Differential decay rates of CP even and odd Higgs bosons to massive quarks at NNLO in QCD

Long Chen

Max Planck Institute for Physics, Munich, Germany

Seminar, Zurich, November 5th

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

In collaboration with: W. Bernreuther, Z.G. Si based on JHEP 1807 (2018) 159 [arXiv:1805.06658]

 $h(125) \rightarrow \gamma \gamma$

The discovery of the h(125) at the LHC (2012)

$h \rightarrow b\bar{b}$ is the most probable decay channel of the h(125), and finally observed recently at the LHC (in the VH-events)!

The measured signal strength $\mu = 1.04 \pm 0.20$

 $h(125) \rightarrow b\bar{b}$

Many Beyond Standard Model extensions predict heavy scalars and pseudo-scalars coupled to heavy quarks...

• The two-Higgs-doublet model (2HDM)

 h_1, h_2, A_0, H^{\pm}

- The Minimal Supersymmetric SM (MSSM)
- Models of (strong) dynamical electroweak symmetry breaking, e.g. Techicolor, · · ·

• • • • • • •

Much theoretical works done already ...

Much work done previously on neutral scalar bosons decay into quarks.

• inclusive:

- known up to N⁴LO for CP-even Higgs into massless quarks; [Baikov,Chetyrkin,Kuhn,06; Davies,Steinhauser,Wellmann,17; Herzog,Ruijl,Ueda,Vermaseren,Vogt,17]
- NNLO corrections for CP-even/odd Higgs in power expansion of ^{mQ}/_{mh}; [Surguladze,94; Chetyrkin,Kwiatkowski,96; Chetyrkin,Kniehl,Steinhauser,97; Larin,Ritbergen,Vermaseren,95;Harlander,Steinhauser,97; Chetyrki Harlander,Steinhauser,97,98]
- • • • •

o differential:

- CP-even Higgs decay into massless quarks at NNLO [Anastasiou, Herzog, Lazopoulos, 2012; Duca, Duhr, Somogyi, Tramontano, Trocsanyi, 2015]
- ► The Higgs decay into massless b quarks at N³LO [Mondini, Schiavi, Williams, 2019]

We consider the decay of a neutral Higgs boson h of arbitrary *CP* to a massive quark antiquark pair at NNLO order in perturbative QCD, i.e. $h \rightarrow Q\bar{Q}X$ (Q = t, b), at the *fully differential* level (using the *antenna subtraction method*).

- BSM heavy CP-even/odd Higgs boson decay into tt
 pair: inclusive decay width as a function of m_h, and M_{tt} distributions, etc
- the SM h(125) Higgs boson decay into a massive bb pair: inclusive decay width, 2-jet, 3-jet, and 4-jet decay width, and the energy distribution of the leading jet for two-jet events.

Power counting the m_b dependence of $h \rightarrow b\bar{b}$

$$\Gamma_{h \to b\bar{b}} \sim y_b^2 C_o + \alpha_s y_b^2 C_1 + \alpha_s^2 \left(y_b^2 C_2^{[b]} + y_b y_t C_2^{[b,t]} \right) + \mathcal{O} \left(\alpha_s^3 \right)$$

with $y_b \sim m_b$.

In the region $m_b \ll m_h$, upon pulling out the overall m_h^2 :

- $\ln[m_b]$ factor $\Rightarrow \overline{\text{MS}}$ -running \bar{y}_b
- leading constant terms $\sim O(m_b^{\rm o})$ (no 1/ m_b !)
 - ▶ the main bulk captured by the " $y_b \neq o$ but $m_b = o$ " approximation;
 - ► the top-triangle loop-induced contributions (e.g. the right-most diagram);

• power suppressed terms
$$\sim \left(\frac{m_b^2}{m_h^2}\right)^N$$
 with $N \ge 1$.

Top-Triangle diagrams absent in massless b-quark approximation

These amplitudes are ultraviolet- and infrared-finite (directly calculable in 4-dimension)

- These contributions can not be consistently added in a massless computation at NNLO [Caola, Luisoni, Melnikov, Rontsch, 17].
- The full exact analytic results of these top-yukawa contributions were recently calculated [Primo, Sasso, Somogyi, Tramontano, 18].

UV renormalization

- The *hybrid* UV-renormalization in *pQCD* with $n_f + 1$ quarks:
 - External-fields (and their masses): on-shell scheme
 - α_s : $\overline{\text{MS}}$ scheme (no *decoupling* term)
 - The Yukawa-coupling \bar{y}_Q : $\overline{\mathrm{MS}}$ scheme

(to absorb all intermediate large $\ln[\frac{m_Q}{m_h}]$ for small m_Q)

The $h \to Q\bar{Q}$ decay rate in $m_Q \ll m_h$ with **on-shell** y_Q is long known to contain large $\ln[\frac{m_Q}{m_h}]$ from on-shell y_Q renormmalization! [Braaten, Leveille, 1980]

The antenna IR subtraction

IR-subtraction: $o = \int d\sigma^{S} - \int d\sigma^{S}$ into $\sigma_{NLO} = d\sigma^{R} + d\sigma^{V}$.

The $d\sigma^{S}$ in the antenna subtraction method [Kosower, 1998; Gehrmann-De Ridder, Gehrmann, Glover, 2005] are constructed according to the universal IR-factorization formulae of color-ordered partial QCD-amplitudes,

Figure: The antenna factorization of a color-ordered partial amplitude (PRD 71, 045016)

At NLO:

$$d\sigma_{\mathrm{NLO}}^{\mathcal{S}} \propto \int_{d\Phi_{n+1}} \sum \mathbf{A}_{a1b} (p_a, p_1, p_b) \otimes |\mathcal{M}_n^{\mathcal{H}} (\cdots, P_{\hat{a}}, P_{\hat{b}}, \cdots, p_{n+1})|^2$$
$$= \int_{d\Phi_n} \sum \mathcal{A}_{a1b} \otimes |\mathcal{M}_n^{\mathcal{H}} (\cdots, P_{\hat{a}}, P_{\hat{b}}, \cdots, p_{n+1})|^2$$

where the A_{a1b} is the *antenna-function*, with its integrated counterpart A_{a1b} .

Organizations of ingredients for $h \rightarrow Q\bar{Q} + X$ (Q = t, b)

Schematically the NNLO corrections with antenna IR subtraction terms: [Bernreuther, Bogner, Dekkers, 11/13]

$$\begin{split} d\sigma_{\rm NNLO} &= \int_{d\Phi_4} \left(d\sigma_{\rm NNLO}^{RR} - d\sigma_{\rm NNLO}^{S} \right) \\ &+ \int_{d\Phi_3} \left(d\sigma_{\rm NNLO}^{RV} - d\sigma_{\rm NNLO}^{T} \right) \\ &+ \int_{d\Phi_2} d\sigma_{\rm NNLO}^{RV} + \int_{d\Phi_3} d\sigma_{\rm NNLO}^{T} + \int_{d\Phi_4} d\sigma_{\rm NNLO}^{S} \end{split}$$

RR: Tree-level double real radiation correction: $h \rightarrow Q\bar{Q}gg$, $Q\bar{Q}q\bar{q}$ and $Q\bar{Q}Q\bar{Q}$ ►

implicit IR-singularity removed by $d\sigma_{\rm NNLO}^S$.

RV: One-loop correction to $h \rightarrow Q\bar{Q}g$ ►

explicit and implicit IR-singularity removed by $d\sigma_{NNLO}^T$

VV: Two-loop corrections to $h \rightarrow Q\bar{Q}$ [Bernreuther,Bonciani,Gehrmann,Heinesch,Mastrolia,Remiddi, 2005]

explicit IR-poles removed by
$$\int_{d\Phi_3} d\sigma_{NNLO}^T + \int_{d\Phi_4} d\sigma_{NNLO}^S$$

Decay widths in terms of on-shell and $\overline{\mathrm{MS}}$ Yukawa-couplings

The differential decay width of a Higgs boson with a generic CP into unpolarized $Q\bar{Q}$:

$$d\Gamma^{Q\bar{Q}} = a_Q^2 d\Gamma_S^{Q\bar{Q}} + b_Q^2 d\Gamma_P^{Q\bar{Q}}$$

with the "*reduced*" Yukawa-couplings a_Q and b_Q as in $-y_Q h \left[a_Q \bar{Q}Q + b_Q \bar{Q}i\gamma_5 Q \right]$ (where $y_Q = \frac{m_Q}{v_{vev}}$).

Expanded to order α_s^2 :

$$d\Gamma^{Q\bar{Q}} = y_Q^2 \left[d\hat{\Gamma}_0^{Q\bar{Q}} + \frac{\alpha_s(\mu)}{\pi} d\hat{\Gamma}_1^{Q\bar{Q}} + \left(\frac{\alpha_s(\mu)}{\pi}\right)^2 d\hat{\Gamma}_2^{Q\bar{Q}} \right]$$

$$\equiv y_Q^2 d\hat{\Gamma}_0^{Q\bar{Q}} \left[1 + \frac{\alpha_s(\mu)}{\pi} d\gamma^{Q\bar{Q}_1} + \left(\frac{\alpha_s(\mu)}{\pi}\right)^2 d\gamma_2^{Q\bar{Q}} \right]$$
(1)

The on-shell and $\overline{\mathrm{MS}}$ Yukawa-couplings are related by

$$y_Q^2 = \overline{y}_Q^2(\mu) \left[\mathbf{1} + \mathbf{r_1}(m_Q, \mu) \frac{\alpha_s(\mu)}{\pi} + \mathbf{r_2}(m_Q, \mu) \left(\frac{\alpha_s(\mu)}{\pi} \right)^2 \right]$$
(2)

Inserting (2) into (1) and **re-expanding** to order α_s^2

$$d\overline{\Gamma}^{Q\bar{Q}} = \overline{y}_{Q}^{2}(\mu)d\widehat{\Gamma}_{0}^{Q\bar{Q}} \left[1 + \frac{\alpha_{s}(\mu)}{\pi} \left(d\gamma_{1}^{Q\bar{Q}} + \mathbf{r_{1}}\right) + \left(\frac{\alpha_{s}(\mu)}{\pi}\right)^{2} \left(d\gamma_{2}^{Q\bar{Q}} + \mathbf{r_{1}}d\gamma_{1}^{Q\bar{Q}} + \mathbf{r_{2}}\right)\right] \,.$$

Decays of BSM scalars/pseudo-scalars into $t\bar{t}$: inclusive decay rates

We work in 6-flavor QCD:

Standard-Model inputs

 $m_t^{on} = 173.34 \text{ GeV}, \text{ corresponding to } \overline{m}_t(\mu = m_t) = 163.46 \text{ GeV};$ $\alpha_s^{(5)}(m_Z) = 0.118; \qquad \mathbf{G}_F = 1.166379 * 10^{-5} \frac{1}{\text{GeV}^2}$

Decays of BSM scalars/pseudo-scalars into $t\bar{t}$: inclusive decay rates

We work in 6-flavor QCD:

Standard-Model inputs

 $m_t^{on} = 173.34$ GeV, corresponding to $\overline{m}_t(\mu = m_t) = 163.46$ GeV; $\alpha_s^{(5)}(m_Z) = 0.118;$ $\mathbf{G}_F = 1.166379 * 10^{-5} \frac{1}{\text{GeV}^2}$

The $t\bar{t}$ inclusive decay widths at NNLO QCD, $\overline{\Gamma}_X^{t\bar{t}}$ and $\Gamma_X^{t\bar{t}}$ (X = S, P)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	m_h [GeV]	$\overline{\Gamma}_{S}^{t\bar{t}}$ [GeV]	$\Gamma^{tar{t}}_S$ [GeV]	$\overline{\Gamma}_{P}^{tar{t}}$ [GeV]	$\Gamma_P^{tar{t}}$ [GeV]
$680 \qquad 25.007^{+0.285}_{-0.408} \qquad 25.647^{+0.075}_{-0.101} \qquad 32.188^{+0.214}_{-0.397} \qquad 32.784^{+0.185}_{-0.225}$	500	$12.529^{+0.265}_{-0.314}$	$12.955_{-0.046}^{+0.037}$	$22.392_{-0.411}^{+0.283}$	$22.931_{-0.062}^{+0.030}$
	680	$25.007_{-0.408}^{+0.285}$	$25.647^{+0.075}_{-0.101}$	$32.188^{+0.214}_{-0.397}$	$32.784_{-0.225}^{+0.185}$

These NNLO QCD results for inclusive $t\bar{t}$ -decay widths (exact in m_t) **agree** with the large m_h approximation result (to 4-th order in $(m_t/m_h)^2$) in [Harlander, Steinhauser, 1997].

Decays of BSM scalars/pseudo-scalars into $t\bar{t}$: inclusive decay rates

The decay width into $t\bar{t}$ of scalars/pseudo-scalars at LO, NLO, and NNLO in α_s as a function of m_h .

Decays of BSM scalars/pseudo-scalars into $t\bar{t}$: $m_{t\bar{t}}$ distribution

Distribution $d\overline{\Gamma}_X^{t\overline{t}}/dM_{t\overline{t}}$ of the $t\overline{t}$ invariant mass with $m_h = 500$ GeV.

SM $h(125) \rightarrow b\bar{b} + X$: the inclusive decay width

We work in a "5-flavor" QCD:

Standard-Model inputs

$m_h =$ 125.09 GeV;	$\overline{m}_b(\mu = \overline{m}_b) = 4.18 \text{ GeV};$
$\alpha_s^{(5)}(m_Z) = 0.118;$	$G_F = 1.166379 * 10^{-5} \frac{1}{\text{GeV}^2}$

From the 5-flavor QCD two-loop running-mass formula, it reads $m_b^{on} = 4.78$ GeV and $\overline{m}_b(\mu = m_h) = 2.80$ GeV, and hence $\overline{y}_b(\mu) = \frac{\overline{m}_b(\mu)}{v_{ow}} = 0.01137$.

We represent our result for inclusive decay width using \overline{MS} Yukawa-coupling \overline{y}_b :

$$\overline{\Gamma}_{NNLO}^{b\bar{b}} = \overline{\Gamma}_{LO}^{b\bar{b}} \left[\mathbf{1} + \mathbf{g_1} \frac{\alpha_s^{(5)}}{\pi} + \mathbf{g_2} \left(\frac{\alpha_s^{(5)}}{\pi} \right)^2 \right] ,$$

where

$$\overline{\Gamma}_{LO}^{b\bar{b}} = \overline{y}_b^2(\mu) \hat{\Gamma}_o^{b\bar{b}}, \quad {\bf g_1} = \gamma_1^{b\bar{b}} + r_1, \quad {\bf g_2} = \gamma_2^{b\bar{b}} + r_1 \gamma_1^{b\bar{b}} + r_2 \,.$$

SM $h(125) \rightarrow b\bar{b} + X$: the inclusive decay width

For the QCD-correction coefficients g_1 , g_2 defined in

$$\overline{\Gamma}_{NNLO}^{bar{b}} = \overline{\Gamma}_{LO}^{bar{b}} \left[\mathbf{1} + \mathbf{g_1} \frac{\alpha_s^{(5)}}{\pi} + \mathbf{g_2} \left(\frac{\alpha_s^{(5)}}{\pi}
ight)^2
ight] ,$$

	$\mu = m_h/2$	$\mu = m_h$	$\mu = 2m_h$
g1	3.024	5.796	8.569
g ₂	3.685	37.371	86.112
$\overline{\Gamma}_{LO}^{bb}$ [MeV]	2.153	1.910	1.717
$\overline{\Gamma}_{NLO}^{bar{b}}$ [MeV]	2.413	2.307	2.196
$\overline{\Gamma}_{NNLO}^{bar{b}}$ [MeV]	2.425	2.399	2.353

we obtain

The known results for massless *b* quarks ($\mu = m_h$):

$$g_1(m_b = o) = 5.6666$$
 and $g_2(m_b = o) = 29.1467$

[Gorishnii, Kataev, Larin, Surguladze, 1990; K. G. Chetyrkin, 1996]

SM $h(125) \rightarrow b\bar{b} + X$: the inclusive decay width

For the QCD-correction coefficients $g_{\scriptscriptstyle 1},\,g_{\scriptscriptstyle 2}$ defined in

$$\overline{\Gamma}_{NNLO}^{b\bar{b}} = \overline{\Gamma}_{LO}^{b\bar{b}} \left[\mathbf{1} + \mathbf{g_1} \frac{\alpha_s^{(5)}}{\pi} + \mathbf{g_2} \left(\frac{\alpha_s^{(5)}}{\pi} \right)^2
ight] ,$$

	$\mu = m_h/2$	$\mu = m_h$	$\mu = 2m_h$
g1	3.024	5.796	8.569
g ₂	3.685	37.371	86.112
$\overline{\Gamma}_{LO}^{b\overline{b}}$ [MeV]	2.153	1.910	1.717
$\overline{\Gamma}_{NLO}^{bar{b}}$ [MeV]	2.413	2.307	2.196
$\overline{\Gamma}_{NNLO}^{bar{b}}$ [MeV]	2.425	2.399	2.353

we obtain

$1+\mathbf{g_1}\alpha_s+\mathbf{g_2}\alpha_s^2+\cdots$	total value	components		
massive (α_s^2)	1.2560	1 + 0.20789 + 0.04808		
massless (α_s^4)	1.2413	1 + 0.203242 + 0.0374917 + 0.001927 + (-0.001366)		

 $n_f=5,~\mu=m_h$ [Baikov,Chetyrkin,Kuhn,06]

$h ightarrow b ar{b}$ decay width in detail

QCD correction factors: on-shell V.S. \overline{MS} :

$$\overline{\Gamma}_{NNLO}^{b\bar{b}} = \overline{\Gamma}_{LO}^{b\bar{b}} \left[\mathbf{1} + \mathbf{g_1} \frac{\alpha_s^{(5)}}{\pi} + \mathbf{g_2} \left(\frac{\alpha_s^{(5)}}{\pi} \right)^2 \right] ,$$

where

$$\overline{\Gamma}_{LO}^{b\bar{b}} = \overline{y}_b^2(\mu) \hat{\Gamma}_o^{b\bar{b}}, \quad \mathbf{g_1} = \gamma_1^{b\bar{b}} + r_1, \quad \mathbf{g_2} = \gamma_2^{b\bar{b}} + r_1\gamma_1^{b\bar{b}} + r_2$$

$y^{\overline{MS}}_{h}$	$\mu = m_h$	y	bn-snell	$\mu = m_h$
g1	5.796	{γ	$\begin{pmatrix} b\bar{b} \\ 1 \end{pmatrix}, r_1 $	{-9.93, +15.73}
g ₂	37.371	$\{\gamma$	$\left(\begin{array}{c} b\bar{b} \\ 2 \end{array} \right), r_2 \bigg\}$	{-113.2, +306.7}
$\overline{\Gamma}_{LO}^{bb}$ [MeV]	1.910	$\Gamma_{LC}^{bar{b}}$	_{>} [MeV]	5.578
$\overline{\Gamma}_{NLO}^{bar{b}}$ [MeV]	2.307	$\Gamma^{bar{b}}_{NL}$	_O [MeV]	3.592
$\overline{\Gamma}_{NNLO}^{bar{b}}$ [MeV]	2.399	$\Gamma^{bar{b}}_{NN}$	_{LO} [MeV]	2.772

 $h \rightarrow b\bar{b}$ decay width with $m_b = 0.5 \text{ GeV}$

The QCD-correction coefficients g_1 , g_2

$$\overline{\Gamma}_{NNLO}^{b\bar{b}} = \overline{\Gamma}_{LO}^{b\bar{b}} \left[\mathbf{1} + \mathbf{g_1} \frac{\alpha_s^{(5)}}{\pi} + \mathbf{g_2} \left(\frac{\alpha_s^{(5)}}{\pi} \right)^2 \right]$$

With $m_b = 0.5$ GeV, and excluding the top-quark triangle loop diagrams (which contribute $g_{2,t} = 6.898$), we obtain:

$$g_1(m_b = 0.5 \text{GeV}) = 5.6685$$
, and $g_2(m_b = 0.5 \text{GeV}) = 29.187$.

The known results for massless *b* quarks ($\mu = m_h$):

$$\mathbf{g_1}(m_b = 0) = 5.6666$$
 and $\mathbf{g_2}(m_b = 0) = 29.1467$

[Gorishnii, Kataev, Larin, Surguladze, 1990; K. G. Chetyrkin, 1996]

A note on top-quark loop induced contributions at NNLO

Recently the exact results of y_t -dependent $\mathcal{O}(\alpha_s^2)$ corrections to $h \to b\bar{b}$ are known analytically [Primo, Sasso, Somogyi, Tramontano, 18]

$$\mathbf{d} = \mathbf{100} \left(\mathbf{1} - \frac{\Gamma_{y_t}^{Approx}}{\Gamma_{y_t}^{Exact}} \right)$$

ō

Table: The discrepancy d between the exact analytic result and the approximate formula [Chetyrkin,Kwiatkowski,96] (with $m_b = 4.92 \text{ GeV}$)

m _h m _t	20	75	125	180
100	2.123	0.075	1.025	6.704
125	2.329	0.011	0.335	2.107
175	2.452	-0.019	0.018	0.355
250	2.566	-0.024	-0.055	-0.035
350	2.656	-0.023	-0.069	-0.113

The impact of these y_t contributions at differential level is small, typically below 5% [Primo, Sasso, Somogyi, Tramontano, 18].

SM $h(125) \rightarrow b\bar{b} + X$: the x_{max} distribution

The distribution of the energy of the leading jet in two-jet events is defined w.r.t

 $x_{max} = \max(E_{j_1}/m_h, E_{j_2}/m_h)$ using *Durham jet-algorithm* with $y_{cut} = 0.05$.

Similar distributions were presented before for *massless b* quarks [Anastasiou, Herzog, Lazopoulos, 2012] (JADE, with $y_{cut} = 0.1$) and in [Duca, Duhr, Somogyi, Tramontano, Trocsanyi, 2015] (Durham, with $y_{cut} = 0.05$).

Summary and Outlook

 \square A set up is presented for calculating the fully *differential* decay width of a *scalar* and *pseudo-scalar* to a **massive** $Q\bar{Q}$ pair at NNLO in α_s , which can be used to compute any *infrared-safe* (differential) observable in these decays.

If The set-up is applied to the decays of heavy scalars and pseudo-scalars to $t\bar{t} + X$, and to the decay of the Standard-Model h(125) Higgs boson to massive b, \bar{b} quarks. As a check, inclusive decay rates known before are recovered.

■ We expect that this set up should be useful for having a more precise (and consistent) theoretical description of the α_s^2 QCD corrections to the production of the Higgs boson in association with a massive vector boson at LHC, $\mathbf{pp} \rightarrow \mathbf{V}(W/Z) + H(b\bar{b})$.

Summary and Outlook

 \square A set up is presented for calculating the fully *differential* decay width of a *scalar* and *pseudo-scalar* to a **massive** $Q\bar{Q}$ pair at NNLO in α_s , which can be used to compute any *infrared-safe* (differential) observable in these decays.

 \square The set-up is applied to the decays of heavy scalars and pseudo-scalars to $t\bar{t} + X$, and to the decay of the Standard-Model h(125) Higgs boson to massive b, \bar{b} quarks. As a check, inclusive decay rates known before are recovered.

■ We expect that this set up should be useful for having a more precise (and consistent) theoretical description of the α_s^2 QCD corrections to the production of the Higgs boson in association with a massive vector boson at LHC, $\mathbf{pp} \rightarrow \mathbf{V}(W/Z) + H(b\bar{b})$.

THANK YOU

Zurich 2019 22 / 22

Backup-Slides

Decays of BSM scalars/pseudo-scalars into $t\bar{t}$: the x_t distribution

The normalized top-quark energy $x_t = 2E_t/m_h$ (in the rest frame of the Higgs boson) $d\overline{\Gamma}_X^{t\overline{t}}/dx_t$ for a scalar/pseudo-scalar Higgs boson at LO, NLO, and NNLO QCD.

$h(125) \rightarrow b\bar{b} + X$: different jet rates

The *n*-jet rates can be represented, in analogy to the inclusive decay width, to order α_s^2 as follows:

$$\begin{split} \overline{\Gamma}_{2j\text{et}}^{b\bar{b}} &= \overline{\Gamma}_{LO}^{b\bar{b}} \left[1 + g_1(2j\text{et}) \frac{\alpha_s^{(5)}}{\pi} + g_2(2j\text{et}) \left(\frac{\alpha_s^{(5)}}{\pi} \right)^2 \right] ,\\ \overline{\Gamma}_{3j\text{et}}^{b\bar{b}} &= \overline{\Gamma}_{LO}^{b\bar{b}} \left[g_1(3j\text{et}) \frac{\alpha_s^{(5)}}{\pi} + g_2(3j\text{et}) \left(\frac{\alpha_s^{(5)}}{\pi} \right)^2 \right] ,\\ \overline{\Gamma}_{4j\text{et}}^{b\bar{b}} &= \overline{\Gamma}_{LO}^{b\bar{b}} \times g_2(4j\text{et}) \left(\frac{\alpha_s^{(5)}}{\pi} \right)^2 . \end{split}$$

Table: The coefficients $g_i(n \text{ jet})$ defined above and computed with the Durham algorithm using $y_{cut} = 0.01$ and $y_{cut} = 0.05$ for three renormalization scales μ .

	$y_{cut} = 0.01$			$y_{cut} = 0.05$		
	$\mu = m_h/2$	$\mu = m_h$	$\mu = 2m_h$	$\mu = m_h/2$	$\mu = m_h$	$\mu = 2m_h$
<i>g</i> ₁ (2 jet)	-5.055	-2.283	0.490	0.291	3.063	5.836
g2(2jet)	-56.351	-66.532	-61.658	-19.496	-0.650	33.250
$g_1(3 \text{ jet})$	8.079	8.079	8.079	2.733	2.733	2.733
$g_2(3 \text{ jet})$	36.873	80.741	124.609	22.256	37.096	51.937
$g_2(4 \text{ jet})$	23.163	23.163	23.163	0.926	0.926	0.926