (3.11a)

nµ =

(
1

2
,−1

2

(
1− 2M

r
− Λr2

3

)
, 0, 0

)
, (3.11b)

mµ =
1√
2r

(
0, 0, 1,

i

sinθ

)
, (3.11c)

m̄µ = m∗µ. (3.11d)

where m∗µ indicates the complex conjugate of mµ. As explained in section

3.1, Newman-Penrose formalism allows to obtain master equations for the

gravitational perturbations, described by the scalars Ψ0 and Ψ4 de�ned in

(3.2) and (3.3). These quantities are characterized by the spin weights s = 2

and s = −2, respectively. To underline this, one can de�ne the so called

Teukolsky wave-function ψs for s = ±2 as

ψ2 = Ψ0,

ψ−2 = ρ−4Ψ4,
(3.12)

where ρ =
√
r2 + a2 cos2 θ. For the moment, we keep the subscript s, but later

we will focus only on the mode s = −2, representing outgoing gravitational

radiation. As we have mentioned in section 3.1, the separation of variables is

achieved with the following ansatz:

ψs = sR
m
l (r)sS

m
l (θ)e−iωt+imϕ, (3.13)

where ω is the complex QNM frequency and l and m are the angular and the

azimuthal quantum numbers, respectively. Henceforth, the subscripts s and l

and the superscript m are omitted. After separating the variables, one obtains

the angular and radial Teukolsky equations for R(r) and S(θ). A peculiarity

of the SdS case is that, contrary to the KdS case which we will discuss later,

the frequency ω is only contained in the radial equation, which can be cast in

the simple form (
d2

dr∗2
+ ω2 − V (r∗)

)
R(r∗) = 0, (3.14)

where the e�ective potential takes the form

V (r∗) = f(r)

(
l(l + 1)

r2
− 6M

r3

)
, (3.15)

where f(r) = 1− 2M
r
− Λr2

3
and r = r(r∗), where r∗ is the tortoise coordinate,

which maps r = r+ to r∗ = −∞ and r = r′+ to r∗ = +∞ and is de�ned by the

transformation

dr∗ =
dr

f(r)
. (3.16)
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The potential (3.15) vanishes at the locations of the two horizons, i.e. for

r∗ → ±∞. The QNMs are de�ned to be the solutions of (3.14) that satisfy

the boundary conditions of purely outgoing waves at in�nity and purely ingoing

waves at the horizon, and so the radial part must satisfy12

R(r∗) ∝ e±iωr
∗
, for r∗ → ±∞. (3.17)

The exact QNM frequencies are usually determined numerically using the

so-called continued fractions method devised by Leaver [12] (see also Moss and

Norman [14] and Yoshida and Futamase [16]). However, an implementation

of this method presents some numerical di�culties, as we will discuss later for

the more general case of KdS. Another possibility consists in making use of the

Heun's function method, which we will discuss later for KdS as well. Here, we

decide to follow Zhidenko [38] and Ferrari and Mashhoon [11] (see also Moss

and Norman [14]), who use the Pöschl-Teller approximation to compute the

QNM frequencies analytically. A further possibility, which we do not discuss,

consists in applying the WKB approximation (cf. e.g. [13]).

3.3.1 Quasinormal mode frequencies via the Pöschl-Teller potential

approximation

This method consists in approximating the potential V (r∗) with a potential

of similar shape, for which the solutions of equation (3.14) can be evaluated

analytically. This requirement is satis�ed by the Pöschl-Teller potential, which

has the form

VPT (r∗) =
V0

cosh2
(
r∗

b

) , (3.18)

where

b :=
1√

− 1
2V0

d2V (r∗0)

dr∗2

, (3.19)

r∗0 is the position of the maximum of V (r∗) and V0 := V (r∗0).

We now follow [11] to show how to compute the QNM frequencies analyti-

cally for this approximate potential. The idea is to map equation (3.14) to a

Schrödinger-like wave equation, such that the solutions of (3.14) satisfying the

boundary condition (3.17) are mapped to bound states of the new equation.

The bound states of the Schrödinger equation, as it is well known, can be

computed analytically. After computing them, one considers the inverse map

and obtains the QNMs.

12The reason why we impose exactly this boundary condition will be explained later in

the more general case of KdS QNMs (see equation (3.87)).
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To do this, one considers the following transformation

r∗ → −ir∗

(V0, b)→ (V0,−ib).
(3.20)

For simplicity, let us denote p = (V0, b) and p′ = (V0,−ib). It can be easily seen
from (3.18) that the potential remains invariant under this transformation

V (−ir∗, p′) = V (r∗, p). (3.21)

One then de�nes the functions φ and Ω such that

φ(r∗, p) = R(−ir∗, p′) (3.22)

Ω(p) = ω(p′). (3.23)

Then, since

d2

dr∗2
φ(r∗, p) = − d2

dr∗2
R(−ir∗, p′) = (ω2(p′)− V )R(−ir∗, p′)

= (Ω2(p)− V )φ(r∗, p),

(3.24)

φ satis�es the equation:

d2φ

dr∗2
+ (−Ω2 + V )φ = 0, (3.25)

and the boundary conditions imposed in (3.17) are reduced to

φ(r∗, p) = R(−ir∗, p′) ∝ e±iω(p′)(−ir∗) = e±iΩ(−ir∗) = e±Ωr∗ , for r∗ → ±∞.
(3.26)

If one compares equation (3.25) with the time-independent Schroedinger equa-

tion (TISE), one sees that, if Ω = Re(Ω) < 0, solving equation (3.25) with the

boundary conditions (3.26) corresponds to �nding the bound states of the

TISE, with the potential13 −V , which correspond to the eigenvalues Ω2.

The bound states of the potential −VPT can be computed analytically and

are given by (cf. Appendix A of [11])14:

Ωn(V0, b) =
1

b

[
−
√

1

4
+ V0b2 + (n+

1

2
)

]
, (3.27)

13Note that QNMs do not necessarily have to satisfy the condition Ω = Re(Ω) < 0.

However, the ones which do satisfy it can be mapped to bound states of the TISE. Therefore,

this method only allows to compute those QNMs for which this condition is satis�ed, but

not all QNMs.
14Because of the fact that we de�ne ω in (3.32) in a di�erent way than in [11], the signs

in equation (26) of [11] must be changed.
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where n ≥ 0 is an integer15. Since the inverse transformation to (3.20) is

r∗ → ir∗

(V0, b)→ (V0, ib),
(3.28)

the QNMs are obtained from Ωn(V0, ib)
16

ωn(V0, b) = Ωn(V0, ib) =
1

b

[
±
√
V0b2 − 1

4
− (n+

1

2
)i

]
, (3.29)

where we have used that 4V0b
2 > 1 (for 4V0b

2 ≤ 1, Re(ωn) = 0, and hence no

propagating solution exists).

3.3.2 Implementation

We have implemented a code in Mathematica to compute the QNMs frequen-

cies of the SdS BH using the formulae obtained in the previous section.

We consider the potential V (r) of eq. (3.15). Using the fact that r = r(r∗),
dr
dr∗

= f(r) and the chain rule, we compute d2

dr∗2
V (r) as follows:

d2

dr∗2
V (r) = f(r) · d

dr
f(r) · d

dr
V (r) + f(r)2 · d

2

dr2
V (r). (3.30)

The location r0 (= r0(r∗0)) of the maximum of V (r) and the value of V (r0)

are found numerically using the 'Maximize' function. Then, the parameter

b is computed using eq. (3.19), and the quasinormal mode frequencies are

computed using eq. (3.29).

In our computations, we use M = 1 units and keep 40 digits of preci-

sion in all intermediate values in order to reduce the errors due to numerical

truncations, as suggested in [38]. The code is reported in Appendix D.1.

3.3.3 Results

For n = 0 and l = 2, we have computed the QNM frequency as a function of

the cosmological constant. The results are plotted in Figure 3 and 4. We have

checked our code by comparing our results to the ones reported in [38].

15Note that for n = 0 (which is the case we are interested in), the condition Ω = Re(Ω) < 0

is satis�ed.
16Here, the "±" is necessary because we have that Ωn(V0, ib) =

1
b

[
−
√
V0b2 − 1

4 − (n+ 1
2 )i
]
, but only if we consider ωn(V0, b) = 1

b

[√
V0b2 − 1

4 − (n+ 1
2 )i
]

we can have the inverse transformation with ω(V0,−ib) = Ωn(V0, b). The "±", for what we
have understood, re�ects the fact that the problem is symmetric under the transformation

(ω → −ω∗,m → −m), as we have seen in section 3.1. Therefore, we are free to choose the

sign, and in the following we choose to use a "+".
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Figure 3: Real part of the QNM frequency of a SdS BH (n = 0, l = 2) as

a function of the cosmological constant. The quantities are given in units of

M = 1.
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Figure 4: Imaginary part of the QNM frequency of a SdS BH (n = 0, l = 2)

as a function of the cosmological constant. The quantities are given in units

of M = 1.
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We compare the limit Λ → 0 with the value of the Schwarzschild QNM

obtained with the continued fractions method using the 'qnm' package for

Python ([34]). The results are reported in Table 2. The relative error is of

1, 3% for the real part and of 1, 7% for the imaginary part of the frequencies.

Pöschl-Teller approximation 'qnm' package

0.3785− 0.0905i 0.3737− 0.0890i

Table 2: Flat limit for the mode characterized by n = 0 and l = 2. The con-

tinued fractions method [34] and the Pöschl-Teller approximation were used,

and the results are given in units of M = 1.

3.4 Kerr-de Sitter spacetime

In this section, we present two methods for computing the QNM frequencies of

KdS BHs: the Heun's function method and the continued fractions method. In

chronological order, we �rst studied and implemented in Python the continued

fractions method described by Yoshida, Uchikata and Futamase in [19], but we

noticed that this method does not work for BHs with small values of ΛM2 and

is therefore useless in the study of astrophysical BHs. So, we tried to improve

it by translating the code into Mathematica language to increase the working

precision17, but this did not help. However, towards the end of the thesis

period, a paper was published on arXiv18 by Hatsuda ([20]), who suggested

to make use of a new class of functions, implemented by Mathematica in its

most recent version19, to overcome the problem. These functions, called Heun's

functions, represent an optimized version of what is implemented "by hand"

with the continued fractions method, and therefore work much better. We

therefore decided to make use of Hatsuda's method to achieve our goals.

We begin by introducing the theory behind the two methods, which is taken

from [20] and [19]. Then, we discuss the numerical implementations and report

the results. In order to do this as logically as possible, we decide not to respect

the chronological order and to start with the Heun's function method.

First of all, we brie�y present how to derive the master equations for the

gravitational perturbations of the KdS BH. A convenient choice of the tetrad

17Python only allows to perform computations with machine precision, whileMathematica

allows to work with arbitrary precision.
18https://arxiv.org/
19Mathematica 12.1, released in March 2020.
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basis is represented by the principle Newman-Penrose null tetrad (lµ, nµ,mµ, m̄µ):

lµ =

(
(1 + α)(r2 + a2)

∆r

, 1, 0,
(1 + α)a

∆r

)
, (3.31a)

nµ =
1

2ρ2
((1 + α)(r2 + a2),−∆r, 0, a(1 + α)), (3.31b)

mµ =
1

(r + iacosθ)
√

2∆θ

·
(
ia(1 + α) sinθ, 0,∆θ,

i(1 + α)

sinθ

)
(3.31c)

m̄µ = m∗µ, (3.31d)

wherem∗µ indicates the complex conjugate ofmµ. In a similar way as described

in section 3.3, one obtains the master equations for the quantities ψs, where

s is the spin weight. The separation of variables is again achieved by making

the ansatz:

ψs =s R
m
l (r)sS

m
l (θ)e−iωt+imϕ, (3.32)

where ω is the complex oscillation frequency. Henceforth, the subscripts s

and l and the superscript m are omitted. The angular and radial Teukolsky

equations are then given by:

d

dx

[
(1 + αx2)(1− x2)

d

dx
S(x)

]
+ [λ− s(1− α) +

(1 + α)2

α
a2ω2 − 2αx2+

1 + α

1 + αx2
·
(

2s(αm− (1 + α)aω)x− (1 + α)2

α
a2ω2 + 2m(1 + α)aω + s2

)
− (1 + α)2m2

(1 + αx2)(1− x2)
− (1 + α)(s2 + 2smx)

1− x2
]S(x) = 0,

(3.33)

and

∆−sr
d

dr

[
∆s+1
r

d

dr
R(r)

]
+

1

∆r

[
(1 + α)2K2 − is(1 + α)K

d∆r

dr

]
R(r)

+

[
4is(1 + α)ωr − 2α

a2
(s+ 1)(2s+ 1)r2 + 2s(1− α)− λ

]
R(r) = 0,

(3.34)

where x = cosθ, K = ω(r2 +a2)−am and λ is the angular separation constant.

In the following, we only consider s = −2, which represents the outgoing part

of the gravitational perturbation.

An analytical expansion of the separation constant λ can be found in equa-

tion (4.18) of [17], where ξ = aω and α = Λa2

3
. In the non-rotating limit a→ 0

(i.e., ξ → 0 and α → 0), equation (3.33) becomes an eigenvalue equation for

λ, and we have λ → l(l + 1) − s(s − 1). In particular, the non rotating limit

of λ does not depend on the cosmological constant Λ. By inserting this value

in equation (3.34), one then obtains the master equation (3.14) for a SdS BH.
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In the �at limit Λ→ 0 (i.e. α → 0), the angular Teukolsky equation for KdS

BH perturbations (3.33) reduces to the angular Teukolsky equation for KM

BH perturbations, the so-called spin-weighted spheroidal equation20 (equation

(8) of [33]). The relation between the separation constant A in [33] and λ is

λ|α=0 = A+ 2s− 2cm+ c2.

3.4.1 Quasinormal mode frequencies via the Heun's function method

In order to investigate quasinormal modes of KdS spacetime, one can employ

the formalism developed by Suzuki, Takasugi and Umetsu ([17]), who showed

that the angular and the radial Teukolsky equations are mapped to the so-

called Heun's equation.

We begin by considering the angular equation. Equation (3.33) has �ve

regular singularities at x = ±1, ±i/
√
α and ∞. However, the singularity at

∞ is a removable (cf. [20], [17]). To see its relation to the Heun's di�erential

equation (cf. Appendix B), one �rst applies the following Möbius transfor-

mation that matches the locations of the regular singular points of the two

di�erential equations:

z =
1− i√

α

2

x+ 1

x− i√
α

. (3.35)

This transformation maps the points x = −1, 1,−i/
√
α, i/
√
α,∞ to the points

z = 0, 1, zs,∞, z∞, given by

za := z

(
x =

−i√
α

)
=
i(1 + i

√
α)2

4
√
α

, (3.36)

z∞ := z(x→∞) = −i(1 + i
√
α)

2
√
α

. (3.37)

To factor out the singularity at z = z∞, we consider the following transforma-

tion:

S(x) = S̃(z) = zA1(z − 1)A2(z − za)A3(z − z∞)y(z), (3.38)

where

A1 =
m− s

2
, A2 = −m+ s

2
, A3 =

i

2

(
1 + α√
α
aω −

√
αm− is

)
. (3.39)

The new function y(z) now satis�es the Heun's di�erential equation (see Ap-

pendix B):

y′′(z) +

(
2A1 + 1

z
+

2A2 + 1

z − 1
+

2A3 + 1

z − za

)
y′(z) +

ρ+ρ−z + u

z(z − 1)(z − za)
y(z) = 0,

(3.40)
20Solutions of this equation are represented by the so-called spin-weighted spherical har-

monics (see Appendix A for an introduction). Therefore, in the limit α → 0, solutions of

equation (3.33) are represented by these functions. For this reason, they are labeled by the

same quantum numbers s, l, m as their α→ 0 limit.
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where

ρ+ = 1, ρ− = 1− s− im
√
α + ic

(√
α +

1√
α

)
,

u = −
[
iλ

4
√
α

+
1

2
+ A1 +

(
m+

1

2

)
(A3 − A∗3)

]
,

(3.41)

where A∗3 is obtained by replacing i in A3 by −i. Note that the point z∞ is

not a singular point anymore, and that the following relation is satis�ed:

(2A1 + 1) + (2A2 + 1) + (2A3 + 1) = ρ+ + ρ− + 1. (3.42)

The relationship between these constants and those in Appendix B is the

following:

a = za, q = −u, α = ρ+, β = ρ−, (3.43)

γ = 2A1 + 1, δ = 2A2 + 1, ε = 2A3 + 1. (3.44)

One then investigate the behaviour of the solutions of equation (3.33) near

the regular singular points x = −1 (z = 0) and x = 1 (z = 1). Near x = −1

(z = 0), one denotes the two local solutions as:

S1
0(x) := zA1(z − 1)A2(z − za)A3(z − z∞)y1

0(z), (3.45)

S2
0(x) := zA1(z − 1)A2(z − za)A3(z − z∞)y2

0(z). (3.46)

For z → 0, the solutions of the Heun equation behave as

y1
0(z) ∼ 1, (3.47)

y2
0(z) ∼ z1−γ = z−2A1 . (3.48)

Therefore, since z = (x+ 1) · (1− i√
α

)/2(x− i√
α

), the solutions of the angular

Teukolsky equation behave for x→ −1 as

S1
0(x) ∼ (1 + x)A1 = (1 + x)

m−s
2 , (3.49)

S2
0(x) ∼ (1 + x)−A1 = (1 + x)−

m−s
2 . (3.50)

In the case where m− s > 0, the solution that is regular at x = −1 is S1
0(x),

while if m − s < 0, the regular solution at x = −1 is S2
0(x). If m = s, both

solutions are equivalent. Near x = 1 (z = 1), one denotes the two solutions as:

S1
1(x) := zA1(z − 1)A2(z − za)A3(z − z∞)y1

1(z), (3.51)

S2
1(x) := zA1(z − 1)A2(z − za)A3(z − z∞)y2

1(z). (3.52)

For z → 1, the solutions of the Heun equation behave as

y1
1(z) ∼ 1, (3.53)

y2
1(z) ∼ (1− z)1−δ = (1− z)−2A2 . (3.54)
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Therefore, since (1− z) = (x− 1) · (1 + i√
α

)/(2(x− i√
α

)), the solutions of the

Teukolsky equation behave for x→ 1 as

S1
1(x) ∼ (x− 1)A2 = (x− 1)−

m+s
2 , (3.55)

S2
1(x) ∼ (x− 1)−A2 = (x− 1)

m+s
2 . (3.56)

In the case where m + s > 0, the solution that is regular at x = 1 is S2
1(x),

while if m + s < 0, the regular solution at x = 1 is S1
1(x). If m = −s, both

cases are equivalent.

We recall from above that one needs to �nd a solution that is regular at both

x = −1 and x = 1. With the aim to �nd a solution that satis�es this two-point

boundary value problem, one considers the connection relations between the

local solutions at x = −1 and x = 1 in the intersection of the two convergence

domains:

S1
0(x) = C11S

1
1(x) + C12S

2
1(x), (3.57)

S2
0(x) = C21S

1
1(x) + C22S

2
1(x). (3.58)

Note that, as explained in Appendix B, since the roots of the indicial equation

at x = 1, 0 and 1 − δ, are both integers, the solutions S1
1(x) and S2

1(x) are

not necessarily linear independent. However, as will become clear later, this

does not cause a problem. From the above discussion on the regularity of the

solutions, one sees that the behavior of the solutions depends on the values of

m and s. We consider the case (s, l) = (−2, 2) for concreteness. Since |m| ≤ l,

we have in our speci�c case that m − s ≥ 0 and m + s ≤ 0. Therefore, the

regular solution at x = −1 is S1
0(x) and at x = 1 the regular solution is S1

1(x).

For this reason, we want the coe�cient C12 to vanish and the solutions S1
0(x)

and S1
1(x) to be linearly dependent. This can be achieved by means of lemma

B.1 in Appendix B.1, imposing the following condition on the Wronskian:

W (S1
0(x), S1

1(x);x) = 0 (3.59)

for every z lying in the intersection of the two convergence domains. One can

directly impose the condition

W (y1
0(z), y1

1(z); z) = 0, (3.60)

which implies (3.59). Note that the value of the Wronskian does not depend

on z.

We proceed now by presenting the radial Teukolsky equation in a similar

way. One considers the following Möbius transformation:

z =
(r′+ − r−)(r − r+)

(r′+ − r+)(r − r−)
, (3.61)
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which maps the points r′−, r−, r+, r
′
+,∞ to the points zr,∞, 0, 1, z∞, where

zr :=
(r′+ − r−)(r′− − r+)

(r′+ − r+)(r′− − r−)
(3.62)

and

z∞ :=
r′+ − r−
r′+ − r+

. (3.63)

Note that zr > 1. One also considers the transformation:

R(r) = R̃(z) = zB1(z − 1)B2(z − zr)B3(z − z∞)2s+1yr(z), (3.64)

where

B1 =
i(1 + α)K(r+)

∆′r(r+)
, B2 =

i(1 + α)K(r′+)

∆′r(r
′
+)

, B3 =
i(1 + α)K(r′−)

∆′r(r
′
−)

. (3.65)

Note that, using Ω(ri) = a
r2
i+a2 and κ(ri) = ∆′r(ri)

2(1+α)(r2
i+a2)

(the angular velocity

and the surface gravity at the event horizon ri), K(ri) = ω(r2
i + a2)− am and

ω̄(ri) = ω −mΩ(ri) = ω − a
r2
i+a2 , one can rewrite B1, B2 and B3 as:

B1 =
iω̄(r+)

2κ(r+)
, B2 =

iω̄(r′+)

2κ(r′+)
, B3 =

iω̄(r′−)

2κ(r′−)
. (3.66)

The new function yr(z) now satis�es the Heun's di�erential equation

y′′r (z)+

(
2B1 + s+ 1

z
+

2B2 + s+ 1

z − 1
+

2B3 + s+ 1

z − zr

)
y′r(z)

+
σ+σ−z + v

z(z − 1)(z − zr)
yr(z) = 0,

(3.67)

where

σ+ = 2s+ 1, σ− = s+ 1− 2i(1 + α)K(r−)

∆′r(r−)
,

v =
(1 + s)(1 + 2s)r′−

r− − r′−
+

3λ− 2s(3− a2Λ) + Λ(1 + s)(1 + 2s)r+(r+ + r′+)

Λ(r− − r′−)(r+ − r′+)
−

2i(1 + 2s)(3 + a2Λ)(r+r−ω + a2ω − am)

Λ(r−r′−)(r− − r+)(r+ − r′+)
.

(3.68)

Note that, again, the point z∞ is not a singular point anymore. The following

identities have been used for the derivation

r+ + r′+ + r− + r′− = 0 (3.69)

and
K(r+)

∆′r(r+)
+
K(r−)

∆′r(r−)
+
K(r′+)

∆′r(r
′
+)

+
K(r′−)

∆′r(r
′
−)

= 0 (3.70)
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The relationship between these constants and the ones in Appendix B is the

following:

a = zr, q = −v, α = σ+, β = σ−, (3.71)

γ = 2B1 + s+ 1, δ = 2B2 + s+ 1, ε = 2B3 + s+ 1. (3.72)

One then proceeds by investigating the behavior of the solutions of equation

(3.34) near its regular singular points r = r+ (z = 0) and r = r′+ (z = 1). Near

r = r+ (z = 0), one denotes the two local solutions as:

R1
0(r) := zB1(z − 1)B2(z − zr)B3(z − z∞)2s+1y1

r0(z), (3.73)

R2
0(r) := zB1(z − 1)B2(z − zr)B3(z − z∞)2s+1y2

r0(z). (3.74)

For z → 0, the solutions of the Heun's di�erential equation behave as

y1
r0(z) ∼ 1, (3.75)

y2
r0(z) ∼ z1−γ = z−2B1−s. (3.76)

Therefore, since z = (r− r+)
(r′+−r−)

(r′+−r+)(r−r−)
, the solutions of the angular Teukol-

sky equation behave for r → r+ as

R1
0(r) ∼ (r − r+)B1 = (r − r+)

i(1+α)K(r+)

∆′r(r+) = (r − r+)
iω̄(r+)

2κ(r+) , (3.77)

R2
0(r) ∼ (r − r+)−s−B1 = (r − r+)

−s− i(1+α)K(r+)

∆′r(r+) = (r − r+)
−s− iω̄(r+)

2κ(r+) , (3.78)

where one uses (3.65) and (3.66). Similarly, near x = 1 (z = 1), one denotes

the two local solutions as:

R1
1(r) := zB1(z − 1)B2(z − zr)B3(z − z∞)2s+1y1

r1(z), (3.79)

R2
1(r) := zB1(z − 1)B2(z − zr)B3(z − z∞)2s+1y2

r1(z). (3.80)

For z → 1, the solutions of the Heun equation behave as

y1
1(z) ∼ 1, (3.81)

y2
1(z) ∼ (1− z)1−δ = (1− z)−s−2B2 . (3.82)

Therefore, since (1− z) = (r− r′+) (r−−r+)
(r′+−r+)(r−r−)

, the solutions of the Teukolsky

equation behave for r → r′+ as

R1
1(r) ∼ (r − r′+)B2 = (r − r′+)

i(1+α)K(r′+)

∆′r(r′+) = (r − r′+)
iω̄(r′+)

2κ(r′+) , (3.83)

R2
1(r) ∼ (r − r′+)−s−B2 = (r − r′+)

−s−
i(1+α)K(r′+)

∆′r(r′+) = (r − r′+)
−s−

iω̄(r′+)

2κ(r′+) . (3.84)

The idea is now to construct a solution that is purely ingoing at r = r+

and purely outgoing at r = r′+. In order to identify which of the two local
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solutions one has to choose at each regular singular point, one �rst introduces

the tortoise coordinate r∗, de�ned by:

r∗ =
ln |r − r+|

2κ(r+)
+

ln |r − r−|
2κ(r−)

+
ln |r − r′+|

2κ(r′+)
+

ln |r − r′−|
2κ(r′−)

, (3.85)

or
dr∗
dr

= (1 + α)
r2 + a2

∆r

. (3.86)

Using this de�nition, one can write

(r − ri)
iω̄(ri)

2κ(ri) = e
ln |r−ri|

iω̄(ri)

2κ(ri) ∼ eiω̄(ri)r∗ . (3.87)

Therefore, the solutions of the radial Teukolsky equation behave near r+ and

r′+ as

R1
0(r) ∼ eiω̄(r+)r∗ , (3.88)

R2
0(r) ∼ (r − r+)−se−iω̄(r+)r∗ , (3.89)

and

R1
1(r) ∼ eiω̄(r′+)r∗ , (3.90)

R2
1(r) ∼ (r − r′+)−se−iω̄(r′+)r∗ , (3.91)

respectively. Since one has assumed the time dependence of the perturbation

to be e−iωt, outgoing waves have the form e−i(ωt−kr∗), while ingoing waves have

the form e−i(ωt+kr∗), where k is the wave number, which corresponds to ω̄(ri) in

this case. Therefore, R1
0(r) and R1

1(r) represent purely outgoing waves, while

R2
0(r) and R2

1(r) represent purely ingoing waves. One considers the connection

relations between the local solutions at r = r+ and at r = r′+ in the intersection

of the two convergence domains:

R1
0(r) = C11R

1
1(r) + C12R

2
1(r), (3.92)

R2
0(r) = C21R

1
1(r) + C22R

2
1(r). (3.93)

To impose the boundary conditions described above, one requires the coe�-

cient C22 to vanish and the solutions R2
0(r) and R1

1(r) to be linearly dependent.

Since the roots of the indicial equation at r = r′+, 0 and 1 − δ are not both

integers, the local solutions at r = r′+ are linearly independent. As explained

in Appendix B.1, the coe�cient C22 can then be expressed as

C22 =
W (R1

1(r), R2
0(r); r)

W (R1
1(r), R2

1(r); r)
, (3.94)

which reduces to

C22 =
W (y1

r1(z), y2
r0(z); z)

W (y1
r1(z), y2

r1(z); z)
, (3.95)
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as can be seen using the properties of the determinant. Note that the ratio of

the Wronskians does not depend on z. Thus, the condition which has to be

imposed is the following21

W (y1
r1(z), y2

r0(z); z)

W (y1
r1(z), y2

r1(z); z)
= 0. (3.97)

For a given value of a and Λ, since the left-hand sides of both equations

(3.60) and (3.97) only depend on the frequency ω and the separation constant

λ but are independent of z, one can evaluate them at a point z which lies in

both convergence circles of the local solutions at z = 0 and z = 1. For this

purpose, we choose z = 1/2, as suggested in [20]. Equations (3.60) and (3.97)

then form a system of nonlinear algebraic equations for ω and λ. In the next

section, we show how to solve this system numerically. Note that for a = 0

(SdS case) the angular Teukolsky equation (3.33) does not contain ω anymore.

Therefore, the angular problem trivializes and the angular eigenvalue λ takes

the form λ|a=0 = l(l + 1) − s(s − 1). In this case, one only needs to solve

equation (3.97) for ω using this value of λ.

3.4.2 Implementation

Equations (3.60) and (3.97) are implemented by making use of theMathematica

'HeunG' function (cf. [39] and Appendix B) and are solved simultaneously by

a numerical algorithm. Here, we use the Mathematica function 'FindRoot',

which makes use of the Newton's method. The code for this task is taken

directly from theMathematica notebook from [20] and is reported in Appendix

D.2.2. Here, we brie�y explain how it is structured.

In order to determine the solutions of the system using the Newton's al-

gorithm, one needs to feed the function 'FindRoot' with appropriate starting

values. One can proceed in two ways. The �rst possibility consists in using the

continuity of the frequency ω and the separation constant λ as a function of

ΛM2 for a given value of a. One therefore �xes a value of the spin parameter

a and use the known values of the frequency ω and the separation constant

λ of the KM BH (ΛM2 = 0) as starting values for determining ω(ΛM2) and

λ(ΛM2) at a small values22 of ΛM2 . The new values are then used as new

21We have followed the reasoning of Hatsuda in [20], but in our opinion it would have

been enough to impose the condition of linear dependence on the solutions R2
0(r) and R1

1(r)

as was done for the angular Teukolsky equations,

W (y1
r1(z), y2

r0(z); z) = 0, (3.96)

without the need to use Cramer's Rule.
22Note that this is possible because the Λ → 0 limit of the KdS Teukolsky equations
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starting values and ΛM2 is increased of a small amount. The second possi-

bility consists in �xing a value of ΛM2 and using the continuity of ω and λ

as a function of the spin parameter a. As a starting value at a = 0, one can

use the known values of ω and λ of the SdS BH23, computed as described in

section 3.3. Note that the choice of the starting values completely speci�es the

quantum numbers n and l, which are otherwise not contained in the Teukolsky

equations (unlike m and s).

Since our purpose is to study astrophysical black holes, which are charac-

terized by a small value of ΛM2, and in exploring the �at limit for a given

value of a, we prefer the �rst method. Moreover, since we want to �x the BH

mass and vary the value of Λ, we will work in units of M = 1. From now on,

instead of ΛM2, we will then just write Λ. We summarize the steps of the

algorithm in a schematic way:

1. Choose quantum numbers s, l and m and �x a value of a/M (we can

just write a in the units which we have chosen).

2. Compute the value of ω and λ for the Kerr-Minkowski case using the

'qnm' package for Python ([34]).

3. Increase Λ of the amount 1/10000.

4. Estimate new starting values by varying the previous values of a small

amount24

ω0,new = ωold −
1− i
20000

, (3.98)

λ0,new = λold +
1 + i

20000
, (3.99)

and solve the system of equations (3.60) and (3.97) using the Newton's

algorithm ('FindRoot').

5. Return to point 3. and repeat an arbitrary number of times (a maximum

number of steps is given by Λmax ·10000, where Λmax = Λmax(a,M = 1) is

given by equation (2.53), but for studying astrophysical BHs 20 iterations

are enough).

6. Return to point 1. and vary the value of m, which can take 2l+ 1 values

m = −l, ..., l.

corresponds to the KM Teukolsky equations. Therefore, the limit Λ→ 0 of the solutions of

the KdS master equation should correspond to the solution of the KM master equation
23This is possible because the a→ 0 limit of the KdS Teukolsky equations corresponds to

the SdS Teukolsky equtions. Therefore, the limit a→ 0 of the solutions of the KdS master

equation should correspond to the solution of the SdS master equation
24This estimation is based on the results of other numerical codes (like e.g. the one of

[19]), where it is shown that Re(ω) decreases and Im(ω) increases as Λ increases.
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This procedure can be repeated for di�erent values of a. We choose to consider

ten equally distant values of a, from a = 0 to 0.9 as well as a = 0.999999999.

For all the computations, we use at least 50 digits precision. The data are then

saved in a .csv �le.

Next, we perform a �t of the values of the real and imaginary parts of the

frequency for each value of a using the Mathematica 'Fit' function and the

function
∑N

n=0 fnΛn as a model. We choose25 N = 18. We then check that

the limit for Λ→ 0 corresponds to the values for the KM case, by comparing

it with the values obtained with the 'qnm' package.

After this, we evaluate this �t at four di�erent values of Λ, which, in units

of M = 1, correspond to the four types of astrophysical BHs of Table 1, where

we take the cosmological constant to be Λ ∼ 10−52m−2. For these BH types,

we also check our results by comparing the limit a→ 0 of the frequencies with

the SdS frequencies obtained with the Pöschl-Teller approximation.

Finally, for each BH, we compute the di�erencies (3.10).

3.4.3 Results

Here, we report the results obtained with the Heun's function method. We

�rst discuss the numerical code and check that it works by studying the limits

of the modes l = 2 and m = −2,−1, 0, 1, 2 and for the (l,m) = (3, 3) mode,

but we only report the data for the (2, 2) mode as an example (the results

for the other modes are similar). Then, we compute and report the relevant

quantities.

The code works quite well in the portion of the parameter space that we

are considering, although it is a bit slow, especially for a > 0.8 and for negative

values of m. For all the tested modes, at a = 0.9, it is not possible to consider

more than 6 iterations of the algorithm, because the code does not allow to go

further. The code does not seem to work for 0.999999999.

In Figures 5 and 6, we report the plots, in M = 1 units, of Re(ω) and

Im(ω) as a function of Λ for the (2, 2) mode and a = 0.6 as an example. The

plots at di�erent values of a are very similar to these ones. In particular, all

the plots are almost linear in the range that we are considering.

For each value of a and for each value of m, we extrapolate the value of ω

in the limit Λ→ 0, which corresponds to the f0 in the �tted model from above.

We then compare this value with the KM QNM frequency obtained using the

'qnm' package. However, since the 'qnm' package is written in Python and not

25To choose the value of N , we refer to the Mathematica notebook of [20]. Here, the

Taylor polynomial at Λ = 0,
∑N

n=0 fnΛn, is used as a model and N is varied dynamically

until the �rst 40 digits of Re(f0) and Im(f0) are stable, which happens at N = 18.
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Figure 5: Re(ω) as a function of ΛM2 for (l,m) = (2, 2) and a = 0.6
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Figure 6: Im(ω) as a function of ΛM2 for (l,m) = (2, 2) and a = 0.6
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in Mathematica, it only allows to compute the values using machine precision.

Therefore, we can only check if the values correspond up to the �rst 16 decimal

digits. Some machine precision results are reported in Tables 3 and 4 as an

example. The values seem to agree at least in the �rst 10 to 15 digits.

a

source
present code 'qnm' package

0 0.3736716844180418 0.3736716844180417

0.1 0.3870175383664503 0.3870175383664508

0.2 0.4021453242476555 0.4021453242476556

0.3 0.4195266817638514 0.4195266817638519

0.4 0.4398419217353871 0.4398419217353868

0.5 0.4641230259759383 0.4641230259759386

0.6 0.4940447817813842 0.4940447817813843

0.7 0.5326002435597860 0.532600243551018

0.8 0.5860169749088703 0.5860169749088701

0.9 0.6711237414772702 0.671614272132163

0.999999999 ? 0.9999541560971394

Table 3: Values of Re(ω) for Λ = 0 and (l,m) = (2, 2) (M = 1 units).

a

source
present code 'qnm' package

0 - 0.08896231568893569 -0.08896231568893546

0.1 -0.0887056990276413 -0.08870569902764017

0.2 -0.08831116620760301 -0.08831116620760186

0.3 -0.08772927189431198 -0.08772927189431111

0.4 -0.08688196202939836 -0.08688196202939791

0.5 -0.08563883498806401 -0.0856388349880652

0.6 -0.08376520216104089 -0.08376520216104325

0.7 - 0.08079287317663332 -0.08079287315500867

0.8 -0.0756295523560614 -0.07562955235606074

0.9 - 0.06482177058675801 -0.06486923587579639

0.999999999 ? -1.114065293254156·10−5

Table 4: Values of Im(ω) for Λ = 0 and (l,m) = (2, 2) (M = 1 units).
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Furthermore, we check whether the values obtained with this code for a = 0

correspond to the values of the SdS QNM frequencies computed as described in

section 3.3. The results are reported in Tables 5 and 6. Here, the relative error

is of 1,2% for the real part and 1,7% for the imaginary part of the frequencies,

but this is due to the fact that the Pöschl-Teller method only allows to compute

the frequencies in an approximate way. We have therefore checked that the

code is in agreement with previously computed results.

Λ

Source
Present code Pöschl-Teller approximation

10−48 0.37367 0.37827

10−44 0.37367 0.37827

10−38 0.37367 0.37827

10−28 0.37367 0.37827

Table 5: Values of Re(ω) for the mode (l,m) = (2, 2) at a = 0 for di�erent

values of Λ, corresponding to di�erent astrophysical BH types (M = 1 units).

Λ

Source
Present code Pöschl-Teller approximation

10−48 -0.088962 -0.090531

10−44 -0.088962 -0.090531

10−38 -0.088962 -0.090531

10−28 -0.088962 -0.090531

Table 6: Values of Im(ω) for the mode (l,m) = (2, 2) at a = 0 for di�erent

values of Λ, corresponding to di�erent astrophysical BH types (M = 1 units).

We now compute the frequency di�erences de�ned in (3.10). Since the

values of Λ (in M = 1 units) for astrophysical BHs are smaller than the size

of the step (10−4) chosen in the procedure described above, we obtain the

frequencies that we are looking for by means of an extrapolation, using the

�tted model from above. For computing ∆, we need to work at high precision

and therefore we do not use the values of the KM QNM of the 'qnm' package.

Instead, we use the �at limit that we have extrapolated above (corresponding

to the values of f0). The values of ∆ are reported in Table 7 in SI units26.

26The conversion in from M = 1 to SI units is done as follows:

∆SI = ∆M ·
c

Mi
(3.100)
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Since the order of magnitude seems not to depend on a, we simply report the

order of magnitude of the results for each BH type.

BH type Re(∆) [s−1] Im(∆) [s−1]

sub-solar mass BH 10−40 10−40

stellar mass BH 10−41 10−41

intermediate BH 10−38 10−38

supermassive BH 10−33 10−33

Table 7: Values of ∆ in SI units for four types of astrophysical BHs.

3.4.4 Quasinormal mode frequencies via the continued fractions

method

The �rst method which we have introduced makes use of the Mathematica

function 'HeunG' to compute Heun's functions. However, one could also �nd

an explicit form for these functions and implement them "by hand". Following

[19], we describe here, to the best of our understanding, how to obtain such

an explicit form, and then implement the numerical method to compute it.

Following [19], one may express the solution y(z) of the Heun's di�erential

equation (3.40) which is regular at z = 0 as a series expansion:

y(z) =
∞∑
n=0

anz
n. (3.101)

One then considers physical boundary conditions and constructs a solution of

(3.33) that is �nite both at x = −1 and at x = 1. A solution that satis�es

these conditions is the following:

S(x) = S̃(z) = z|A1|(z − 1)|A2|(z − za)|A3|(z − z∞)
∞∑
n=0

anz
n, (3.102)

provided that the series converges at z = 1 (at z = 0, the series obviously

converges). In fact, one has:

S(x)→

(x+ 1)|m−s|/2 asx→ −1

(x− 1)|m+s|/2 asx→ 1.
(3.103)

By inserting this ansatz into equation (3.33), one obtains the following three-

term recurrence relation for the coe�cients an's:

αθnan+1 + βθnan + γθnan−1 = 0, (3.104)

where Mi is the mass of the BH type i in geometrized units and c is the speed of light.
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with the initial values a0 = 1 and αθ0a1 +βθ0a0 = 0. The coe�cients in equation

(3.104), in Λ = 3 units27, are

αθn = za(1 + n)(1 + n+ 2A1), (3.105)

βθn = u0 − (1 + za)n
2 − [1 + 2A3 + za + 2A2za + 2A1(1 + za)]n, (3.106)

γθn = −1− 2A3 + 2A1(n− 1) + 2A2(n− 1) + 2A3n+ n2 + u1, (3.107)

where

u1 =
1

2
[2 + 4A3 + 4A2(1 + A3) + 4A1(1 + A2 + A3)

+m2 − 2iams+ s2 + 2isω + 2ia2sω],
(3.108)

u0 =− i

8a
[−2A2 − 2A1(1 + 2A2)−m2 − 2s+ s2

+ a2{2A2 + A1(2 + 4A2)− 3m2 + 2s− 4ms− s2}
+ 4a3(m+ s)ω − 2ia{2 + 2A2 + 4A3

+ A1(6 + 4A2 + 8A3) +m2 − 2ms+ s2

+ 2imω + 2isω}+ 2λ].

(3.109)

It remains to determine under which condition the series converges at x = 1.

As it is written in [19], the large n behavior of an can take one of the two

expressions:

lim
n→∞

an+1

an
=

1

za
− 1− 2A3

za

1

n
+ ... (3.110)

or

lim
n→∞

an+1

an
= 1− (1− 2A2)

1

n
+ ... (3.111)

Since za > 1 and 1−2A2 ≤ 1, expression (3.110) ensures that limn→∞
an+1

an
< 1,

which ensures the convergence of the series by the ratio test. Expression (3.110)

is obtained if one requires the solution of the recurrence relation (3.104) to be

minimal. By Theorem 1.1 of [40], this is equivalent to the condition in terms

of continued fractions given by:

0 = βθ0 −
αθ0γ

θ
1

βθ1 −
αθ1γ

θ
2

βθ2−(αθ2γ
θ
3/β

θ
3−...)

, (3.112)

which can be also expressed with the easier notation

0 = βθ0 −
αθ0γ

θ
1

βθ1−
αθ1γ

θ
2

βθ2−
αθ2γ

θ
3

βθ3−
... (3.113)

27For simplicity, we report the expressions in units of Λ = 3, which are the units used in

[19].
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The right-hand side of equation (3.112) is a function of λ and ω. One can

abbreviate it as A(ω, λ) and rewrite (3.112) as

A(ω, λ) = 0. (3.114)

One calls equation (3.114) the angular eigenvalue equation for the present

problem.

One applies the same reasoning to the radial Teukolsky equation (3.34).

One focuses on the case where ∆r = 0 has four real roots r′− < r− < r+ < r′+.

Equation (3.34) has then �ve regular singularities at r = r±, r
′
±,∞, but, as

before, the singularity at r = ∞ is apparent and removable. Again, following

[19] and [18], one considers a Möbius transformation that matches the singular

points of the radial Teukolsky equation to the ones of the Heun's di�eren-

tial equation (B.1). However, in order to follow closely the work of Yoshida,

Uchikata and Futamase ([19]), on which our numerical code is based, we do not

consider the same Möbius transformation as above, but the following one28:

z =
(r− − r′−)(r − r+)

(r− − r+)(r − r′−)
. (3.115)

This transformation maps the points r = r′−, r−, r+, r
′
+,∞ to the points z =

∞, 1, 0, zr, z∞, where

zr :=
(r− − r′−)(r′+ − r+)

(r− − r+)(r′+ − r′−)
, (3.116)

z∞ :=
r− − r′−
r− − r+

. (3.117)

As for the angular case, one may express the solution yr(z) that is regular at

z = 0 as a series expansion:

yr(z) =
∞∑
n=0

dn

(
z

zr

)n
. (3.118)

To factor out the singularity at z = z∞, one considers the following transfor-

mation:

R(r) = R̃(z) = (−z)B1(1− z)B2

(
z − zr
1− zr

)B3
(
z − z∞
1− z∞

)2s+1

yr(z), (3.119)

where B1, B2 and B3 are de�ned as

B1 =
iω̄(r+)

2κ(r+)
, B2 =

iω̄(r−)

2κ(r−)
, B3 =

iω̄(r′+)

2κ(r′+)
. (3.120)

28There are 4! possibilities to map the four regular singular points of the Teukolsky radial

equation (recall that the singularity at r = ∞ is apparent and removable) to the four

regular singular points of the Heun's equation. In the previous chapter, we have chosen one

trasformation that maps the positions of the BH and of the cosmological horizons, r = r+

and r = r′+, to the points z = 0 and z = 1. Here, we consider a Möbius transformation so

that r = r+ and r = r′+ are mapped to z = 0 and z = zr.
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The function yr(z) then satis�es a Heun's di�erential equation similar to (3.67).

One then considers physical boundary conditions and constructs a solution

which is purely ingoing at r = r+ and purely outgoing at r = r′+. Following a

similar reasoning as the one of the previous section, one sees that a solution

that satis�es the physical boundary conditions is the following:

R(r) = R̃(z) = (−z)B
′
1(1− z)B

′
2

(
z − zr
1− zr

)B′3 (z − z∞
1− z∞

)2s+1 ∞∑
n=0

dn

(
z

zr

)n
,

(3.121)

where

B′1 = −s− iω̄(r+)

2κ(r+)
, B′2 =

iω̄(r−)

2κ(r−)
, B′3 =

iω̄(r′+)

2κ(r′+)
, (3.122)

provided that the series converges at z = zr (at z = 0 it clearly converges). In

fact, one can then check that

R→

(r − r+)−s−iω̄(r+)/2κ(r+) as r → r+

(r − r′+)i(ω̄(r′+)/2κ(r′+)) as r → r′+.
(3.123)

By inserting this ansatz into the radial Teukolsky equation, one obtains

the following three-term recurrence relation for the coe�cients:

αrndn+1 + βrndn + γrndn−1 = 0, (3.124)

with initial values d0 = 1 and αr1d1 + βr1d0 = 0. The coe�cients in equation

(3.124) are given, in units of Λ = 3, by:

αrn = (1 + n)(1 + 2B1 + n+ s), (3.125)

βrn = v0−(1−xr)n2−{1+2B3+2s+xr+2B2xr+2sxr+2B1(1+xr)}n, (3.126)

γrn = {−1 + 2(B1 +B2 +B3)(n− 1) + n2 − 3s+ 3ns+ v1}xr, (3.127)

where

v1 = (B1 +B2 +B3 − b4 + s+ 1)(B1 +B2 +B3 + b4 + 2s+ 1), (3.128)
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v0 =
−1

(r+ − r−)(r′+ − r′−)
[λ+ 2s(a2 − 1) + {B2 − b2s+B2s− b1(2b2 + s)

+B1(1 + 2B2 + s)}r′+r′− − {−1 + 2b2
1 + (−3 + b2 + b3 + b4)s− 2s2

+ b1(2b2 + 2b3 + 2b4 + 5s)}r2
+ − {B2 +B3 − b2s− b3s+B2s+B3s

− 2b1(b2 + b3 + s) + 2B1(1 +B2 +B3 + s)}r+r
′
− + {1 + 2b2

1 +B3

+ 3s+ b2s+ b4s+B3s+ 2s2 +B1(1 + 2B3 + s) + 2b1(b2 + b4

+ 2s)}r+r
′
+ + {1 + 2b2

1 +B2 + 3s+ b3s+ b4s+B2s+ 2s2 +B1(1

+ 2B2 + s) + 2b1(b3 + b4 + 2s)}r+r− + {B3 − b3s+B3s− b1(2b3

+ s) +B1(1 + 2B3 + s)}r−r′− − {1 + 2b2
1 +B2 +B3 + 3s+ b4s

+B2s+B3s+ 2s2 + 2B1(1 +B2 +B3 + s) + b1(2b4 + 3s)}r−r′+
− 4isω(1 + a2)r+],

(3.129)

B1 = B′1, B2 = B′2, B3 = B′3, (3.130)

(not to be confused with the B1, B2 and B3 de�ned in (3.120)) and

b1 = i
ω̄(r+)

2κ(r+)
, b2 = i

ω̄(r−)

2κ(r−)
, b3 = i

ω̄(r′+)

2κ(r′+)
, b4 = i

ω̄(r′−)

2κ(r′−)
. (3.131)

It remains to determine under which conditions the series converges at

z = zr. As explained in [19], the large n behavior of dn shows that

lim
n→∞

dn+1

dn
= xr + xr(s− 1 + 2B2)

1

n
+ ..., (3.132)

or

lim
n→∞

dn+1

dn
= 1− (s− 1 + 2B3)

1

n
+ .... (3.133)

Because zr > 1 and Re(s − 1 + 2B3) < 0, expression (3.133) ensures that

limn→∞
dn+1

dn
< 1, which ensures the convergence of the series by the ratio test.

Expression (3.133) is equivalent to the condition for the recurrence relation

(3.124) to be minimal, which can be written in terms of continued fractions

as:

0 = βr0 −
αr0γ

r
1

βr1−
αr1γ

r
2

βr2−
αr2γ

r
3

βr3−
.... (3.134)

The right-hand side of equation (3.134) is a function of ω and λ. One can

abbreviate it as B(ω, λ) and rewrite (3.134) as

B(ω, λ) = 0. (3.135)

This equation is known as the radial eigenvalue equation for this problem.

For a given value of a and M , equations (3.114) and (3.135) represent a

system of nonlinear equations for the parameters ω and λ, in a similar way as

in the previous chapter. In the next section, we show how to solve this system

numerically.
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3.4.5 Implementation

The two equations (3.114) and (3.135) can be solved simultaneously by a nu-

merical algorithm. To do this, we have implemented the method described in

[19] in Python, �rst, and then in Mathematica, to take advantage of its ability

to perform computations with arbitrary precision. The code is reported in

Appendix D.2.1. Here, we explain how it is structured.

Following [19], and contrary to the previous method, we use Λ = 3 units29

and begin by �xing a value of M/rC (or M , in Λ = 3 units). We determine

ω(a) and λ(a), using continuity of the QNM frequency and of the separation

constant as a function of a and the values of SdS QNMs as starting values.

As before, the starting values completely specify the value of the quantum

numbers n and l.

The crucial part in this algorithm is the evaluation of the functions A(ω, λ)

and B(ω, λ), since they are represented by in�nite continued fractions. To

do this, we make use of the modi�ed Lentz's algorithm, which we describe in

Appendix C.1. To evaluate A(ω, λ), we set

an = −γθnαθn−1, bn = βθn. (3.136)

Similarly, to evaluate B(ω, λ), we set

an = −γrnαrn−1, bn = βrn. (3.137)

In both of the cases, we use a tolerance of eps = 10−10 and set the parameter

'tiny' to 10−30.

In the Python code, we use the 'scipy.optimize.root' function and Newton's

method to determine the solutions of the system. In Mathematica, as before,

we use the function 'FindRoot' instead.

We summarize the steps of the algorithm in a schematic way below.

1. Choose s, l and m and �x a value of M/rC =
√

ΛM2/3 (we can simply

write M in the chosen units). The corresponding maximum value for

the spin parameter, amax, can then be computed as explained in section

2.2.2.

2. Set a to a = 10−3 · amax.

3. Compute the value of ω for the SdS BH for the given value of M , using

the Pöschl-Teller approximation30, and use this as a starting value. The
29To make use of the expressions that we found in [19] directly, we use the same units

(Λ = 3) used in their paper during the computations. We then convert the frequencies into

M = 1 units at the end by multiplying them by the conversion factor rC/M .
30The code of Appendix D.1 gives the values of ω in units of M = 1. To convert these

values into units of Λ = 3, it su�ces to multiply them by the conversion factor M/rC .

48



starting value for λ is given by λ|a=0 = l(l + 1) − s(s − 1). Note that

in this case the starting value for λ does not depend on s, m and ω, as

contrary to above.

4. Use the Newton's algorithm to �nd a solution of the system given by

(3.114) and (3.135). A(ω, λ) and B(ω, λ) are evaluated every time using

the modi�ed Lentz's algorithm. The Jacobian is estimated numerically

by the 'scipy.optimize.root' function (Python) or the 'FindRoot' function

(Mathematica).

5. Increase a of the amount 10−3 · amax (anew = aold + 10−3 · amax).

6. Estimate new starting values by extrapolating the value of ω(anew) and

ω(λnew) from the three previous values of ω(a) and λ(a), if possible, using

a polynomial interpolation (this method was suggested in [41]). If this is

not possible, then use the values of ω(aold) and λ(aold) as starting values.

7. Return to point 4 and repeat until a reaches the value of amax, then stop.

8. Return to point 1 and vary the value of m, which can take 2l+ 1 integer

values m = −l, ..., l.

This procedure can be repeted for di�erent values of M . For all the Math-

ematica computations, we use 60 digits of precision, while in Python we use

machine precision. The data are saved in a .npy �le (Python) or in a .csv �le

(Mathematica). One can then �t the data and obtain the plot of Re(ω) and

Im(ω) as a function of the spin parameter. The results are discussed below.

3.4.6 Results

By means of the code described in the previous section, we tried to analyze the

fundamental (n = 0) quasinormal mode frequencies of KdS BH with l = 2 and

m = −2,−1, 0, 1, 2. We tested the code with the same BH types which were

studied in [19], i.e. for M = 0.01290, 0.1205, 0.1582, 0.1789, 0.1893, 0.1924,

0.1982.

For 0.1582 ≤ M ≤ 0.1924, we managed to obtain the same results as in

[19] for a ≤ 0.75 · amax. In the region where a > 0.75 · amax, our code outputs

values that do not correspond to the ones reported in [19]. The reason for

this is probably that the graphs of the functions after a > 0.75 · amax are very

steep for high values of M (cf. plots in [19]). To solve this problem, the length

of the step should be decreased in order to obtain a better estimation of the

next starting value. However, by doing this, the computations slow down a

lot. Furthermore, the code seems to work better for higher values of m.
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For M = 0.01290, 0.1205 and lower values, our code outputs wrong values

already after the �rst step (and even when considering smaller steps). This

prevents us from using it for studying astrophysical BH (for whichM ≤ 10−14).

We do not know why we cannot obtain the same results as in [19], but we

suspect that this is due to the fact that our starting values, generated by an

approximation, are not close enough to the roots of the system of equations

(3.114) and (3.135), and Newton's algorithm jumps and converges towards

the wrong root. It is not a problem of precision, since the Mathematica code

presents the same issues as the Python code. Yoshida, Uchikata and Futamase

obtained their starting values with the code described in [16], which probably

allows to obtain more accurate starting values. However, it is said in [16] that

this code only works well for nearly extremal BH. Therefore, we deduce that

black holes with M much smaller than 0.01290 were not studied in [19], even

if it has not been explicitely stated.

The problem described above could lie in the fact that, as explained in [30],

the boundary condition that one imposes,

ψ(ω, r∗) ∼ eiωr∗ as r∗ →∞, ψ(ω, r∗) ∼ e−iωr∗ as r∗ → −∞, (3.138)

means that for Im(ω) < 0 (like in our case) QNMs diverge exponentially

towards the CEH and towards the BEH. Therefore, the convergence of the

continued fractions depends on the imaginary part of the frequencies. This

is a problem when trying to determine the frequencies numerically, especially

for modes whose imaginary part has a large absolute value. This happens in

particular for BHs characterized by small vales of M , as can be seen in the

plots of [19] and in Figure 7. A further problem could lie in the choice of the

units (Λ = 3), which causes the frequencies to assume very large values for

small values of M/rC , generating numerical problems.

Some results are reported in Figure 7 in units of M = 1. If converted in

units of Λ = 3, they correspond to the plots displayed in [19].

3.5 Detectability of quasinormal modes

3.5.1 Theory

In this section, we discuss how to determine whether the quantitative di�er-

ences (∆) between the KM and KdS QNM spectra are measurable or not.

If one considers that a detector measures the frequency f of a signal as

f =
number of samples

∆t
, (3.139)

then a condition for the detectability of such a frequency is that one has to

be able to measure long enough to collect at least one sample. The minimum
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Figure 7: QNM frequencies as a function of a for some values of M/rC (ge-

ometrized units are used). The modes considered are the ones with l = 2

and m = −2,−1, 0, 1, 2. The black spectrum was generated with the 'qnm'

package, while the remaining spectra were generated with our Python code.

sampling period needed to resolve an angular frequency di�erence of ∆ can

then be expressed as31

∆t = 2π∆−1. (3.140)

3.5.2 Results

We �rst check whether the minimum sampling time (3.140) represents a plausi-

ble period of time for sampling our data. Using the data of Table 7, we deduce

that the minimum sampling time needed to resolve the frequency di�erence is

∆t ∼ 1033 s, (3.141)

which is of course too long. We deduce that such a frequency di�erence is too

tiny to be measurable.

3.6 Results

We now summarize and discuss the results which we have obtained.

Between the two methods which we have considered, the Heun's function

method is the one that works better, because it makes use of the Mathemat-

ica 'HeunG' function, which enables to compute the solutions of the Heun's

di�erential equation in a very optimized way. It works well for small values

31The relation between angular frequency ω and frequency f is given by f = ω/2π.
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of ΛM2 and it is therefore the most useful for our purpose. However, because

of its high working precision, it is very slow. The continued fractions method,

instead, only works for nearly extremal BHs, but it is slightly faster.

By comparing our results with the known limits, we have veri�ed numer-

ically that the QNM frequencies of KdS spacetime tend to the ones of SdS

spacetime for a→ 0 and to the ones of KM spacetime for Λ→ 0.

We now analyse the qualitative e�ects of the cosmological constant on the

QNM spectrum, which are visible from Figure 7. The features of the KM

spectrum (ΛM2 = 0, in black in the �gure) were discussed in section 3.1. We

now see how these features change as ΛM2 varies.

By increasing the value of the cosmological constant, at a �xed mass, the BEH

and the CEH come closer, reducing the size of the spacetime between the two.

As one can see from Figure 7, this has the e�ect of lowering the real part of the

QNM frequency of a non rotating BH. We do not know how to explain this,

but this reminds us to what happens with normal modes of a guitar string,

for example, where the frequency of the modes also depends on the size of the

medium (length of the string). Because of the considerations made in section

3.1, this also means that the velocity of the wave pattern of a non-rotating BH

becomes lower in absolute value for all the modes. As a result, for a rotating

BH, the whole spectrum is approximately shifted32 to lower frequencies.

When a non-rotating BH becomes almost extremal, the absolute value of the

phase velocity of the wave pattern around the axis is very low. If the BH is

rotating, for negative modes, summing this small negative value to the velocity

of the local frame near the horizon gives a positive angular velocity with respect

to the system de�ned by (2.41). In this global frame, one then observes that

the retrograde modes become prograde. Multiplying this positive velocity with

a negative m gives a negative Re(ω). This explains the negative frequencies

appearing in Figure 7 for nearly extremal BHs at high spins.

An interesting question is whether the negative frequencies are measurable

or not. If they were, this fact would constitute a clear observational evidence

of a positive cosmological constant. However, even if it were possible to dis-

tinguish between positive and negative frequencies, negative frequencies will

never be observed for two reasons. First of all, this phenomenon only appears

for nearly extremal BHs, which are not astrophysical. Secondly, the frequencies

plotted in Figure 7 are measured in the global frame, and correspond to what

an observer lying in�nitely far away from the BH sees. However, when the

32Note that an increase in the spin parameter a also has an e�ect on the position of the

horizons and increases the distance between the BEH and the CEH, as discussed in section

2.2.2. This could have an e�ect on the QNM spectrum too, and it could explain why the

spectrum is not exactly shifted.
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cosmological constant is increased, a CEH appears. The local observer must

then lie between the two horizons to measure the QNM frequencies, and not at

in�nity. This means that the observer is subject to frame-dragging e�ect and

must accelerate in order to be at rest with respect to the global system. For

nearly extremal BHs, however, this is not possible anymore, because the two

horizons are so close that the CEH lies in the ergosphere of the BH. Hence, the

observer cannot avoid rotating with respect to the global frame. Therefore,

from his point of view, the BH would have a lower spin, and he may not see

any negative frequency.

So far, we have discussed the qualitative features of how the real part of the

frequency spectrum changes with ΛM2. We now brie�y discuss the imaginary

part.

For what we can deduce from Figure 7, as ΛM2 increases, the absolute value

of the damping factor decreases for all modes, but the values always remain

negative, which means that no unstable mode is found for l = 2 and m =

−2,−1, 0, 1, 2, at least in the region between the outer and the cosmological

horizon. This is in agreement with what was found in [19]. However, the

spectrum is not only shifted, but it is also distorted.

To sum up, it seems that qualitative di�erences between KM and KdS BHs

only become important for almost extremal BHs, but are not observable for

astrophysical BHs. Moreover, from the results of Section 3.5, it seems that

no quantitative di�erences in the frequencies can be measured. We therefore

conclude that the parameters of astrophysical BHs can be recovered using a

KM model without producing a measurable error.
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4 Summary and outlook

We devoted the �rst part of the thesis to the study of the features of the

Kerr-de Sitter metric. We veri�ed that in the �at limit the Kerr-de Sitter met-

ric reduces to the Kerr-Minkowski metric, while in the non-rotating limit it

tends to the Schwarzschild-de Sitter metric. We summarized the results about

the space of black hole parameters for which a Kerr-de Sitter solution exists

and we discussed the extremal cases, corresponding to situations where two or

more horizons overlap. We identi�ed two possible length scales for the Kerr-de

Sitter spacetime: the mass, M , and the position of the cosmological horizon of

empty de Sitter spacetime, rC . We understood how to classify Kerr-de Sitter

black holes based on the ratio between these two length scales and de�ned an

equivalence relation by saying that two black holes are equivalent if they are

characterized by the same value of M/rC , because this means that they can

be scaled into each other. To the best of our knowledge, this fact was not ex-

plained in a clear manner before. We also summarized sensible choices of units

to describe Kerr-de Sitter spacetime, which re�ect the choice of the scale. We

then introduced quasinormal modes of Kerr-Minkowski black holes, focusing

on gravitational perturbations, and provided a physical interpretation of the

degeneracy splitting of the spectrum, based on some hints which were given in

[19].

The second part of the thesis was devoted to implement a code to compute

the quasinormal mode frequencies of the Kerr-de Sitter black holes numeri-

cally. We �rst implemented the solutions of the Teukolsky equations using the

continued fractions method, following [19], but we found out that this code

does not work for astrophysical black holes, which are characterized by a small

value of the ratio M/rC . We then used the code already implemented by Hat-

suda in [20], which works very well in this region of the parameter space. We

computed the di�erence between the frequencies of the (2, 2) and (3, 3) modes

for four astrophysical black hole types and for �xed mass and spin parame-

ter. For each of them, we compared this di�erence with the same quantity

computed for the Kerr-Minkowski black hole and found out that the di�erence

is not measurable. We also commented on the qualitative behaviour of the

quasinormal mode spectrum as a function of M/rC and, based again on some

suggestions of [19], we provided a plausible explanation for the appearance of

negative quasinormal mode frequencies in nearly extremal Kerr-de Sitter black

holes.

This thesis lays the foundations for further studies. First of all, the quan-

titative di�erences between quasinormal mode frequencies of Kerr-Minkowski

black holes and astrophysical Kerr-de Sitter black holes for other overtone
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modes need to be investigated. Furthermore, it remains to understand to

what extent the frequency di�erencies are a�ected by the propagation of the

radiation in de Sitter spacetime, along the path between the black hole horizon

and the observer. Finally, it would be interesting to investigate the production

of quasinormal modes by black holes in the vicinity of other masses instead of

in the vacuum.
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Appendices

A Spin-weighted spheroidal harmonics

As shown by Teukolsky in [33], the solutions of the master equations of black

holes' linear perturbations can be separated in an angular and a radial part.

To describe the angular part, in the case of a Schwarzschild-Minkowski black

hole, spin weighted spherical harmonics sYlm ([42], [43]) are often employed.

However, these functions are not suitable for studying perturbations of Kerr-

Minkowski black holes. In these cases, as �rst realized by Teukolsky ([44], [45]),

it is more convenient to use the so-called spin weighted spheroidal harmonics

sSlm. In fact, each quasinormal mode of a Kerr-Minkowski black hole can be

associated to one of these functions: sSlmn = sSlm(aωlmn).

In the following, we de�ne the spin weighted spheroidal harmonics and list

their properties. We follow [41], [46], [47] and [34].

Spin-weighted spheroidal harmonics are de�ned as

sSlm(θ, ϕ; c) :=
1

2π
sSlm(cos θ; c)eimϕ, (A.1)

where sSlm(cos θ; c) is the spin weighted spheroidal function, which satis�es the

angular Teukolsky equation:

d

dx

[
(1− x2)

d

dx
[sSlm(x; c)]

]
+

[
c2x2 − 2csx+ s+s Alm(c)− (m+ sx)2

1− x2

]
s

Slm(x; c) = 0,

(A.2)

where x = cos θ, c = aω is the oblateness parameter, θ is the Boyer-Lindquist

polar angle, ω is the quasinormal mode frequency and sAlm is the angular

separation constant. The spin-weight s takes the values s = 0,±1,±2 for

massless scalar, vector and tensor perturbations, respectively. The relation

between the spin weight s and the spin S is the following: S = |s|. l is an
integer satisfying the inequality l ≥ max(|m|, |s|) and m can take 2l+1 integer

values between −l and l.
The spin-weighted spheroidal harmonics are generalizations of the spin-

weighted spherical harmonics, which represent the non-rotating limit a → 0:

sYlm =s Slm(θ, φ; 0), for which

sAlm = l(l + 1)− s(s+ 1). (A.3)

Spin-weighted spheroidal harmonics with angular indices (l,m) are a super-

position of spherical harmonics with the same value of m but di�erent values
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of l:

sSlm(θ, φ; c) =
∞∑

l′=lmin

Cl′lm(c)sYl′m(θ, φ). (A.4)

The sYlm form a complete orthogonal basis set for the space of solutions of

(A.2), while the sSlm(θ, φ; c) do not, in general.

The basic symmetries of the spin-weighted spheroidal functions follow from

equation (A.2) using the transformations {s→ −s, x→ −x}, {m→ −m,x→
−x, c → −c} and complex conjugation. It follows that the spin-weighted

spheroidal functions and the separation constants satisfy the following condi-

tions (cf. [41]):

−sSlm(x; c) = (−1)l+m sSlm(−x; c), (A.5)

sSl(−m)(x; c) = (−1)l+ss Slm(−x;−c), (A.6)

sS
∗
lm(x; c) =s Slm(x; c∗), (A.7)

and

−sAlm(c) =s Alm(c) + 2s, (A.8)

sAl(−m)(c) =s Alm(−c), (A.9)

sA
∗
lm(c) =s Alm(c∗). (A.10)
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B Heun's di�erential equation

Here, report the theory about Heun's di�erential equation that is necessary to

understand this work. This part is taken from [48] and [20].

Heun's di�erential equation is a second-order linear ordinary di�erential

equation of the form

y′′(z) +

[
γ

z
+

δ

z − 1
+

ε

z − a

]
y′(z) +

αβ(z − q)
z(z − 1)(z − a)

y(z) = 0 (B.1)

with an extra condition on the coe�cients:

α + β + 1 = γ + δ + ε. (B.2)

The coe�cient q is called the accessory parameter. This equation has four

regular singular points at z = 0, z = 1, z = a and z =∞ in C ∪ {∞}.
For the purpose of this work, we are interested in studying the behavior

of the solutions of this equation near the singular points z = 0, z = 1 and

z = za. As explained in chapters 2.4 and 8 of [48] and in [20], near a regular

singular point c ∈ C, it is possible to construct a Frobenius solution of the

Heun's function, i.e., a solution of the form

yic(z) = (z − c)αc,i
∞∑
n=1

ac,in (z − c)n, (B.3)

where i = 1, 2 and αc,i is a constant that only depends on the parameters

α, β.γ, δ, ε of equation (B.1). In particular, αc,i with i = 1, 2 are solutions

of a quadratic equation, called indicial equation, that only depends on these

parameters. The two solutions y1
c (z) and y2

c (z) constructed in this way are

linearly independent if αc,1−αc,2 is not an integer. In the case where αc,1−αc,2 ∈
Z, the linear independence of the solutions is not guaranteed. These Frobenius
solutions are convergent inside a circle, whose radius is determined in general

by the distance from the nearest singularity.

One denotes with

Hl(a, q;α, β, γ, δ, ε; z) =
∞∑
n=1

a0,1
n zn, (B.4)

the local solution of the Heun's function which is regular at the singular point33

z = 0 and use the normalization

Hl(a, q;α, β, γ, δ, ε; 0) = 1. (B.5)

33In Mathematica, this solution is called Heun function. However, in the literature, the

term "Heun function" seems to denote a solution which is analytic at two singular points

[20].
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Using this notation and the fact that the two roots of the indicial equation αc,i
are 0 and 1− γ for c = 0, 0 and 1− δ at c = 1, and 0 and 1− ε at c = a, one

can express the solutions near z = 0 as given in [49]:

y1
0(z) = Hl(a, q;α, β, γ, δ, ε; z), (B.6)

y2
0(z) = z1−γHl(a, (aδ + ε)(1− γ) + q;α + 1− γ, β + 1− γ, 2− γ, δ; z).

(B.7)

the solutions near z = 1 as:

y1
1(z) = Hl(1− a, αβ − q;α, β, δ, γ; 1− z), (B.8)

y2
1(z) = (1− z)1−δHl(1− a, ((1− a)γ + ε)(1− δ) + αβ − q;α + 1− δ,

β + 1− δ, 2− δ, γ; 1− z),
(B.9)

and the solutions near z = a as:

y1
a(z) =Hl

(
a

a− 1
,
αβa− q
a− 1

;α, β, ε, δ;
a− z
a− 1

)
, (B.10)

y2
a(z) =

(
a− z
a− 1

)
Hl(

a

a− 1
,
(a(δ + γ)− γ)(1− ε)

a− 1
+
αβa− q
a− 1

; (B.11)

α + 1− ε, β + 1− ε, 2− ε, δ; a− z
a− 1

). (B.12)

In Mathematica, the Heun function [39] is implemented as

HeunG[a, q, α, β, γ, δ, z]. (B.13)

Note that the parameter ε = α + β + 1 − γ − δ does not appear because it

is not linear independent. 'HeunG' concides locally with Hl, while globally it

represents the analytic continuation of Hl.

B.1 Wronskian method

For dealing with two-point boundary value problems between z = 0 and z = 1,

like the ones presented in this work, it is useful to consider connection relations

between the local solutions in di�erent domains. In the intersection of the

convergence circles at z = 0 and z = 1, we express the local solutions at z = 0

as a linear combination of the two local solutions at z = 1:

y1
0(z) = C11y

1
1 + C12y

2
1, (B.14)

y2
0(z) = C21y

1
1 + C22y

2
1. (B.15)

The connection coe�cients Cij = Cij(ω, λ) are functions of the quasinormal

mode frequency ω and of the separation constant λ, but do not depend on

z. For our purposes, it is useful to express such coe�cients as a function of

the local solutions, since this allows to �nd useful relations to determine ω

and λ. This can be done by means of the Wronskian method described below.

We follow Hatsuda [20] and try to complete his reasoning by adding some

explanations and calculations.
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We begin with a useful de�nition, corresponding to De�nition 2.2 of [48]:

De�nition B.1 (Wronskian). Let y1(z) and y2(z) be two meromorphic func-

tions in a domain S. The Wronskian34 of the functions y1(z) and y2(z) is then

de�ned as

W (y1, y2; z) = y1(z)y′2(z)− y′1(z)y2(z), z ∈ S.

W (y1, y2; z) can be seen as the determinant of the matrix(
y1(z) y2(z)
dy1(z)
dz

dy2(z)
dz

)
.

The following lemma from [48], which relates the Wronskian with the an-

gular dependence of two meromorphic functions, is also useful:

Lemma B.1. Let y1(z) and y2(z) be two meromorphic functions in a domain

S. A necessary and su�cient condition that y1(z) and y2(z) are linearly de-

pendent is

W (y1, y2; z) = 0, z ∈ S.

In the case that the solutions y1
1 and,y2

1 are linearly independent, the fol-

lowing theorem, known as Cramer's Rule35 (see Theorem 2.9 of [50]), will be

useful:

Theorem B.1 (Cramer's Rule). Let A be an invertible n×n matrix and b an

n × 1 column vector. Denote by Bi the matrix obtained from A by replating

the ith column of A by b. Then the linear system Ax = b has unique solution

x = (x1, x2, ..., xn), where

xi =
detBi

detA
, i = 1, 2, ..., n.

As an example, we apply this theorem to express the coe�cient C12 as a

function of the Wronskians of the local solutions of the Heun's equation at

z = 0 and z = 1. We assume linear independence of y1
1 and y2

1 and consider

equation (B.14) and its �rst derivative:

y1
0(z) = C11y

1
1 + C12y

2
1, (B.16)

dy1
0(z)

dz
= C11

dy1
1

dz
+ C12

dy2
1

dz
. (B.17)

This system of equations can be rewritten as(
y1

0(z)
dy1

0(z)

dz

)
=

(
y1

1(z) y2
1(z)

dy1
1(z)

dz

dy2
1(z)

dz

)
·

(
C11

C12

)
. (B.18)

34Józef Maria Hoëne-Wrónski (1778-1853), Polish mathematician.
35Gabriel Cramer (1704-1752), Swiss mathematician.
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By means of Cramer's Rule, we can now express C12 as

C12 =

det

(
y1

1(z) y1
0(z)

dy1
1(z)

dz

dy1
0(z)

dz

)

det

(
y1

1(z) y2
1(z)

dy1
1(z)

dz

dy2
1(z)

dz

) =
W (y1

1, y
1
0; z)

W (y1
1, y

2
1; z)

. (B.19)

The same can be done with the remaining coe�cients. Therefore, knowing the

local solutions, it is possible to evaluate the connection coe�cients.

Note that in the case where the local solutions at z = 1 are not linear inde-

pendent, the Cramer's Rule cannot be applied, because W (y1
1, y

2
1; z) = 0, and

hence the matrix (
y1

1(z) y2
1(z)

dy1
1(z)

dz

dy2
1(z)

dz

)
is not invertible.
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C The 'qnm' package for python

The 'qnm' package ([34]) is an open-source Python package for computing

the Kerr-Minkowski quasinormal mode frequencies, separation constants and

spherical-spheroidal mixing coe�cients (the Cl′lm in equation (A.4)). It makes

use of Leaver's continued fractions technique ([12]) to compute the radial eigen-

values and uses the Cook-Zalutskiy spectral approach ([41]) for determining

the angular eigenvalues. The latter approach consists in transforming the an-

gular Teukolsky equation in a simple matrix eigenvalue equation, which can

be solved fast in Python.

We report here the Leaver's solver for computing continued fractions imple-

mented in the 'qnm' package, as well as an introduction on the used algorithm.

C.1 Modi�ed Lentz's algorithm

In the following, we present the modi�ed Lentz's algorithm, which allows to

evaluate in�nite continued fractions expressions of the form

f(x) = b0 +
a1

b1 + a2

b2+
a3

b3+
a4

b4+...

. (C.1)

This part is taken from [51].

Continued fractions often converge more rapidly than power series expan-

sions, but unlike series, one cannot simply evaluate expression (C.1) from left

to right and stop when the change is small. In order to proceed in this way,

one needs to rewrite expression (C.1) in a more convenient way. One de�nes:

fn = b0 +
a1

b1 + a2

b2+
a3

b3+ ...
...+bn

, (C.2)

and claims that this expression can be rewritten as

fn =
An
Bn

, (C.3)

where An and Bn are given by the following recurrence:

A−1 := 1, B−1 := 0,

A0 := b0, B0 := 1,

Aj = bjAj−1 + ajAj−2, Bj = bjBj−1 + ajBj−2, j = 1, 2, ..., n.

(C.4)

This can be easily proved by induction. This recurrence relation often gener-

ates very small or very large values for Aj and Bj. To solve this problem, one

introduces the following ratios that allow to rescale intermediate results:

Cj := Aj/Aj−1, Dj := Bj−1/Bj. (C.5)
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Using the relations (C.4), one can show that Cj and Dj satisfy the following

recurrence relations:

Cj = bj + aj/Cj−1, Dj = 1/(bj + ajDj−1). (C.6)

Step j of the algorithm consists in computing Cj and Dj using the relations

(C.6), together with step j − 1. fj can then be expressed as

fj = fj−1CjDj. (C.7)

It could happen that Cj or the denominator of Dj become 0. However, as

shown by Thompson and Barnett in [52], one can �x this problem by shifting

the term that is 0 by a small amount ('tiny'), e.g., 10−30.

One proceeds in this way until |fj − fj−1|/fj−1 is smaller than a given

tolerance 'eps' (e.g. 10−10). If one denotes:

CjDj =: ∆j, (C.8)

then fj can be rewritten as

fj = fj−1∆j (C.9)

and the stopping criterion as:

|∆j − 1| < eps, (C.10)

because |fj − fj−1|/fj−1 = |∆j − 1|.
We report the scheme of the algorithm's step from [51], which is also used

in the 'qnm' package:

• Set f0 = b0; if b0 = 0, set f0 = tiny.

• Set C0 = f0.

• Set D0 = 0.

• For j = 1, 2, ...

Set Dj = bj + ajDj−1.

If Dj = 0, set Dj = tiny.

Set Cj = bj + aj/Cj−1.

If Cj = 0, set Cj = tiny.

Set Dj = 1/Dj.

Set ∆j = CjDj.

Set fj = fj−1∆j.

If |∆j − 1| < eps, then exit.

Below, we report an implementation of the modi�ed Lentz's algorithm

which is contained in the 'qnm.contfrac' �le of the 'qnm' package.
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Listing 1: Python code for the modi�ed Lentz's algorithm, taken from [34]

import numpy as np

def lentz(a, b, tol=1.e−10, N_min=0, N_max=np.Inf, tiny=1.e−30):
""" Compute a continued fraction via modi�ed Lentz's method.

Parameters

−−−−−−−−−−
a: callable returning numeric.

b: callable returning numeric.

tol : �oat [ default : 1.e−10]
Tolerance for termination of evaluation.

N_min: int [default: 0]

Minimum number of iterations to evaluate.

N_max: int or comparable [default: np.Inf]

Maximum number of iterations to evaluate.

tiny : �oat [ default : 1.e−30]
Very small number to control convergence of Lentz's method when

there is cancellation in a denominator.

Returns

−−−−−−−
( �oat , �oat , int)

The �rst element of the tuple is the value of the continued

fraction . The second element is the estimated error. The third

element is the number of iterations .

"""

f_old = b(0)

if (f_old == 0):

f_old = tiny

C_old = f_old

D_old = 0.
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conv = False

j = 1

while ((not conv) and (j < N_max)):

aj , bj = a(j), b(j)

D_new = bj + aj ∗ D_old

if (D_new == 0):

D_new = tiny

C_new = bj + aj / C_old

if (C_new == 0):

C_new = tiny

D_new = 1./D_new

Delta = C_new ∗ D_new
f_new = f_old ∗ Delta

if (( j > N_min) and (np.abs(Delta − 1.) < tol)): # converged

conv = True

# Set up for next iter

j = j + 1

D_old = D_new

C_old = C_new

f_old = f_new

# Success or failure can be assessed by the user

return f_new, np.abs(Delta − 1.), j−1
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D The numerical codes

D.1 Schwarzschild-de Sitter

The complex quasinormal mode frequencies of a Schwarzschild-de Sitter black

hole can be computed with the Mathematica code reported in listing 2 via

the Pöschl-Teller approximation when the ratio M/rC =
√

ΛM2/3 and the

quantum numbers n and l are given (here areM/rC = 0.1893, n = 0 and l = 2

as an example).

Listing 2: Mathematica code for computing QNM frequencies of a SdS BH.

(∗Input ratio M/rC∗)
ratio = 1893/10000

(∗Setting the units∗)
Lam = 3∗ratio^2 (∗This is Λ in units of M=1∗)
M = 1

(∗Setting the quantum numbers∗)
l = 2

n = 0

(∗Computing SdS QNM using the Poeschl−Teller approximate potential∗)
f [r_] := 1−(2∗M/r)−Lam∗r^2/3
roots = r /. Solve[−Lam/3∗r^3+r−2∗M==0,r, WorkingPrecision−>40]
pot[r_]:= f[ r ]∗( l∗(l+1)/r^2−6∗M/r^3)

secondder[r_]:= pot''[ r]∗ f [ r]^2+pot'[r]∗f '[ r]∗ f [ r ]
max = Maximize[{ pot[r], Part[roots,2]<= r <= Part[roots,3]}, r]

V0 = Part[max,1]

r0 = r /. Last[max]

b = Sqrt[1/(−1/(2∗V0)∗secondder[r0])]
omega = 1/b∗(Sqrt[V0∗b^2−1/4]−(n+1/2)∗I)

D.2 Kerr-de Sitter

D.2.1 Quasinormal mode frequencies via the continued fractions

method

The code reported in listing 3 is the direct implementation, written in Python36,

of the continued fractions method described in [19] for the computation of

36We have also implemented a Mathematica version, which does exactly the same compu-

tations. However, since it leads to the same results, we do not report it here.
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Kerr-de Sitter quasinormal mode frequencies. Here, the fundamental (n = 0)

frequencies are computed in units of Λ = 3 when the ratio M/rC and the

quantum numbers s, l and m are given (here are M/rC = 0.1893, s = −2,

l = 2 and m = 2 as an example). Note that a starting value, corresponding

to the value of the Schwarzschild-de Sitter quasinormal mode frequency (in

Λ = 3 units) associated with the given value of M/rC , must be provided.

Listing 3: Python code for computing quasinormal mode frequencies of a Kerr-

de Sitter black hole via the continued fractions method.

import cmath

import numpy as np

from scipy.optimize import root

from qnm.contfrac_modi�ed import lentz # This is the function reported

in listing 1 and slightly modi�ed to make the continued fractions

depend on omega and lambda.

### Angular eigenvalue equation ###

def A3(om,a,alph):

return 1j/2∗((1+alph)/np.sqrt(alph)∗a∗om−np.sqrt(alph)∗m−s∗1j)

def zs(alph):

return 1j∗(1+1j∗np.sqrt(alph))∗∗2/(4∗np.sqrt(alph))

def u1(om,a,alph):

return 0.5∗(2+4∗A3(om,a,alph)+4∗A2∗(1+A3(om,a,alph))+4∗A1∗(1+
A2+A3(om,a,alph))+m∗∗2−2j∗a∗m∗s+s∗∗2+2j∗s∗om+2j∗a∗∗2∗s∗
om)

def u0(om,lam,a,alph):

return −1j/(8∗a)∗(−2∗A2−2∗A1∗(1+2∗A2)−m∗∗2−2∗s+s∗∗2+a
∗∗2∗(2∗A2+A1∗(2+4∗A2)−3∗m∗∗2+2∗s−4∗m∗s−s∗∗2)+4∗a∗∗3∗(m
+s)∗om−2j∗a∗(2+2∗A2+4∗A3(om,a,alph)+A1∗(6+4∗A2+8∗A3(om,

a,alph))+m∗∗2−2∗m∗s+s∗∗2+2j∗m∗om+2j∗s∗om)+2∗lam)

def alpha_theta_n(n,alph):

return zs(alph)∗(1+n)∗(1+n+2∗A1)

def beta_theta_n(n,om,lam,a,alph):

return u0(om,lam,a,alph)−(1+zs(alph))∗n∗∗2−(1+2∗A3(om,a,alph)+zs

(alph)+2∗A2∗zs(alph)+2∗A1∗(1+zs(alph)))∗n
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def gamma_theta_n(n,om,a,alph):

return −1−2∗A3(om,a,alph)+2∗A1∗(n−1)+2∗A2∗(n−1)+2∗A3(om,a,

alph)∗n+n∗∗2+u1(om,a,alph)

### modi�ed Lentz algorithm ###

def aa(n,om,a,alph,M):

return −gamma_theta_n(n,om,a,alph)∗alpha_theta_n(n−1,alph)

def b(n,om,lam,a,alph,M):

return beta_theta_n(n,om,lam,a,alph)

def A(om,lam,a,alph,M):

return lentz(aa,b,om,lam,a,alph,M, tol = 1e−15)[0]

### Radial eigenvalue equation ###

def horizons(M,a,alph):

p = np.array([−alph/a∗∗2,0,1−alph,−2∗M,a∗∗2])
r = np.roots(p)

for i in range(len(r)):

if r .imag[i]!=0:

return "No KdS Black hole possible!"

return np.sort(r)

def deriv_ri(M,a,alph,ri) :

return −4∗alph/a∗∗2∗ri∗∗3+2∗(1−alph)∗ri−2∗M

def kappa(M,a,alph,ri):

return 1./(2∗(1+alph)∗(ri∗∗2+a∗∗2))∗deriv_ri(M,a,alph,ri)

def Om(ri,a):

return a/(ri∗∗2+a∗∗2)

def om_bar(om,ri,a):

return om−m∗Om(ri,a)

def B1(M,a,alph,om):

rplus = horizons(M,a,alph)[2]

68



kplus = kappa(M,a,alph,rplus)

return −s−(om_bar(om,rplus,a)/(2∗kplus))∗1j

def B2(M,a,alph,om):

rminus = horizons(M,a,alph)[1]

kminus = kappa(M,a,alph,rminus)

return (om_bar(om,rminus,a)/(2∗kminus))∗1j

def B3(M,a,alph,om):

rplusplus = horizons(M,a,alph)[3]

kplusplus = kappa(M,a,alph,rplusplus)

return (om_bar(om,rplusplus,a)/(2∗kplusplus))∗1j

def b1(M,a,alph,om):

rplus = horizons(M,a,alph)[2]

kplus = kappa(M,a,alph,rplus)

return (om_bar(om,rplus,a)/(2∗kplus))∗1j

def b2(M,a,alph,om):

return B2(M,a,alph,om)

def b3(M,a,alph,om):

return B3(M,a,alph,om)

def b4(M,a,alph,om):

rminmin = horizons(M,a,alph)[0]

kminmin = kappa(M,a,alph,rminmin)

return (om_bar(om,rminmin,a)/(2∗kminmin))∗1j

def v1(M,a,alph,om):

B11 = B1(M,a,alph,om)

B22 = B2(M,a,alph,om)

B33 = B3(M,a,alph,om)

b44 = b4(M,a,alph,om)

return (B11+B22+B33−b44+s+1)∗(B11+B22+B33+b44+2∗s+1)

def v0(M,a,alph,om,lam):

rmm = horizons(M,a,alph)[0]

rm = horizons(M,a,alph)[1]

rp = horizons(M,a,alph)[2]
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rpp = horizons(M,a,alph)[3]

b11 = b1(M,a,alph,om)

b22 = b2(M,a,alph,om)

b33 = b3(M,a,alph,om)

b44 = b4(M,a,alph,om)

B11 = B1(M,a,alph,om)

B22 = B2(M,a,alph,om)

B33 = B3(M,a,alph,om)

return −1/((rp−rm)∗(rpp−rmm))∗(lam+2∗s∗(a∗∗2−1)+(B22−b22∗s+
B22∗s−b11∗(2∗b22+s)+B11∗(1+2∗B22+s))∗rpp∗rmm−(−1+2∗b11
∗∗2+(−3+b22+b33+b44)∗s−2∗s∗∗2+b11∗(2∗b22+2∗b33+2∗b44+5∗
s))∗rp∗∗2−(B22+B33−b22∗s−b33∗s+B22∗s+B33∗s−2∗b11∗(b22+
b33+s)+2∗B11∗(1+B22+B33+s))∗rp∗rmm+(1+2∗b11∗∗2+B33+3∗s
+b22∗s+b44∗s+B33∗s+2∗s∗∗2+B11∗(1+2∗B33+s)+2∗b11∗(b22+
b44+2∗s))∗rp∗rpp+(1+2∗b11∗∗2+B22+3∗s+b33∗s+b44∗s+B22∗s
+2∗s∗∗2+B11∗(1+2∗B22+s)+2∗b11∗(b33+b44+2∗s))∗rp∗rm+(B33

−b33∗s+B33∗s−b11∗(2∗b33+s)+B11∗(1+2∗B33+s))∗rm∗rmm

−(1+2∗b11∗∗2+B22+B33+3∗s+b44∗s+B22∗s+B33∗s+2∗s∗∗2+2∗
B11∗(1+B22+B33+s)+b11∗(2∗b44+3∗s))∗rm∗rpp−4∗1j∗s∗om∗(1+a
∗∗2)∗rp)

def xr(M,a,alph):

rmm = horizons(M,a,alph)[0]

rm = horizons(M,a,alph)[1]

rp = horizons(M,a,alph)[2]

rpp = horizons(M,a,alph)[3]

return (rm−rmm)∗(rpp−rp)/((rm−rp)∗(rpp−rmm))

def alpha_r_n(n,M,a,alph,om):

return (1+n)∗(1+2∗B1(M,a,alph,om)+n+s)

def beta_r_n(n,M,a,alph,om,lam):

xrr = xr(M,a,alph)

B11 = B1(M,a,alph,om)

B22 = B2(M,a,alph,om)

B33 = B3(M,a,alph,om)

v00 = v0(M,a,alph,om,lam)

return v00−(1+xrr)∗n∗∗2−(1+2∗B33+2∗s+xrr+2∗B22∗xrr+2∗s∗xrr
+2∗B11∗(1+xrr))∗n
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def gamma_r_n(n,M,a,alph,om):

xrr = xr(M,a,alph)

B11 = B1(M,a,alph,om)

B22 = B2(M,a,alph,om)

B33 = B3(M,a,alph,om)

v11 = v1(M,a,alph,om)

return (−1+2∗(B11+B22+B33)∗(n−1)+n∗∗2−3∗s+3∗n∗s+v11)∗xrr

### Modi�ed Lentz algorithm ###

def ar(n,om,a,alph,M):

return −gamma_r_n(n,M,a,alph,om)∗alpha_r_n(n−1,M,a,alph,om)

def br(n,om,lam,a,alph,M):

return beta_r_n(n,M,a,alph,om,lam)

def B(M,a,alph,om,lam):

return lentz(ar,br,om,lam,a,alph,M,tol = 1e−15)[0]

### Initial guess ###

#lambda

def lam0(l,s) :

return l∗(l+1)−s∗(s−1)

#omega (take the value of the Schwarzschild−de Sitter QNM frequency)

def om0(M):

return 0.3522−0.09070j

def x0(l , s ,M):

x0=np.array([om0(M),lam0(l,s)],dtype=complex)

return np.array([x0.real [0], x0.imag[0],x0. real [1], x0.imag[1]])

### Solving the system of continued fractions equations using scipy.

optimize.root ###

''' Since scipy.optimize.root only works with real numbers, we pack

complex numbers into vectors of real numbers'''
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def func(x,a,alph,M): # This is a vector function func(om,lam) = (A(om,

lam), B(om,lam)), where x is an array (Re(om),Im(om),Re(lam),Im(lam

))

xx = np.array([x[0]+x[1]∗1j ,x[2]+x[3]∗1j ])
func = np.array([A(xx[0],xx [1], a,alph,M), B(M,a,alph,xx[0],xx[1]) ],

dtype = complex)

return np.array([func[0]. real ,func [0]. imag,func [1]. real ,func [1]. imag])

def solve(a,alph,M,x0):

sol = root(func,x0,args=(a,alph,M), method = 'hybr',options={'xtol': 1

e−9,'eps': 1e−15})
return np.array([sol[0]+sol [1]∗1 j , sol[2]+sol [3]∗1 j ])

### De�ning the physical parameters ###

M = 0.1893 # M/r_C

a_max = 0.1978 # maximum value of the spin parameter

Lam = 3 # cosmological constant

s = −2 # spin weight

l = 2 # angular quantum number

m = 2 # azimuthal quantum number

A1 = abs(m−s)/2
A2 = abs(m+s)/2

x00 = x0(l,s ,M) # initial guess

ang_mom = [0.001∗a_max]

omega_real = []

omega_imag = []

lam_real = []

lam_imag = []

### The algorithm ###

i = 0

while ang_mom[−1] <= a_max:

print("a =", ang_mom[i])

a = ang_mom[i]
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alph = Lam∗a∗∗2/3
sol = solve(a,alph,M,x00)

omega_real.append(sol.real[0])

omega_imag.append(sol.imag[0])

lam_real.append(sol.real [1])

lam_imag.append(sol.imag[1])

if i<2:

x00 = np.array([sol . real [0], sol .imag[0], sol . real [1], sol .imag[1]])

np.save('omega_real_M={0},m={1}'.format(M,m),omega_real)

np.save('omega_imag_M={0},m={1}'.format(M,m),omega_imag)

np.save('ang_mom_M={0},m={1}'.format(M,m),ang_mom)

ang_mom.append(ang_mom[i]+1e−1∗a_max)

i+=1

else:

x1om = omega_real[i−2:]
x2om = omega_imag[i−2:]
x1lam = lam_real[i−2:]
x2lam = lam_imag[i−2:]
c1om = np.poly�t(ang_mom[i−2:], x1om,2)

c2om = np.poly�t(ang_mom[i−2:], x2om,2)

c1lam = np.poly�t(ang_mom[i−2:], x1lam,2)

c2lam = np.poly�t(ang_mom[i−2:], x2lam,2)

np.save('ang_mom_M={0},m={1}'.format(M,m),ang_mom)

ang_mom.append(ang_mom[i]+1e−1∗a_max)

x00 = np.array([np.polyval(c1om,ang_mom[i+1]),np.polyval(c2om,

ang_mom[i+1]),np.polyval(c1lam,ang_mom[i+1]),np.polyval(

c2lam,ang_mom[i+1])])

np.save('omega_real_M={0},m={1}'.format(M,m),omega_real)

np.save('omega_imag_M={0},m={1}'.format(M,m),omega_imag)

i+=1

D.2.2 Quasinormal mode frequencies via the Heun's function method

The code reported in listing 4 is taken directly from theMathematica notebook

of [20]. Here, the Kerr-de Sitter quasinormal mode frequencies are computed in

units ofM = 1 when the values of s, l,m and a are given (here is s = −2, l = 2,

m = 2 and a = 0.6 as an example). Note that a starting value, corresponding

to the values of the Kerr-Minkowski quasinormal mode frequency (in M = 1

units) and separation constant at the given value of a must be provided. This

can be done using the 'qnm' package for Python.
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Listing 4: Mathematica code for computing quasinormal mode frequencies of

a Kerr-de Sitter black hole via the Heun's function method.

(∗This part computes Wronskians of angular solutions∗)

angular[{s_,l_,m_},{M_,Λ_,a_},{ω_,λ_}]:=Block[{α 0,aH,A1,A2,A3,

A3c,c,α,β,γ,δ,ε,q,y01,y02,y11,y12},α0=(Λ a^2)/3;

aH=−((1−I/Sqrt[α0])^2/(4I/Sqrt[α0]));c=a ω;
A1=(m−s)/2; A2=−((m+s)/2); A3=I/2 ((1+α0)/Sqrt[α0] c−m Sqrt[α0]−

I s); A3c=−I/2 ((1+α0)/Sqrt[α0] c−m Sqrt[α0]+I s);

α=1; β=1−s−I m Sqrt[α0]+I c(Sqrt[α0]+1/Sqrt[α0]); γ=2A1+1; δ=2A2

+1;ε=2A3+1;

q=(I λ)/(4Sqrt[α0])+1/2+A1+(m+1/2)(A3−A3c);
y01[z_]:=HeunG[aH,q,α,β,γ,δ,z];

y02[z_]:=z^(1−γ) HeunG[aH,(aH δ+ε)(1−γ)+q,α+1−γ,β+1−γ,2−γ,δ,z] ;
y11[z_]:=HeunG[1−aH,αβ−q,α,β,δ,γ,1−z];
y12[z_]:=(1−z)^(1−δ) HeunG[1−aH,((1−aH)γ+ε)(1−δ)+α β−q,α+1−δ,β

+1−δ,2−δ,γ,1−z];

Which[(m−s>=0)&&(−m−s>=0),Det[{{y01[z],y11[z]},{y01'[z],y11'[z]}}]/.
z−>1/2,

(m−s>=0)&&(−m−s<0),Det[{{y01[z],y12[z]},{y01'[z],y12'[z]}}]/.z−>1/2,
(m−s<0)&&(−m−s>=0),Det[{{y02[z],y11[z]},{y02'[z],y11'[z]}}]/.z−>1/2,
(m−s<0)&&(−m−s<0),Det[{{y02[z],y12[z]},{y02'[z],y12'[z]}}]/.z−>1/2]]

(∗This part computes Wronskians of radial solutions∗)

radial [{s_,l_,m_},{M_,Λ_,a_},{ω_,λ_},prec_]:=Block[{

MinPrecision = prec,MaxExtraPrecision=2prec,∆r,Kr,α0,rp,rm,rpp,

rmp,B1,B2,B3,aH,α,β,γ,δ,ε,q,y01,y02,y11,y12,con},

∆r[r_]:=(r^2+a^2)(1−Λ/3 r^2)−2M r;

Kr[r_]:=ω(r^2+a^2)−a m;

α0=(Λ a^2)/3;

{rmp,rm,rp,rpp}=Sort[r/.NSolve[∆r[r]==0,r,WorkingPrecision−>prec]];
aH=((rpp−rm)(rmp−rp))/((rpp−rp)(rmp−rm));

B1=(I(1+α0)Kr[rp])/∆r'[rp];B2=(I(1+α0)Kr[rpp])/∆r'[rpp];B3=(I(1+α0)

Kr[rmp])/∆r'[rmp];

α=2s+1;β=s+1−(2I(1+α0)Kr[rm])/∆r'[rm];

γ=2B1+s+1;δ=2B2+s+1;ε=2B3+s+1;

q=−(((1+s) (1+2 s)rmp )/(rm−rmp)+(3 λ−2 s (3−a^2 Λ)+Λ(1+s) (1+2 s)
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rp (rp+rpp))/(Λ(rm−rmp) (rp−rpp) )−(2 I (1+2 s) (3+a^2 Λ) (rp rm ω

+a^2 ω−a m))/(Λ(rm−rmp) (rm−rp) (rp−rpp) ));
y01[z_]:=HeunG[aH,q,α,β,γ,δ,z];

y02[z_]:=z^(1−γ) HeunG[aH,(aH δ+ε)(1−γ)+q,α+1−γ,β+1−γ,2−γ,δ,z] ;
y11[z_]:=HeunG[1−aH,α β−q,α,β,δ,γ,1−z];
y12[z_]:=(1−z)^(1−δ) HeunG[1−aH,((1−aH)γ+ε)(1−δ)+α β−q,α+1−δ,β

+1−δ,2−δ,γ,1−z];
Det[{{y02[z],y11[z]},{y02'[z ], y11'[z ]}}]/Det[{{y12[z],y11[z]},{y12'[z ], y11

'[z ]}}]/. z−>1/2]

(∗This part computes QNM eigenvalues for given parameters∗)

Clear[QNMdS]

QNMdS[{s_,l_,m_},{M_,Λ_,a_},{ωini_,λini_},prec_]:=QNMdS[{s,l,m

},{M,Λ,a},{ωini,λini},prec]=If[a==0,N[FindRoot[radial[{s,l,m},{M,Λ,a

},{ω,l(l+1)−s(s−1)},prec+10],{ω,ωini},WorkingPrecision−>prec+10],
prec],N[FindRoot[{angular[{s,l,m},{M,Λ,a},{ω,λ}],radial[{s,l,m},{M,Λ,

a},{ω,λ},prec+10]},{{ω,ωini},{λ,λini}},WorkingPrecision−>prec+10],
prec]]

(∗Kerr in the �at limit∗)

s0=−2;l0=2;m0=2;

a0=0.6;

ω�at= 0.4940447817813843−0.08376520216104325∗I; (∗ This value was
computed using the qnm package for Python∗)

A�at= 3.1453865994337304+0.15669038538845884∗I;(∗ This value was
computed using the qnm package for Python∗)

λ�at=A�at+2s−2m c+c^2/.{s−>s0,m−>m0,c−>a0∗ω�at}

(∗The following computations take much time∗)

Clear[Kerr]

step=1/10000;

Kerr[step]={ω,λ}/.QNMdS[{s0,l0,m0},{1,step,a0},{ω�at,λ�at},50]

Kerr[Λ_]:=Kerr[Λ]={ω,λ}/.QNMdS[{s0,l0,m0},{1,Λ,a0},Kerr[Λ−step
]−1/20000 {1−I,−1−I},50]

stepnumber = 20
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ls=Monitor[Table[{p∗step,Kerr[p∗step]},{p,1,stepnumber}],p];
lsreω=Table[{ls[[i,1]], ls [[ i ,2,1]]//Re},{i,Length[ls]}]

lsimω=Table[{ls[[i,1]], ls [[ i ,2,1]]// Im},{i,Length[ls]}]

ListPlot[lsreω,AxesLabel−>{"\!\(\∗SuperscriptBox[\(M\), \(2\)]\)Λ","

Re[Mω]"}]

ListPlot[lsimω,AxesLabel−>{"\!\(\∗SuperscriptBox[\(M\), \(2\)]\)Λ","

Im[Mω]"}]

Export[StringReplace["lsreω,a=0,m=1,l=2.csv",{"0" −> ToString[N[a0

]],"1" −> ToString[m0],"2" −> ToString[N[l0]]}],lsreω]

Export[StringReplace["lsimω,a=0,m=1,l=2.csv",{"0" −> ToString[N[a0

]],"1" −> ToString[m0],"2" −> ToString[N[l0]]}],lsimω]

Table[{o,Coe�cient[Fit[lsreω,Table[Λ^i,{i,0,o}],Λ],Λ,0]},{o,5,19}]//

TableForm

Table[{o,Coe�cient[Fit[lsimω,Table[Λ^i,{i,0,o}],Λ],Λ,0]},{o,5,19}]//

TableForm

lsreω+ I lsimω

Fit[ lsreω+I lsimω,Table[Λ^i,{i,0,18}],Λ]

N[Coe�cient[%,Λ,0],20]

%−ω�at
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E Tunneling formalism in the study of particle

emission rates from black holes due to Hawk-

ing radiation

This Appendix is intended to explain why the �rst topic proposed for this

master's thesis, which concerned the application of tunneling formalism to the

computation of particle emission rates from a black hole due to Hawking radi-

ation, was problematic. First, we would like to brie�y introduce the formulae

for the emission rates and the application of tunneling in the study of Hawk-

ing radiation. Then, we will mention the problems that this method presents.

For simplicity, we restrict ourselves to the emission of massless particles from

Schwarzschild-Minkowski black holes.

E.1 Theory

E.1.1 Emission rates

Hawking radiation is a phenomenon, �rst described by Hawking in [53] (see

also [54] and [55]), that arises when considering quantum �eld theory in a

curved spacetime, treating the metric classically and the matter �elds quantum

mechanically. This theory, developed for Schwarzschild-Minkowski and Kerr-

Minkowski black holes, relies on the fact that the notion of particle can only

be de�ned unambiguously in �at but not in curved spacetime. The quantum

states are therefore de�ned at in�nity, and their interaction with the spacetime

curvature is described by operators that map these initial states to �nal states,

again de�ned at in�nity, in a way that resembles scattering theory.

By means of this theory, Hawking derived the formula

〈Njωlmp〉 =
Γjωlmp

exp[2πκ−1(ω −mΩ)]± 1
, (E.1)

for the expected emission rate, as observed in�nitely far from the black hole, of

particles of species j in a wave mode labeled by energy ω, the spheroidal har-

monic quantum number l, the axial quantum number m and the polarization

p. Γjωlmp is called in [56] the absorption probability (or greybody factor)37 for

an incoming wave of that mode. The quantities κ and Ω are the surface gravity

and the angular velocity, and are related to the black hole's mass M , area A

and angular momentum J by the �rst law of black hole's thermodynamics:

dM = κ/8πdA+ ΩdJ . The plus (minus) is for fermions (bosons).

37The coe�cient Γjωlmp represents the probability for a particle emitted by the black hole

to reach in�nity and not to fall back into the hole.
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As �rst noted by Hawking in [53], equation (E.1) corresponds to the rate

of thermal emission of a perfect blackbody at a temperature given, in Planck

units, by

TH = κ/2π. (E.2)

The rates at which the mass and angular momentum of a Kerr-Minkowski

black hole decrease are given by the formula (cf. [56] and [29]):

− d

dt

(
M

J

)
=
∑
j,l,m,p

∫ ∞
0

dω 〈Njωlmp〉
(
ω

m

)
. (E.3)

To use this formula (E.3), one should �rst know the value of Γjωlmp, whose

computation is nontrivial and is normally achieved using perturbation theory

(cf. [8]). The question we asked ourselves is whether this calculation can be

simpli�ed using a formalism other than perturbation theory, like the tunneling

formalism. In the following, we will see why this is not possible with the

current understanding of the tunneling formalism applied to black holes.

E.1.2 Hawking radiation as tunneling

Hawking provided a heuristic interpretation of the phenomenon of particle

emission from black holes, which relies on the fact that the Killing vector

�eld is time-like ouside the black hole horizon, space-like inside and light-

like on the horizon. Therefore, only particle states with positive energy are

allowed outside the horizon, but both positive and negative energy particle

states can occur inside. One can imagine Hawking radiation as being the

result of one of the following two scenarios. First, a pair of particles38, one

with positive and the other with negative energy, can be produced from vacuum

just beneath the event horizon, and the positive energy particle can escape the

black hole via quantum tunneling through the horizon (note that this would

not be allowed classically). The second scenario imagines a pair of particles38,

one with positive and the other with negative energy, as being producted just

outside the horizon. The negative energy particle state tunnels, or falls, into

the black hole through the horizon, while the positive energy particle escapes

to in�nity. In both scenarios, this process causes loss of mass by the black

hole.

Parikh and Wilczek [57] (see also [58] and [59] for a review) proposed a

derivation of Hawking radiation which corresponds directly to this heuristic

picture, using tunneling formalism to compute the expected emission rate by

black holes, although, as written by Hawking in [53], the tunneling interpreta-

tion is "heuristic only and should not be taken too literally". In the following,

38One could also consider a particle-antiparticle pair. However, Hawking's derivation in

[53] predicts the production of particle pairs.
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we present the method that they used in their derivations, also called the null

geodesic method. Another method, the so-called Hamilton-Jacobi method, is

described in [59], but we did not review it.

E.1.3 Choice of the coordinates

The �rst thing to do, in order to apply the tunneling formalism, is to de�ne

the notion of a particle. As said above, a particle can be uniquely de�ned only

in �at spacetime, but not, for example, in the vicinity of a black hole event

horizon. To solve this problem, as explained in [59], one can choose a particular

coordinate system and de�ne an observer dependent vacuum relative to which

it is possible to de�ne the notion of particle uniquely. Since the purpose of

the calculations is to compute a probability, this approach is justi�ed in [59]

by saying that, if the probability is coordinate invariant, it will not depend on

the coordinate system that one chooses.

Following [57] and [58], one chooses a coordinate system which is not sin-

gular across the horizon, like the Gullstrand-Painlevé coordinate system. The

metric in these coordinates is given by

ds2 = −
(

1− 2M

r

)
dt2 + 2

√
2M

r
dtdr + dr2 + r2(dθ2 + sin2θdφ). (E.4)

Here, r, θ and φ are the Schwarzschild coordinates, and t = tS + f(r), where

tS is the Schwarzschild time and f(r) satis�es f ′(r)
(
1− 2M

r

)
= 2M

r
(see [58]).

One then looks for curves that are both radial (to study outgoing and

ingoing geodesics) and null (associated to massless particles):

0 =

(
ds

dt

)2

, (E.5)

0 = −
(

1− 2M

r

)
+ 2

√
2M

r
ṙ + ṙ2, (E.6)

ṙ = ±1−
√

2M

r
, (E.7)

where "+" is used for the outgoing and "−" is used for the ingoing geodesics

when ouside the event horizon. When inside the horizon, both geodesics are

ingoing.

E.1.4 WKB approximation

Normally, for the calculation of the trasmission coe�cient for tunneling through

a potential barrier, one makes use of the WKB approximation39. This method

39In the WKB method, the particle is treated quantum mechanically (�rst quantisation)

and the wavefunction is cast as an exponential, eT (x)+iS(x), where amplitude and phase are
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is used to �nd solutions before, in and after the classically forbidden region.

Then, one matches the coe�cients for continuity and the resulting emission

rate40 is given in Planck units by

Γem ∝ e−2 Im(S), (E.8)

where S is the reduced action for the tunneling process, i.e.

S =

∫ r2

r1

dr pr, (E.9)

where r1 and r2 are the beginning and ending points of the potential barrier.

To study the tunneling process through the event horizon, the idea is to

apply these results directly to the black hole case41. In this case, S is the

action for the tunneling process across the event horizon, and r1 and r2 are

the positions of the event horizon before and after the particle of energy ω has

tunneled out42. The imaginary part of the action is then computed as follows:

ImS = Im
∫ r2

r1

dr pr (E.10)

= Im
∫ r2

r1

dr

∫ pr

0

dp′r (E.11)

(1)
= Im

∫ r2

r1

dr

∫ M−ω

M

dH

ṙ
(E.12)

= Im
∫ r2

r1

dr

∫ ω

0

−dω′

ṙ
(E.13)

(2)
= Im

∫ ω

0

(−dω′)
∫ r2

r1

dr

1−
√

2(m−ω′)
r

(E.14)

(3)
= Im

∫ ω

0

(−dω′)
∫ r2

r1

dr

√
r

√
r −

√
2(M − ω′) + iε

(E.15)

= −Im iπ

∫ ω

0

(−dω′)4(M − ω′) (E.16)

= 4πω
(
M − ω

2

)
. (E.17)

explicitly separated. The (semiclassical) WKB approximation is then made by expanding T

and S as a power series of ~ and keeping the leading order term in the classical limit ~→ 0.
40The emission rate corresponds to the probability per unit time for one particle to tunnel

through the potential barrier.
41One justi�es the applicability of the WKB approximation in the vicinity of the black

hole horizon by saying that a distant observer detects a wave with frequency ωobs, which

has been emitted with frequency ωem ∝ (1− 2M/r)−1/2ωobs, and therefore the wavelength

vanishes for an observer near the horizon, making the semiclassical approximation reliable.
42One takes into account the back reaction on the metric by saying that, if a particle of

energy ω has tunneled out, the massM of the black hole reduces toM−ω, and consequently

its horizon recedes to 2(M − ω). So, one has r1 = 2M and r2 = 2(M − ω), with r1 > r2. In

fact, "it is the particle itself that secretely de�nes the tunneling barrier" [60].
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In (1), one changes the integration from momentum to energy using that, in

the Hamilton formalism, ṙ = dH/dpr, where H = M−ω′ with 0 ≤ ω′ ≤ ω and

M constant. In (2), one switches the order of the integration and uses equation

(E.7) for the outgoing geodesics43. In (3) one regularises the integral, which is

otherwise divergent, by shifting the energy to complex values, i.e. ω′ → ω′+iε.

Equation (E.8) can then be rewritten as

Γem ∝ e−8πMω(1−ω/2M). (E.18)

If one uses the de�nition of the Hawking temperature, equation (E.2), and the

fact that the surface gravity of a Schwarzschild black hole of mass M equals

to κ = 1/4M , one can rewrite equation (E.18) as

Γem ∝ e
− ω
TH

(1−ω/2M)
. (E.19)

E.1.5 Detailed balance condition

The next step in the computations of the expected emission rate consists in

considering black hole thermodynamics and in making use of the detailed bal-

ance condition44. If one considers the system constituted by the black hole

and the emitted particles, and one denotes by pN the probability of the system

of being in the state "black hole with N emitted particles", then the detailed

balance condition requires that, at equilibrium,

pN−1Γem = pNΓabs, (E.20)

where Γabs is the absorption rate, which represents the probability per unit

time of emitting one particle. If one neglects the back reaction of the metric,

the internal degrees of freedom of the black hole do not change, and the prob-

lem can be compared to the thermodynamic problem of a system in thermal

equilibrium with a heat bath, where the heat bath here is represented by the

black hole. Making use of the known results for this problem, and using again

Planck units, one can write

pN =
e−Nω/T∑
i e
−Ei/T

=
e−(N−1)ω/T∑

i e
−Ei/T

e−ω/T = pN−1e
−ω/T , (E.21)

where the sum runs over all possible states i, with energy Ei, of the subsystem

consisting of the emitted particles. Here, T denotes the temperature of the

43We are considering here only the case of a particle tunneling out of the horizon. As

explained in [58] and [59], the process describing a particle falling into the horizon is math-

ematically the same, and the results are identical. That both processes contribute to the

particle emission is something that only a�ects the amplitude of the process, and hence the

proportionality factor of equation (E.8).
44For a detailed explanation, we refer the reader to the footnote at page 11 of [59].
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bath. By combining equations (E.20) and (E.21), one obtains

Γem

Γabs
=

pN
pN−1

= e−ω/T , (E.22)

that is,

Γem = Γabs e
−ω/T . (E.23)

By comparing equation (E.23) with equation (E.19), and by assuming45 ω �
M , one can identify the Hawking temperature TH with the bath temperature

T , and write

Γem = Γabs e
−ω/TH . (E.24)

Finally, one makes use of the classical constraint

Γab ± Γem = |Tjωlmp|2, (E.25)

where the plus (minus) is for fermions (bosons) and where Tjωlmp is called

in [59] the transmission coe�cient of the black hole barrier. By combining

equations (E.24) with equation (E.25), one obtains

Γem =
|Tjωlmp|2

e−ω/TH ± 1
. (E.26)

E.1.6 Results

If one compares equation (E.26) with the formula (E.1) of the expected emis-

sion rate for Schwarzschild black holes (Ω = 0), one sees that Γem corre-

sponds to 〈Njωlmp〉 and |Tjωlmp|2 corresponds to Γjωlmp. However, the tunnel-

ing method does not provide a way to compute the |Tjωlmp|2 explicitly, and

therefore does not constitute an alternative to perturbation theory for com-

puting the greybody factor Γjωlmp. Moreover, the tunneling method presents

a number of issues and points to be clari�ed which we will brie�y discuss in

the next section.

E.2 Problems

During the review of the tunneling method, we came across a general lack of

precision in the de�nition of terms, which often do not indicate the same quan-

tity in di�erent papers, leading to confusion. Furthermore, we have noticed

that, to develop this formalism, one needs to make a series of assumptions

which are not fully justi�able. We give here an overview of the problems that

45By assuming the energy of the particle being much smaller than the black hole mass,

one can neglect the term ω/2M in equation (E.19). If the energy of the particle is not

negligible, then equation (E.19) provides higher order corrections, but note that in this case

the back reaction cannot be neglected.
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we encountered, but a more detailed discussion of some of the issues can be

found in a recent paper, [61], to which we also refer.

First of all, we are confused by the fact that the term transmission coef-

�cient is used to indicate the emission rate in [58], while in [59] it indicates

the greybody factor. Moreover, we wonder how these two "transmission coe�-

cients" are related to the actual transmission coe�cient for a tunneling process,

given by

T =
|amplitude of the transmitted wave|2

|amplitude of the incoming wave|2
. (E.27)

To understand this, it would be perhaps necessary to understand in detail how

equation (E.8) is obtained in the case of tunneling through a potential barrier.

Secondly, as discussed also in [61], we are not sure if it makes sense to apply

the results of the the WKB approximation, which are derived using quantum

mechanics (�rst quantisation) in a Minkowski spacetime, to a phenomenon

which, in Hawking's derivation, arises when considering quantum �eld theory

in curved spacetime.

Moreover, the crucial ingredient in the computation of the imaginary part

of the action (equations (E.10) to (E.17)) is played by energy conservation.

Without considering the back reaction, the result of the computations would

have been zero. However, in Hawking's derivation, the formula (E.1) can be

obtained without considering the back reaction (cf. [53], [54], [55]).

Furthermore, the above derivation is observer dependent. In fact, even if

it is assumed that the probability is a coordinate scalar, this is not formally

proved. However, this and the previous problem may be solved using the

Hamilton-Jacobi method instead of the null geodesic method. In fact, it is

said that this method ignores the back reaction on the metric and applies to

any well-behaved coordinate system across the horizon.

Finally, to cite directly [61], what one computes with this method "is a

sort of rescaled Unruh temperature associated with world-lines tracing Killing

trajectories near the horizon. This temperature is numerically equal to the

Hawking temperature, but at this point no argument is known which identi�es

it with the Hawking e�ect". However, we did not go into the details of this

point, which needs further investigation.

E.3 Summary

We investigated the tunneling formalism and its application in the derivation

of Hawking radiation in the attempt of �nding an easy way to compute the

absorption probability, or greybody factor, contained in the formula of the

expected particle emission rate from a black hole. We reviewed in particular the

null geodesic method, and also made use of some notions of thermodynamics.
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We found out that the tunneling formalism allows to recover the same formula

for the emission rate as derived by Hawking, but does not allow to compute

the greybody factor explicitly. Therefore, it does not seem to be useful for

our purpose. Moreover, we noticed a general confusion in the use of the terms

and a lack of justi�cation of the assumptions used. This latter point is rather

interesting and needs further investigation.

84



References

[1] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation. W. H.

Freeman and Company, 1973.

[2] C. Vishveshwara, �Stability of the schwarzschild metric,� Physical Review

D, vol. 1, no. 10, p. 2870, 1970.

[3] T. Regge and J. A. Wheeler, �Stability of a schwarzschild singularity,�

Physical Review, vol. 108, no. 4, p. 1063, 1957.

[4] S. Chandrasekhar and S. Detweiler, �The quasi-normal modes of the

schwarzschild black hole,� Proceedings of the Royal Society of London.

A. Mathematical and Physical Sciences, vol. 344, no. 1639, pp. 441�452,

1975.

[5] S. Chandrasekhar, �On the equations governing the perturbations of the

schwarzschild black hole,� Proceedings of the Royal Society of London.

A. Mathematical and Physical Sciences, vol. 343, no. 1634, pp. 289�298,

1975.

[6] S. A. Teukolsky, �Perturbations of a rotating black hole. i. fundamental

equations for gravitational, electromagnetic, and neutrino-�eld perturba-

tions,� The Astrophysical Journal, vol. 185, pp. 635�648, 1973.

[7] W. H. Press and S. A. Teukolsky, �Perturbations of a rotating black hole.

ii. dynamical stability of the kerr metric,� The Astrophysical Journal,

vol. 185, pp. 649�674, 1973.

[8] S. A. Teukolsky and W. Press, �Perturbations of a rotating black hole. iii-

interaction of the hole with gravitational and electromagnetic radiation,�

The Astrophysical Journal, vol. 193, pp. 443�461, 1974.

[9] S. Chandrasekhar and S. Detweiler, �On the equations governing the

gravitational perturbations of the kerr black hole,� Proceedings of the

Royal Society of London. A. Mathematical and Physical Sciences, vol. 350,

no. 1661, pp. 165�174, 1976.

[10] S. Detweiler, �Black holes and gravitational waves. iii-the resonant fre-

quencies of rotating holes,� The Astrophysical Journal, vol. 239, pp. 292�

295, 1980.

[11] V. Ferrari and B. Mashhoon, �New approach to the quasinormal modes

of a black hole,� Physical Review D, vol. 30, no. 2, p. 295, 1984.

85



[12] E. W. Leaver, �An analytic representation for the quasi-normal modes of

kerr black holes,� Proceedings of the Royal Society of London. A. Mathe-

matical and Physical Sciences, vol. 402, no. 1823, pp. 285�298, 1985.

[13] H. Otsuki and T. Futamase, �Gravitational Perturbation of Schwarzschild-

De Sitter Spacetime and Its Quasi-Normal Modes,� Progress of Theoretical

Physics, vol. 85, pp. 771�778, 04 1991.

[14] I. G. Moss and J. P. Norman, �Gravitational quasinormal modes for anti-

de sitter black holes,� Classical and Quantum Gravity, vol. 19, pp. 2323�

2332, apr 2002.

[15] V. Cardoso and J. P. Lemos, �Quasinormal modes of the near extremal

schwarzschild�de sitter black hole,� Physical Review D, vol. 67, no. 8,

p. 084020, 2003.

[16] S. Yoshida and T. Futamase, �Numerical analysis of quasinormal modes

in nearly extremal Schwarzschild de Sitter spacetimes,� Physical Review

D, vol. 69, p. 064025, Mar. 2004.

[17] H. Suzuki, E. Takasugi, and H. Umetsu, �Perturbations of Kerr-de Sit-

ter Black Holes and Heun's Equations,� Progress of Theoretical Physics,

vol. 100, pp. 491�505, Sept. 1998.

[18] H. Suzuki, E. Takasugi, and H. Umetsu, �Analytic solutions of the teukol-

sky equation in kerr-de sitter and kerr-newman-de sitter geometries,�

Progress of theoretical physics, vol. 102, no. 2, pp. 253�272, 1999.

[19] S. Yoshida, N. Uchikata, and T. Futamase, �Quasinormal modes of kerr�de

sitter black holes,� Physical Review D, vol. 81, p. 044005, Feb 2010.

[20] Y. Hatsuda, �Quasinormal modes of Kerr-de Sitter black holes via the

Heun function,� arXiv e-prints, p. arXiv:2006.08957, June 2020.

[21] M. Giammatteo and I. G. Moss, �Gravitational quasinormal modes for

kerr anti-de sitter black holes,� Classical and Quantum Gravity, vol. 22,

no. 9, p. 1803, 2005.

[22] Planck Collaboration, �Planck 2018 results. vi. cosmological parameters,�

A&A, 2020.

[23] G. W. Gibbons and S. W. Hawking, �Cosmological event horizons, ther-

modynamics, and particle creation,� Physical Review D, vol. 15, no. 10,

p. 2738, 1977.

86



[24] L. Heisenberg, �A systematic approach to generalisations of General Rel-

ativity and their cosmological implications,� Physics Reports, vol. 796,

pp. 1�113, Mar. 2019.

[25] S. Akcay and R. A. Matzner, �The Kerr-de Sitter universe,� Classical and

Quantum Gravity, vol. 28, p. 085012, Apr. 2011.

[26] S. Bhattacharya, �Kerr-de Sitter spacetime, Penrose process, and the gen-

eralized area theorem,� Physical Review D, vol. 97, p. 084049, Apr. 2018.

[27] A. G. Lemaître, �A Homogeneous Universe of Constant Mass and Increas-

ing Radius accounting for the Radial Velocity of Extra-galactic Nebulae,�

Monthly Notices of the Royal Astronomical Society, vol. 91, pp. 483�490,

03 1931.

[28] C. M. Hirata, �Kerr black holes: Metric structure and regularity

of particle orbits.� http://www.tapir.caltech.edu/ chirata/ph236/2011-

12/lec26.pdfpage=5, February 2012. Caltech M/C 350-17.

[29] D. N. Page, �Particle emission rates from a black hole. ii. massless particles

from a rotating hole,� Physical Review D, vol. 14, no. 12, p. 3260, 1976.

[30] H.-P. Nollert, �Quasinormal modes: the characteristic sound of black holes

and neutron stars,� Classical and Quantum Gravity, vol. 16, pp. R159�

R216, nov 1999.

[31] S. Chandrasekhar, The Mathematical Theory of Black Holes. Oxford Uni-

versity Press, 1983.

[32] M. Cabero, J. Westerweck, C. D. Capano, S. Kumar, A. B. Nielsen, and

B. Krishnan, �Black hole spectroscopy in the next decade,� Physical Re-

view D, vol. 101, p. 064044, Mar 2020.

[33] S. A. Teukolsky, �Rotating black holes: Separable wave equations for

gravitational and electromagnetic perturbations,� Physical Review Let-

ters, vol. 29, pp. 1114�1118, Oct 1972.

[34] L. C. Stein, �qnm: A Python package for calculating Kerr quasinor-

mal modes, separation constants, and spherical-spheroidal mixing coef-

�cients,� Journal of Open Source Software, vol. 4, no. 42, p. 1683, 2019.

[35] R. M. Wald, �Note on the stability of the schwarzschild metric,� Journal

of Mathematical Physics, vol. 20, no. 6, pp. 1056�1058, 1979.

87



[36] B. S. Kay and R. M. Wald, �Linear stability of schwarzschild under per-

turbations which are non-vanishing on the bifurcation 2-sphere,� Classical

and Quantum Gravity, vol. 4, no. 4, p. 893, 1987.

[37] B. F. Whiting, �Mode stability of the kerr black hole,� Journal of Mathe-

matical Physics, vol. 30, no. 6, pp. 1301�1305, 1989.

[38] A. Zhidenko, �Quasi-normal modes of Schwarzschild de Sitter black holes,�

Classical and Quantum Gravity, vol. 21, pp. 273�280, Jan. 2004.

[39] https://reference.wolfram.com/language/ref/HeunG.html, Accessed:

25.07.2020.

[40] W. Gautschi, �Computational aspects of three-term recurrence relations,�

SIAM review, vol. 9, no. 1, pp. 24�82, 1967.

[41] G. B. Cook and M. Zalutskiy, �Gravitational perturbations of the Kerr

geometry: High-accuracy study,� Physical Review D, vol. 90, p. 124021,

Dec. 2014.

[42] E. T. Newman and R. Penrose, �Note on the bondi-metzner-sachs group,�

Journal of Mathematical Physics, vol. 7, no. 5, pp. 863�870, 1966.

[43] J. N. Goldberg, A. J. Macfarlane, E. T. Newman, F. Rohrlich, and E. C. G.

Sudarshan, �Spinâs spherical harmonics and Ã◦,� Journal of Mathematical

Physics, vol. 8, no. 11, pp. 2155�2161, 1967.

[44] S. A. Teukolsky, �Perturbations of a Rotating Black Hole. I. Fundamental

Equations for Gravitational, Electromagnetic, and Neutrino-Field Pertur-

bations,� Astrophysical Journal, vol. 185, pp. 635�648, Oct. 1973.

[45] W. H. Press and S. A. Teukolsky, �Perturbations of a Rotating Black

Hole. II. Dynamical Stability of the Kerr Metric,� Astrophysical Journal,

vol. 185, pp. 649�674, Oct. 1973.

[46] E. Berti and A. Klein, �Mixing of spherical and spheroidal modes in per-

turbed kerr black holes,� Physical Review D, vol. 90, p. 064012, Sep 2014.

[47] E. Berti, V. Cardoso, and M. Casals, �Eigenvalues and eigenfunctions

of spin-weighted spheroidal harmonics in four and higher dimensions,�

Physical Review D, vol. 73, p. 024013, Jan 2006.

[48] G. Kristensson, Second Order Di�erential Equations. Springer-Verlag New

York, 2010. https://doi.org/10.1007/978-1-4419-7020-6.

88



[49] B. D. Sleeman and V. B. Kuznetsov, �Dlmf: 31 heun functions.�

https://dlmf.nist.gov/31, Accessed: 21.07.2020. Department of Applied

Mathematics, University of Leeds, Leeds, United Kingdom.

[50] T. S. Shores, Applied Linear Algebra and Matrix Analysis. Springer,

Cham, second edition ed., 2018. https://doi.org/10.1007/978-3-319-

74748-4.

[51] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Nu-

merical Recipes, The Art of Scienti�c Computing. Cambridge University

Press, third edition ed., 2007.

[52] I. Thompson and A. Barnett, �Coulomb and bessel functions of complex

arguments and order,� Journal of Computational Physics, vol. 64, no. 2,

pp. 490�509, 1986.

[53] S. W. Hawking, �Particle creation by black holes,� Communications in

mathematical physics, vol. 43, no. 3, pp. 199�220, 1975.

[54] S. Hawking, �Particle creation by black holes,� Communications in Math-

ematical Physics, vol. 46, no. 2, pp. 206�206, 1976.

[55] R. M. Wald, �On particle creation by black holes,� Communications in

Mathematical Physics, vol. 45, no. 1, pp. 9�34, 1975.

[56] D. N. Page, �Particle emission rates from a black hole: Massless particles

from an uncharged, nonrotating hole,� Physical Review D, vol. 13, pp. 198�

206, Jan 1976.

[57] M. K. Parikh and F. Wilczek, �Hawking radiation as tunneling,� Physical

Review Letters, vol. 85, no. 24, p. 5042, 2000.

[58] C. Fleming, �Hawking radiation as tunneling,� University of Maryland.

Department of Physics., Tech. Rep, 2005.

[59] L. Vanzo, G. Acquaviva, and R. Di Criscienzo, �Tunnelling methods and

hawking's radiation: achievements and prospects,� Classical and Quan-

tum Gravity, vol. 28, no. 18, p. 183001, 2011.

[60] M. Parikh, �a Secret Tunnel Through the Horizon,� International Journal

of Modern Physics D, vol. 13, pp. 2351�2354, Jan. 2004.

[61] A. D. Helfer, �Hawking radiation, quantum �elds, and tunneling,� Physi-

cal Review D, vol. 100, p. 025005, July 2019.

89


