	DE method	2-loop 5-pt integrals	Boundary conditions	S & O

Five-point two-loop master integrals in QCD

Adriano Lo Presti

work in collaboration with Thomas Gehrmann and Johannes Henn

	DE method	2-loop 5-pt integrals		S & O
Outline				

- 1 Introduction
- 2 DE method
- 3 2-loop 5-pt integrals
- 4 Boundary conditions
- 5 Applications

6 S&O

Introduction	DE method	2-loop 5-pt integrals	Boundary conditions	S & O
Introduc	ction			

With LHC's RUN II higher precision of theoretical predictions is expected.

1-loop NLO established in the last decade as the new standard for high-multiplicity processes. BlackHat, Gosam, OpenLoops, NJet ...

2-loop NNLO is the current frontier (although: N³LO for inclusive Higgs production done [Anastasiou et al.]).

Introduction	DE method	2-loop 5-pt integrals		S & O
Introduc	tion			

With LHC's RUN II higher precision of theoretical predictions is expected.

1-loop NLO established in the last decade as the new standard for high-multiplicity processes. BlackHat, Gosam, OpenLoops, NJet ...

- 2-loop NNLO is the current frontier (although: N³LO for inclusive Higgs production done [Anastasiou et al.]).
 - 2 → 2 processes calculated recently (γγ, ZZ, Zγ, Wγ, WW, tī, Hj, Wj, jj) [Catani, Cieri, de Florian, Ferrera, Grazzini, Gehrmann, G.-De Ridder, Glover, Boughezal, Focke, Liu,Petriello, Czakon, Fiedler, Mitov, Kallweit, Maierhöfer, Rathlev, Chen, Jaquier, Giele, Melnikov, Caola, Schulze, Tejeda-Yeomans, Huss, Morgan...]

Introduction	DE method	2-loop 5-pt integrals		S & O
Introduc	tion			

With LHC's RUN II higher precision of theoretical predictions is expected.

1-loop NLO established in the last decade as the new standard for high-multiplicity processes. BlackHat, Gosam, OpenLoops, NJet ...

- 2-loop NNLO is the current frontier (although: N³LO for inclusive Higgs production done [Anastasiou et al.]).
 - 2 → 2 processes calculated recently (γγ, ZZ, Zγ, Wγ, WW, tī, Hj, Wj, jj)
 [Catani, Cieri, de Florian, Ferrera, Grazzini, Gehrmann, G.-De Ridder, Glover,
 Boughezal, Focke, Liu,Petriello, Czakon, Fiedler, Mitov, Kallweit, Maierhöfer, Rathlev,
 Chen, Jaquier, Giele, Melnikov, Caola, Schulze, Tejeda-Yeomans, Huss, Morgan...]
 - $\blacksquare \ 2 \rightarrow 3 \ processes \ still \ open$

Introduction	DE method	2-loop 5-pt integrals		S & O
Introdu	ction			

Among NNLO bottle-necks: two-loop scattering amplitudes \rightarrow purely virtual contribution.

At one-loop Feynman diagrams can be decomposed into a small set of master integrals (MIs), all of which are known.

At two-loop much larger set of MIs \rightarrow extends to higher multiplicities. Many remain to be calculated. Results up to now: 4-point functions.

Introduction	DE method	2-loop 5-pt integrals		S & O
Introdu	ction			

Among NNLO bottle-necks: two-loop scattering amplitudes \rightarrow purely virtual contribution.

At one-loop Feynman diagrams can be decomposed into a small set of master integrals (MIs), all of which are known.

At two-loop much larger set of MIs \rightarrow extends to higher multiplicities. Many remain to be calculated. Results up to now: 4-point functions.

Taking derivatives of the integr-als/-ands delivers a very powerful tool - to reduce the amplitude to MIs,

- to evaluate the integrals (Differential Equation method).

DE method	2-loop 5-pt integrals		S & O

Given a Feynman integral

$$G(a_1, a_2, \dots, a_n) = \int \prod_{j=1}^l \frac{d^D k_j}{i \pi^{D/2}} \frac{1}{D_1^{a_1} \dots D_n^{a_n}} , \text{ where } D_i = (k_j - p_i, - \dots)^2$$

Integration by part identities

$$\int \prod_{j=1}^l rac{d^D k_j}{i \pi^{D/2}} \left(rac{\partial}{\partial k_j^\mu} \, v^\mu \, rac{1}{D_1^{a_1} \dots D_n^{a_n}}
ight) \, = \, 0$$

(v^{μ} is appropriately chosen vector, e.g. $k^{\mu}_{j} - p^{\mu}_{1}$)

 \rightarrow terms with same denominators D_i , but different indices a_1, a_2, \ldots relate different integrals \implies we can reduce them to MIs.[Laporta alg.] AIR[Anastasiou, Lazopoulos], Fire [Smirnov], Reduze [Studerus, Manteuffel], LiteRed [Lee]

DE method	2-loop 5-pt integrals		S & O

Derivaties w.r.t external kinematic invariants, e.g. $s_{12} = (p_1 + p_2)^2$

$$\frac{\partial}{\partial s_{12}} \int \prod_{j=1}^{l} \frac{d^{D}k_{j}}{i\pi^{D/2}} \frac{1}{D_{1}^{a_{1}} \dots D_{n}^{a_{n}}} = \int \prod_{j=1}^{l} \frac{d^{D}k_{j}}{i\pi^{D/2}} \frac{1}{2s_{12}} \left((p_{1}+p_{2})^{\mu} \frac{\partial}{\partial (p_{1}+p_{2})^{\mu}} \right) \frac{1}{D_{1}^{a_{1}} \dots D_{n}^{a_{n}}}$$

on the R.H.S. again: same $D_i s$, but different indices $a_1, a_2, ...$ reduced to master integrals using IBP relations

 \Rightarrow differential equations for MIs. [Gehrmann, Remiddi]

Codes used: Fire [Smirnov], Reduze [von Manteuffel]

DE method	2-loop 5-pt integrals		S & O

MIs basis is not unique. Suitable choice considerably simplifies diff. eqs.: $\partial_x \vec{f} = A(x, \varepsilon) \vec{f} \longrightarrow \partial_x \vec{f} = \varepsilon A(x) \vec{f}$ can be integrated order by order in ε . [J. Henn]

$$\vec{f}(x,\varepsilon) = \vec{f}_0(x) + \varepsilon \vec{f}_1(x) + \varepsilon^2 \vec{f}_2(x) + \dots \implies \vec{f}_0(x) = \vec{f}_0$$
$$\vec{f}_1(x) = \int dx A(x) \vec{f}_0$$
$$\vec{f}_2(x) = \int dx A(x) \vec{f}_1(x)$$

. . .

Solution (symbolic): $\vec{f}(\vec{x},\varepsilon) = P \exp \left[\varepsilon \int_{\gamma} dA \right] \vec{f}(\vec{x}_0,\varepsilon)$

DE method	2-loop 5-pt integrals		S & O

Further simplification:

$$\partial_x \vec{f} = \varepsilon \sum_k \frac{A_k}{x - x_k} \vec{f} \longrightarrow d\vec{f}(\vec{x}, \varepsilon) = \varepsilon d \left[\sum_k A_k \log \alpha_k(\vec{x}) \right] \vec{f}(\vec{x}, \varepsilon)$$

where the list of functions $\{\alpha_1, \ldots, \alpha_n\}$ is called **alphabet**.

Transcendental weight = number of successive integrations

Important consequence of canonical form $\partial_{\mathbf{x}} \mathbf{f} = \varepsilon \mathbf{A}(\mathbf{x}) \mathbf{f}$

Starting from $\vec{f}_0(x) = \vec{f}_0 \rightarrow$ transcendentality-0 constant

 \Rightarrow each order in ε has uniform transcendentality .

Solutions expressed in terms of multiple polylogarithms

[Remiddi, Vermaseren; Gehrmann, Remiddi; Goncharov]

$$G(a_1, a_2, \dots, a_n; x) = \int_0^x \frac{dt}{t - a_1} G(a_2, \dots, a_n; t) ,$$

with $G(x) = 1$, $G(0) = 0$ and $G(\vec{0}_n; x) = \frac{1}{n!} \log^n x.$

Simple example: $G(\vec{a}_n; x) = \frac{1}{n!} \log^n \left(1 - \frac{x}{a}\right)$ with $\vec{a}_n = \{a, \dots, a\}$ If $a_i \in \{1, -1, 0\}$ \longrightarrow Harmonic Polylogarithms. Introduction DE method 2-loop 5-pt integrals Boundary conditions Applications S & O

2-loop five-point planar integrals

$$G_{\{a_1,\dots,a_{11}\}} = \int \frac{d^D k_1 d^D k_2}{(i\pi^{D/2})^2} \frac{D_9^{-a_9} D_{10}^{-a_{10}} D_{11}^{-a_{11}}}{D_1^{a_1} D_2^{a_2} D_3^{a_3} D_4^{a_4} D_5^{a_5} D_6^{a_6} D_7^{a_7} D_8^{a_8}}$$

$$\begin{array}{rcl} D_1 &=& -k_1^2\,,\\ D_2 &=& -(k_1+p_1)^2\,,\\ D_3 &=& -(k_1+p_1+p_2)^2\,,\\ D_4 &=& -(k_1+p_1+p_2+p_3)^2\,,\\ D_5 &=& -k_2^2\,,\\ D_6 &=& -(k_2+p_1+p_2+p_3)^2\,,\\ D_7 &=& -(k_2+p_1+p_2+p_3+p_4)^2\,,\\ D_8 &=& -(k_1-k_2)^2\,,\\ D_9 &=& -(k_1+p_1+p_2+p_3+p_4)^2\,,\\ D_{10} &=& -(k_2+p_1)^2\,,\\ D_{11} &=& -(k_2+p_1+p_2)^2 \end{array}$$

◆□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≦ り Q (~ 10/27

133. G(1. (1

(28, G[1, (0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0)], 1]

 $\{46, G[1, \{1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0\}], 3\}$

0.0.011.1

・ロ・・聞・・問・・曰・ ひゃぐ

11/2/

133. GI

(28, G[1, (0, 1, 0, 1, 1, 1, 0, 1, 0

 $\{46, G[1, \{1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0\}], 3\}$

 \leq 4 point MIs known [Gehrmann, Remiddi]

2-loop five-point planar integrals

Alphabet of 24 letter

$$\{ s_{12} , s_{12} - s_{34} , s_{12} + s_{23} , s_{12} - s_{34} - s_{45} , \dots , \\ (s_{23} - s_{51})\sqrt{\Delta} + s_{12}s_{23}^2 - s_{34}s_{23}^2 + s_{34}s_{45}s_{23} - 2s_{12}s_{51}s_{23} \\ + s_{34}s_{51}s_{23} + s_{45}s_{45}s_{23} + s_{12}s_{51}^2 - s_{45}s_{51}^2 + s_{34}s_{45}s_{23} \}$$

Δ is the Gram determinant.

With a suitably chosen parametrization, $\Delta \rightarrow$ perfect square

$$s_{12} = z_1,$$

$$s_{23} = z_1 z_2 z_4,$$

$$s_{34} = (z_1/z_2) [z_3 (z_4 - 1) + z_2 z_4 + z_2 z_3 (z_4 - z_5)],$$

$$s_{45} = z_1 z_2 (z_4 - z_5),$$

$$s_{51} = z_1 z_3 (1 - z_5)$$

obtained by using Momentum Twistor variables

[Hodges 0905.1473]

Boundary conditions

Boundary values can be obtained from physical conditions, in kinematic limits with singular diff. eq. but regular integrals.

No singularities in the Euclidean region $s_{i,i+1} < 0$.

Un-physical singularities appear in the limit

 $s_{45} \rightarrow s_{12} + s_{23}$

and they need to cancel.

 \longrightarrow no need to compute any additional integrals.

	DE method	2-loop 5-pt integrals	Boundary conditions	Applications	S & O
D 1	4•.•				
Bounda	rv conditi	ons			

 $\Delta = 0$ defines hypersurface where divergencies need to cancel.

The symmetric point $\vec{x}_{sym} = \{-1, -1, -1, -1, -1\}$

is connected to the $\Delta = 0$ surface by

$$\vec{f}(\vec{x},\varepsilon) = P \exp\left[\varepsilon \int_{\gamma} dA\right] \vec{f}(\vec{x}_0,\varepsilon)$$

path $\gamma = \{-\frac{y}{(1-y)^2}, -1, -1, -1, -1\} \longrightarrow$ reduced alphabet .

Sym. pt
$$\rightarrow y = \frac{3 \pm \sqrt{5}}{2}$$

 $\Delta = 0 \rightarrow y = -1$

	DE method	2-loop 5-pt integrals	Boundary conditions	S & O

Canonical basis and boundary conditions

$$f_{59} = \epsilon^2 \frac{s_{12}s_{23}s_{45}s_{35}}{\sqrt{\Delta}} G[\{1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 0\}] \\ + \epsilon^2 s_{12}s_{23}s_{45} \frac{tr[\not p_1 \not p_2 \not p_3 \not p_4]}{4\sqrt{\Delta}} G[\{1, 1, 1, 1, 1, 1, 1, 1, -1, 0, 0\}] \\ \rightarrow \epsilon^3 c_{5,3} + \dots$$

$$\begin{split} f_{60} &= \epsilon^2 s_{12} s_{23} s_{45} G[\{1,1,1,1,1,1,1,1,-1,0,0\}] \\ &\to -3 - \frac{11}{6} \pi^2 \epsilon^2 + \dots \\ f_{61} &= \epsilon^2 \frac{s_{12} s_{23} s_{45} s_{35}}{\sqrt{\Delta}} \left[s_{45} G[\{1,1,1,1,1,1,1,0,-1,0\}] \\ &- G[\{1,1,1,1,1,1,1,-1,-1,0\}] \right] \\ &- \epsilon^2 s_{12} s_{23} s_{45} \frac{\mathrm{tr}[\not p_1 \not p_2 \not p_3 \not p_4]}{4\sqrt{\Delta}} G[\{1,1,1,1,1,1,1,1,1,0,-1,0,0\}] \\ &\to -\epsilon^3 c_{5,3} + \dots \end{split}$$

	DE method	2-loop 5-pt integrals	Boundary conditions		S & O				
~ .									
Canonio	Canonical basis and boundary conditions								

▲□▶ < @▶ < ≧▶ < ≧▶ < ≧▶ ≧ のQで 17/27

DE method	2-loop 5-pt integrals	Boundary conditions	S & O

Canonical basis and boundary conditions

c

$$\begin{array}{rcl} & \mathcal{E} & s_{45}(s_{34} - s_{51}) G[\{0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0\}] \\ & \rightarrow & 0 + \dots \end{array}$$

$$f_{47} & = & \epsilon \frac{s_{12} s_{23} s_{34} s_{45} s_{51}}{\sqrt{\Delta}} G[\{0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0\}] + \\ & + \epsilon^2 \frac{\operatorname{Num}}{\sqrt{\Delta}} G[\{0, 1, 1, 0, 1, 1, 1, 2, 0, 0, 0\}] + \dots \\ & \rightarrow & \epsilon^3 c_{5,3} + \dots \end{array}$$

 c^{2} (- -)C[(0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0)]

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

DE method	2-loop 5-pt integrals	Boundary conditions	S & O

Canonical basis and boundary conditions

$$f_{37} = -\varepsilon_{s_{12}s_{23}} \frac{\operatorname{tr}[p_1 p_2 p_3 p_4]}{2\sqrt{\Delta}} G[\{1, 1, 1, 1, 0, 0, 2, 1, -1, 0, 0\}] \\ +\varepsilon \frac{s_{12}s_{23}s_{34}s_{45}s_{51}}{\sqrt{\Delta}} G[\{1, 1, 1, 1, 0, 0, 2, 1, 0, 0, 0\}] \\ \rightarrow \frac{3}{2}c_{5,3} + \dots$$

$$f_{38} = \varepsilon_{s_{12}s_{23}}G[\{1, 1, 1, 1, 0, 0, 2, 1, -1, 0, 0\}] \\ \rightarrow -2 + \varepsilon^2 \pi^2 + \varepsilon^3 \frac{55}{3} \zeta_3 + \dots$$

< □ ▶ < @ ▶ < E ▶ < E ▶ E のQ (~ 19/27

Applications: All-plus amplitude

We have applied our integrals to the **all-plus amplitude** (leading-colour). [Badger, Frellesvig, Zhang]

 $\mathcal{A}_5(1^+, 2^+, 3^+, 4^+, 5^+)|_{\text{leading colour}} =$

 $g_s^7 N_c^2 c_{\Gamma}^2 \sum_{\sigma \in S_5} \operatorname{tr}(T^{a_{\sigma(1)}} T^{a_{\sigma(2)}} T^{a_{\sigma(3)}} T^{a_{\sigma(4)}} T^{a_{\sigma(5)}}) A_5^{(2)}(\sigma(1)^+, \sigma(2)^+, \sigma(3)^+, \sigma(4)^+, \sigma(5)^+)$

$$A_5^{(2)} = A_5^{(2)\,\text{bare}} - \frac{11}{3\epsilon} A_5^{(1)} \qquad \qquad A_5^{(2)\,\text{bare}} = \sum_{i=1}^5 A_5^{[P]} (1^+, 2^+, 3^+, 4^+, 5^+)$$

20/27

	HOB

21/27

One-loop amplitude

At one loop we have

[Bern, Dixon, Dunbar, Kosower]

$$A^{(1)}(1^+2^+3^+4^+5^+) = \frac{-i\varepsilon(1-\varepsilon)}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 51\rangle} \left(2(2-\varepsilon)\operatorname{tr}_5 I^{[10-2\varepsilon]}_{[5;12345]}[1]\right)$$

$$+ s_{12}s_{23}I_{4;1234}^{[8-2\varepsilon]}[1] + s_{23}s_{34}I_{4;2345}^{[8-2\varepsilon]}[1] + s_{34}s_{45}I_{4;3451}^{[8-2\varepsilon]}[1] + s_{45}s_{51}I_{4;5123}^{[8-2\varepsilon]}[1]$$

Leading power of $\epsilon^- \to \epsilon^0$ contribution is

$$A^{(1)}(1^+2^+3^+4^+5^+) = \frac{i}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 51\rangle} \left(-\frac{1}{6}F_5^{(1)}\right),$$

with

$$F_5^{(1)} = v_1 v_2 + v_2 v_3 + v_3 v_4 + v_4 v_5 + v_5 v_1 + \text{tr}_5 .$$

The infrared and ultraviolet structure is described by the one-loop amplitude [Catani]

$$\begin{split} A^{(2)}(1^+2^+3^+4^+5^+) \ &= A^{(1)}(1^+2^+3^+4^+5^+) \left[-\sum_{i=1}^5 \frac{1}{\epsilon^2} \left(\frac{\mu^2}{-\nu_i} \right)^{\epsilon} - \frac{11}{3} \frac{1}{\epsilon} \right] \\ &+ \frac{i}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle} \ \left(-\frac{1}{6} F_5^{(2)} \right) + \mathcal{O}(\epsilon) \,, \end{split}$$

 $F_5^{(2)}$ is the finite remainder function at two loops.

Noteworthy : weight 1, 3 and 4 functions only originates from 1-loop ampl. \Rightarrow will not be present in $F_5^{(2)}$

ヘロト 人間 とくほとく ほとう

	DE method	2-loop 5-pt integrals	Applications	S & O
Parity o	dd and pa	rity even		

It is convenient to split the amplitude into two contribution

24/27

Parity even part depends only on Mandelstam invariants.

(at one loop: eight-dimensional boxes)

 \longrightarrow yields terms with trascendental weight up to weight 3.

Parity odd part proportional to tr₅.

(at one loop: ten-dimensional pentagon)

 \rightarrow yields terms with trascendental weight up to weight 4.

	DE method	2-loop 5-pt integrals	Applications	S & O
Results				

$$A_{5\,\text{plus}}^{(2)} = A_{5\,\text{plus}}^{(1)} \left[-\sum_{i=1}^{5} \frac{1}{\epsilon^2} \left(\frac{\mu^2}{-\nu_i} \right)^{\epsilon} - \frac{11}{3} \frac{1}{\epsilon} \right] + \frac{i}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle} \left(-\frac{1}{6} F_5^{(2)} \right) + \mathcal{O}(\epsilon),$$

We find: $v_1 = s_{12}, v_1 = s_{12}, v_2 = s_{23}, v_3 = s_{34}, v_4 = s_{45}, v_5 = s_{51}$

$$\begin{split} F_5^{(2)} = & \frac{5}{2} \zeta_2 F_5^{(1)} + \sum_{i=1}^5 \sigma^i \left[\frac{v_5 (v_1 v_2 - v_2 v_3 + v_3 v_4 - v_1 v_5 - v_4 v_5 - \text{tr}_5)}{(v_2 + v_3 - v_5)} F_{23,5} \right] \\ &+ \frac{1}{3} \sum_{i=1}^5 \sigma^i \left[\frac{1}{2} \frac{(v_1 v_2 - v_2 v_3 + v_3 v_4 - v_1 v_5 - v_4 v_5 - \text{tr}_5)^2}{v_1 v_4} + 10 v_1 v_2 + 2 v_1 v_3 \right]. \end{split}$$

with

$$F_{23,5} = \frac{1}{2} \text{Li}_2 \left(1 - \frac{v_5}{v_2} \right) - \frac{1}{2} \text{Li}_2 \left(1 - \frac{v_2}{v_5} \right) + \frac{1}{2} \text{Li}_2 \left(1 - \frac{v_5}{v_3} \right) - \frac{1}{2} \text{Li}_2 \left(1 - \frac{v_3}{v_5} \right) \\ + \frac{1}{4} \log^2 \frac{v_2}{v_5} + \frac{1}{4} \log^2 \frac{v_3}{v_5} - \log \frac{v_2}{v_5} \log \frac{v_3}{v_5} + \zeta_2.$$

	DE method	2-loop 5-pt integrals	Applications	S & O
Results				

$$A_{5\,\text{plus}}^{(2)} = A_{5\,\text{plus}}^{(1)} \left[-\sum_{i=1}^{5} \frac{1}{\epsilon^2} \left(\frac{\mu^2}{-\nu_i} \right)^{\epsilon} - \frac{11}{3} \frac{1}{\epsilon} \right] + \frac{i}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle} \left(-\frac{1}{6} F_5^{(2)} \right) + \mathcal{O}(\epsilon),$$

We find: $v_1 = s_{12}, v_1 = s_{12}, v_2 = s_{23}, v_3 = s_{34}, v_4 = s_{45}, v_5 = s_{51}$

$$\begin{split} F_5^{(2)} &= \frac{5}{2} \zeta_2 F_5^{(1)} + \sum_{i=1}^5 \sigma^i \left[\frac{v_5 (v_1 v_2 - v_2 v_3 + v_3 v_4 - v_1 v_5 - v_4 v_5 - \text{tr}_5)}{(v_2 + v_3 - v_5)} F_{23,5} \right] \\ &+ \frac{1}{3} \sum_{i=1}^5 \sigma^i \left[\frac{1}{2} \frac{(v_1 v_2 - v_2 v_3 + v_3 v_4 - v_1 v_5 - v_4 v_5 - \text{tr}_5)^2}{v_1 v_4} + 10 v_1 v_2 + 2 v_1 v_3 \right]. \end{split}$$

 \rightarrow one-loop two-mass easy box function in six dimensions. It can also be written as

$$F_{23,5} = \zeta_2 - \text{Li}_2\left(\frac{v_5 - v_3}{v_2}\right) - \text{Li}_2\left(\frac{v_5 - v_2}{v_3}\right) + \text{Li}_2\left(\frac{(v_5 - v_2)(v_5 - v_3)}{v_2 v_3}\right)$$

	DE method	2-loop 5-pt integrals	Applications	S & O
Checks				
Checks				

Checked against numerical results of [Badger, Frellesvig, Zhang]

Double and single pole cancellation provides non-trivial check.

Factorization properties of scattering amplitudes in the soft and **collinear limit** allow to connect provides a way to check them.

In the collinear limit $p_4 || p_5$, we expect to find

$$\begin{split} A_5^{(2)}(1^+,2^+,3^+,4^+,5^+) &\rightarrow \mathrm{Split}^{P \to 45(1)}(P^-,4^+,5^+)A_4^{(1)}(1^+,2^+,3^+,P^+) \\ &+ \mathrm{Split}^{P \to 45(1)}(P^+,4^+,5^+)A_4^{(1)}(1^+,2^+,3^+,P^-) \\ &+ \mathrm{Split}^{P \to 45(0)}(P^-,4^+,5^+)A_4^{(2)}(1^+,2^+,3^+,P^+) \end{split}$$

Check not completed yet, but looking promising: weight-2 part in progress.

- I have presented the computation of five-point two-loop MIs (planar).
- Results obtained using the Differential-Equation method, with MIs basis that makes the diff. eq. system canonical.
- Boundary conditions obtained by requiring the cancellation of spurious singularities in diff. eqs. → No further integration required.
- As an application, we have derived an analytic formula for the leading-color contribution of the all-plus 5-gluon amplitude.

- I have presented the computation of five-point two-loop MIs (planar).
- Results obtained using the Differential-Equation method, with MIs basis that makes the diff. eq. system canonical.
- Boundary conditions obtained by requiring the cancellation of spurious singularities in diff. eqs. → No further integration required.
- As an application, we have derived an analytic formula for the leading-color contribution of the all-plus 5-gluon amplitude.
- Analytic continuation outside Euclidean region (\rightarrow physical region).
- Non-planar integrals: in progress.