Ultrasound evidence for a two-component superconducting order parameter in Sr2RuO4

Siham Benhabib

Laboratory for ultrafast microscopy and electron scattering (LUMES)

École Polytechnique Fédérale de Lausanne (EPFL)

Contrary to the known high Tc superconductors cuprates, the normal state of the quasi-twodimensional Sr_2RuO_4 is rather a standard metal, well described by Fermi liquid theory. Below the critical temperature Tc =1.5 K, it hosts unconventional superconductivity. Over several years, it has been a challenge for researchers to find a common consensus about the symmetry of the superconducting state's order parameter in Sr_2RuO_4 [1]. Recently, ultrasounds techniques (echo-pulse and resonant spectroscopy) [2,3] revealed new insights concerning the symmetry of the order parameter. In this talk, I will discuss the echo-pulse ultrasounds measurements, where we tracked the variations of the elastic constants in the superconducting state. Particularly in the transversal mode c66, a sharp jump at Tc was observed. In the context of Ginzburg-Landau theory and symmetry arguments, this jump implies that the order parameter has two components [4,5]. Combining ultrasounds measurements with the other observed properties on Sr_2RuO_4 favour the two order parameter {dxz,dyz} as the most likely candidate [2].

- [1]: Mackenzie, A. P. et al. Even odder after twenty-three years: the superconducting order parameter puzzle of Sr2RuO4. npj Quantum Mater.2, 40 (2017)
- [2]: Benhabib, S. et al. Ultrasound evidence for a two-component superconducting order parameter Sr2RuO4. Nature physics (2020). https://doi.org/10.1038/s41567-020-1033-3
- [3]: Ghosh, S et al. Thermodynamic evidence for a two-component superconducting order parameter in Sr₂RuO₄ Nature physics (2020). https://doi.org/10.1038/s41567-020-1032-4
- [4]: Sigrist,M. Ehrenfest Relations for Ultrasound Absorption in Sr2RuO4. Progress of Theoretical Physics, Vol. 107, No. 5, May 2002
- [5]: Walker, M. B. & Contreras, P. Theory of elastic properties of Sr2RuO4 at the superconducting transition temperature. Phys. Rev. B66, 214508 (2002)