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Abstract

In proton-proton collisions, mechanisms other than gluon-gluon fusion can contribute
to double charm production. One possible additional source is double parton scattering
(DPS). The theory of Quantum Chromodynamics cannot precisely predict DPS produc-
tion cross sections, since simplifications have to be used. Double open charm production
cross sections in proton-proton collisions at LHCb have been measured so far at a centre of
mass energy of

√
s = 7 TeV (see [2], [3]). These provide valuable input for the theoretical

understanding of DPS. In this work such double open charm production cross sections are
measured at LHCb at

√
s = 2.76 TeV using D0 and D+ mesons in the final state.
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1 Introduction

The purpose of physics is to explain the fundamental laws of nature. At present, four
fundamental forces determine all known physical processes: the gravitational force, the
electromagnetic force and the weak- and strong forces. In particle physics experiments
like LHCb, all fundamental forces except gravitation are examined by colliding particles
with high energy and by analyzing the collision products. Subsequently the results can be
compared with theoretical predictions.

This work discusses the measurement of the single and double open charm produc-
tion cross sections in proton-proton (pp) collisions at LHCb at a center of mass energy
of
√
s = 2.76 TeV. The production channels are pp → cc̄ + X resp. pp → c̄cc̄c + X,

where X denotes an arbitrary number of additional final state particles. For comparision
the open charm pair production channel is also considered. The chosen decay modes are
D0 → K− π+ and D+ → K− π+ π+. In pp collisions, other processes than single parton
scattering (SPS) can contribute to double open charm production [1]. One possible addi-
tional source is double parton scattering (DPS). Since QCD models for DPS rely on sim-
plifications in order to be able to calculate correponding cross sections, the predictions are
relatively inaccurate, when compared with calculations for single parton scattering (SPS)
for instance. Experimental measurements of double charm production cross sections allow
to improve the understanding of the DPS contributions in the production processes and
can help to calibrate theoretical predictions. This analysis complements LHCb measure-
ments of Jψ, open charm and double open charm production cross section at LHCb at√
s = 7 TeV [2], [3], however with a much smaller integrated luminosity of L = 3.3 pb−1.
The thesis is structured in five chapters. Chapter 2 gives a brief overview of the main

foundations of the theory of modern particle physics, followed by a description of the LHC
collider and LHCb detector in chapter 3. The analysis is presented in chapter 4, starting
with an overview of the strategy. The determined cross sections are shown in chapter 5,
while the thesis is completed by a discussion of the results given in chapter 6.
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2 Theory

The standard model of particle physics (SM) is able to explain most the observed phe-
nomena in particle physics. It describes the elementary particles and their fundamental
interactions by three of four fundamental forces of nature, being the electromagnetic force
and the weak- and strong forces, but not gravitation. Known shortcomings lie in the lack
of explanation for dark matter and dark energy as well as the abundance of matter over
antimatter.

This chapter follows standard textbooks [4], [5], [6]. Due to the extension and complexity
of the SM it is only intended to give a brief overview of the main foundations of the
modern understanding of fundamental particle physics. This includes the fundamental
and composite particles with their interactions encountered at particle colliders like the
LHC in chapter 2.1 and the DPS model explained in chapter 2.2.

2.1 The Standard Model of Particle Physics (SM)

The SM consists of fundamental particles, i.e particles that are assumed to be point-like
and have consequently no inner structure, classified according to their interaction ability
(see Tab. 2.1 and Tab. 2.2).

Fundamental Particles
These are the electrically neutral gauge bosons γ, Z, g, H, the charged gauge bosons W±,
the charged leptons e±, µ±, τ±, the electrically neutral leptons νe, νµ, ντ , called neutrinos,
and the quarks u, d, c, s, t, b. They can be split by the quantum number (QN) of spin s
into two groups, the bosons (s 1) (including the higgs (s 0)) and fermions (s 1/2).

• Fermions
Each fermion f has an antiparticle state with the same qualities with the exception
of an opposite charge QN qe, denoted by a bar (e.g. ū). The fermions can be split
further by the QN of isospin I into doublets leading to three families. There are two
groups of fermions, called leptons l and quarks q.

The leptons l consist of the charged electron, muon and tau with qe = −1, of which
only the electron is stable, and the corresponding electrically neutral neutrinos. These
neutrinos usually escape detection in most particle collider experiments, since they
exclusively interact by the weak force resulting in very small cross sections.

The quarks q exist in six flavours, up (u), down (d), charm (c), strange (s), top
(t) and bottom (b) and have a non-integer charge of qe = +2/3 resp. qe = −1/3.
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They form all composite particles, of which only the ones formed by quarks from
the first family (up, down) can be stable. Quarks have an additional charge, called
color charge qc ∈ {r, g, b, r̄, ḡ, b̄} (red, green and blue with their anticolors), which
exclusively allows them to interact by the strong force. They can not be directly
observed in experiments, but only as constituent of composite particles, since they
do not exist as free particles due to the QCD phenomenon called confinement, which
allows only states with zero net color charge to exist freely.

• Bosons
The gauge bosons are the carriers of the fundamental forces. The photon γ is the
gauge boson of the electromagnetic force, describing the interaction between charged
fermions. It is stable, charge- and massless and moves at the speed of light
c = 2.998 · 108 m/s.

The massive W± and Z bosons mediate the weak force, which couples to quarks
and leptons and allows changes of flavour, e.g. l− → W− νl, d → W− u. The weak
force also allows transitions between different quark families, e.g. c → W+ d. The
amplitude of a transition i → W± j is proportional to the corresponding element of
the Cabibbo-Kobayashi-Maskawa (CKM) matrix |Vij|2, given by:

|VCKM; ij| =

|Vud| |Vus| |Vub||Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 =

0.974 0.225 0.004
0.225 0.986 0.041
0.008 0.040 0.999

 . (2.1)

Due to the dominance of the diagonal matrix elements, transitions across families
are suppressed, called Cabibbo suppression. This suppression is the strongest when
the quarks of the third family are involved. The eight charge- and massless gluons
g are the gauge bosons of the strong force. They interact with the quarks q and are
responsible for holding the composite fermions (e.g. proton and neutron) together.
They also carry color charge themselves, enabling the interaction among each other.

The massive higgs boson H is needed in the SM to break the electroweak symmetry
and to give each fundamental particle its mass.
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Quantity 1st family 2nd family 3rd family

Quarks

up (u) charm (c) top (t)

q +2/3 +2/3 +2/3

M0 [MeV/c2] ≈ 2− 3.5 ≈ 1.27 · 103 ≈ 172 · 103

s 1/2 1/2 1/2

down (d) strange (s) bottom (b)

q −1/3 −1/3 −1/3

M0 [MeV/c2] ≈ 4− 5.5 ≈ 101 ≈ 4.67 · 103

s 1/2 1/2 1/2

Leptons

electron (e−) muon (µ−) tau (τ−)

q −1 −1 −1

M0 [MeV/c2] = 0.511 = 105 = 1780

s 1/2 1/2 1/2

electron neutrino (νe) muon neutrino (νµ) tau neutrino (ντ )

q 0 0 0

M0 < 2 eV/c2 95% CL < 17 keV/c2 95% CL < 1.23 MeV/c2 95% CL

s 1/2 1/2 1/2

Table 2.1: Overview of the fermions in the Standard Model (SM) [7]. For each fermion f an
anti-particle state exists, denoted by f̄ . Since such anti-particle states have the
same qualities as the corresponding fermions, with the exception of the opposite
charge-like QN, they are not listed in the table.
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The quarks form composite particles, called hadrons, whose properties are largely de-
termined by their valence quarks. The gluons holding such a hadron together constantly
produce and annihilate quark-antiquark pairs qq̄ (sea quarks) due to their self interaction
by the strong force.

Composite Particles
According to the number of valence quarks, hadrons can be structured into two groups:
the baryons containing three quarks and the mesons consisting of a quark-antiquark pair.

• Baryons
The most common hadrons are the proton p and neutron n, whose valence quark
content is p = uud and n = udd. They are the components of the atomic nuclei
listed in the periodic system of elements. All baryons, with the possible exception of
the proton, are unstable. For example, when not bound in a nuclei, a free neutron
decays into a proton, electron and electron neutrino with a lifetime of about 900 s.
This radioactive β-decay was the first experimentally observed process involving the
weak force. Whether the proton can be considered as stable or not is the subject of
current experimental research. Since no proton decay is so far observed, lower limits
of the lifetime with 90% confidence limit of about 1040 s have been determined [7].
Due to such extremely long lifetime expectations, the proton is considered as stable
in this work.

• Mesons
No meson is observed to be stable. The most common ones, the kaons (K) and pions
(π), decay with a lifetime of about 10−8 s [7]. Such long lifetimes allow for their
measurement as the traverse through the LHCb detector. They are of particular
interest in this work, since the investigated D0 and D+ mesons decay into K and π.

The lightest mesons involving one charm quark, D0 = c ū, D+ = c d̄ and D+
s = c s̄

with their antiparticles D̄0 = c̄ u, D− = c̄ d and D−s = c̄ s are called D mesons or open
charm mesons, due to the not specified quark accompanying the charm. In hadron collider
experiments like the LHC experiment, they are produced by the interaction of quarks,
which is described by the theory of Quantum Chromodynamics (QCD).

QCD production processes of D mesons
In this non-abelian gauge theory the eight gluons can interact among themselves, leading
to complicated processes. The force behaves differently depending on the energy scale with
the two extremes of confinement and asymptotic freedom. Since the QCD describes the
strong force, a perturbative expansion ansatz is not always feasible. Although numerical
and analytical methods to approximate QCD such as lattice QCD exist, perturbative QCD
can only be carried out for high energies. The theory offers some interesting characteristics.
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• Confinement
When the interaction length of the strong force is increased, i.e. when quarks and/or
gluons drift apart, the gluon field strength increases to the point, where a quark-
antiquark pair is created. This results in the non-existence of free quarks and gluons,
such that only charge-colorless particle states are observed.

• Asymptotic Freedom
When hadrons collide at high center-of-mass energy, their interaction can be de-
scribed in good approximation as interaction of their single fundamental particle
constituents, being the valence (or sea) quarks and gluons, denoted as partons. Such
interactions are called hard parton interactions.

• Factorization
The factorization theorem allows the separation of short- and long distance effects.
In calculations this means that hard parton interactions calculations and parton
distribution functions can be factorized, i.e. written as a products. The cross section
for a given final state f can be written as [7]:

σf =
∑
ab

∫
xa

∫
xb

dξa dξb fa(ξa, µ
2
F ) σ̂ab(ξa, ξb, µ

2
F , µ

2
R) fb(ξb, µ

2
F ) , (2.2)

where the sum runs over all possible partons a and b (i.e. quarks or gluons) and
the integral over their momentum fractions ξa and ξb, σ̂ab is the parton-parton cross
section for the final state f and fi(ξi, µ

2
F ), i ∈ {a, b} are the parton distribution

functions. These functions defining the probabilities of a parton i having a momen-
tum fraction ξi of the hadron momentum p at a factorization scale µF have to be
determined by experiment, but are important for the calculations in theory.

• Hadronization
Due to the confinement, a free quark cannot be observed. Instead all quarks produced
in hard parton interactions form baryons and mesons as the interaction distance of
the strong force increases, i.e. they hadronize. Hadronization is flavour conserving,
so for each produced c-quark a charm hadron is produced in the final state, e.g. D0,
D+, D+

s , D∗0, D∗+, Λ+
c , etc.

• Running Coupling
The coupling constant αs needs to be renormalized, in order to compensate diver-
gences in perturbative QCD. αs decreases with increasing normalization scale µR,
leading to both asymptotic freedom for hard parton interactions and confinement.
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If the D mesons are produced at high transverse momentum, the QCD factorization can
be used [8]. In Fig. 2.1, three typical production diagrams are shown, that contribute
to pp → cc̄ production. Because there is only one parton per proton involved, this is
referred to as single parton scattering (SPS). Likewise, Fig. 2.2 and Fig. 2.3 show typical
production diagrams for pp→ cc̄cc̄. When the cc̄ pair is produced twice, two cases need to
be distinguished. First, cc̄cc̄ can be produced by double parton scattering (DPS) involving
two partons per proton (see Fig. 2.2). Secondly cc̄cc̄ can be produced by SPS (see Fig. 2.3).
Since each produced c or c̄ quark can hadronize into a D meson, e.g. D0 or D+, many such
diagrams can contribute to the D meson production. However, some information about
the underlying production processes can be extracted from the D mesons. For instance
the observation of the double D meson D0D0 indicates, that it has not been produced
by pp → cc̄ SPS, but by DPS or pp → cc̄cc̄ SPS processes. For DPS, the matrix element
occurs twice in the diagrams, where for pp→ cc̄cc̄ SPS gg → cc̄ occurs twice in the same pp
interaction. Since the contribution of the latter process is much smaller than the observed
cross section, the observation of D0D0 is a strong indication for DPS [2]. Considering all D
meson candidates, this is referred to as double open charm production. For D0D̄0 pp→ cc̄
SPS, pp → cc̄cc̄ DPS and SPS are possible. Since the DPS processes can not be isolated,
this is referred to as open charm pair production. The previous double open charm data
obtained by the LHCb experiment [2] have been described using the DPS approach [1] (see
chapter 2.2). However, additional experimental input is important to further understand
this aspect of QCD.

p

p

q

q̄ g

X

c̄

c

X

p

p

g

g

X

c̄

c

X

p

p

g

g g

X

c̄

c

X

Figure 2.1: Illustration of some SPS production processes for pp → cc̄, called qq̄ annihila-
tion (left) and gg fusion (center and right).
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Figure 2.2: Illustration of some DPS production processes for pp→ cc̄cc̄, called qq̄ annihi-
lation (left) and gg fusion (center and right).
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Figure 2.3: Illustration of some SPS production processes for pp→ cc̄cc̄.

Since the charm quark needs to change its flavour for a decay of the ground state D
mesons, the D0 and D± mesons can only decay by the weak force and have therefore a
relatively long lifetime of about 10−12 s [7]. At the speed of light this corresponds to a
decay length of about 300 µm. In experiments, the property of a relatively long decay
length (or lifetime) can be exploited as an advantage by identifying these mesons by their
displaced decay vertices. This property is also used in the analysis at hands.

Weak decay processes of D mesons
The charm quarks changes its flavour preferably into the strange quark via an exchange of
a W± boson, such that D mesons decay mainly into kaons and pions. The two candidates
D0 and D+ with the corresponding decay modes D0 → K− π+ and D+ → K− π+ π+ are
chosen for this work (see also chapter 4.1). These decay modes are illustrated in Fig. 2.4.
The decay modes for the corresponding double open charm candidates D0D0, D0D+ and
D+D+ are the same as for the correponding single open charm candidates D0 and D+.

Also excited D meson states, such as D∗0 and D∗+, which subsequently decay into D
mesons, can be produced in pp collisions. Due to the extremely short lifetimes of these
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excitation states of about 10−21 s [7], the two sources are not distinguished in this work
and all D mesons from these two sources are considered to be promptly produced.

Likewise, B mesons can be produced, which subsequently decay into D mesons. Com-
pared to the D mesons, the B mesons decay also by the weak force, but their decay is
additionally Cabibbo suppressed, leading to similar albeit higher lifetimes of about 10−12 s
[7]. The D meson production from the decay of B mesons is not prompt and is treated as
background process (see chapter 4.2.2).

W+

ū

c

ū

s

d̄

u

D0 K−

π+

g

W+

d̄

c

d̄

u

ū

s

d̄

u

π+

K−
D+

π+

Figure 2.4: Illustration of the D meson decay modes D0 → K− π+ (left) and D+ →
K− π+ π+ (right).

The lifetimes of the produced kaons and pions are sufficienctly large for them to travel
through the LHCb detector and to be directly measured by their interaction with the
detector matter.

Interaction of Particles with Matter
The interaction of particles with matter involves several processes.

• Ionization and Excitation of Electrons
Charged particles scattering off detector matter leads to excitation and ionization
of electrons in the atomic shell. The energy loss per distance is described by the
Bethe-Bloch formula and follows the proportional law:

−dE
dx
∝ z2

mβ2

(
ln

(
β2

I (1− β2)

)
− β2

)
, (2.3)

where z is the charge of the scattered particle, m its mass, β = v/c its speed in units
of the speed of light c and I is the mean excitation energy of the target matter. For
an atomic nucleus with a number of protons Z > 20, I/Z ≈ const. This type of
energy deposit is most important for tracking detectors.
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• Coulomb Scattering
Charged particles, which pass through matter, scatter in the Coulomb fields of the
atomic nuclei. The energy loss is small, but the particles get deflected. Since the
angular distribution of the deflected particles is smeared by large tails, this effect
worsens the track reconstruction of detectors at collider experiments. Therefore it is
attempted to keep the amount of detector material as small as possible. This effect
is important for low particle momenta.

• Bremsstrahlung
It is the dominant process of energy loss of charged particles with low rest mass M0,
i.e. primarily electrons. An electron retains 1/e of its energy after one radiation
length X0, where e is the Euler number, X0 ∝ 1/Z2 and Z is the number of protons
in the atomic nuclei.

• Inelastic Scattering
If one or both scattering particles is a composite one, e.g a proton or a nucleus,
the particles constituents can absorb collision energy. If that energy transfer Q is
large enough, the constituent can produce other hadrons. The mean free path length
required to reduce the number of relativistic charged particles by the factor of 1/e as
they pass through matter is given by the nuclear interaction length λ. This quantity
includes elastic processes, that lead to diffraction, resulting in a longer mean free
path, than when only inelastic scattering is considered.

• Photon Absorption
The photon absorption in matter is highly energy dependent. It follows the expo-
nential law with the radiation length X0 as slope parameter, where X0 = 7/9 of the
mean free path of a photon in matter. Photon absorption involves the photoelec-
tric effect, Compton scattering and electron-positron pair production, which leads to
electromagnetic showers.

• Cherenkov Radiation
The Cherenkov Effect describes the emittance of electromagnetic radiation when a
particle with velocity ~v larger than the speed of light in the material passes through
matter with a refractive index n. Cherenkov radiation is emitted if |~v| = v > cmed = c

n

or β > 1
n
, where cmed is the speed of light inside the medium and β = v

c
. The angle

θ, under which the radiation is emitted, is given through the relation cos θ = 1
βn

.
Therefore the measurement of this angle θ allows to determine the particle’s velocity.
Furthermore, the invariant mass of the particle can be determined, if the particle’s
momentum ~p is known. This effect is used by the RICH detectors of LHCb in order
to assign kaon and pion hypotheses (see chapter 3.1.1 and 3.1.2).
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2.2 The Double Parton Scattering (DPS) Model

At the LHC pp collisions containing hard parton interactions allow the usage of the QCD
factorization theorem in order to convert the cross sections in terms of fundamental par-
ticles to cross sections in dependence of the colliding protons. This conversion results in
[9]:

dσ

dQ2 dy
=
∑
ab

∫
xA

dξA

∫
xB

dξB fa/A(ξA, µ
2
F ) σ̂ab(ξa, ξb, µ

2
F , µ

2
R) fb/B(ξB, µ

2
F ) , (2.4)

The indices a, b denote the particle species considered, i.e. a quark or a gluon. A, B denote
the collided hadron species, i.e. two protons such that A = p, B = p, and fa/A(ξA, µ

2
F ),

fb/B(ξB, µ
2
F ) are the parton distribution functions. These are the distributions of the par-

tons a and b in the hadrons A and B carrying the momentum fractions ξa and ξb, that
is evaluated at the QCD factorization scale µF . This QCD factorization yields a solid
description of processes where the main production is of the form:∑

ab

→ S +X , (2.5)

where S is the process of interest, i.e. the D meson production and X is the summarization
of additional final state particles from the remainder of the hadron. All processes that can
be described by this scheme are referred to as SPS.

In processes where more than one parton from each interacting hadron is involved, a
generalized ansatz in form of the DPS model was proposed [10], [11], [12], [13]. It relies
on the following simplifications. First, the meaning of A, B is changed to S = A + B.
Additionally, factorization between the hard processes and A, B is assumed, such that the
n-point function with four partons in the initial state becomes trivial. When considering a
final state consisting of the products of two hard parton interactions A and B, where e.g.
A,B = W,Z, jj, ..., the description of the cross section is given by:

σDPS; (A,B) = α
∑
i,j,k,l

∫
dx1 dx2 dx

′
1 dx

′
2 d

2b

Γi,j(x1, x2, b; t1, t2) Γk,l(x
′
1, x
′
2, b; t1, t2)

σ̂A; i,k(x1, x
′
1) σ̂B; j,l(x2, x

′
2) .

(2.6)

Γi,j(x1, x2, b; t1, t2), Γk,l(x
′
1, x
′
2, b; t1, t2) represent the generalized double parton distribution

functions and x1, x2, x′1, x′2 are the longitudinal momentum fractions for the hard parton
interactions A, B. σ̂A; i,k(x1, x

′
1), σ̂B; j,l(x2, x

′
2) are the parton cross sections, which can be

determined by QCD. The characteristic scales of the subprocesses A, B, t1, t2 are given by
t1 = lnQ2

1, t2 = lnQ2
2, where Q1, Q2 are the corresponding four-momentum transfers. The

transverse separation distance of the two parton interactions A, B is denoted as b, and α is
a combinatorial factor. α = 1

4
if A and B are identical and non-self-conjugate (e.g. D0D0),
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α = 1 if A and B are different and either A or B is self-conjugate (e.g. JψD0) and α = 1
2

otherwise (e.g. D+D+) 1 .
First, it is assumed, that Γi,j may be decomposed in terms of longitudinal and transverse

components:
Γi,j(x1, x2, b; t1, t2) = Dij

h (x1, x2; t2, t2) F i
j (b) . (2.7)

Further, the F i
j (b) are assumed to be the same for all parton pairs ij involved in the

process of interest. Finally, it is assumed, that the longitudinal momentum correlations
can be ignored, such that the Dij

h factorize as:

Dij
h (x1, x2; t2, t2) = Di

h(x1; t1) Dj
h(x2; t2) . (2.8)

Using these three simplifications, equation 2.6 can be rewritten as:

σDPS; (A,B) = α
σSPS;A σSPS;B

σeff

, (2.9)

where SPS denotes the single parton scattering, and the effective cross section σeff is given
by:

σeff =

(∫
d2b

(
F i
j (b)

)2
)−1

. (2.10)

The approximations imply that the hard parton interactions are independent from each
other. They also violate energy conservation. Formula 4.2 is not justified, if the flavour of
the partons or the momentum fractions make a difference in the studied processes. Nev-
ertheless, this ansatz is phenomenologically successful and leads to an energy independent
result for the effective cross section σeff [14], [15] [16], [17]. Formula 4.2 does not rely on
theoretical predictions for the SPS cross section σSPS;A and σSPS;B, since there is no ex-
plicit depencence on the parton distribution functions. Therefore, this model can be used
in regimes, where the uncertainty on the production cross section σ(A,B) is high, by using
measurements of σA and σB.

1The convention for α follows the addendum of [2] instead of the notation in [10].
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3 Foundations: LHC Collider, LHCb
Detector and Key Concepts for the
Analysis

The Large Hadron Collider Beauty Experiment (LHCb) is one of the four main experiments
at CERN, located at one of the four main collision points of the Large Hadron Collider
(LHC) [19], [20]. The CERN, LHC accelerator and LHCb experiment are introduced in
chapter 3.1, while chapter 3.1.1 explains the detector components of the LHCb experiment.
In order to introduce the physical processes at the LHC accelerator and the LHCb expe-
riment, the most important physical principles needed to understand the acceleration and
detection of particles are explained in chapter 3.1.2.

3.1 The LHC at CERN

CERN is the abbreviation for the European Organization for Nuclear Research, literally
Conséil Européen pour la Recherche Nucléaire. It was founded to plan the construction of a
research laboratory for nuclear research [18]. The research started with the first accelerator
in 1957, a synchro-cyclotron. Shortly afterwards it was followed by the Proton Synchrotron
(PS), which accelerated the first beams in November 1959 and is still operational today.
Since then an increasing amount of large accelerators has been built. The most recent two
accelerators in the history of CERN are the Large Electron Positron Collider (LEP) and
the Large Hadron Collider (LHC). The LEP accelerated electrons and positrons from 1989
to 2000, while the LHC started to accelerate protons in 2009 and is still operating today.
It was planned from the start during the first LHC studies in the 1980’s to reuse as much
of the LEP infrastructure as possible for the LHC, mainly the LEP tunnel. Along with the
increasing size and number of accelerators, the number of experiments and buildings grew
more and more. Today the CERN is one of the largest institutions worldwide with about
10’000 visiting scientists representing over 600 universities and 100 nationalities.

The LHC accelerator is a proton proton collider with a circumference of 26.7 km. Its
size and experimental infrastructure turns the LHC into the currently largest and most
complicated scientific instrument in the world. The LHC is designed to be operated at
a center of mass energy of

√
s = 14 TeV and an instantaneous luminosity of LLHC =

2 · 1032 cm−2s−1. It consists of eight arcs with a length of 2.8 km and eight straight
sections with a length of 500 m each. The tunnel housing the LHC lies between 45 m and
170 m below the surface and has an inclination of 1.42% with respect to the horizontal
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to enable an easier civil engineering. From 2010 to 2012 the LHC was operated at
√
s =

0.45, 2.76, 5.02, 7 and 8 TeV. To achieve such high center of mass energies, large bending
magnets with a field strength of about 8 T are needed to keep the protons on track. This
is achieved by superconducting magnets, which are cooled with superfluid helium at 1.9 K,
implying the construction of a large cooling infrastructure with about 80 t of superfluid
helium.

The LHC is the last piece of a complicated chain of accelerators to produce, bunch and
accelerate the protons until they collide at one of the four collision points at the four main
experiments. First, the protons are extracted as the nucleus of hydrogen atoms with an en-
ergy of 50 keV. Then they are guided to a linear accelerator (LINAC), where their energy
is increased to 50 MeV. Afterwards they are injected into a booster synchrotron which in-
creases their energy to 1.4 GeV. Subsequently, the protons arrive at the proton synchrotron
(PS) where they are not only accelerated but also grouped into a train of bunches. This
structure is kept until the proton beams finally collide in the LHC. The bunch-trains are
injected into the super proton synchrotron (SPS) and are again accelerated, this time to
the energy of 450 GeV. Then, they are transferred to the LHC ring via one of the transfer
lines. After the filling of both counter rotating beams with bunch-trains, the protons are
accelerated while the magnetic field in the bending dipoles is simultaneously rised until
the collision energy is reached. Finally, the beams are brought to collision at the four col-
lision points, where the four main detectors, Compact Muon Solenoid (CMS), A Toroidal
LHC Apparatus (ATLAS), Large Hadron Collider Beauty Experiment (LHCb), A Large
Ion Collider Experiment (ALICE) are situated. The beams can stay several hours in the
LHC, if no technical problems occur, until they are finally dumped and the cycle is started
again. This accelerator chain is shown in Fig. 3.1.

The locations, sizes and scopes of the four main experiments are different. ATLAS and
CMS are general purpose detectors for high transverse momentum physics. LHCb is a
b-physics experiment which focuses on CP-violation and rare decays of beauty and charm
hadrons. It also performs analyses similar to ATLAS and CMS but in a different kinematic
range, for example W and Z production. ALICE investigates primordial states of matter
like the quark-gluon-plasma in heavy ion collisions.
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Figure 3.1: Schematic overview of the accelerator chain for the LHC at CERN. This chain
is started with the extraction of the protons from hydrogen atoms, followed
by a linear accelerator (LINAC2), a booster synchrotron (BOOSTER), Proton
Synchrotron (PS), Super Proton Synchrotron (SPS) and the LHC (Figure taken
from Ref. [21]).
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3.1.1 The LHCb Detector

The LHCb detector is situated at one of the four main collision points of the LHC [22],
[23]. It is a single-arm spectrometer with a forward geometry and is fully instrumented in
the pseudorapidity range of 2 < η < 5 (see Fig. 3.2, chapter 3.1.2).

The coordinate system for the LHCb is oriented, such that the positive z-axis points
from the interaction point to the muon system along the beam pipe. The y-axis is vertical,
starting from the interaction point to the surface, and is perpendicular to the LHC ring.
The remaining x-axis, being perpendicular to the x- and y-axis, indicates where the bending
of the dipole magnet is most pronounced. Its forward design arises from the fact, that b and
b̄ quarks are produced in pairs and predominantly in the forward (or backward) direction.
Therefore the LHCb forward geometry allows to detect a large fraction of the produced
particles containing a b or b̄ quark, while covering a small solid angle, which helps reducing
the costs.

The LHCb’s subdetectors can be grouped into three parts. The track reconstruction
system determines the three vector components of the particles’ momenta ~p. The purpose
of the particle identification system is to determine the particle types. These two properties
completely describe each detected individual particle and describe therefore a good part
of the full event. Finally, the trigger system selects the events of interest for the physics
analyses.

• Track reconstruction
The track reconstruction system consists of a silicon microstrip detector called Vertex
Locator (VELO), placed closely to the interaction point. It measures precisely the
position of primary and secondary vertices as well as the impact parameter (IP)
of the track. A second silicon microstrip detector, the Tracker Turicensis (TT), is
located before the dipole magnet. Hits in the TT are used to improve the momentum
resolution of reconstructed tracks and reject pairs of tracks that in reality belong
to the same particle. The tracking stations (T1, T2, T3), placed behind the dipole
magnet, use different technologies to detect particles: silicone microstrips close to the
beam pipe and straw-tubes in the outer regions. The dipole magnet itself completes
the track reconstruction system. Its magnetic field with vertical field lines bends
the flight path of the particles in the xz - plane. Therefore the size of the magnetic
field allows the determination of the patricles’ momenta by comparision of the track
direction before and after the magnet. All tracking detectors are characterized by a
high spatial resolution (in one or two spatial coordinates) and a low material budget.

• Particle identificaton
The particle identification system uses different physical principles. The two Ring
Imaging Cherenkov Detectors (RICH1, RICH2) use the Cherenkov Effect to dis-
tinguish between different types of hadrons. The consecutive electromagnetic and
hadronic calorimeters (ECAL, HCAL) measure the energy of the impinging particles
by fully absorbing them. The ECAL absorbs all electromagnetic showers but only a
small part of the hadronic showers, while hadronic showers are contained in the big-
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ger HCAL. Two smaller subdetectors, the scintillating pad detector (SPD) and the
preshower detector (PS), in front of the ECAL supplement the calorimeter system
by resolving ambiguities on the identification. For instance, the SPD allows the dis-
crimination of electron and photon candidates, while the PS is used to discriminate
electron and photon candidates from hadron candidates. The muon system consists
of five stations (M1 to M5) and is placed at the most remote position within the
LHCb seen from the interaction point. It identifies muons, that traverse the detector
and the iron shields between the muon stations almost unaffected.

• Trigger
The LHCb detector produces too much information per collision for all of it to be
read out. Moreover, many of the collisions are not of particular interest for physics
analyses. Therefore the LHCb has a three stage trigger system to reduce the amount
of data collected to a rate, which can be written to disk. The first level, called L0,
is hardware based, while the second and third stage, HLT1 and HLT2, are software
based and execute algorithms that partially reconstruct the event and then decide if
they are of further interest or not.
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3.1.2 Key Concepts for the Analysis

This analysis requires the understanding of some fundamental principles of experimental
particle physics. The most important ones are explained in this section.

There are two major variables describing the dataset at hands: the center of mass energy
s, also denoted as

√
s, and the luminosity L.

Center-of-Mass Energy
√
s
√
s
√
s

At the LHC, predominantly two protons are collided with each other. The LHC is in fact
able to collide also heavy ions with each other or protons with heavy ions, but since such
data is not used in this analysis, pp collision is assumed in the following. The two protons
have the same rest mass m1 = m2 and the four-momenta pµ1 = (E1/c , ~p1), pµ2 = (E2/c , ~p2)
where the energy E1 = E2 and momenta ~p1 = −~p2 are given in the center of mass frame
and c = 2.998 ·108 m/s is the speed of light. The Mandelstam variable s, also called center
of mass energy, is defined by:

s = (pµ1 + pµ2)2 = (E1/c+ E2/c)
2 . (3.1)

Since (pµ1 + pµ2)2 = M2c4, s is the square of the invariant mass M . Natural units, where
~ = c = 1, are used throughout this analysis. For clarity an explicit factor c is preserved
in selected equations. The center of mass energy can also be denoted as square root and
in natural units: √

s = (pµ1 + pµ2) = (E1 + E2) = M . (3.2)

The data used in this analysis were taken at a center of mass energy
√
s = 2.76 TeV.

Luminosity LLL
The luminosity is a measure of how many collisions happen when two bunches of particles
collide with each other and is linked to the number of collisions and the cross section by:

dN

dt
= L σ ,

where
dN

dt
: number of collisions per second

σ : cross section

L : (instantaneous) luminosity

(3.3)
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For a gaussian beam distribution, the luminosity L is given by:

L =
N2
b nb frev γ

4π εn β∗
F ,

where Nb : number of particles per bunch

nb : number of bunches per beam

frev : revolution frequency

γ : relativistic gamma factor

εn : normalized transverse beam emittance

β∗ : Beta function at the collision point

F : geometrical luminosity reduction factor .

(3.4)

The beta function at the collision point β∗ is a measure of how compressed the beam
is at the collision point. The normalized transverse beam emittance εn is a measure of
the distribution of the particles in space and momentum. The geometrical luminosity
reduction factor F takes into account, that the beams do not collide head on and arises
due to the crossing angle at the collision point. The luminosity L has the units of inverse
area and inverse time, given in by the SI units m−2 s−1 or more practical by b−1 s−1, where
the unit barn is given by the relation 1 b = 10−28m2. The integrated luminosity given
by L =

∫
Ldt is a measure for the total amount of the aquired data. The used dataset

corresponds to an integrated luminosity of L = 3.31 pb−1.

Invariant Mass MMM
Since the velocity ~v is frequently close to c in particle physics, relativistic conservation laws
for energy and momentum have to be used. The energy E and momentum ~p from classical
mechanics are reformulated as the four-momentum pµ, in order to adapt to Einstein’s
principles of relativity, implying Lorentz transformations and the introduction of the four-
vector notation, when considering space-time translations (see [24], [25]). Consequently,
the two conservation laws from classical mechanics are reformulated into one, called the
(relativistic) energy-momentum conservation or four-momentum conservation:
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∑
i

pµ = const. ,

where pµ =
(
p0, ~p

)
= γ M (c, ~v ) four-momentum

xµ = (c t, ~x ) (contravariant) four-position vector

x0 = ct time component or zero component

~x : space component

dτ =
dt

γ
proper time element

γ =
1√

1− β2

β =
~v 2

c2

M : invariant mass, also called rest mass in the particle’s

rest frame of reference

E = p0 c = γ M c2 total energy

E|~v=0 = E0 = M c2 rest energy

T = E − E0 = M c2 (γ − 1) kinetic energy .

(3.5)

This holds under the condition of the Lorentz invariance of the four-momentum squared,
p2, resulting in the energy momentum relation:

p2 = 〈pµ, pν〉 =
(
p0
)2 − ~p 2 =

E2

c2
− ~p 2

= γ2M2c2 − γ2M2~v 2 = M2γ2
(
c2 − ~v 2

)
= M2 1

1− ~v 2

c2

(
c2 − ~v 2

)
= M2c2 ,

where 〈xµ, yν〉 =
3∑

µ=0

3∑
ν=0

gµνx
µyν = gµνx

µyν = xµyµ = x0y0 − ~x · ~y

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 Metric Tensor .

Simpler: E2 = M2c4 + ~p 2c2

(3.6)
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Therefore the invariant mass M is the same in all inertial frames of reference. In the rest
frame of the particle, the invariant mass M is equal to the energy E of the particle (divided
by c2) and is called rest mass.

Consider a particle, which decays into N daughter particles. Since the four-momentum
pµ is conserved, the invariant mass of the decay particle, M , can be calculated as a sum of
the energies and momenta of the daughter particles using the energy-momentum relation:

(
Mc2

)2
=

(
N∑
i

Ei

)2

−

(
N∑
i

~pi c

)2

,

where M : Invariant mass of the system of particles,

equal to the invariant mass of the decay particle

Ei : Energy of the daughter particle i

~pi : Momentum of the daughter particle i

c = 2.998 · 108 m/s Speed of light; when natural units are used: ~ = c = 1
(3.7)

For one particle that decays into two daughter particles this relation becomes:

M2c4 = (E1 + E2)2 − (~p1 + ~p2)2 = m2
1 c

4 +m2
2 c

4 + 2
(
E1E2 − ~p1 ~p2 c

2
)

= (pµ1 + pµ2)2 ,

where m1,2 : invariant masses of the daughter particles

E1,2 : energies of the daughter particles

pµ1,2 : four momenta of the daughter particles .
(3.8)

This concept is applied in this work by starting from experimentally reconstructed tracks
which correspond to a measurement of ~p. Using other subdetectors, those tracks get a Pion
or Kaon hypothesis assigned. This leads to particle candidates with p0 = E determined by
p2 = m2

K or p2 = m2
π. D meson candidates are formed by adding the momenta of the decay

products, e.g. for D0, D+: pµD0 = pµK− + pµπ+ , pµD+ = pµK− + pµπ+ + pµπ+ . The comparison
to the known D mass provides a discriminant with respect to other processes.
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Transverse Momentum pT , Longitudinal Momentum pL
As two protons collide at the LHCb interaction point, they form a PV, of which a bunch of
particles with momentum ~pi , i ∈ {1, ..., n} emerge. Each momentum ~pi can be decomposed
into the transverse momentum ~pi

T perpendicular to the beam axis and the longitudinal
momentum ~piL along the beam axis. The same principle holds for the energies Ei , i ∈
{1, ..., n}, and consequently for the four momenta pµ , i ∈ {1, ..., n}. Moreover such a
decomposition can be applied at each vertex.

z

y

x

beam line

LHCb forward region

pp

PV

~pi

θcm

~pi
T

~piL

Figure 3.3: Schematic illustration of the decomposition of the momentum of a particle ~pi
emerging from a PV into longitudinal- and transverse momentum ~piL and ~pi

T .

Pseudorapidity ηηη and Rapidity yyy
The longitudinal pseudorapidity η of a particle is defined as:

η := − ln

(
tan

(
θcm

2

))
=

1

2
ln

(
|~p|+ |~pL|
|~p| − |~pL|

)
= arctan

(
|~pL|
|~p|

)
. (3.9)

The longitudinal momentum pL is the momentum component along the beam axis, given
along the positive z-axis in the forward coordinate system of LHCb. θcm is the scattering
angle between the momentum of the particle in question, ~p, and the beam axis (z-axis).
The pseudorapidity is a commonly used variable at hadron colliders. It is defined as the
high relativistic limit of the longitudinal rapidity y, given by:

y := arctan

(
~v

c

)
= arctan

(
|~pL| c
E

)
=

1

2
ln

(
E + |~pL|c
E − |~pL|c

)
. (3.10)

In the relativistic limit ~p ≈ E or M << pT , the pseudorapidity η is a good approxima-
tion of the longitudinal rapidity y, i.e. η ≈ y. Experimentally, these quantities have the
following advantages compared to the angle. Differences in rapidity or pseudorapidity are
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Lorentz invariant under boosts along the beam axis, i.e. they transform additively, similar
to velocities under Galilean transformations. Loosely spoken, the particle production is
constant as a function of rapidity (and pseudorapidity, if the mass of the particle is negli-
gible compared to its energy). The pseudorapitiy is a pure geometrical quantity and only
related to the scattering angle θcm. When the interaction point is fixed, each detector ele-
ment can get a pseudorapidity value assigned. Consequently, the LHCb detector elements
are positioned at high η, which allows the measurements of particles produced at high
rapidity y.

Impact Parameter IPIPIP
It is defined as the shortest distance of a track to the PV. It is schematically illustrated
in Fig. 3.4 for the example of a D0 candidate promptly produced in the PV with decay
mode D0 → K− π+, resulting in a Kaon and a Pion track. The reconstruction of the D0

candidate yields usually also a non-zero but very small IP for the D0. Candidates produced
in PV’s can be distinguished from the ones produced in SV’s by applying a specific cut on
the impact parameter for the candidate.

z

y

x

beam line

PV
LHCb forward region

D0

SV

π+

K−

IPπ+

IPK−

Figure 3.4: Schematical illustration of the impact parameter (IP) using the example of a
D0 candidate promptly produced in a PV with decay mode D0 → K− π+.
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Branching Fraction or Branching Ratio BiBiBi

The Branching fraction for a certain decay is the fraction of particles, which decay by an
individual decay mode i, Ni, with respect to the total number of particles decaying, Ntot,
given by:

Bi =
Ni

Ntot

. (3.11)

For instance, the charmed meson D0 has a branching fraction of BD0→K− π+ = 3.93% for
the decay mode D0 → K−π+ and BD0→K+ π− = 1.49 · 10−4 for D0 → K+π−.

Hypothesis Testing
In chapter 4.4, three goodness of fit criteria are imposed in order to estimate the fit quality
of unbinned maximum likelihood fits to tracks, vertices, envent hypotheses and invariant
mass distributions. Moreover, χ2/ndof values are used by the different reconstruction soft-
wares to estimate the goodness of fits in chapter 4.2.1. These criteria are explained in the
following (see also [26], [27]).

1) Reduced χ2, i.e. χ2/ndof:
Assume an unbinned one-dimensional distribution of an observable x that has been
fitted by an unbinned maximum likelihood fit with a model f(x). Furthermore as-
sume a subsequently applied binning to the distribution. The reduced χ2 value is
given by:

χ2/ndof =
1

ndof

∑
i

(y(xi)− f(xi))
2

σ2
y(xi)

,

where y(xi) : y-value of a data point or bin at position xi

f(xi) : fit function value at the position xi

σy(xi) : error on y(xi) .

(3.12)

The number of degrees of freedom is given by ndof = nb−np, where nb is the number of
bins or data points and np is the number of fit parameters that had to be determined.

2) Upper tail probability or upper P-value of the χ2 distribution, Pu(χ
2, ndof):

This quantity is given by:

Pu(χ
2, ndof) =

1

2
ndof

2 Γ
(
ndof

2

) ∫ ∞
χ2

t
ndof

2
− 1 e−

t
2 dt

where χ2 : χ2 value (see equation 3.12) ,

ndof : number of degrees of freedom

Γ(z) =

∫ ∞
0

tz−1 e−t dt Gamma function (Euler’s integral form) .

(3.13)
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It denotes the probability to observe a χ2-value, that is greater than the given χ2-
value, provided the underlying hypothesis is true. Its analogon is the lower tail
probability or lower P-value, Pl(χ

2, ndof), representing the probability to observe a
χ2 value, that is smaller than the given one. It is given by:

Pl(χ
2, ndof) =

1

2
ndof

2 Γ
(
ndof

2

) ∫ χ2

0

t
ndof

2
− 1 e−

t
2 dt . (3.14)

Pu(χ
2, ndof), Pl(χ

2, ndof) are connected to the χ2 distribution, whose probability den-
sity function (PDF) is given by:

χ2(x;ndof) =
1

2
ndof

2 Γ
(
ndof

2

) xndof
2
− 1 e−

x
2 . (3.15)

The cumulative distribution function (CDF) of the χ2 distribution, C(χ2(x;ndof)),
can be splitted into Pu(χ

2, ndof), Pl(χ
2, ndof) by:

C(χ2(x;ndof)) =
1

2
ndof

2 Γ
(
ndof

2

) ∫ ∞
0

t
ndof

2
− 1 e−

t
2 dt

=
1

2
ndof

2 Γ
(
ndof

2

) (∫ χ2

0

t
ndof

2
− 1 e−

t
2 dt +

∫ ∞
χ2

t
ndof

2
− 1 e−

t
2 dt

)
= Pl(χ

2, ndof) + Pu(χ
2, ndof) .

(3.16)
The χ2 PDF is a special case of the Gamma PDF, given by:

G(x; b, p) =
bp

Γ(p)
xp−1 e−bx , (3.17)

when its free parameters b > 0 and p > 0 are defined as b = 1/2, p = ndof/2. Since
the Gamma CDF, C(G(x; b, p)), can be expressed as a form of the lower regularized
incomplete Gamma function γl(x; k) by:

C(G(x; b, p)) =
γl(b x, p)

Γ(p)
=

1

Γ(p)

∫ b x

0

tp−1e−t dt , (3.18)

all so far mentioned CDF’s are forms of the lower- or upper regularized incomplete
Gamma functions γl(x, k), γu(x, k), especially Pl(χ

2, ndof), Pu(χ
2, ndof).

3) Pull values pi:
Assume an unbinned one-dimensional distribution of an observable x, that has been
fitted by an unbinned maximum likelihood fit with a model f(x). Moreover assume
a subsequently applied binning to the distribution. The pull value pi of a certain bin
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i is defined by:

pi =
y(xi)− f(xi)

σy(xi)

,

where y(xi) : y-value of a data point or bin at position xi

f(xi) : fit function value at the position xi

σy(xi) : error on y(xi) .

(3.19)

The calculated pull values for all bins, pi, result in a pull distribution.
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4 Cross Section Determination

The so far measured double open charm production cross sections in pp collisions at LHCb
at
√
s = 7 TeV (see [2], [3]) are supplemented by such a measurement at

√
s = 2.76 TeV.

The LHCb experiment collected data from pp collisions at a center of mass energy of√
s = 2.76 TeV and with an integrated luminosity of L = 3.3 pb−1 during the time

period starting from Feb. 12, 2013 until Feb. 14, 2013. After this period, the LHC and all
associated experiments were shut down for maintenance and upgrades.

One group of particle candidates, which can originate from pp interactions are the ones,
that contain at least a charm quark, the charm hadrons C. One subgroup thereof is the
group of the charm mesons, the other is the group of the charm baryons. Typical elements
in the group of charm mesons are the D0 = cū, D̄ = c̄u, D+ = cd̄, D− = cd̄ particles.
Such charm mesons can also occur twice as CC. When this doublet contains two charm
quarks or two anti-charm quarks, it is referred to as double open charm production, when
it comprises a charm and an anti-charm quark, it is referred to as charm pair production.
For this analysis the notation of a charm state C includes its anti-particle state C̄. This
implication of the full charge conjugation results in the fact, that e.g. D0D0 denotes
{D0D0, D̄0D̄0}, and D0D̄0 denotes {D0D̄0, D̄0D0}.

The main objective of this analysis is to measure the production cross sections for the
single open charm mesons C, double open charm mesons CC and charm pair produced
mesons CC̄, where C ∈ {D0, D+}, C̄ ∈ {D̄0, D−}. The determination of the production
cross section at LHCb involves a chain of analyses. Chapter 4.1 provides the strategy of the
measurement. The charm event candidates need to be identified and isolated from other
particle candidates in the data. This is achieved by a system of selection criteria, explained
in chapter 4.2. Moreover, it covers the pile-up and feed-down, being two typical background
processes, especially when double open charm event candidates are involved. Chapter 4.3
gives an overview of the charm candidates passing the selections. The remaining chapters,
i.e. chapter 4.4, 4.5, 4.6, 4.7, 4.8, deal with the different terms of the production cross
section formula listed in chapter 4.1 (see equation 4.1). The final chapter 4.9 covers the
calculation of the systematic uncertainties in the determination of the production cross
section.
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4.1 Analysis Strategy

The analysis strategy outlines the procedures, which need to be executed on the data
collected by LHCb, in order to get a production cross section for the single open charm
meson candidates D0 and D+ and double open charm event candidates D0D0, D0D+ and
D+D+. For comparison, the production cross sections for the charm pair production event
candidates D0D̄0, D0D− and D+D− are also determined. This analysis strategy is based
on the one described in [2], [3].

As a first step the LHCb detector collects electric signals, which are created by the
interaction of particles with the matter of the detector components, and which form the
unfiltered data. This data is passed through the data acquisition sytem (DAQ) of the
LHCb detector, whose capabilities are mainly limited by the trigger, and is filtered, such
that it can be stored permanently on hard disks. This filtering involves the trigger selection,
in order to reduce the nominal interaction rate from about 20 − 30 MHz to 1 − 15 kHz.
This process needs to be executed online, i.e. while the data was taken. Afterwards,
the triggered data is stored on disk. All following processing steps are therefore executed
offline, i.e. when the data taking was finished.

In a second step, the stored data is reconstructed using Reco14 and subsequently filtered
by the Stripping21 algorithm. In this process, the charm event candidates C and CC, where
C ∈ {D0, D+} are created from their decay products, the K− and π+ track candidates. All
these candidates are further selected, which is achieved by the stripping selection described
in chapter 4.2.1. Due to the short lifetime of the open charm event candidates, they need to
be reconstructed from their decay products. For this analysis the decay modes D0 → K−π+

and D+ → K−π+π+ are chosen, because they fulfill several requirements [7]. First, the
decay modes result in a low number of daughter particles, such that the initial momentum
splits into few decay products. Secondly, the branching ratio Bi of the decay modes need
to be high enough, such that the corresponding reconstructed mesons are sufficient in
numbers for a measurement. This is explained in more detail in chapter 4.3 and 4.4.
Thirdly, the event candidates are supposed to be detected as precise as possible by the
LHCb detector. This means, that all decay products can be detected directly and should
be charged. Fourthly, the decay modes are flavour tagging, such that the charm candidate
can be distinguished from its anti particle. This enables the differentiation between double
open charm production and open charm pair production.

The third and final step of filtering is the offline selection. It consists of the selection
needed to be applied, in order to match the definition of the efficiencies (see chapter
4.6). Most of the efficiencies, being acceptance εacc, reconstruction and selection efficiency
εrec and particle identification (PID) efficiency εPID, are not calculated explicitely for this
analysis, but taken from the analysis of associated production of Υ and open charm [28],
[29]. In order for the efficiencies to be applicable, the same selection as for the efficiency
calculation done in the analysis [28], [29] needs to be applied for this analysis as described
in chapter 4.2.1. An important difference to the previous works is, that [28], [29] did not
trigger on the open charm, but on µ±. After the selection process, the different background
contributions of pile-up and feed-down are investigated in chapter 4.2.2.
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The production cross sections for the single open charm event candidates D0, D+ and
the double open charm event candidates D0D0, D0D+, D+D+ in pp collisions at LHCb
can be calculated as:

Single Charm: σC =
Nc; s;C

L BC εGEC;C

Double Charm: σCC =
Nc; s;CC

L BC BC εGEC;CC

,

where Nc; s : efficiency corrected signal yield

L : integrated luminosity

B : branching ratio

εGEC : global event cut efficiency

C ∈ {D0, D+} : single open charm event candidate(s)

CC , C ∈ {D0, D+} : double open charm event candidates .

(4.1)

The simple factorized ansatz of the DPS model (see chapter 2.2) predicts, that the effective
cross section, σeff is constant and independent of the process and the center of mass energy√
s. Assuming no contamination from soft processes, it is given by:

σCC = α
σC σC
σeff

,

where σC , C ∈ {D0, D+} : cross sections for the single open charm

event candidates

σCC : cross-section for the double open charm event candidates

α =

{
1/4 , D0D0 , D+D+

1/2 , D0D+
combinatorial factor .

(4.2)

The measurements of J/ψC together with the predictions in [2], [3] suggest, that the
contamination from the hard process gg → cc̄cc̄ is indeed small. Formula 4.2 is sometimes
referred to as Pocket Formula. It can be solved for σeff leading to:

σeff = α
σC σC
σCC

. (4.3)

Being a ratio of cross sections, this equation has the advantage, that several systematic
uncertainties both in experimental determination as well as in theory calculations do cancel
out. The calculation of the terms, which arise in equation 4.1, are explained in chapters
4.4, 4.5, 4.6, 4.7, 4.8.
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4.2 Event Selection and Background Determination

In the following, the event selection is described, which includes the trigger selection,
stripping selection for the Stripping21 algorithm and the offline selection. These selection
processes are the first step in eliminating the background, and are explained in chapter
4.2.1. The influence of two specific types of background, called pileup and feed-down, on
the signal of the charm event candidates is described in chapter 4.2.2. The second back-
ground elimination step is achieved by the calculation of the efficiency corrected yields Nc; s

in chapter 4.5.

4.2.1 Event Selection

The data from pp collisions collected by the LHCb detector with a center of mass energy
of
√
s = 2.76 TeV has the production identification number 23836 and the run number

interval [137147, 137312] 1. This unfiltered data passes three selection steps.
The first step of selection is the trigger selection, which is done online. The data was

taken with the trigger configuration key (TCK) 0x00A90046, a TCK that was used pre-
viously in the high integrated luminosity data taking at

√
s = 8 TeV in 2012. The trig-

ger has three stages, the hardware stage L0 and the two software stages Hlt1 and Hlt2.
The trigger selection relies on HCAL clusters in L0, a non prompt high pT track in Hlt1
and the D0 → K−π+, D+ → K−π+π+ candidates in Hlt2. The names of the trigger
lines are L0Hadron for L0, Hlt1TrackAllL0 for Hlt1, Hlt2CharmHadD02KPi for D0 resp.
Hlt2CharmHadD2HHH for D+ for Hlt2 and are listed in Tab. 4.1. One cut applied
at the trigger level is APT > 2 GeV for the charm, which translates approximately to
pT > 2 GeV. Due to the calculation of the trigger efficiency (see chapter 4.6), every single
open charm event candidate is required to be triggered on signal (TOS). In the case of
double open charm or open charm pair production event candidates, at least one of the
two single open charm event candidates is required to be TOS. Previous analyses, like
[28], [29], benefit from using µ± for the trigger. Compared to hadrons, like K± and π±,
muons are relatively easy to identify by the LHCb muon system and are much less freqent.
Therefore the trigger has a lot more work to do when using the L0Hadron trigger instead of
the L0Muon trigger. Consequently, the L0Hadron trigger involves harder global event cuts
(GEC), in order to keep the readout rate of the trigger within the maximum permissible
limit. Moreover, the trigger was not optimized for a low center of mass energy and low
instantaneous resp. integrated luminosity, which can be an issue for this analysis. This
issue and the resulting consequences are specified further in chapter 4.6, 4.9 and 5.

1This data can be found in the LHCb Dirac Bookkeeping system under
LHCb/Collision13/Beam1380GeV-VeloClosed-MagDown/Real Data/Reco14/
90000000 ( Full stream )/FULL.DST
or in the LHCb run database by a search for the run number.

37



Candidate Trigger stage Trigger line

D0, D+ L0 L0Hadron

D0, D+ Hlt1 Hlt1TrackAllL0

D0 Hlt2 Hlt2CharmHadD02KPi

D+ Hlt2CharmHadD2HHH

Table 4.1: Trigger lines used for the selection of events matching the decay modes D0 →
K−π+, D+ → K−π+π+.

The two remaining selection steps, stripping- and offline selection, are done offline. The
stripping selection consists of the Stripping21 algorithm implemented in the stripping
LHCb software framework. The used stripping lines are StrippingD02KpiForPromptCharm,
StrippingDForPromptCharm, StrippingDiCharmForPromptCharm. Stripping21 selects the
triggered data according to the chosen decay modes and the stripping selection criteria,
which help to reduce the background. The selection criteria of the stripping- and offline
selection are combined into one set, which is splitted into three categories. The first ca-
tegory contains the selection criteria applied on the decay candidates of the decay modes
D0 → K−π+, D+ → K−π+π+, the K− and π+ meson candidates. The criteria can be
structured in criteria for track reconstruction and PID:

• A good track reconstruction quality is ensured by requiring four criteria for each
track event candidate.

First, the χ2
trk/ndof provided by the track fit is χ2

trk/ndof < 3. The track reconstruction
software checks for hit patterns, which can form a potential K− or π+ track, and
combines these hit patterns to track candidates using a fit, called track fit. Since the
amount of measurement points is limited and the charged track candidates can scatter
in the detector material, wrong combinations of hit patterns can be reconstructed as a
track. In order to quantify the goodness of the track fit, the distances between the hit
points and the track are summed up and divided by their experimental uncertainty
and the number of degrees of freedom ndof, yielding χ2

trk/ndof = 1
ndof

∑ y(xi)−f(xi)
σy(xi)

(see

also chapter 3.1.2).

Secondly, the transverse momentum is pT > 0.25 GeV.

Thirdly, the track ghost probability has to be Ptr < 0.5. Ghost tracks are tracks,
which are reconstructed from random hit points by mistake.

Fourthly, to suppress any contribution from duplicate tracks created by the recon-
struction, only candidates with a symmetric Kullback-Leibler divergence, ∆KL, cal-
culated with respect to all candidates in the event, of ∆KL > 5000 are considered
[30], [31], [32].

In addition, K−, π+ used for the reconstruction of long lived charm particles, are
required not to be produced in primary interaction vertices (PV). To ensure this, only
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candidates with a χ2 of the impact parameter, χ2
IP, with respect to all reconstrcted

PV’s, of χ2
IP > 9 are considered. At LHCb, the χ2

IP is calculated as the increase of
the χ2

vx of the PV, if one additional track is added to the vertex fit. This can be

approximated by χ2
IP '

(
IP
σIP

)2

.

• A PID of good quality is ensured by requiring the following criteria for each track
event candidate.

The track must have left a signal in the RICH detectors catched by its PID system,
fulfilled by HASRICH = True [42].

The momentum, p, required to be in the range 3.2 GeV < p < 100 GeV and the
pseudorapidity, η, within 2 < η < 4.9 ensure a good acceptance in the RICH.

To select well identified K− (π+), the combined probabilty of the K− (π+), PK−

(Pπ+) is required to be Pl < 0.1 , l ∈ {K−, π+}. This quantity is the output of an
artificial neural net using mainly the Log-Likelihood, logL, of the K−, π+ hypothesis
from the RICH reconstruction [42].

In addition, the difference in the Log-Likelihood of the K− hypothesis with respect
to the π+ hypothesis, ∆K−/π+ logL, is required to be ∆K−/π+ logL > −5. In order
to quantify the hypothesis, the RICH and the calorimeters are used [42].

These selection criteria are summarized in Tab. 4.2.
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Candiate(s) Variable Cut LOKI functor

Track Reconstruction

K−, π+ χ2
tr/ndof < 3 TRCHI2DOF

pT [GeV] > 0.25 PT

Ptr, gh < 0.5 TRGHOSTPROB

∆KL > 5000 CLONEDIST

χ2
IP > 9 MIPCHI2DV

Particle Identification

K−, π+ HASRICH True HASRICH

p [GeV] 3.2 < p < 100 P

η 2 < η < 4.9 ETA

K− PK− > 0.1 PROBNNK

∆K−/π+ logL > −5 PIDK

π+ Pπ > 0.1 PROBNNpi

Table 4.2: Selection criteria for theK− and π+ track candidates, used for the reconstruction
of the single open charmed event candidates D0 and D+.

The selected K− and π+ are then combined to form the single open charm event candi-
dates D0, D+ with corresponding decay modes D0 → K−π+, D+ → K−π+π+. The second
category of selection criteria contains the criteria applied on these open charm event can-
didates. The criteria can be structured in criteria for the decay chain, the primary vertex
(PV) and the pile-up resp. feed-down:

• The K−, π+ track candidates shall originate from the open charm event candidates.
This is achieved by a vertex fit performed by the vertex reconstruction software, which
combines the K− and π+ tracks to vertices. The goodness of this fit is estimated
by the χ2

vx, which is required to be χ2
vx < 9 for the D0 and χ2

vx < 25 for the D+

candidates.

In addition, the transverse momentum of the open charm event candidates has to be
within 2 < pT < 20 GeV, and the rapidity in the range 2 < y < 4.5.

• To ensure that the charm meson candidates originate from a PV, the χ2
IP of these

candidates with respect to any of the reconstructed PV’s is required to be χ2
IP < 9.

Moreover, the decay time c τ of the candidates is required to be c τ > 100 µm. This
quantity is extracted from a lifetime fit, which calculates the distance between the
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best PV and the decay vertex of the candidates. The PV is determined by the vertex
fit as the vertex, which has the smallest distance to the interaction point. The best
PV is the PV, which has the smallest χ2

vx, calculated by the vertex fit.

• In order to remove background from pile-up and feed-down (see chapter 4.2.2), it is
required, that the momentum direction is consistent with the flight direction calcu-
lated from the PV’s and SV’s. This is acquired by a decay tree fit performed by
the DecayTreeFitter tool, which combines vertices to decay chains for the candidates
[33]. The χ2

dtf/ndof of this fit gives an estimate of its goodness and is required to be
χ2

dtf/ndof < 5.

The invariant mass window for the open charm event candidates of 1.820 < MC <
1.920 GeV, where C ∈ {D0, D+}, is applied.

The selection criteria for the single open charm event candidates are summarized in
Tab. 4.3.

Candidate Variable Cut LOKI functor

D0 χ2
vx < 9 VFASPF(VCHI2)

pT [GeV] 2 < pT < 20 PT

y 2 < y < 4.5 RAP

χ2
IP < 9 MIPCHI2DV

cτ [µm] > 100 BPVLTIME(9) · c light

χ2
dtf/ndof < 5 DTF CHI2NDOF

M [GeV] 1.820 < M < 1.920 M

D+ χ2
vx < 25 VFASPF(VCHI2)

pT [GeV] 1 < pT < 20 PT

y 2 < y < 4.5 RAP

χ2
IP < 9 MIPCHI2DV

cτ [µm] > 100 BPVLTIME(9) · c light

χ2
dtf/ndof < 5 DTF CHI2NDOF

M [GeV] 1.820 < M < 1.920 M

Table 4.3: Selection criteria used for the selection of the single open charm event candidates
D0, D+.

Subsequently, the selected single open charm event candidates D0, D+ are paired to
form the double open charm event candidates D0D0, D0D+ and D+D+. In addition, the
charm pair production candidates D0D̄0, D0D−, D+D− are studied. The third category
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of selection criteria contains the sole criterium applied on these double open charm and
charm pair production event candidates:

• In order to reject background from pile-up and feed-down, it is required, that the
momentum direction is consistent with the flight direction calculated from the lo-
cations of the PV’s and SV’s. This is aquired analogously by the DecayTreeFitter
tool as for the single open charm event candidates. The corresponding χ2

dtf/ndof is
required to be χ2

dtf/ndof < 5.

This selection criteria is listed in Tab. 4.4.

Candiate(s) Variable Cut LOKI functor

D0D0, D0D+, D+D+, χ2
dtf/ndof < 5 DTF CHI2NDOF

D0D̄0, D0D−, D+D−

Table 4.4: Selection criterion used for the selection of the double open charm event candi-
dates and charm pair production event candidates.

4.2.2 Pile-Up and Feed-Down

Sometimes it can happen, that two pp collisions occur too close for the detector to distin-
guish. This canal produces two D mesons falsely identified as double open charm and is
referred to as pile-up. The background contributions from pile-up and feed-down in the
data are treated using a method that exploits the cut on χ2

dtf/ndof [2], [3]. Events for which
the two charm mesons come from the same PV, the following decomposition can be used:

χ2
dtf/ndof CC = χ2

dtf/ndof C + χ2
dtf/ndof C ,

where χ2
dtf/ndof : χ2 per number of degrees of freedom

of the fit using the DecayTreeFitter tool [33]

C ∈ {D0, D+} : single open charm event candidates .

(4.4)

This identity is exact, if the position of the PV does not change, when the final state tracks
(the K−, π+) of the charm meson candidates are successively removed, when the PV is
refitted. Since the PV position does change a little, the identity is valid up to relatively
small corrections. For pileup events, an additional contribution, the χ2/ndof of the decay-
tree-fitter distance between the two PV’s of the charm mesons, χ2

dtf/ndof PV-dist, adds to
equation 4.4. This contribution is in general substantial, as for instance demonstrated for
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the distance in the z-direction δz and its uncertainty σδz:

χ2
dtf/ndof PV-dist =

(
δz

σδz

)2

+ ... >

(
δz

σδz

)2

≈
(

5 cm

0.2 mm

)2

= 6.25 · 104

where δz : Distance in z-direction of the two PV’s

for the charm meson candidates in the case of pileup

σδz : Uncertainty on the distance δz

(4.5)

Therefore, all events with log10(χ2
dtf/ndof CC) > 5 can be treated as pileup up to the

mentioned small corrections.
The contribution from pileup into the signal region χ2

dtf/ndof CC < 5, equal to
log10(χ2

dtf/ndof CC) . 0.7, can be estimated by studying the shape of the χ2
dtf/ndof CC

distribution separately in the pileup region log10(χ2
dtf/ndof CC) > 5. From a fit to the

χ2
dtf/ndof CC distribution in the pileup region, the contribution from pileup can be extracted

and subsequently extrapolated into the signal region. This process is illustrated in
Fig. 4.1 a), which shows the χ2

dtf/ndof distribution for D0 + Track candidates, fitted by a
model consisting of four Gamma distributions, one each for the signal, the pile-up and the
two feed-down peaks [34], [35].

The χ2
dtf/ndof CC distributions for this analysis are shown in Fig. 4.1 b), c), d). All

χ2
dtf/ndof CC distributions contain no events in the pileup region log10(χ2

dtf/ndof CC) > 5.
Therefore it is concluded, that the pile-up contribution is negligible. Very low or no pile-up
is expected, since the data are taken at low pile-up conditions with an average number of
visible interactions of about one (µ ' 1).

Another contribution of background, called feed-down, needs to be considered. The term
feed-down is used, since charm mesons can originate from the decay of B mesons. Such a
feed-down contribution is present in the χ2

dtf/ndof CC distribution at lower values than the
contribution from pile-up, i.e. approximately in the region log10(χ2

dtf/ndof CC) ∈ [1, 4.5].
D mesons originating from B decays do have a small but significant impact parameter
with respect to the PV. Therefore with enough statistics, the pile-up and feed-down con-
tributions are clearly distinguishable from each other (see Fig. 4.1 a)). All χ2

dtf/ndof CC

distributions contain a few events in the feed-down region. These events can be excluded
by the cut χ2

dtf/ndof CC < 5, being equal to log10(χ2
dtf/ndof CC) . 0.7. This cut allows the

reduction of the feed-down contribution into the signal region to a negligible level. This
contribution is estimated from simulation to be 1.7% for D0, 1.3% for D+ using the DPS
approach (see [35], Fig. 4.1 a)), which is assigned as a systematic uncertainty for this
analysis.
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Figure 4.1: χ2
dtf/ndof distribution for different candidates (from top left to bottom right):

1) D0 + Track candidates, fitted by a model consisting of four Gamma distri-
butions, one each for the signal, the two feed-down and the pile-up peaks (from
left to right) [34], [35]. The two feed-down peaks originate from the decays of
B mesons with different topologies.
2) D0D0

3) D0D+

4) D0D+

The distributions in b), c), d) are displayed for the Stripping21 selection (blue)
and for the additional cut χ2

dtf/ndof CC < 5 (red).
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4.3 Selected Candidates

This chapter illustrates the selected single open charm event candidates D0 and D+ modes
D0 → K−π+, D+ → K−π+π+ and the selected double open charm event candidates
D0D0, D0D+ and D+D+ with corresponding decay modes D0D0 → 2 ·D0 → 2 · (K−π+),
D0D+ → D0 +D+ → (K−π+) + (K−π+π+), D+D+ → 2 ·D+ → 2 · (K−π+π+).

The total number of events Ntot is extracted from the invariant mass distributions of
the single and double open charm event candidates, MC , MCC , where C ∈ {D0, D+}, with
fully applied event selection (see ch. 4.2.1). They are shown in Tab. 4.5, whereas the
corresponding invariant mass distributions are shown in Fig. 4.2 for D0 and D+, in
Fig. 4.3 for D0D0, D0D+ and D+D+ and in Fig. 4.4 for D0D̄0 and D+D−. Surprisingly no
D0D− events were observed. So for this combination only the double open charm channel
but not the pair production channel is seen. This is considered a statistical fluctuation.
Since Ntot for all double open charm event candidates is small, there is no need to consider
even rarer candidates like D∗ 0, D∗+, D0

s , D
+
s .

Candidate Ntot, standard selection Ntot, (pT > 4 GeV, y > 2.25) selection

D0 96441 82087

D+ 59708 54138

D0D0 8 5

D0D+ 11 4

D+D+ 3 1

D0D̄0 79 21

D0D− 0 0

D+D− 48 25

Table 4.5: The total number of events for the single open charm, double open charm and
open charm pair production event candidates. The standard selection is the
selection applied in chapter 4.2.1, the (pT > 4 GeV, y > 2.25) selection is the
one according to chapter C (see also chapter 4.6).
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Figure 4.2: Invariant mass distributions of the single open charm event candidates D0 (left)
and D+ (right).
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Figure 4.3: Invariant mass distributions for the double open charm event candidates D0D0

(1st row), D0D+ (2nd row) and D+D+ (3rd row).
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Figure 4.4: Invariant mass distributions for the charm pair production event candidates
D0D̄0 (1st row) and D+D− (2nd row). No event candidates are observed for
the case D0D−.
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4.4 Invariant Mass Fits

The number of signal events is extracted by unbinned maximum likelihood fits to the
invariant mass distributions of the single and double open charm event candidates, MC and
MCC , where C ∈ {D0, D+} using the RooFit v3.60 package within the ROOT framework
v6.06.02 [36]. The fits give an estimate of the normalization parameter for the signal,
which is the number of signal events. The quality of this estimate depends on the chosen
fit model. Three models are tested to find the one, which gives the best estimate. The
simplest option for a model is given by a Gaussian probability density function (PDF), the
second by a Bukin PDF and the third by a Double Crystal Ball PDF. Each model consists
of a signal component S(M), given by the three options, and a background component
B(M), given by an Exponential PDF. In order to evaluate the quality of the fits, three
goodness of fit criteria are imposed. The first is the reduced χ2, χ2/ndof, the second the
upper tail probability or upper p-value of the corresponding χ2 distribution, Pu(χ

2, ndof)
and the third the distribution of the pull values pi (see ch. 3.1.2). In contrast to the
Gaussian PDF, the Bukin and Double Crystal Ball PDF can describe initial and final
state radiation. The Gaussian model is used to gauge the pull distributions for a wrong
model. Since the layout for the construction of the fit models for MC is different than for
MCC , the invariant mass fits for the two open charm event cases are separated, providing
a better overview.

Single Open Charm Event Candidates
The invariant mass distributions for the single open charm event candidates D0, D+, MD0 ,
MD+ , are one dimensional. Therefore the fit model F with its components S(M), B(M)
is also one dimensional. The functional form of the fit model is:

F (S(M), B(M)) = NS · S(M) +NB ·B(M) ,

where M : invariant mass of the single open charm

event candidates D0, D+

S(M), NS : signal component with its normalization parameter

(number of signal events)

B(M), NB : background component with its normalization parameter

(number of background events) .

(4.6)
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The functional form of the signal component S(M) is given according to the three options:

1) Gaussian PDF:

S(M) = Gauss(M ;µ, σ)

= exp

(
−(M − µ)2

2σ2

)
,

where µ : peak position, i.e. expectation value of the PDF

σ : peak width, i.e. standard deviation defined by σ =
FWHM

2
√

2 ln (2)
.

(4.7)

2) Bukin PDF:

S(M) = Bukin(M ;µ, σ, ξ, ρl, ρr)

=



1
2

exp

( √
2 ln (2) ξ

√
ξ2+1 (M−m1)

σ
(√

ξ2+1−ξ
)2

ln
(√

ξ2+1+ξ
) + ρl

(
M−m1

µ−m1

)2
)

, M < m1

exp

(
− ln (2)

(
ln

(
1 + 2ξ

√
ξ2+1 M−µ

σ
√

2 ln 2

)
ln

(
1+2ξ2−2ξ

√
ξ2+1

)
)2
)

, m1 < M < m2

1
2

exp

( √
2 ln (2) ξ

√
ξ2+1 (M−m2)

σ
(√

ξ2+1−ξ
)2

ln
(√

ξ2+1+ξ
) + ρr

(
M−m2

µ−m2

)2
)

, M > m2

,

where µ : peak position, i.e. expectation value of the PDF

σ : peak width, i.e. standard deviation defined by σ =
FWHM

2
√

2 ln (2)

ξ : asymmetry parameter

ρl, ρr : left and right tail parameters

m1,2 = µ + σ
√

2 ln (2)

(
ξ√
ξ2 + 1

∓ 1

)
.

(4.8)
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3) Double Crystal Ball PDF:

S(M) = DCB(M ;µ, σ, αl, αr, nl, nr)

= r


(
nl
|αl|

)nl
exp

(
− |αl|

2

2

) (
nl
|αl|
− |αl| − M−µ

σ

)−nl
, M−µ

σ
< −|αl|

exp
(
− (M−µ)2

2σ2

)
, M−µ

σ
>= −|αl|

+ (1− r)


(
nr
|αr|

)nr
exp

(
− |αr|

2

2

) (
nr
|αr| − |αr|+

M−µ
σ

)−nr
, M−µ

σ
< −|αr|

exp
(

+ (M−µ)2

2σ2

)
, M−µ

σ
>= −|αr|

,

where µ : peak position, i.e. expectation value of the PDF

σ : peak width, i.e. standard deviation defined by σ =
FWHM

2
√

2 ln 2

αl > 0, αr < 0 : turning points of the left and right tail

nl, nr : left and right tail parameters

0 ≤ r ≤ 1 : normalization parameter .
(4.9)

The functional form of the background component B(M) is given by an Exponential PDF:

B(M) = exp (τ M) ,

where τ : slope parameter of the PDF .
(4.10)

The Gaussian model has 5 free parameters for the overall shaping and behaves robustly
with respect to the starting values for the fit. The Bukin model has 8 free parameters
for the overall shaping and has poorer robustness compared to the Gaussian model. The
tail and background parameters behave unstable, such that a simultaneous fit of the signal
and background components is difficult. Instead, the background component B(M) of
the Bukin model was fitted first in the ranges [1.82, 1.83] GeV and [1.91, 1.92] GeV, where
the background fraction in the events is the highest. Then, the free parameters of B(M),
i.e. the slope τ and NB, are fixed before the fit using the complete Bukin model in the
complete range of [1.82, 1.92] GeV is executed. The Double Crystal Ball model has 10 free
parameters for the overall shaping and has an even inferior robustness compared to the
Bukin model. Despite the usage of the same fit procedure as for the Bukin model, the
handling of the unstable tail and background parameters remains difficult.

The results of the fits to the invariant mass distributions MD0 , MD+ are shown in Fig. 4.5
and Fig. 4.6 respectively. The corresponding results for the fit parameters are listed in
Tab. A.1, A.2, A.3. The best fit model describing MD0 , MD+ is found by a comparison
of the three goodness of fit criteria for the models. A good model has a χ2-value and
an upper P-value close to 1 and a preferably flat pull distribution. Therefore, the model,
which describes both MD0 and MD+ distributions the best, is the Double Crystal Ball,
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closely followed by the Bukin model. The fit quality of the Gaussian model is inferior to
the Bukin and Double Crystal Ball models, also clearly visible by eye. This is expected,
since the Gaussian model neglects the tails of the invariant mass distributions, which are
known to be present in LHCb data. Since the Double Crystal Ball model has two more
free parameters than the Bukin model, it is in principle expected to describe the invariant
mass distribution better. The direct comparison of the pull distributions of the Bukin and
Double Crystal Ball models in Fig. 4.7 reveals, that the Bukin model has more difficulties
to describe the lower tail of the invariant mass distributions than the Double Crystal Ball
model, whereas both models describe the upper tail nearly equivalently good. The small
difference in the fit quality of these two models can therefore be caused by the difference
in the amount of free parameters. The disagreement to the previous analysis can also be
caused by the smaller available center of mass energy

√
s and total number of events of

the invariant mass distributions. It is concluded, that the Double Crystal Ball model does
not describe the invariant mass distributions significantly better than the Bukin model.
Not enough justification is found in order abandon the commonly used Bukin model in
preference of the Double Crystal Ball model, i.e. the difference in the fit quality of the
two models is so small, that it is considered irrelevant in the further analysis. Therefore,
the Bukin model is chosen to describe the invariant mass of the single open charm event
candidates.
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Figure 4.5: Results of the unbinned maximum likelihood fits to the invariant mass distribu-
tion for the single open charm event candidate D0, MD0 . Three options for the
fit model are tested. The first row shows the results for the Gaussian model,
the second row the results for the Bukin model, the third row the results for
the Double Crystal Ball model. In the right column the pull distributions for
the corresponding model are shown.
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Figure 4.6: Results of the unbinned maximum likelihood fits to the invariant mass distri-
bution for the single open charm event candidate D+, MD+ . Three options for
the fit model are tested. The first row shows the results for the Gaussian model,
the second row the results for the Bukin model, the third row the results for
the Double Crystal Ball model. In the right column the pull distributions for
the corresponding model are shown.
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Figure 4.7: The pull distributions of the maximum likelihood fits to the invariant mass
distributions MD0 (left) and MD+ (right) for the Bukin model (blue) and the
Double Crystal Ball model (red) in direct comparison.

Double Open Charm resp. Open Charm Pair Production Event Candidates
Due to the low total number of events in the double charm meson cases D0D0, D0D+,
D+D+, the fit model for the two dimensional mass distributions is constructed based on
the ones used for the single charm meson cases. All shape related fit parameters for the
signal were determined on the single open charm sample and then fixed and used for the
double open charm sample, whereas the fit parameters for the background shape are left
free. In order to increase the total number of events of the mass distributions MCC , the
double open charm production and pair production samples are temporarily merged, i.e.
D0D0 := {D0D0 ∪D0D̄0}, D0D+ := {D0D+ ∪D0D−} and D+D+ := {D+D+ ∪D+D−}.
These samples are separated from each other in chapter 4.5. For the D0D0 and D+D+

cases, the D0, D+ candidates are assigned randomly to be first or second. The notation
MC1C2 originates only from the definition, that MC1 is related to the x-axis and MC2 is
related to the y-axis of the two dimensional invariant mass distributions. The functional
form of the fit model is:
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F (S1(MC1), S2(MC2), B1(MC1), B2(MC2))

= NS1S2 S1(MC1) S2(MC2) + NB1B2 B1(MC1) B2(MC2)

+ NS1B2 S1(MC1) B2(MC2) + NS2B1 S2(MC2) B1(MC1) ,

where MCl , Cl ∈ {D0, D+} , l ∈ {1, 2} :

invariant mass of the single open charm components to the corresponding

double open charm event candidates (including open charm pair production)

{D0D0 ∪D0D̄0}, {D0D+ ∪D0D−} and {D+D+ ∪D+D−}

Sl , l ∈ {1, 2} : signal component of the single charm components

to the corresponding double open charm event candidates

(including open charm pair production)

Bl , l ∈ {1, 2} : background component of the single open charm components

to the corresponding double open charm event candidates

(including open charm pair production)

NS1S2 , NS1B2 , NS2B1 , NB1B2 :

normalization parameters for the four components of the fit model .
(4.11)

The functional form of Sl(MCl), Bl(MCl), where Cl ∈ {D0, D+} , l ∈ {1, 2} is described in
equation 4.6.
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According to this functional form, the fit model for the double open charm event candi-
dates consists of the following components illustrated in Fig. 4.8:

1) Signal (Fig. 4.8 top left): It is modeled by a product PDF of the individual signal
components for the first and second single open charm event candidate, denoted by
S1(MC1), S2(MC2). In the fit, the signal has the normalization NS1S2 , being the only
free parameter.

2) Pure combinatorial background (Fig. 4.8 top right): It is modeled by a product
PDF of the individual background components for the first and second single open
charm event candidate, denoted by B1(MC1), B2(MC2). In the fit, this background
has the normalization NB1B2 and the exponential slope parameters τB1, c, τB2, c as free
parameters. τB1, c, τB2, c are constrained to be the same for D0D0, D+D+.

3) The signal for the first single open charm event candidate together with the com-
binatorial background for the second one (Fig. 4.8 bottom left). It is modeled by
a product PDF of the signal- and background components for the first and second
single open charm event candidate, denoted by S1(MC1) and B2(MC2). In the fit,
this background has the normalization NS1B2 and the exponential slope parameter
τB2 as free parameters.

4) The signal for the second single open charm event candidate together with the com-
binatorial background for the first one (Fig. 4.8 bottom right). It is modeled by
a product PDF of the signal- and background components for the second and first
single open charm event candidates, denoted by S2(MC2) and B1(MC1). In the fit,
this background has the normalization NS2B1 and the exponential slope parameter
τB1 as free parameters.

In analogy to the fit model for the single open charm event cases, the signal components
S1(MC1), S2(MC2) are described by three models, the Gaussian, Bukin and Double Crystal
Ball PDF’s, whereas the backround components B1(MC1), B2(MC2) are described by an
Exponential PDF (see equation 4.6, ff.). All shape parameters, except from the ones related
to B1(MC1), B2(MC2), i.e. the τ and N parameters, are determined from the single charm
sample and then fixed.

The results of the fits to the invariant mass distributions MD0D0 , MD0D+ , MD+D+ (in-
cluding open charm pair production), are shown as projections of MD0

1
, MD0

2
, MD+

1
, MD+

2

in Fig. 4.9, Fig. 4.10, Fig. 4.11, Fig. 4.12, Fig. 4.13, Fig. 4.14. The correponding results
for the fit parameters are listed in Tab. A.4, A.5, A.6. Unlike the fit for the single open
charm event candidates, the comparison of the three goodness of fit criteria results in the
conclusion, that all three models describe the distributions MD0D0 , MD0D+ , MD+D+ with
almost the same quality. Especially, the fit qualities for the Double Crystal Ball model and
the Bukin model are almost indistinguishably close together (see Fig. 4.15). Therefore all
models can be used to describe the invariant mass distributions of the double open charm
event candidates (including open charm pair production). Consequently the Bukin and the
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Double Crystal Ball models yield almost identical numbers of signal events NS1S2 , while
the Gaussian model yields consistantly smaller but compatible values. This behaviour is
expected, since MD0D0 , MD0D+ , MD+D+ have a small number of events compared to MD0 ,
MD+ . For consistency with the single open charm event cases, the Bukin model is used to
describe the invariant mass distributions MD0D0 , MD0D+ , MD+D+ . The results for NS1S2

clearly suggest a signal for D0D0 ∪D0D̄0 and D+D+ ∪D+D− (see Tab. 4.6).

Candidate NS1S2 NB1B2 NS1B2 NS2B1

D0D0 ∪D0D̄0 78.1± 7.4 2.7 · 10−6 4.0± 2.5 4.9± 2.7

D0D+ ∪D0D− 9.4± 3.7 1.3 · 10−6 ± 190.2 1.2± 1.2 0.4± 3.4

D+D+ ∪D+D− 44.3± 7.8 1.4± 1.9 4.3± 3.1 0.9± 5.0

Table 4.6: Normalization parameters of the unbinned maximum likelihood fits to the in-
variant mass of the double open charm event candidates (including open charm
pair production), taken from Tab. A.5 for the Bukin model.
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Figure 4.8: Graphical illustration of the functional form of the fit model for the double
open charm event candidates D0D0 (including open charm pair production).
The four images show the four components of the fit model: NS1S2 Sig1 Sig2

(top left), NB1B2 Bkg1 Bkg2 (top right), NS1B2 Sig1 Bkg2 (bottom left) and
NS2B1 Sig2 Bkg1 (bottom right).
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Figure 4.9: Results of the unbinned extended maximum likelihood fits to the invariant mass
distribution for the double open charm event candidate D0D0 (including open
charm pair production), MD0D0 , as MD0

1
projection. Three options for the fit

model are tested. The first row shows the results for the Gaussian model, the
second row the results for the Bukin model, the third row the results for the
Double Crystal Ball model. In the right column the pull distributions for the
corresponding model are shown.
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Figure 4.10: Results of the unbinned extended maximum likelihood fits to the invariant
mass distribution for the double open charm event candidate D0D0, MD0D0

(including open charm pair production), as MD0
2

projection. Three options
for the fit model are tested. The first row shows the results for the Gaus-
sian model, the second row the results for the Bukin model, the third row
the results for the Double Crystal Ball model. In the right column the pull
distributions for the corresponding model are shown.
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Figure 4.11: Results of the unbinned extended maximum likelihood fits to the invariant
mass distribution for the double open charm event candidate D0D+ (includ-
ing open charm pair production), MD0D+ , as MD0

1
projection. Three options

for the fit model are tested. The first row shows the results for the Gaus-
sian model, the second row the results for the Bukin model, the third row
the results for the Double Crystal Ball model. In the right column the pull
distributions for the corresponding model are shown.
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Figure 4.12: Results of the unbinned extended maximum likelihood fits to the invariant
mass distribution for the double open charm event candidate D0D+ (includ-
ing open charm pair production), MD0D+ , as MD+

2
projection. Three options

for the fit model are tested. The first row shows the results for the Gaus-
sian model, the second row the results for the Bukin model, the third row
the results for the Double Crystal Ball model. In the right column the pull
distributions for the corresponding model are shown.
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Figure 4.13: Results of the unbinned extended maximum likelihood fits to the invariant
mass distribution for the double open charm event candidate D+D+ (includ-
ing open charm pair production), MD+D+ , as MD+

1
projection. Three options

for the fit model are tested. The first row shows the results for the Gaus-
sian model, the second row the results for the Bukin model, the third row
the results for the Double Crystal Ball model. In the right column the pull
distributions for the corresponding model are shown.
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Figure 4.14: Results of the unbinned extended maximum likelihood fits to the invariant
mass distribution for the double open charm event candidate D+D+ (includ-
ing open charm pair production), MD+D+ , as MD+

2
projection. Three options

for the fit model are tested. The first row shows the results for the Gaus-
sian model, the second row the results for the Bukin model, the third row
the results for the Double Crystal Ball model. In the right column the pull
distributions for the corresponding model are shown.
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Figure 4.15: The pull distributions of the maximum likelihood fits to the invariant mass
distributions MD0D0 (1st row), MD0D+ (2nd row) and MD+D+ (3rd row) (includ-
ing open charm pair production) for the Bukin model (blue) and the Double
Crystal Ball model (red) in direct comparison. The first column shows the
MD0

1
projection, the second column the MD0

2
projection.
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4.5 Efficiency Corrected Yields

The unbinned maximum likelihood fit to the invariant mass distributions of the single resp.
double open charm event candidates (including open charm pair production) provides the
number of signal events NS resp. NS1S2 and the number of background events NB resp.
NB1B2 , NS1B2 , NS2B1 of these event candidates (see chapter 4.4). These number of signal-
or background events are the number of events expected on the average for the signal or
background. Using these two average numbers, the sPlot method allows to calculate the
weights for each event to be signal or background [37].

Depending on the values of the fit model for the signal and background, fi(ye), and
the covariance matrix of the fit, Vij, each event candidate e in the mass distribution is
given a weight wi, e(ye) ∈ (0, 1), called sWeight, to be signal s and background b, where
i ∈ {s, b}, e ∈ {1, . . . , Ntot}, Ntot is the total number of events in the invariant mass
distribution M and ye is the set consisting of all parameters of the fit model inclusively
the observable M . Therefore the sPlot method allows to separate the desired signal events
from the background events. Consequently, only the sWeights for the signal, ws, e(ye),
are considered in the further calculations. Including the total efficiency for each event
candidate e, εtot; e(xe), the efficiency corrected signal yield can be calculated by:

Nc; s =
Ntot∑
e=0

ws, e (ye)

εtot; e (xe)
,

where Ntot : total number of events

ws, e (ye) ∈ (0, 1) : weight for an event candidate e to be signal s

εtot; e(xe) : total efficiency for an event candidate e (see equation 4.15) .
(4.12)

whereas its statistical uncertainty, σNc; s , is given by:

σNc; s =

√√√√Ntot∑
e=0

(
ws, e (ye)

εtot; e (xe)

)2

. (4.13)

xe is a set which does not consist any element of the set ye. For example, xe consists of
pT , η, y.
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For the double open charm event candidates D0C and D0C̄, where C ∈ {D0, D+}, the
signal yields Nc,D0C; s, Nc,D0C̄; s need to be corrected to take the double Cabibbo suppressed
decay mode D0 → K+π− into account, that effectively mix the D0C and D0C̄ final states.
This correction is given by [2], [3]:

Nc, dcs,D0C; s =
1√

1− r2

(
Nc,D0C; s − r Nc,D0C̄; s

)
Nc, dcs,D0C̄; s =

1√
1− r2

(
−r Nc,D0C; s +Nc,D0C̄; s

)
where Nc,D0C; s, Nc,D0C̄; s : efficiency corrected signal yields given by equation 4.12

r =
B(D0 → K+π−)

B(D0 → K−π+)
= (3.79± 0.17) · 10−3 Double Cabibbo suppression factor

(4.14)
For the D0D0 and D0D̄0 cases the value of r1 = 2r is used.

This sPlot method has some disadvantages. First, it works only optimal, if the correla-
tion between the set of variables xe and ye is nonexistent. The stronger the correlation is,
the more difficulties the method exhibits to estimate the weights we, i(ye) properly. Since
there is a correlation between M and pT for instance, it is assumed, that the correlation
between ye and xe is small enough, in order to let the method work properly. Secondly, the
used covariance matrix Vij is provided by the unbinned maximum likelihood fit to the in-
variant mass distributions MC , MCC . Since Vij is calculated numerically, it is less accurate
than the direct calculation from the log-Likelihood function by matrix inversion. However,

sPlot has a major advantage for this analysis. The method provides a convenient way to
statistically separate all signal events from all background events. No additional selection
needs to be applied, which could result in a further loss of signal events. This feature is of
particular importance, since the number of event candidates is rather low due to the small
dataset (e.g. compare with [2], [3]).

The distributions of the signal sWeights we, s are shown in Fig. 4.16 for the single
open charm event candidates D0, D+ and in Fig. 4.17 for the double open charm event
candidates (including open charm pair production) D0D0∪D0D̄0, D0D+∪D0D−, D+D+∪
D+D−. The sWeights for the background have been substracted in these distributions.
Bins with background events can therefore be negative. Since the double open charm and
open charm pair production samples are merged, the background fractions for the double
charm and pair production are assumed to be identical.

In order to separate double open charm from open charm pair production, a cut is
applied on the merged samples (see Tab. 4.7). The associated functor of the cut returns
the signed PDG Id of the candidate as defined by the decay descriptor. A positive value is
associated with a particle, a negative value with an anti-particle. Using this cut, a charm
candidate can be distinguished from its anti-charm candidate. Effectively, the cut uses the
charge of the kaon for the separation, such that a differentiation between K−π+, K−π+π+

and K+π−, K+π−π− final states is possible.
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Candidate Cut Loki Functor

D0D0 (IDD0
1
> 0 && IDD0

2
> 0) || (IDD0

1
< 0 && IDD0

2
< 0) ID

D0D+ (IDD0
1
> 0 && IDD+

2
> 0) || (IDD0

1
< 0 && IDD+

2
< 0) ID

D+D+ (IDD+
1
> 0 && IDD+

2
> 0) || (IDD+

1
< 0 && IDD+

2
< 0) ID

D0D̄0 (IDD0
1
> 0 && IDD0

2
< 0) || (IDD0

1
< 0 && IDD0

2
> 0) ID

D0D− (IDD0
1
> 0 && IDD+

2
< 0) || (IDD0

1
< 0 && IDD+

2
> 0) ID

D+D− (IDD+
1
> 0 && IDD+

2
< 0) || (IDD+

1
< 0 && IDD+

2
> 0) ID

Table 4.7: Cut on the ID Loki Functor in order to separate the double open charm from
charm pair production events.
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Figure 4.16: The distribution of the sWeights we, s applied to the invariant mass distribution
M for the single open charm event candidates D0 (left) and D+ (right).
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Figure 4.17: The distribution of the sWeights we, s applied to the invariant mass distribu-
tion M for the double open charm event candidates D0D0 (1st row), D0D+

(2nd row) and D+D+ (3rd row). Due to the construction of the fit model,
the sWeight distributions are 2-dimensional. The left column shows the C1

projection, the right column the C2 projection, whereas C1, C2 ∈ {D0, D+}.
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4.6 Efficiency

The total efficiency for each event candidate e, εtot; e, is a product of four terms:

εtot; e = εacc; e εrec; e ξtrk; e εPID; e εtrg; e ,

where εacc; e : acceptance

εrec; e : reconstruction and selection efficiency

ξtrk; e : tracking efficiency correction factor

εPID; e : particle identification efficiency

εtrg; e : trigger efficiency .

(4.15)

Except for the trigger efficiency εtrg, all other efficiencies, i.e. εacc, εrec (including ξtrk), εPID,
are taken from the analysis [28] resp. [29]. Therefore the same event selection as in [28],
[29] needs to be applied for this analysis as explained in chapter 4.2.1. The efficiency for
an event e is extracted by a two- resp. three-dimensional linear interpolation for that event
e. The functional dependence determines the dimensionality of the interpolation. Due to
the pT and y dependence, the two-dimensional interpolation is used for the acceptance, the
reconstruction and selection efficiency and the trigger efficiency. Since the PID efficiency
depends on p, η and Ntracks, a three-dimensional linear interpolation is required.

Since a cut on the invariant mass for the single open charm candidates is applied (see
chapter 4.2.1, Tab. 4.3), there is in principle a corresponding efficiency to be calculated.
The cut 1.82 < MC < 1.92 GeV, C ∈ {D0, D+} is applied, in order to set MD0 and mD+

distributions to the same range for the fits (see chapter 4.4). Initially MD0 had a range of
[1.79, 1.94], MD+ a range of about [1.816, 1.924]. Considering the sWeight distributions for
the single open charm event candidates (see Fig. 4.16), the small signal contribution within
the ranges [1.82, 1.83] and [1.91, 1.92], can be neglected. Since the signal contribution is
not expected to rise below 1.82 GeV and above 1.92 GeV, it can be assumed, that no
signal candidate is lost when applying 1.82 < MC < 1.92 GeV. Therefore the efficiency
correponding to the mass window can be set to unity.

Acceptance εaccεaccεacc

The acceptance needs to be introduced, since the LHCb detector has a finite spatial ac-
ceptance. Only the forward region in the pseudorapidity range 2 < η < 5 is instrumented
(equal to a range of the scattering angle θ of about 10 mrad < θ < 250 mrad), so only
particles flying inside this region can be detected.

The acceptance is obtained from Monte Carlo simulation using the GAUSS v45r3 frame-
work [38], [39]. It is estimated by:

εacc =
Nacc

Nprompt

, (4.16)

where Nprompt is the number of generated prompt charm candidates in a (pT , y)-bin and
Nacc is the number of charm hadrons in that (pT , y)-bin, which pass the generator-level
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cuts (see [28], [29]). The estimator εacc is a Binomial distributed random variable, whereas
the Binomial PDF is given by:

B(p; k, n) =

(
n

k

)
pk (1− p)n−k ,

where n : number of trials in a counting experiment

k : number of successes

p ∈ (0, 1) : probability of success .

(4.17)

Consequently the corresponding statistical uncertainty is estimated by:

σεacc =

√
εacc(1− εacc)

Nprompt

. (4.18)

The acceptance for the open charm event candidates D0 and D+ is shown in Fig. 4.18.
The estimated statistical uncertainties are in general not symmetric, which would lead to
asymmetric uncertainties in each (pT , y)-bin in Fig. 4.18. However, they are approximated
symmetrically, which holds, if the corresponding efficiency in a certain (pT , y)-bin is not
too small or large.
εacc for the double open charm event candidates (including open charm pair production)

can be decomposed into the efficiency of the single open charm event candidates:

εacc; e =

{
εacc, C; e single open charm event

εacc, C; e εacc, C; e double open charm event
,

where εacc, C; e , C ∈ {D0, D+} : Acceptance for the single open charm

event candidate(s) .

(4.19)
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Figure 4.18: The acceptance εacc as a function of pT and y for D0 → K−π+ (left) and D+ →
K−π+π+ (right) decays, taken from the analysis [28], [29]. The statistical
errors in each (pT , y)-bin are symetrically approximated.
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Reconstruction and Selection Efficiency εrecεrecεrec

εrec; e is given by the product of the efficiencies for the event reconstruction and for the
applied event selection without any PID cuts (see chapter 4.2.1). The PID efficiency cor-
reponding to the PID selection is determined separately. The reconstruction and selection
efficiency is determined in the same way as the acceptance (see equation 4.17, 4.18). Con-
sequently, εrec is determined from Monte-Carlo simulation and is a function of the open
charm candidate’s pT and y. The obtained reconstruction and selection efficieny is cor-
rected by the factor ξtrk [40]. This correction factor is determined in an independent study
of a pure Jψ → µ+µ− sample by a tag and probe method. It corrects for the differences
in the track reconstruction between the Monte Carlo simulation and the data sample and
is a function of the track momentum ptrk and pseudorapidity ηtrk. The reconstruction and
selection efficiency together with the correction factor is shown in Fig. 4.19. The statisti-
cal uncertainties in each (pT , y)-bin are symmetrically approximated as for the acceptance.
Since ξtrk is limited to p ∈ [5, 201) GeV and η ∈ [1.9, 4.9), the correction factor for can-
didates with a (p, η), which exceed those limits, are given the efficiency corresponding to
p = 5.001 resp. 199.9 GeV and η = 2.001 resp. 4.899.

For the double open charm event candidates (including open charm pair production),
εrec can be decomposed into the efficiency of the single open charm event candidates and
the correction factors:

εrec; e =

{
εrec, C; e ξtrk; e single open charm event

εrec, C; e ξtrk; e εrec, C; e ξtrk; e double open charm event
,

where εrec, C; e, C ∈ {D0D+} : reconstruction and selection efficiency for the

single open charm event candidate(s)

ξtrk; e : correction factor for the single open charm

event candidate(s) .

(4.20)

ξtrk; e for a single open charm event candidate is given by the product of the correction
factors for each track produced by this open charm event:

ξtrk; e =
∏
j=trk

ξe, j (pj, ηj) ,

where ξe, j(pj, ηj) : correction factor per track j∏
j=trk

: product running over all final state tracks of the

associated single open charm event, i.e. the K− and π+ .

(4.21)
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Figure 4.19: The reconstruction and selection efficiency εrec as a function of pT and y for
D0 → K−π+ (top left) and D+ → K−π+π+ (top right) decays and for the
correction factor ξtrk as a function of p and η for the track candidates K− and
π+ (bottom left), taken from the analysis [28], [29]. The statistical errors in
each (pT , y)-bin are symetrically approximated.
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PID Efficiency εPID; eεPID; eεPID; e

The PID efficiency for the kaon and pion have been determined in [28], [29] from the
analysis of calibration samples of the decay D∗+ →

(
D0 → K−π+

)
π+ using the PIDCalib

framework [42], [43], [44], [45]. εPID is estimated by:

εPID =
Nacc

Nacc +Nrej

=

(
1 +

Nrej

Nacc

)−1

, (4.22)

where Nacc is the number of accepted kaon resp. pion candidates in a (p, η,Ntracks)-bin, Nrej

is the number of rejected kaon resp. pion candidates in that (p, η,Ntracks)-bin, according to
the PID selection criteria (see chapter 4.2.1) andNtracks is the number of track multiplicities.
Nacc and Nrej are given by sums over per event weights:

Nacc =
∑
i=acc

wi

Nrej =
∑
j=rej

wj .
(4.23)

These weights wi, wj can be determined using the sP lot method (see chapter 4.5). Due to
this, the estimator εPID is not a Binomial distributed random variable, and the statistical
uncertainty σεPID

needs to be estimated differently than for εacc. The PID efficiency for
the kaon and pionpion final states is illustrated in Fig. 4.20 resp. Fig. 4.21. Similar
to the acceptance the statistical uncertainties in each (p, η,Ntracks)-bin are symmetrically
approximated, since they are in general not symmetric. For certain (p, η,Ntracks)-bins the
PID efficiency has values εPID /∈ (0, 1]. For these cases the bin color in Fig. 4.20, 4.21 is
white. The reason for this is, that for a low number of calibration events, equation 4.22
can yield unphysical numbers for the efficiency [29]. The corresponding event candidates,
which would fall into such a bin by the interpolation, is assigned a PID efficiency of
εPID; e = 0.5± 0.5. This occurs at the boundaries of the acceptance and is rare.
εPID for a single or double open charm event candidate (including open charm pair

production) is given by the product of all identification efficiencies for the K− and π+ final
state tracks:

εPID; e =
∏
j=K−

εK−; e, j

∏
j=π+

επ+; e, j ,

where εK−; e, j, επ+; e, j : efficiencies for K− and π+ identification∏
j=K−

,
∏
j=π+

: products running over all K− resp. π+ final state tracks of the

associated single or double open charm event (including open

charm pair production) .
(4.24)
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Figure 4.20: The PID efficiency εPID; e as a function of p and η for the kaon candidates
for four bins in the track multiplicity Ntracks: Ntracks ∈ [0, 150) (top left),
Ntracks ∈ [150, 250) (top right), Ntracks ∈ [250, 400) (bottom left) and Ntracks ∈
[400, 1000) (bottom right), taken from the analysis [28], [29]. The statistical
errors in each (p, η,Ntracks)-bin are symetrically approximated.
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Figure 4.21: The PID efficiency εPID; e as a function of p and η for the pion candidates
for four bins in the track multiplicity Ntracks: Ntracks ∈ [0, 150) (top left),
Ntracks ∈ [150, 250) (top right), Ntracks ∈ [250, 400) (bottom left) and Ntracks ∈
[400, 1000) (bottom right), taken from the analysis [28], [29]. The statistical
errors in each (p, η,Ntracks)-bin are symetrically approximated.
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Trigger Efficiency εtrgεtrgεtrg

The trigger efficiency is determined directly on the data sample using the TISTOS method.
It exploits the fact, that events with single open charm candidates can be triggered either
by the selected decay products of the single open charm candidates (TOS: trigger on signal)
or by the rest of the event (TIS: trigger independently of signal) [2], [3], [46], [47], [48], [49],
[50] [51]. The overlap between these two cases allows the trigger efficiency to be calculated:

εtrg =
NTOS∧TIS

NTIS

, (4.25)

where NTOS∧TIS is the number of TIS and TOS events in a (pT , y)-bin, NTIS is the number
of TIS events in that (pT , y)-bin and ∧ is the logical and-operator (logical conjunction).
Likewise to the acceptance, the trigger efficiency is estimated as a Binomial distributed
random variable (see equation 4.17). However, the statistical uncertainties are estimated
by the Clopper-Pearson intervals xl and xu within the 68.3% confidence level [52], recom-
mended by the PDG [7]. xl, xu are given by:

1± 0.683

2
= Pl(x, a, b) =

1

B(a, b)

∫ x

0

ta−1 (1− t)b−1 dt ,

where B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
=

∫ 1

0

ta−1(1− t)b−1 dt

Beta function (Euler’s integral of the first kind)

xl is given by Pl(x, a, b) =
1− 0.683

2
for a = k, b = n− k + 1

xu is given by Pl(x, a, b) =
1 + 0.683

2
for a = k + 1, b = n− k

B(p; k, n) = Pl(x; a = k, b = n− k + 1)

Relation between the Binomial PDF and Beta PDF

used for the calculation .

(4.26)

Pl(x, a, b) is the lower tail probability related to the Beta PDF (see chapter 3.1.2, formula
3.13 and 3.14). Similar to equation 3.16 the Beta CDF can be splitted into the lower and
upper tail probability, i.e. C(β(x; a, b)) = Pl(x, a, b) + Pu(x, a, b), where the Beta PDF
B(x; a, b) and its CDF C(B(x; a, b)) are given by:
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B(x; a, b) =
1

B(a, b)
xa−1 (1− x)b−1

C(B(x; a, b)) =
1

B(a, b)

∫ 1

0

ta−1 (1− t)b−1 dt ,

where x ∈ (0, 1) : observable

a > 0, b > 0 : shape parameters .

(4.27)

Moreover, C(B(x; a, b)) can be expressed in terms of the lower- and upper regularized
incomplete Beta functions βl(x, a, b), βu(x, a, b), such that Pl(x, a, b) and Pu(x, a, b) are
forms of βl(x, a, b) and βu(x, a, b).

The TISTOS method requires, that all single open charm event candidates are selected
to be triggered as signal. This is because it determines the efficiency for an event to be
triggered on signal, rather than the probability for an event to be triggered at all. Therefore
all those candidates passing the trigger lines listed in Tab. 4.1 (see also chapter 4.2.1) must
fulfill the TOS requirement in addition. In the case of a double open charm or open charm
pair production event candidate, one of two choices can be realized. The first is to require
one of the two single open charm candidates to be TOS, the second to require both to be
TOS. In order not to loose event candidates unnecessarily, the first choice is picked. This
leads to the combination formula 4.28. The trigger efficiency for the open charm event
candidates D0 and D+ is shown in Fig. 4.22.

Similar to the acceptance, εtrg for the double open charm event candidates (including
open charm pair production) can be decomposed into the efficiency for the single open
charm event candidates:

εtrg; e =

{
εtrg, C; e single open charm event

1− (1− εtrg, C; e) (1− εtrg, C; e) double open charm event

where εtrg, C; e , C ∈ {D0, D+} : Trigger efficiency for the single open charm

event candidate(s)

(4.28)

Even though allowing to trigger on any of the D mesons rather than requiring both D
mesons to be TOS increases the trigger efficiency, it also increases the uncertainty on the
measurement of the cross sections. Unfortunately due to the small integrated luminosity
only a small number of events remain for double open charm and pair production candidates
(see 4.5).
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Figure 4.22: The trigger efficiency εtrg as a function of pT and y for the decays D0 → K−π+

(1st column) and D+ → K−π+π+ (2nd column). The first row shows the
efficiency for L0, the second row the one for Hlt1. The bin-wise efficiencies
are given in %-values. The efficiency for the Hlt2 trigger line is given as one
value: εHlt2;D0 = (80.2 ± 4.3

5.1)% resp. εHlt2;D+ = (77.9 ± 4.1
4.6)%.

The acceptance, reconstruction and selection and trigger efficiencies can be very small
for low (pT , y)-bins (cf. Fig. 4.18, 4.19 and 4.22). Consequently, when evaluating these
individual efficiencies for the candidates and combining them with equation 4.15, initially
small individual efficiencies lead to an even smaller total efficiency for certain (pT , y) events.
The following example illustrates this effect. Assume, that the three efficiencies εacc, εrec

and εtrg are evaluated for a single open charm event candidate e as εacc; e = 0.1, εrec; e = 0.1
and εtrg; e = 0.1. When neglecting the correction factor and the PID efficiency, i.e. setting
ξtrk; e = 1 and εPID = 1, the total efficiency for that event candidate e is εtot; e = 0.13 =
0.001. For comparison, the case εacc; e = 0.5, εrec; e = 0.5 and εtrg; e = 0.5 results in εtot; e =
0.53 = 0.125. The evaluated total efficiency for the single open charm event candidates
is shown in Fig. 4.23 and for the double open charm envent candidates (including open
charm pair production) in Fig. 4.24. It is observed, that a significant amount of the event
candidates have a small total efficiency. The smaller the total per event efficiency is, the
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larger weight receives the correponding event in the fraction in equation 4.12 and the more
dominant is the contribution of that event to the cross section (see equation 4.1). Moreover
small efficiencies lead to large uncertainties because carry a much larger relative uncertainty
than the large efficiencies. The major contribution leading to a small total efficiency is the
trigger efficiency for the L0Hadron trigger line. It has the smallest bin contents for low
(pT , y)-bins within the largest (pT , y)-bin range among all efficiencies. Because the trigger
is optimized for high luminosity and high center of mass energy at

√
s = 7 TeV with high

thresholds on pT and ET , it is not well suited for a measurement involving low pT and low
luminosity.

As a consequence, additional cuts on (pT , y) are applied to the single open charm event
candidates, in order to exclude the events with a corresponding total efficiency, which
lies below a certain threshold (see Tab. 4.8). Fig. 4.25 serves as example for which all
events with a corresponding total efficiency below 2% are excluded. The cut (pT , y) >
(6 GeV, 2.25) is found to be well applicable for the D0 and D+ candidates. The loss of
about 60% of the candidates is not a big issue, since there are enough candidates left for
the measurement. However, the situation is different for the double open charm event
candidates (including open charm pair production). The cut (pT , y) > (6 GeV, 2.25) on
the two open charm does not result in any increase in the total efficiency threshold for
the D0D0 ∪ D0D̄0 and D+D+ ∪ D+D− candidates compared to (pT , y) > (6 GeV, 2.25).
Therefore the loss of event candidates is not justified and the cut (pT , y) > (4 GeV, 2.25)
is found to offer best deal between gain of total efficiency and loss of event candidates.
The (pT , y) > (4 GeV, 2.25) is applied for all event candidates in a special analysis (see
appendix C). The effects of this additionally applied cut are further discussed in chapter
4.9, 5 and 6.

81



Candidate Cut on (pT [GeV], y) εtot, thres [%] fcut =
Ntot, cut

Ntot, init
[%]

D0 (2, 2) 0.02 100

(4, 2.25) 0.29 85.1

(6, 2.25) 1.89 54.9

D+ (2, 2) 0.01 100

(4, 2.25) 0.08 90.7

(6, 2.25) 0.61 68.4

D0D0 ∪D0D̄0 (2, 2) 0.02 100

(4, 2.25) 0.02 72.4

(6, 2.25) 0.02 56.3

D0D+ ∪D0D− (2, 2) 0.03 100

(4, 2.25) 0.03 100

(6, 2.25) 0.15 72.7

D+D+ ∪D+D+ (2, 2) 0.003 100

(4, 2.25) 0.06 84.3

(6, 2.25) 0.06 80.4

Table 4.8: Additional applied cuts on (pT , y) for the single open charm event candidates
D0, D+ and double open charm event candidates (including open charm pair
production) {D0D0 ∪ D0D̄0} ,{D0D+ ∪ D0D−} and {D+D+ ∪ D+D−}. The
corresponding total efficiencies of all selected events is above εtot, thres [%]. Com-
pared to the initial cut of (pT , y) > (2 GeV, 2), the fraction fcut [%] remain in
the dataset. (see 4.3).
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Figure 4.23: The bin-wise averaged evaluated total efficiency εtot; e as a function of pT and
y for the single open charm event candidates D0 (1st row) and D+ (2nd row).
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Figure 4.24: The bin-wise averaged evaluated total efficiency εtot; e as a function of pT and
y for the double open charm event candidates D0D+ (1st row), D0D+ (2nd

row) and D+D+ (3rd row).
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Figure 4.25: The bin-wise averaged evaluated total efficiency εtot; e as a function of pT and
y of the single open charm and combined double open charm (or open charm
pair production) system for the D0 (top left), D+ (top right), D0D0 ∪D0D̄0

(center left), D0D+∪D0D− (center right) and D+D+∪D+D− (bottom right)
event candidates for an efficiency threshold of εtot, thres; e > 2%.
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4.6.1 Global Event Cut Efficiency

The global event selection is applied on the trigger level in order to reject events with a large
number of hits in the detector. For the trigger lines L0Hadron Dec and Hlt1TrackAllL0 Dec,
a cut is applied on the number of SPD hits, NSPD < 600. SPD is the abbreviation for the
scintillating pad detector in the calorimetry system of the LHCb detector (see ch. 3.1.1).
Initially the global event selection consisted of two cuts, NSPD < 600 and NOT < 10000. In
the whole data sample there is only one event that passes the event selection but not the
requirement on NOT. This event passes the trigger on another trigger line. Therefore its
effect on the NOT distribution is neglected and the global event cut (GEC) efficiency εGEC,
can be calculated without taking NOT into account. Consequently, the GEC efficiency,
εGEC, can be calculated solely from an unbinned maximum likelihod fit to the distribution
of NSPD, the SPD hit multiplicities. For the single open charm event candidates, a Double
Gamma PDF, G, is chosen to model the distribution. This PDF is described by:

G(x;µ1, µ2, γ1, γ2, β1, β2) = n1 g1(x;µ1, γ1, β1) + n2 g2(x;µ2, γ2, β2) ,

where gi(x;µi, γi, βi) =

 ni
βi Γ(γi)

(
x−µi
βi

)γi−1

e
−x−µi

βi , x− µi > 0

0 , x− µi < 0
, i ∈ {1, 2}

Single Gamma PDF components

Γ(ki) =

∫ ∞
0

tki−1 e−t dt Gamma function (Euler’s integral form)

x : observable, i.e. NSPD for the single and double charm event candidates

ki > 0, θi > 0, µi : free parameters of the PDF

ni : normalization factors .
(4.29)

For the double open charm event candidates and open charm pair produced event candi-
dates a simpler Single Gamma PDF is chosen to model the NSPD distribution. In the same
way as in chapter 4.4 the double open charm and open charm pair production samples are
merged, i.e. CC ∈ {D0D0, D0D+, D+D+} ∪ {D0D̄0, D0D−, D+D−} to increase the total
number of events in the corresponding NSPD distributions. The result of the fit is shown
for the D0 and D+ candidates in Fig. 4.26 and for the D0D0, D0D+, D+D+ including the
D0D̄0, D0D−, D+D− candidates in Fig. 4.27, the corresponding fit parameters in Tab.
B.1 and Tab. B.2.

As alternative fit models for the single open charm event candidates, the simpler Single
Gamma PDF and stretched Beta PDF have been tested (see equation B.1). However they
pion describe the tail of the NSPD distribution as well as the Double Gamma PDF G (cf.
Fig. 4.26, 4.28, 4.29 and corresponding fit parameters in Tab. B.1, B.3, B.4). However,
the Single Gamma PDF is able to model the NSPD distribution for the double open charm
event candidates due to the lower statistics.

In the actual fitting algorithm the factors ni, 1/βi, 1/Γ(γi) are absorbed into the overall

86



normalization Ni, i.e. Ni = ni
βi Γ(γi)

, i ∈ {1, 2}. These overall normalization factors do
not represent the number of events anymore. To have access to normalization factors
representing number of events, an integral representation can be used. The number of
events in a given interval [a, b], N[a, b] are given by:

N[a, b] =

∫ b

a

G(x;µ1, µ2, γ1, γ2, β1, β2) dx , a > 0, b > 0, b > a ,

where G(x;µ1, µ2, γ1, γ2, β1, β2) : Double Gamma PDF

x : observable, i.e. NSPD for the cases of the single and double

open charm event candidates .

(4.30)

The GEC efficiency εGEC can then be determined from N[ncutoff,∞], where ncutoff = 600, and
N[0,∞] by:

εGEC =
N[0, ncutoff]

N[0,∞]

=

∫ ncutoff

0
G(x;µ1, µ2, γ1, γ2, β1, β2) dx∫∞

0
G(x;µ1, µ2, γ1, γ2, β1, β2) dx

= 1−
N[ncutoff,∞]

N[0,∞]

= 1−
∫∞
ncutoff

G(x;µ1, µ2, γ1, γ2, β1, β2) dx∫∞
0
G(x;µ1, µ2, γ1, γ2, β1, β2) dx

.

(4.31)

Due to the cut NSPD < 600, the fit model needs to be extrapolated into the region
NSPD ≥ 600, in order to determine the number of events in that region, N[ncutoff,∞]. For
the calculation of the total number of events, N[0,∞], it is not possible to implement the
infinity, ∞, numerically. Instead, the representation ∞ := 100000 is used. This number
is much larger than the number of cells in the SPD detector, i.e. the maximal value for
NSPD. Using uncorrelated systematical error propagation, the uncertainty on εGEC, σεGEC

,
is given by:

σεGEC = σN[ncutoff,∞]

1

N[0,∞]

+ σN[0,∞]

N[ncutoff,∞]

N2
[0,∞]

(4.32)

The GEC efficiencies for each single and double open charm event candidate (including
open charm pair production) are listed in Tab. 4.9. It is observed, that the GEC efficiency
is εGEC > 0.9999 in all cases. Therefore the effect on the cross section is very small,
such that it can be neglected, i.e. εGEC can be set to unity. This is a much larger GEC
efficiency than it is usually observed in high luminosity data taking. This is due to the
reduced number of visible interactions (µ ' 1) in the used data taking period for this
measurement.
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Candidate 1 - εGEC

D0 (2.38± 0.36) · 10−5

D+ (2.05± 0.43) · 10−5

D0D0 ∪D0D̄0 (1.06± 6.19) · 10−5

D0D+ ∪D0D− (4.03± 5.07) · 10−7

D+D+ ∪D+D− (7.10± 22.86) · 10−6

Table 4.9: Results of the global event cut inefficiency for the single open charm event can-
didates D0, D+ and double open charm event candidates (including open charm
pair production) {D0D0 ∪D0D̄0} ,{D0D+ ∪D0D−} and {D+D+ ∪D+D−}.
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Figure 4.26: Results of the unbinned maximum likelihood fit using the Double Gamma
model to the NSPD distribution for the single open charm event candidates D0

(left) and D+ (right).
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Figure 4.27: Results of the unbinned maximum likelihood fit using the double Gamma
model to the NSPD distribution for the double open charm event candidates
(including open charm pair production) {D0D0 ∪D0D̄0} (top left), {D0D+ ∪
D0D−} (top right), {D+D+ ∪D+D−} (bottom left).
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Figure 4.28: Result of the unbinned maximum likelihood fit to the NSPD distribution using
a Single Gamma model for the single open charm event candidates D0 (left),
D+ (right).
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Figure 4.29: Result of the unbinned maximum likelihood fit to the NSPD distribution using
a Beta model for the single open charm event candidates D0 (left), D+ (right).
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4.7 Integrated Luminosity

The integrated luminosity L together with its uncertainty σL of L = 3.31± 0.07 pb−1 is
given by the common LHCb luminosity tool implemented in the DaVinci software package
for LHCb. This tool uses two measurement methods to determine the luminosity, the
Van-der-Meer scan and the Beam-Gas-Interaction method [53], [54], [55]. σL is treated as
a systematical uncertainty in the error propagation for the cross section. The influence of
σL on the cross section uncertainty can then be stated as a separate value.

4.8 Branching Ratios

The branching ratios for the D0 and D+ open charm event candidates are taken from the
PDG [7]. They are listed in Tab. 4.10. For the double open charm event candidates D0D0,
D0D+ and D+D+, these branching ratios are combined to one value before entering the
cross section formula (see eqn. 4.1). BD0→K+π− is used for the correction in equation 4.14.
As for the luminosity, the uncertainty on the branching ratio is treated as a systematical
uncertainty, such that its influence on the cross section uncertainty can be stated as a
separate value.

Candidate B

D0 → K−π+ (3.93± 0.04) · 10−2

D0 → K+π− (1.49± 0.07) · 10−4

D+ → K−π+π+ (9.46± 0.24) · 10−2

Table 4.10: Branching ratios for the decay modes D0 → K−π+, D0 → K+π− (double
cabibbo suppressed) and D+ → K−π+π+ [7].
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4.9 Systematic Uncertainties

The major source of systematic uncertainty originates from the determination of the effi-
ciencies defined by equation 4.15. Any other source is not considered in this analysis. The
systematic uncertainty is estimated by a toy Monte Carlo method. First, the efficiencies
εacc, εrec, εPID, provided by the analysis [28] resp. [29], and εtrg are randomly varied within
their uncertainties. ξtrk is not varied, since the corrections are small. For each bin i in the
histograms, its bin content εi is substituted by εi → ε′i. For εacc, εrec, εPID the variation ε′i is
given by a Gaussian distributed random value truncated to the interval (0, 1], while for εtrg

the variation is given by a Beta distributed random value. The bin contents εi represent
the means µi and the symmetrically approximated bin errors σi the standard deviations
σgaus; i of the Gaussian PDF needed to generate the corresponding random values in each
bin i. The Gaussian PDF is given by:

N(x;µ, σ) =
1√

2π σ
exp

(
−1

2

(
x− µ
σ

)2
)

,

where x : Observable

µ : Mean; also being the expectation value

σ : Standard deviation

(4.33)

For the trigger efficiency the number of events being TOS and TIS, NTOS∧TIS, and the
number of events being TIS, NTIS, can be identified as the k and n parameters of the Bino-
mial distribution, repectively (see equation 4.17). Since the Beta distribution is interpreted
as the continuous generalization of the Binomial distribution for real k and n within the
interval (0, 1), the parametrization a = k+1, b = n−k+1 is used determine the two shape
parameters a and b of the Beta PDF needed to generate the corresponding random value
in each bin i (see equation 4.27, 4.26). The case of an unphysical efficiency, i.e. for certain
bins of εPID, resulting a uniform PDF within (0, 1), is included in this representation.

Then, all steps to evaluate the the total efficiency for each event candidate e, εtot; e, are
executed for each variation ε′i. This leads to variations for the total efficiency ε′tot; e, j for
each event candidate e and for each variation j. Using equation 4.1, the procedure leads
to variations for the cross section, σ′j. The cross section distributions obtained from these
toy experiments are shown in Fig. 4.31 for the single open charm event candidates and in
Fig. 4.32 and 4.33 for the double open charm event candidates (including open charm pair
production). It is observed, that these distributions have an upper tail. This behavior is
likely caused by those events, which have the smallest total efficiency.

Since the trigger efficiency is observed to be the major cause for small event-wise total
efficiencies (see chapter 4.6), the choice of the Beta PDF is important. It is expected, that
when using the Gaussian PDF for the variation of the trigger efficiency instead of the Beta
PDF, the cross section distribution obtained from the toy experiments have an even larger
upper tail.
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The tendency for large tails is the reason, that the standard deviation of the variations
is not a viable estimator for the systematical uncertainty on the cross section σana;σ:

σana;σ =

√√√√ 1

nj − 1

nj∑
j=1

(
σ′j − µ(σ′j)

)2

where µ(σ′j) =
1

nj

nj∑
j=1

σ′j Mean of the variations σ′j

nj∑
j=1

: Sum running over all variations σ′j

(4.34)

Large variated cross section values have a bigger contribution in this equation than small
ones, resulting in an overestimation of the systematic uncertainty εana;σ. Therefore, this
systematic uncertainty is determined differently by using the cross section distribution
for the toy experiments. The confidence interval is calculated as the smallest interval,
containing 68.3% of the toy experiments. In case nj · 0.683 does not yield an integer, it
is set to the next larger integer. The lower- and upper interval boundaries, denoted as
LowerBound and UpperBound, are then given by the center value between the variated
cross section value lying inside the interval and the next variated cross section value lying
outside the interval (see Fig. 4.30). Then, the lower- resp. upper systematic uncertainties
are estimated as:

σana, low;σ = Mode− LowerBound
σana, high;σ = UpperBound−Mode .

(4.35)

The Mode is calculated analogously to Lower Bound and Upper Bound as the center
between the the interval boundaries corresponding to the confidence interval of 0.1. It is
drawn as a red star, while the systematic uncertainty estimations are drawn as black error
bars in Fig. 4.31 to 4.33. This estimate for the systematic uncertainty is referred to as the
systematic uncertainty related to the analysis in chapter 5. For comparison, the unvaried
cross section values, the mean, the median and the standard deviation are denoted as
Best Value, Mean, Median and RMS. The latter three quantities are calculated based on
the binned cross section distributions. The Best Value is drawn as a green star in Fig.
4.31 to 4.33. A substantial number of toy experiments are required, such that statistical
fluctuations can balance out. The number of variations nj = 1000 leads to reasonable
populated histograms, expecially needed in order to determine the Mode properly.

Bias of the Method
For some candidates, the cross section values obtained from the toy experiments tend to
be smaller than the Best Value. Sometimes the Best Value is higher than the Lower Bound
(see Fig. 4.31). This is expected, since the way the efficencies are varied, lead to efficiency
values with a slight bias towards high efficiencies, i.e. low cross sections. This arises from
truncating the Gaussian PDF to (0, 1] or using the asymmetric Beta PDF for efficiencies
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less than 0.5. The first hypothesis during the analysis was, that the usage of the truncated
Gaussian PDF yielding a finite probability density for efficiencies close to zero leads to the
excessive event weights. This was the reason for replacing the truncated Gaussian PDF
with a Beta PDF for the smallest efficiencies, i.e. the trigger efficiencies. This solves the
problem in a large part, since the bias in the total efficiency and in every event is small,
as it can be seen in Fig. 4.34. The current interpretation of this behavior is, that the
Central Limit Theorem holds for sums but not for products like the total efficiency (see
equation 4.15). This explains why the RMS is an inferior estimator for the confidence
interval. Since the bias is small, the method to propagate the systematic uncertainties
on the efficiencies to the cross section is useful. However, the distributions of the cross
sections get more biased the smaller the involved efficiencies are. As expected, the method
works better for the cross section ratios.
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Figure 4.30: Illustration of the procedure used to estimate the systematic uncertainty on
the cross section σana. In this example of a toy experiment 15 cross section
values are calculated, where k ≤ 15.
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Figure 4.31: Cross section distributions obtained from the toy experiments for the single
open charm event candidates D0 (left) and D+ (right). The mode of a distri-
butions is denoted as Mode and drawn as a red star, while the cross section
value calculated by the analysis is denoted as Best V alue and drawn as green
triangle. The parameters LowerBound and UpperBound correspond to the
lower and upper end points of the error bar, drawn in pink. The other statis-
tics parameter calculated from the binned distributions are the mean, median
and standard deviation, denoted as Mean, Median and RMS.
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Figure 4.32: Cross section distributions obtained from the toy experiments for the double
open charm event candidates D0D0 (top left), D0D+ (center left), D+D+

(bottom left) and for the open charm pair production event candidates D0D̄0

(top right) and D+D− (bottom right). No event candidate is observed for
the D0D−. The mode of a distributions is denoted as Mode and drawn as a
red star, while the cross section value calculated by the analysis is denoted
as Best V alue and drawn as green triangle. The parameters LowerBound
and UpperBound correspond to the lower and upper end points of the error
bar, drawn in pink. The other statistics parameter calculated from the binned
distributions are the mean, median and standard deviation, denoted as Mean,
Median and RMS.
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Figure 4.33: Cross section ratio (i.e. RCC) distributions obtained from the toy experiments
for the double open charm event candidates D0D0 (top left), D0D+ (center
left), D+D+ (bottom left) and for the open charm pair production event can-
didates D0D̄0 (top right) and D+D− (bottom right). No event candidate is
observed for the D0D−. The mode of a distributions is denoted as Mode and
drawn as a red star, while the cross section value calculated by the analy-
sis is denoted as Best V alue and drawn as green triangle. The parameters
LowerBound and UpperBound correspond to the lower and upper end points
of the error bar, drawn in pink. The other statistics parameter calculated
from the binned distributions are the mean, median and standard deviation,
denoted as Mean, Median and RMS.
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Figure 4.34: Total efficiency distributions obtained from the toy experiments for the cor-
responding largest (1st column) and smallest (2nd column) event wise to-
tal efficiency for the single open charm event candidates D0 (1st row) and
D+ (2nd row). The largest and smallest event wise total efficiencies are
εtot;D0,max = 0.135, εtot;D+,max = 0.141, εtot;D0,min = 2.345 · 10−4 and
εtot;D+,min = 1.254 · 10−4. Please note that the fluctuations are between 0
and 0.7 h in the bottom right distribution.
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5 Results

The production cross sections in pp collisions at
√
s = 2.76 TeV and L = 3.31 pb−1 for

the single open charm event candidates D0, D+, the double open charm event candidates
D0D0, D0D+, D+D+ and the open charm pair production event candidates D0D̄0, D0D−

and D+D−, calculated according to equation 4.1, are presented in Tab. 5.1 and in Fig. 5.1.
The cross section values are accompanied by their statistic and systematic uncertainties.
Tab. 5.2 and Fig. 5.2 show the ratio RCC , which is defined as:

RCC := α
σC σC
σCC

where α =


1/4 D0D0

1/2 D0D+

1/4 D+D+

,

(5.1)

for the corresponding double open charm and open charm pair production event candidates.
Compared to the single open charm production cross sections at

√
s = 7 TeV in [8], the

values obtained in this analysis are about a factor of 40 smaller. However, the selections
in [8] are very different (0 < pT < 8 GeV). The double open charm and pair production
cross sections obtained in this analysis are similar to the values at

√
s = 7 TeV in [2] resp.

[3] using slightly harsher cuts, e.g. 3 < pT < 12 GeV. As a variation of this analysis, the
selection was tightened to (pT > 4 GeV, y > 2.25). This leads to about half of the cross
sections for single open charm and much less double open charm and open charm pair
production cross sections (see Tab. C.1). The DPS model predicts an energy independent
σeff over a vast energy range [14]. However, the obtained cross section ratio RD0D0 is about
a factor of 10 smaller compared to [2] and Tevatron [16]. Due to the reasons explained
in chapter 4.9, the systematic uncertainties related to this analysis are not fully reliable.
Therefore, no disagreement is claimed.
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Candidate RCC [mb] Stat. Syst. Analysis Syst. L

D0D0 4 · (2.38 ±1.50 ±0.31
0.23 3.87 · 10−6)

D0D̄0 4 · (0.098 ±0.024 ±6.69
5.99 · 10−3 1.0 · 10−4)

D0D+ 2 · (1.04 ±0.67 ±0.20
0.16 1.77 · 10−5)

D0D− −

D+D+ 4 · (0.060 ±0.060 ±0.023
0.035 5.43 · 10−5)

D+D− 4 · (0.094 ±0.041 ±14.29
6.72 · 10−3 3.33 · 10−5)

Table 5.2: Production cross section ratio RCC = α σC σC
σCC

, where C ∈ {D0, D+} for the

double open charm event candidates D0D0, D0D+ and D+D+ and the open
charm pair production event candidates D0D̄0 and D+D−. No event candidate
is observed for the D0D−. The first uncertainty denotes the statistic uncertainty,
the second one denotes the systematic uncertainty related to the analysis (see
chapter 4.9).
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Figure 5.1: Production cross sections σC and σCC , where C ∈ {D0, D+} (points with error
bars). The blue errorbars denote the statistic uncertainties, the red errorbars
the sum of the statistic and systematic uncertainties (see chapter 4.9). No
event candidate is observed for the D0D−.
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Figure 5.2: Production cross section ratios RCC := α σC σC
σCC

, where C ∈ {D0, D+} (points
with error bars) in comparison with the measured effective cross section at
Tevatron for multi-jet events (green dotted). The blue errorbars denote the
statistic uncertainties, the red errorbars the sum of the statistic and systematic
uncertainties. No event candidate is observed for the D0D−.
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6 Conclusion and Outlook

The production of single and double open charm mesons have been seen in pp collisions at√
s = 2.26 TeV. The signals are clearly visible in the mass distributions for the modes D0,

D+ and D0D0 but less obvious for the double open charm modes involving D+. A quan-
titative determination of the statistical significance was not performed. Nevertheless, this
analysis reuses techniques from previous analyses, that produced significant observations
[2], [28].

Based on this signal, a cross section measurement is attempted. For each class of recon-
structed candidates a cross section could be calculated and fully corrected for reconstruc-
tion, tracking, particle identification, luminosity and branching ratio. However, a precise
determination of the double open charm and pair production cross sections was not pos-
sible due to few candidates. The integrated luminosity needs to be increased to be able
to do so. Moreover, the low and probably unprecisely determined charm trigger efficiency
does not allow a precision measurement. In the LHCb collaboration, this is known to be a
difficult problem.

Alternatively, a random trigger can be used especially for the D0 and D+ modes due
to their large cross section. For the double open charm production, asymmetric selections
may be feasible. Those would avoid using the charm trigger at low (pT , y), still allowing
the second charm meson to pass the selection. Also, data from 2012 taken at 8 TeV using
the same trigger can be utilized. Combined with available random triggers, this might help
to improve the precision. For this work, this was not possible due to time constraints.
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A Invariant Mass Fit Parameters

The fit parameters of the unbinned maximum likelihood fit to the invariant mass distribu-
tions MC , where C ∈ {D0, D+} for the Gaussian, Bukin and Double Crystal Ball models
are listed in Tab. A.1, A.2, A.3, respectively.

The fit parameters of the unbinned maximum likelihood fit to the invariant mass dis-
tributions MCC , where CC ∈ {D0D0 ∪ D0D̄0, D0D+ ∪ D0D−, D+D+ ∪ D+D−} for the
Gaussian, Bukin and Double Crystal Ball models are listed in Tab. A.1, A.2, A.3, respec-
tively.

Fit Parameter D0 D+

µ [GeV] 1.866± 2.9 · 10−5 1.871± 3.6 · 10−5

σ [GeV] (8.054± 0.024) · 10−3 (7.949± 0.031) · 10−3

NS 91006.7± 313.7 56141.3± 247.2

τ −13.969± 0.552 −13.022± 0.706

NB 5433.9± 113.4 3567.0± 92.4

Table A.1: Fit parameters of the unbinned maximum likelihood fit to the invariant mass
distributions for the single open charm event candidates D0, D+, MD0 , MD+ ,
using the Gaussian model.
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Fit Parameter D0 D+

µ [GeV] 1.867± 3.1 · 10−5 1.871± 7.1 · 10−5

σ [GeV] (7.369± 0.028) · 10−3 (7.293± 0.027) · 10−3

ξ (−2.515± 0.122) · 10−3 (−5.561± 4.490) · 10−3

ρl −0.155± 0.012 −0.137± 0.001

ρr −0.232± 0.010 −0.232± 0.003

NS 92469.9± 308.5 57328.9± 242.4

τ −14.919± 0.919 −14.706± 1.220

NB 3915.4± 141.7 2201.7± 106.2

Table A.2: Fit parameters of the unbinned maximum likelihood fit to the invariant mass
distributions for the single open charm event candidates D0, D+, MD0 , MD+ ,
using the Bukin model.

Fit Parameter D0 D+

µ [GeV] 1.866± 3.3 · 10−5 1.871± 4.1 · 10−5

σ [GeV] (7.618± 0.035) · 10−3 (7.262± 0.048) · 10−3

αl 1.339± 0.047 0.946± 0.051

αr −1.259± 0.072 −1.321± 0.047

nl 65.098± 42.820 98.559± 0.306

nr 138.020± 0.217 146.362± 85.789

r 0.638± 0.060 0.407± 0.049

NS 92638.6± 309.3 57588.3± 243.7

τ −14.919± 0.919 −14.706± 1.220

NB 3915.4± 141.7 2201.7± 106.2

Table A.3: Fit parameters of the unbinned maximum likelihood fit to the invariant mass
distributions for the single open charm event candidates D0, D+, MD0 , MD+ ,
using the Double Crystal Ball model.
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Fit Parameter D0D0 ∪D0D̄0 D0D+ ∪D0D− D+D+ ∪D+D−

µS1 [GeV] 1.866± 2.8 · 10−5 1.866± 2.8 · 10−5 1.871± 3.6 · 10−5

µS2 [GeV] 1.866± 2.8 · 10−5 1.871± 3.6 · 10−5 1.871± 3.6 · 10−5

σS1
[GeV] (8.054± 0.024) · 10−3 (8.054± 0.024) · 10−3 (7.949± 0.031) · 10−3

σS2
[GeV] (8.054± 0.024) · 10−3 (7.949± 0.031) · 10−3 (7.949± 0.031) · 10−3

NS1S2 74.9± 9.3 8.5± 3.6 41.4± 7.3

τB1, c 4.766± 237 −7.674± 190 16.690± 24.01

τB2, c 4.766± 237 −57.696± 201 16.690± 24.01

τB1
−12.824± 10.940 −5.770± 34.863 1.745± 14.0

τB2
−12.824± 10.940 −44.244± 63.129 1.745± 14.0

NB1B2 2.2 · 10−6 ± 1.1 6.3 · 10−6 ± 0.8 1.4± 1.7

NS1B2 5.9± 3.3 1.2± 1.3 5.1± 3.3

NS2B1
6.3± 3.7 1.3± 2.3 3.1± 3.3

Table A.4: Fit parameters of the unbinned maximum likelihood fit to the invariant mass
distributions for the double open charm event candidates (including open charm
pair production) D0D0 ∪D0D̄0, D0D+ ∪D0D− and D+D+ ∪D+D−, MD0D0 ,
MD0D+ and MD+D+ , using the Gaussian model.
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Fit Parameter D0D0 ∪D0D̄0 D0D+ ∪D0D− D+D+ ∪D+D−

µS1 [GeV] 1.867± 3.1 · 10−5 1.867± 3.1 · 10−5 1.871± 7.1 · 10−5

µS2 [GeV] 1.867± 3.1 · 10−5 1.871± 7.1 · 10−5 1.871± 7.1 · 10−5

σS1
[GeV] (7.369± 0.028) · 10−3 (7.369± 0.028) · 10−3 (7.293± 0.027) · 10−3

σS2
[GeV] (7.369± 0.028) · 10−3 (7.293± 0.027) · 10−3 (7.293± 0.027) · 10−3

ξS1 (−2.515± 0.122) · 10−3 (−2.515± 0.122) · 10−3 (−5.561± 4.490) · 10−3

ξS2 (−2.515± 0.122) · 10−3 (−5.561± 4.490) · 10−3 (−5.561± 4.490) · 10−3

ρl;S1
−0.155± 0.012 −0.155± 0.012 −0.137± 0.001

ρl;S2
−0.155± 0.012 −0.137± 0.001 −0.137± 0.001

ρr;S1 −0.232± 0.010 −0.232± 0.010 −0.232± 0.003

ρr;S2 −0.232± 0.010 −0.232± 0.003 −0.232± 0.003

NS1S2
78.1± 7.4 9.4± 3.7 44.3± 7.8

τB1, c −4.949± 245 −8.849± 173 1.227± 23.517

τB2, c −4.949± 245 −16.848± 157 1.227± 23.517

τB1 −8.437± 10.437 −4.961± 65.092 2.518± 20.798

τB2 −8.437± 10.437 −4.422± 61.592 2.518± 20.798

NB1B2
2.7 · 10−6 ± 183.0 1.3 · 10−6 ± 190.2 1.4± 1.9

NS1B2
4.0± 2.5 1.2± 1.2 4.3± 3.1

NS2B1
4.9± 2.7 0.4± 3.4 0.9± 5.0

Table A.5: Fit parameters of the unbinned maximum likelihood fit to the invariant mass
distributions for the double open charm event candidates (including open charm
pair production) D0D0 ∪D0D̄0, D0D+ ∪D0D− and D+D+ ∪D+D−, MD0D0 ,
MD0D+ and MD+D+ , using the Bukin model.
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Fit Parameter D0D0 & D0D̄0 D0D+ & D0D− D+D+ & D+D−

µS1 [GeV] 1.866± 3.3 · 10−5 1.866± 3.3 · 10−5 1.871± 4.1 · 10−5

µS2 [GeV] 1.866± 3.3 · 10−5 1.871± 4.1 · 10−5 1.871± 4.1 · 10−5

σS1
[GeV] (7.618± 0.035) · 10−3 (7.618± 0.035) · 10−3 (7.262± 0.048) · 10−3

σS2
[GeV] (7.618± 0.035) · 10−3 (7.262± 0.048) · 10−3 (7.262± 0.048) · 10−3

αl;S1 1.339± 0.047 1.339± 0.047 0.946± 0.051

αl;S2 1.339± 0.047 0.946± 0.051 0.946± 0.051

αr;S1
−1.259± 0.072 −1.259± 0.072 −1.321± 0.047

αl;S2
−1.259± 0.072 −1.321± 0.047 −1.321± 0.047

nl;S1 65.098± 42.820 65.098± 42.820 98.559± 0.306

nl;S2 65.098± 42.820 98.559± 0.306 98.559± 0.306

nr;S1
138.020± 0.217 138.020± 0.217 146.362± 85.789

nr;S2
138.020± 0.217 146.362± 85.789 146.362± 85.789

rS1 0.638± 0.058 0.638± 0.058 0.407± 0.049

rS2 0.638± 0.058 0.407± 0.049 0.407± 0.049

NS1S2
78.7± 8.1 9.3± 3.9 44.5± 7.9

τB1, c −5.739± 180 −8.841± 203 1.217± 23.211

τB2, c −5.739± 180 −15.217± 228 1.217± 23.211

τB1
−9.302± 12.2 −5.020± 50.084 3.709± 24.155

τB2 −9.302± 12.2 −42.474± 65.470 3.709± 24.155

NB1B2
1.0 · 10−6 ± 199.8 3.3 · 10−6 ± 1.3 1.5± 2.0

NS1B2
3.8± 2.8 1.1± 1.3 4.0± 3.2

NS2B1
4.5± 3.0 0.6± 2.4 0.6± 8.8

Table A.6: Fit parameters of the unbinned maximum likelihood fit to the invariant mass
distributions for the double open charm event candidates (including open charm
pair production) D0D0 ∪D0D̄0, D0D+ ∪D0D− and D+D+ ∪D+D−, MD0D0 ,
MD0D+ and MD+D+ , using the Double Crystal Ball model.

109



B GEC Efficiency Fit Parameters

The fit parameters of the unbinned maximum likelihood fit to the NSPD distributions using
the Double Gamma model G for the single open charm event candidates D0 and D+ and
double open charm event candidates (including open charm pair produciton) D0D0∪D0D̄0,
D0D+ ∪D0D− and D+D+ ∪D+D− are presented in Tab. B.1 and B.2, respectively.

Fit Parameter D0 D+

µ1 −353.32± 3.14 −334.95± 4.03

γ1 68.665± 0.51 67.07± 0.63

β1 7.02± 0.48 6.93± 0.06

n1 89970.0± 915.9 55868.0± 664.9

µ2 59.93± 11.50 101.21± 13.19

γ2 7.926± 0.54 5.69± 0.57

β2 24.97± 0.89 27.64± 1.35

n2 9179.3± 884.8 5431.6± 627.0

Table B.1: Fit parameters of the unbinned maximum likelihood fit to the NSPD distri-
butions using the Double Gamma model G for the single open charm event
candidates D0 and D+.
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Fit Parameter D0D0 ∪D0D̄0 D0D+ ∪D0D− D+D+ ∪D+D−

µ 15.77± 62.40 −1.63 · 10−3 ± 137 −10.57± 192

γ 4.64± 4.15 1.10± 4.89 5.74± 12.10

β 29.34± 13.90 16.79± 7.62 27.07± 2.86

n 86.0± 9.3 10.0± 3.2 51.0± 7.1

Table B.2: Fit parameters of the unbinned maximum likelihood fit to the NSPD distribu-
tions using the Single Gamma model g for the double open charm event can-
didates (including open charm pair production) D0D0 ∪D0D̄0, D0D+ ∪D0D−

and D+D+ ∪D+D−.

The fit parameters of the unbinned maximum likelihood fit to the NSPD distributions
using the Single Gamma and Beta models for the single open charm event candidates D0

and D+ are presented in Tab. B.3 and B.4, respectively. For the Beta model a stretched
Beta PDF with a special representation for the mean µ and mode ν is used:

B(x; a, b) = n
x

c

(x
c

)−cµ+2 µν
c(ν−µ)

−1 (
1− x

c

)(−cµ+2 µν
c(ν−µ)

−1)( c
µ
−1)−1

,

x : observable, i.e. NSPD for the single open charm event candidates

µ > 0, ν > 0 : mean and mode of the Beta PDF

n, c : normalization factors .

(B.1)

Fit Parameter D0 D+

µ −8.16± 2.81 −9.68± 3.93

γ 5.36± 0.17 5.70± 0.26

β 28.72± 0.46 27.20± 0.61

n 96095.6± 361.3 59613.6± 282.8

Table B.3: Fit parameters of the unbinned maximum likelihood fit to the NSPD distribu-
tions using the Single Gamma model for the single open charm event candidates
D0 and D+.
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Fit Parameter D0 D+

µ 146.58± 0.23 145.11± 0.31

ν 116.85± 0.29 118.29± 0.40

a 4.93± 0.722 4.14± 0.06

b (2.16± 1.68) · 107 24.61± 1.76

n 95506± 318 59878± 258

Table B.4: Fit parameters of the unbinned maximum likelihood fit to the NSPD distribu-
tions using the Beta model for the single open charm event candidates D0 and
D+.
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C Analysis for additionally applied
(pT [GeV], y) > (4, 2.25)

The results of the analysis corresponding to the additionally applied cuts on pT > 4 GeV,
y > 2.25 are presented in the following sections. These cuts are introduced in order to
exclude event candidates lying below a certain efficiency threshold (see chapter 4.6). All
given illustrations are to read in the same way as the corresponding ones in the original
analysis.

C.1 Results

Candidate RCC [mb] Stat. Syst. Analysis Syst. L

D0D0 4 · (1.48 ±0.72 ±0.15
0.039 1.27 · 10−6)

D0D̄0 4 · (0.25 ±0.063 ±0.022
0.024 7.49 · 10−6)

D0D+ 2 · (1.33 ±1.05 ±0.15
0.029 2.83 · 10−6)

D0D− −

D+D+ 4 · (6.03 ±6.03 ±0.82
0.30 1.33 · 10−7)

D+D− 4 · (0.20 ±0.049 ±25.49
8.91 · 10−3 3.95 · 10−6)

Table C.2: Production cross section ratio RCC , where C ∈ {D0, D+} for the double open
charm event candidates D0D0, D0D+ and D+D+ and the open charm pair
production event candidates D0D̄0 and D+D−. No event candidate is observed
for the D0D−. The first uncertainty denotes the statistic uncertainty, the second
the systematic uncertainty related to the analysis (see chapter 4.9).
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Figure C.1: Production cross sections σC and σCC , where C ∈ {D0, D+} (points with error
bars). The blue errorbars denote the statistic uncertainties, the red errorbars
the sum the statistic and systematic uncertainties (see chapter 4.9). No event
candidate is observed for the D0D−.
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Figure C.2: Production cross section ratios RCC := α σC σC
σCC

, where C ∈ {D0, D+} (points
with error bars) in comparison with the measured effective cross section at
Tevatron for multi-jet events (green dotted). The blue errorbars denote the
statistic uncertainties, the red errorbars the sum of the statistic and systematic
uncertainties (see chapter 4.9). No event candidate is observed for the D0D−
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C.2 Systematic Uncertainties
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Figure C.3: Cross section distributions obtained from the toy experiments for the single
open charm event candidates D0 (left) and D+ (right). The mode of a distri-
butions is denoted as Mode and drawn as a red star, while the cross section
value calculated by the analysis is denoted as Best V alue and drawn as green
triangle. The parameters LowerBound and UpperBound correspond to the
lower and upper end points of the error bar, drawn in pink. The other statistics
parameter calculated from the binned distributions are the mean, median and
standard deviation, denoted as Mean, Median and RMS.

117



b]µ [0D0D
σ

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

 / 
B

in
jn

0

20

40

60

80

100

Stat. Values

 

bµMean = 0.07 

bµRMS = 0.00 

bµMode = 0.07 

bµMedian = 0.07 

bµBest Value = 0.07 

bµLower Bound = 0.06 

bµUpper Bound = 0.07 

b]µ [0D0D
σ

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

 / 
B

in
jn

0

20

40

60

80

100

120

140

Stat. Values

 

bµMean = 0.43 

bµRMS = 0.08 

bµMode = 0.40 

bµMedian = 0.40 

bµBest Value = 0.43 

bµLower Bound = 0.36 

bµUpper Bound = 0.43 

b]µ [+D0D
σ

0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085

 / 
B

in
jn

0

10

20

30

40

50

60

Stat. Values

 

bµMean = 0.06 

bµRMS = 0.00 

bµMode = 0.06 

bµMedian = 0.06 

bµBest Value = 0.07 

bµLower Bound = 0.06 

bµUpper Bound = 0.07 

b]µ [+D+Dσ
0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 0.004

 / 
B

in
jn

0

5

10

15

20

25

30

35

40

Stat. Values

 

bµMean = 0.00 

bµRMS = 0.00 

bµMode = 0.00 

bµMedian = 0.00 

bµBest Value = 0.00 

bµLower Bound = 0.00 

bµUpper Bound = 0.00 

b]µ [-D+Dσ
0.07 0.075 0.08 0.085 0.09 0.095 0.1 0.105 0.11 0.115 0.12

 / 
B

in
jn

0

10

20

30

40

50

Stat. Values

 

bµMean = 0.09 

bµRMS = 0.01 

bµMode = 0.09 

bµMedian = 0.09 

bµBest Value = 0.09 

bµLower Bound = 0.09 

bµUpper Bound = 0.10 

Figure C.4: Cross section distributions obtained from the toy experiments for the double
open charm event candidates D0D0 (top left), D0D+ (center left), D+D+

(bottom left) and for the open charm pair production event candidates D0D̄0

(top right) and D+D− (bottom right). No event candidate is observed for
the D0D−. The mode of a distributions is denoted as Mode and drawn as a
red star, while the cross section value calculated by the analysis is denoted
as Best V alue and drawn as green triangle. The parameters LowerBound
and UpperBound correspond to the lower and upper end points of the error
bar, drawn in pink. The other statistics parameter calculated from the binned
distributions are the mean, median and standard deviation, denoted as Mean,
Median and RMS.
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Figure C.5: Cross section ratio (i.e. RCC) distributions obtained from the toy experiments
for the double open charm event candidates D0D0 (top left), D0D+ (center
left), D+D+ (bottom left) and for the open charm pair production event can-
didates D0D̄0 (top right) and D+D− (bottom right). No event candidate is
observed for the D0D−. The mode of a distributions is denoted as Mode and
drawn as a red star, while the cross section value calculated by the analy-
sis is denoted as Best V alue and drawn as green triangle. The parameters
LowerBound and UpperBound correspond to the lower and upper end points
of the error bar, drawn in pink. The other statistics parameter calculated
from the binned distributions are the mean, median and standard deviation,
denoted as Mean, Median and RMS.
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[48] E. López Azamar et al., Measurement of trigger efficiencies and biases, CERN- LHCb-
2008-073.

[49] R. Aaij et al., The LHCb Trigger and its Performance in 2011, JINST 8 (2013) P04022,
arXiv:1211.3055 [hep-ex].

[50] R. Puig, The LHCb trigger in 2011 and 2012, LHCb-PUB-2014-046.

[51] M. Vesterinen, LHCb trigger twiki pages, https://twiki.cern.ch/twiki/bin/view/
LHCb/LHCbTrigger.

[52] C. J. Clopper and E. S. Pearson, The Use of Confidence or Fiducial Limits Illustrated
in the Case of the Binomial, Biometrika Vol. 26, No. 4 (1934), pp. 404-413.

[53] The LHCb Collaboration, R. Aaij et al., Absolute luminosity measurements with the
LHCb detector at the LHC, JINST 7 (2012) P01010, arXiv:1110.2866 [hep-ex].

[54] M. Ferro-Luzzi, Proposal for an absolute luminosity determination in colliding beam
experiments using vertex detection of beam-gas interactions, Nucl. Instrum .Meth. A
553 (2005) 388-399.

[55] The LHCb Collaboration, R. Aaij et al., Precision luminosity measurements at LHCb,
JINST 9 (2014) no. 12, P12005, arXiv:1410.0149 [hep-ex].

123

http://inspirehep.net/record/918560/?ln=de
http://inspirehep.net/record/918560/?ln=de
http://inspirehep.net/record/898241
https://cds.cern.ch/record/1322666?ln=de
https://twiki.cern.ch/twiki/bin/view/LHCb/PIDCalibPackage
https://twiki.cern.ch/twiki/bin/view/LHCb/PIDCalibPackage
https://inspirehep.net/record/865584/?ln=de
https://inspirehep.net/record/926280/?ln=de
https://inspirehep.net/record/839718/?ln=de
https://inspirehep.net/record/839718/?ln=de
http://inspirehep.net/record/1202496?ln=de
https://cds.cern.ch/record/1970930
https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbTrigger
https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbTrigger
https://www.jstor.org/stable/2331986?seq=1#page_scan_tab_contents
http://inspirehep.net/record/939619
https://inspirehep.net/record/686517/?ln=de
https://inspirehep.net/record/686517/?ln=de
https://inspirehep.net/record/1319638/?ln=de

	Introduction
	Theory
	The Standard Model of Particle Physics (SM)
	The Double Parton Scattering (DPS) Model

	Foundations: LHC Collider, LHCb Detector and Key Concepts for the Analysis
	The LHC at CERN
	The LHCb Detector
	Key Concepts for the Analysis


	Cross Section Determination
	Analysis Strategy
	Event Selection and Background Determination
	Event Selection
	Pile-Up and Feed-Down

	Selected Candidates
	Invariant Mass Fits
	Efficiency Corrected Yields
	Efficiency
	Global Event Cut Efficiency

	Integrated Luminosity
	Branching Ratios
	Systematic Uncertainties

	Results
	Conclusion and Outlook
	Invariant Mass Fit Parameters
	GEC Efficiency Fit Parameters
	Analysis for additionally applied (pT  [GeV], y) > (4, 2.25)
	Results
	Systematic Uncertainties


