Higgs+jet at NNLO QCD:

Fiducial cross sections for the LHC

Markus Schulze

JHEP 1306 (2013) 072;
Phys. Rev. Lett. 115 (2015)8, 082003; arXiv: 1508.02684 [hep-ph].

The legacy of run-I

The legacy of run-I

(SM) fit to couplings

Very SM like...

The legacy of run-I

The legacy of run-I

You were right: There's a needle in this haystack...
The discovery and first characterization of the Higgs boson went extremely fast, thanks to remarkable efforts in the experimental and theoretical community.

Run-II

Higgs physics: search for small deviations

A closer look to small effects

Double Higgs production and the Higgs self-coupling [Grigo, Hoff et al (20|3); de Florian, Mazzitelli (20|3); Dolan, Englert et al (2013)]

New ways to measure Higgs properties

- ttH coupling [Campbell, Ellis et al; Curtin, Galloway et al (2013)]
- Higgs interferometry [Dixon and Siu (2003); Martin; Kauer, Passarino (2013)]
- Higgs to J/YY and the Hcc coupling [Bodwin, Petriello et al. (2013)]
- Γ_{H} from mass-shift in $\mathrm{H}->\gamma \gamma$ [Dixon, Li (2013)]
- Γ_{H} from H->ZZ off-shell production [FC, Melnikov (2013)]
"No boson left behind": high-mass Higgs searches
- the Higgs boson line-shape [Goria et al. (201I), Franzosi et al. (2012)]
- signal-background interference at LO [Campbell, Ellis,Williams (201 I);

Kauer, Passarino (2012)] and beyond [Bonvini, FC et al. (20I3)]

Run-II

Higgs physics: search for small deviations Push collider phenomenology to the boundaries

To the edge of $\mathrm{pQCD}: \mathrm{N}^{3} \mathrm{LO}$
[Anastasiou, Duhr, Dulat, Herzog, Mistlberger (2015)]
Going exclusive: cope with jet-bin analysis, gg/VBF separation...

- H+3j @ NLO [Cullen et al, GoSam+MadDipole/MadEvent+Sherpa (2013)]
- resumming jet vetoes [Banfi et al.; Stewart, Tackmann et al. (2013); Liu and Petriello (20|3); Boughezal et al (2014); Becher et al (2014)]
- HIGGS+JET @ NNLO

Always improving our tools:

- beyond $m_{t}->\infty, m_{b}->0$ [Harlander et al, (2012); Grazzini, Sargsyan (2013)]
- PS matching @ NNLO [Hamilton et al, (2013), Hoeche et al (2014)]

Run-II

[Dawson et al., Snowmass Higgs WG Report]

Table 1-8. Generic size of Higgs coupling modifications from the Standard Model values when all new particles are $M \sim 1 \mathrm{TeV}$ and mixing angles satisfy precision electroweak fits. The Decoupling MSSM numbers assume $\tan \beta=3.2$ and a stop mass of 1 TeV with $X_{t}=0$ for the κ_{γ} prediction.

Model	κ_{V}	κ_{b}	κ_{γ}
Singlet Mixing	$\sim 6 \%$	$\sim 6 \%$	$\sim 6 \%$
2HDM	$\sim 1 \%$	$\sim 10 \%$	$\sim 1 \%$
Decoupling MSSM	$\sim-0.0013 \%$	$\sim 1.6 \%$	$\sim-.4 \%$
Composite	$\sim-3 \%$	$\sim-(3-9) \%$	$\sim-9 \%$
Top Partner	$\sim-2 \%$	$\sim-2 \%$	$\sim+1 \%$

Run-II

CMS Projection

CMS Projection

Scenario I: assume current theory uncertainties
Scenario II: $1 / 2 \mathrm{x}$ theory uncertainties, $1 /$ sqrt(10) x other systematics

$H+j e t$

Higgs plus jet: jet-binned cross-sections

Experimental analyses for $\mathrm{PP} \rightarrow \mathrm{H} \rightarrow \mathrm{WW}$ (similar for TT): binned according to jet multiplicity (different systematics)

- Signal/background ratio for $\mathrm{H}+\mathrm{I}, \mathrm{H}+2$ jets: $\sim 10 \%$
- Significance in the $\mathrm{H}+1$ jet bin smaller, but not much smaller, than significance in the $\mathrm{H}+0$ jet bin
- Large Theory Error

Jet-bin cross sections: what to do

The problem with jet-binned cross sections: large logs

$$
\sigma_{i n c}=\sigma_{0}+\sigma_{1}+\ldots
$$

For $\mathrm{P}_{\mathrm{T}} \sim 30 \mathrm{GeV}: \mathrm{O}(40 \%)$ correction.

A PRAGMATIC APPROACH:

- Small Pт: resum these logs
- High рт: compute higher order corrections
- Combine the two approaches

H+jet at NNLO QCD

H+jet at NNLO QCD

H+jet at NNLO QCD

H+jet at NNLO QCD

Jet (veto) resummation approach: very good shape

[Banfi et al.; Stewart, Tackmann et al. (2013); Liu and Petriello (2013); Boughezal et al (2014); Becher et al (2014); Dasgupta,

Dreyer, Salam, Soyez(2015)]

- Logs more or less under control
- Improvement will come from h.o. matching

Expect a transition for PT $^{\sim} \sim 30 \mathrm{GeV}$

- NNLO QCD predictions for $H+$ jet have been achieved in the Higgs Effective Theory

$$
\mathcal{L}=\mathcal{L}_{Q C D, 5}-\frac{1}{4 v} C_{1} H G_{\mu \nu}^{a} G_{a}^{\mu \nu}
$$

[Boughezal,Caola,Melnikov,Petriello,M.S.], [Chen,Gehrmann,Glover,Jaquier], [Boughezal,Focke,Giele,Liu,Petriello]

- Finite quark mass effects have been studied

[Harlander, Ozeren; Pak, Rogal, Steinhauser; Ball, Del Duca, Marzani, Forte, Vicini; Harlander, Mantler, Marzani, Ozeren]
\rightarrow within $p_{\mathrm{T}}=30-120 \mathrm{GeV}$
$\mathrm{O}(2-7 \%)$ effect, almost flat correction

Blackboard:

- Partonic channels
- Anatomy of a NNLO correction
- Shopping list
- FKS-improved sector decomposition

NNLO: same spirit, new problems to solve

Overlapping divergences \longrightarrow SECTOR DECOMPOSITION

[Binoth, Heinrich; Anastasiou, Melnikov, Petriello (2004)]

$$
\begin{aligned}
|M|^{2} & \sim \frac{1}{s_{i j k}}=\frac{1}{s_{i j}+s_{i k}+s_{j k}} \\
\int|M|^{2} d \Phi & \sim \int \frac{d x_{1} d x_{2}}{x_{1}^{1+\epsilon} x_{2}^{1+\epsilon}\left(x_{1}+x_{2}\right)^{\epsilon}} F(\vec{x} ;\{y\})\{d y\}
\end{aligned}
$$

- Sector I: $x_{1}>x_{2} \rightarrow x_{2}=z x_{1}$

$$
\int|M|^{2} d \Phi \sim \int \frac{d x_{1} d z}{x_{1}^{1+3 \epsilon} z^{1+\epsilon}(1+z)^{\epsilon}} F(\vec{x} ;\{y\})\{d y\}
$$

- Sector II: $x_{1}<x_{2} \rightarrow x_{1}=t x_{2}$

$$
\int|M|^{2} d \Phi \sim \int \frac{d t d x_{2}}{t^{1+\epsilon} x_{2}^{1+3 \epsilon}(1+t)^{\epsilon}} F(\vec{x} ;\{y\})\{d y\}
$$

Higgs plus jet: singularity structure

Much more complicated singularity structure. Collinear:

Potential troubles: $s_{1 g}, s_{2 g}, s_{3 g}, s_{g g}, s_{1 g g}, s_{2 g g}, s_{3 g g}$ and combinations
Finding a 'good' global parametrization is (very) hard

Sector-improved subtraction scheme [Czakon (2010)]

HOWEVER: collinear sing. cannot occur all together

Can we make use of it, i.e. can we single out different collinear directions?

Yes, just use the Frixione-Kunszt-Signer (FKS) partitioning
[Czakon (2010)]

$$
\begin{gathered}
1=\sum \Delta^{g_{1}\left\|i, g_{2}\right\| j} \\
\Delta_{s}^{g_{1}\left\|i, g_{2}\right\| j} \rightarrow 0 \text { when } g_{1}\left\|p_{l}, g_{2}\right\| p_{m}, l \neq i, m \neq j
\end{gathered}
$$

FKS redux

Again the NLO case [Frixione, Kunszt, Signer (1995)]

Sector-improved subtraction scheme

Sector decomposition + FKS

$$
\begin{gathered}
\int|M|^{2} d \phi=\sum_{s} \int|M|^{2} d \phi \Delta_{s}^{g_{1}\left\|i, g_{2}\right\| j} \\
\int|M|^{2} d \phi \Delta^{g_{1}\left\|1, g_{2}\right\| 1} \longrightarrow \begin{array}{l}
\text { single collinear direction } \\
\sim \\
\text { parametrization of } \\
\text { ggH, DY, } \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \text { dijets }
\end{array}
\end{gathered}
$$

Two (~uncorrelated) dir. ~ NLO^2

No matter how complicated the process is, it can be reduced to the sum of individual contributions. For each of them, we know a sector decomposition-friendly PS parametrization [Czakon (2010)]

Sector-improved subtraction and $\mathrm{H}+\mathrm{j}$

Worked-out details for RV: [Boughezal, Melnikov, Petriello (201I)]

(Although we need a slight generalization)

Three collinear partitions (same of NLO)

Phase-space is simple (same of NLO), but amplitudes have non trivial branch-cuts

$$
\begin{gathered}
\mathrm{RV}_{i}=\int\{d y\} \frac{d x_{1}}{x_{1}^{1+2 \epsilon}} \frac{d x_{2}}{x_{2}^{1+\epsilon}}\left(F_{i, 1}+\left(x_{1}^{2} x_{2}\right)^{-\epsilon} F_{i, 2}+x_{1}^{-2 \epsilon} F_{i, 3}\right)= \\
=\int\{d y\}\left[\frac{A}{\epsilon^{4}}+\frac{B}{\epsilon^{3}}+\frac{C}{\epsilon^{2}}+\frac{D}{\epsilon}+E\right]
\end{gathered}
$$

H+jet at NNLO QCD

Complexity

ulze@XPS14:~/temp/HJET/	$\$ \mathrm{ls}$
tor lo gg.f90	sector nlor coll 43 -g.f90
tor_lo_gq.f90	sector_nlo_rn_gg. 990
tor lo_qg.f90	sector_nlo_rn_gq.f90
tor lo qqb.f90	sector nlo rn qg.f90
tor_nlo_cv_gg.f90	sector_nlo_rn_qqb.f90
tor_nlo_cv_gq.f90	sector_nlorr_soft 41 gg. 990
tor_nlo_cv_qg.f90	sector_nlo_r_soft_41_qg.f90
ctor_nlo_cv_qqb.f90	sector_nlor_soft_42 gg.f90
tor_nlo_cv_qq.f90	sector_nlo_r_soft_42_qg.f90
tor_nlo_cv_qr.f90	sector_nlor_soft_43_gg.f90
tor_nlo_r_41_gg.f90	sector_nlo_r_soft_43_qg.f90
tor_nlo_r_41_gq.f90	sector_nlo_v_gg.f90
tor nlo r 41 qg.f90	sector nlo v gq.f90
tor $\mathrm{nlo}{ }^{-r^{-}} 41$ qqb.f90	
tor ${ }^{-}$nlo-r_41_q9.f90	sector_nlo_v_qqb.f90
tor_nlo_r_41_qr.f90	sector_nnlo_al_41_51_1_gg.f90
tor_nlo_r_42_gg.f90	
(${ }^{-}$_nlo_r_42_gq.f90	sector_nnlo_al_41_51_2_gg.f90
tor_nlo-r_42-qg.f90	sector_nnlo_al_41-51_2_qg.f90
tor_nlo_r_42_qqb.f90	sector_nnlo_al_41_51_3_gg.f90
tor_nlo_r_42_qq.f90	sector_nnlo_al_41_51_3_qg.f90
tor_nlo_r_42_qr.f90	sector_nnlo_al_41-51_4_gg.f90
tor_nlo_r_43_gg.f90	sector_nnlo_al_41_51_4_qg.f90
tor_nlo_r_43_gq.f90	sector_nnlo_al_41-51-5_gg.f90
tor_nlo_r_43_qg.f90	sector_nnlo_al_41_51_5_qg.f90
tor_nlo-r_43_qqb.f90	sector_nnlo_al_41-52_gg.f90
tor_nlo_r_43_qq.f90	sector_nnlo_al_41_52_qg.f90
ctor_nlorr-43-qr.f90	sector_nnlo-al_41-53_gg.f90
tor_nlo_r_coll_41_gg.f90	sector_nnlo_al_41_53-q9.f90
	sector nnlo al 42 51-gg.f90
ctor nlo r-coll ${ }^{\text {- }}$	sector_nnlo-al_42 51 qg.f90
or_nlo_r_coll_42_qg.f90	sector-nnlo_al_42_52_1_gg.f90
lze@XPS14:~/temp/HJET/	ors\$

chulze@XPS14:~/temp/HJET/Sectors\$ ls
sector lo gg.f90
ector_lo_gq.f90
sector_lo_qg.f90
ector lo qqb.tgo
sector_nlo_cv_gg.f90
sector nlo ${ }^{-}$cv qg.f90
sector nlo_cv qqb.f90 sector nlo cv qq.f90 sector_nlo_cv_qr.f90 ector_nlo_r_41_gg.f90 ector nlo r_41 gq. 99 sector_nlo_r_41_qg.f90 sector $n l o 0^{-} r^{-} 41$ qq.f90 sector_nlo_r_41_qr.f90 sector_nlo_r_42_gg.f90 sector_nlo_r_42_gq.f90 ector_nlor_42_qg.f90 ector nlo r 42 qqb.f9 sector_nlo_r_42_qq.f90 ector nlo ${ }^{-}{ }^{-} 43$ gg.f90 sector_nlo_r 43 gq.f90 sector_nlo_r_43_qg.f90 sector_nlo_r_43_qqb.f90 ector_nto_r_43_qq.f90 ector nlo_r 43 qr.f90 sector_nlo_r_coll_41_gg.f90 sector ${ }^{-}$nlo ${ }^{-}{ }^{-}$coll 42 gg.f90 sector nlo r coll 42 qg.f90 chulzē@XPS1" $: \sim /$ temp/HJET/Sectors\$
sector_nnlo_al_42_52_1_qg.f90 sector_nnlo_al_42_52_2_gg.f90 sector_nnlo_al_42_52_2_qg.f90 sector_nnlo_al-42-52-3 gg.f90 sector nnlo al $4252 \quad 3$ qg.f90 sector_nnlo_al_42_52_4_gg.f90 sector_nnlo_al_42_52_4_qg.f90 sector_nnlo_al_42_52-5 gg.f90 sector nnlo al 42525 qg.f90 sector_nnlo_al_42_53_gg.f90 sector_nnlo_al_42_53_qg.f90 sector_nnlo_al-43_51-gg.f90 sector_nnlo_al_43_51_qg.f90 sector_nnlo_al_43_52_gg.f90 sector_nnlo_al_43_52_qg.f90 sector_nnlo_al_43_53_1_gg.f90 sector nnlo al 4353 1 qg.f90 sector_nnlo_al_43_53_2_gg.f90 sector_nnlo_al_43_53_2_qg.f90 sector_nnlo-al-43-53-3-gg.f90 sector nnlo al 4353 q qg.f90 sector_nnlo_al_43_53_4_gg.f90 sector_nnlo_al_43_53_4_qg.f90 sector nnlo al $43-533^{-}$gg.f90 sector_nnlo al_43 53 5 qg.f90 sector_nnlo_cv_gg.f90 sector_nnlo_cv_nlor_41_gg.f90 sector_nnlo_cv_nlor_41_qg.f90 sector nnlo cv nlor 42 gg.f90 sector_-nnlo_cv_nlor_42_qg.f90 sector_nnlo_cv_nlor_-43_gg.f90 sector_nnlo_cv-nlor 43 qg.f90 sector nnlo_cv qg.f90
sector nnlo_rn_gg.f90 sector nnlo rn nlor 41 gg.f90 sector_nnlo_rn_nlor_41_qg.f90 sector_nnlo_rn_nlor_42_gg.f90 sector nnlo rn nlor 42 qg.f90 sector_nnlo_rn_nlor_43_gg.f90 sector_nnlo_rn_nlor-43_qg.f90 sector_nnlo_rn_qg.f̄̄0
sector ${ }^{-}$nnlo ${ }^{-} \mathrm{rr}^{-} 41511 \mathrm{gg} . f 90$ sector_nnlo-rr_41-51_1_qg.f90 sector_nnlo_rr_41_51_2_gg.f90 sector_nnlo_rr_41-51_2_qg.f90 sector_nnlo_rr_41 51 3 gg.f90 sector-nnlo-rr_41-51 3-qg.f90 sector_nnlo_rr_41_51_4_gg.f90 sector-nnlo-rr_41-51-4_qg.f90 sector nnlo rr 41515 gg.f90 sector_nnlo-rr_41-51-5 qg.f90 sector_nnlo_rr_-41-52_gg.f90 sector-nnlo-rr_41-52 qg.f90 sector nnlo rr $4153 \mathrm{gg} . f 90$ sector_nnlo_rr_41_53_qg.f90 sector_nnlo_rr_42_51_gg.f90 sector_nnlo_rr_42_51_qg.f90 sector nnlo rr 4252 1 gg.f90 sector_nnlo-rr_42_52_1_qg.f90 sector_nnlo_rr_42-52_2_gg.f90 sector_nnlo_rr_42_52_2_qg.f90 sector nnlo rr 42-52 3 gg.f90 sector_nnlo-rr_42-52_ qg.f90 sector_nnlo_rr_42_52_4_gg.f90 sector_nnlo_rr-42-52-4 qg.f90 sector nnlo rr 42525 gg.f90
sector nnlo rr 42525 qg.f90 sector nnlo-rr-42 53 gg. f90 sector_nnlo_rr_42-53_qg.f90 sector_nnlo_rr_43_51-gg.f90 sector nnlo rr 4351 qg.f90 sector $\mathrm{nnlo} \mathrm{rr}^{-} 43^{-} 52 \mathrm{gg} . \mathrm{f90}$ sector_nnlo_rr_43-52_qg.f90 sector_nnlo_rr_43_53_1_gg.f90 sector_nnlo_rr 43 53_1 qg.f90 sector ${ }^{-} \mathrm{nnlo} \mathrm{rrr}^{-} 43^{-} 53^{-} 2^{-} \mathrm{gg} . \mathrm{f} 90$ sector_nnlo_rr_43_53_2_qg.f90 sector_nnlo_rr_43_53_3_gg.f90 sector nnlo rr 4353 3 qg. f90 sector ${ }^{-}$nnlo $\mathrm{rr}^{-} 43^{-} 53^{-}-\mathrm{ggg.fg}^{-1}$ sector_nnlo_rr_43_53_4_qg.f90 sector_nnlo_rr_43_53_5_gg.f90 sector nnlo rr 43535 qg.f90 sector-nnlo-rv-41-gg.f $\overline{9} 0$ sector_nnlo_rv_41_qg.f90 sector_nnlo_rv_41_soft gg.f90 sector nnlo rv 41 soft qg. 990 sector nnlo rv 42 gg.f90 sector_nnlo_rv_42_qg.f90 sector_nnlo_rv_42_soft gg. 990 sector nnlo rv 42 soft qg.f90 sector nnlo-rv-43-gg.f $\overline{90}$ sector_nnlo_rv_43_qg.f90 sector_nnlo_rv_43 soft gg. 990 sector nnlo_rv 43 soft qg.f90 sector_nnlo_vv.f90
sectors at NNLO:
RR: 13(gg)+21(qg),
5D: 13(gg)+21(qg),
pdf ren.: $5(\mathrm{gg})+6(\mathrm{qg})$,
RV: $2(\mathrm{gg})+3(\mathrm{qg})$,
UV ren.: $4(\mathrm{gg})+4(\mathrm{qg})$,
2-loops: 1 (gg)+1(qg)

Complexity

schulze@XPS14:~/temp/HJET/Sectors\$ ls	
inc	sector nlo
sector lo gg.f90	sector_nlo
sector_lo_gq. f90	sector_nlo_rñ
sector_lo_qg.f90	sector_nlo
sector_lo_qqb.f90	sector_nlo
sector_nloccv_gg.f90	sector_nlo
sector_nlo_cv_gq.f90	sector_nlo
sector_nlo_cv_qg.f90	sector_nlo
sector_nlo_cv_qqb.f90	sector_nlo
sector_nlo_cv_qq.f90	sector_nlo
sector_nlo_cv_qr.f90	sector_nlo
sector_nlo_r- $\overline{4} 1$ _gg.f90	sector_nlo
sector_nlo_r_41_gq.f90	sector_nlo
sector nlo r ${ }^{\text {41 qg.f90 }}$	sector nlo
sector_nlo_r_41_qqb.f90	sector_nl
sector_nlo_r_41_q9.f90	sector_nl
sector_nlo_r_41_qr.f90	sector_nn
sector_nlo_r_42_gg.f90	sector
sector_nlo_r_42_gq.f90	-
sector_nlo_r_42_qg.f90	sector
sector_nlo_r_42_qqb.f90	tor
sector_nlo_r_42_qq.f90	ctor
sector_nlo-r_42_qr.f90	sector
sector_nlo_r_43_gg.f90	sector
sector_nlo-r-43_gq.f90	sector
sector_nlo_r_43_qg.f90	sector
sector_nlo-r_43-qqb.f90	sector
sector_nlo_r_43_qq.f90	tor
sector_nlo_r_43-qr.f90	sector
sector_nlo_r_coll_ 41_gg.f90	ctor
sector_nlorr_coll_41-qg.f90	sector
sector_nlo_r_coll_42_gg.f90	ctor
sector_nlo_r_coll_42_qg.f90	sector
schulze@XPS14 ${ }^{\text {a }}$ / /temp/HJET/Sectors\$	

sel
sector nnlo rr 42525 qg.f90
sector nnlo al 4252 qg.f90 sector nnlo rn gg.f90 sector_nnlo_al_42_52_2_gg.f90 sector_nnlo_rn_nlor_41_gg.f90 sector_nnlo_al_42_52_2_qg.f90 sector_nnlo_rn_nlor_41_qg.f90 sector_nnto_al_42-52_3_gg.f90 sector_nnto_rn_nlor_- 42_gg.f90
ector_nnlo_rr_42_53_gg.f90 sector_nnlo_rr_42_53_qg.f90 sector_nnlo_rr_43_51_gg.f90 sector nnlo rr 4351 qg.f90
sector nlo sector_nlo ector nlo sector nlo sector_nlo sector-nlo sector nlo sector_nlo ector ${ }^{-}$nnl sector nnlo sector_nnld sector nnl sector nnlo sector_nnld ector ${ }^{-}$nnl sector ${ }^{-}$nnlo sector_nnld sector-ㄲ․ sector_nnlo sector_nnld sector nnl chulze@XPS14:~/temp/HJET/Sectors\$

IDEC $\$$ if (withgg.eq. 1)
subroutine gg_jjjh_tree(p, res)
real(dp), intent(in) :: p(4,6)
real(dp), intent(out) :: res
real(dp) :: me2gg,me2nf,me2nf_4,me2nf_5,me2nf_6 real (dp) :: $\operatorname{sprod}(5,5)$ complex (dp) :: za(5,5),zb(5,5)
call spinoru(5,(/-p(:,1),-p(:,2),p(:,3),p(:,4),p(:,5)/),za,zb,sprod)
!-- $g g g$
call me2_ggggg_tree(1,2,3,4,5,za,zb,sprod,me2gg)
!DEC\$ if (_withnf.eq.1)
call me2_qbqggg_tree (4,5,1,2,3,za,zb,sprod,me2nf_4) !-- gqq
call me2_qbqggg_tree $(3,5,1,2,4, z a, z b, s p r o d, m e 2 n f$ _5) !-- $q g q$
call me2_qbqggg_tree (3,4,1,2,5,za,zb,sprod,me2nf_6) !-- qqg
$m e 2 n f=$ me2nf_4 * _tagmsq4 + me2nf_ 5^{*} _tagmsq5 + me2nf_6 * _tagmsq6
!DEC\$ else
me2nf = zero
!DEC\$ endif
res $=($ _tagmsq1 $*$ me2gg + twonf $*$ me2nf)*avegg
end subroutine gg_jjjh_tree
!DEC\$ endif

RR: $13(\mathrm{gg})+21(\mathrm{qg})$, pdf ren.: $5(\mathrm{gg})+6(\mathrm{qg})$,
5D: $13(\mathrm{gg})+21(\mathrm{qg}), \quad$ UV ren.: $4(\mathrm{gg})+4(\mathrm{qg})$,
RV: $2(\mathrm{gg})+3(\mathrm{qg})$,
2-loops: 1 (gg)+1(qg)

H+jet at NNLO QCD

Complexity


```
xl=buff+onet*real(yRnd(1),dp)
x2=buff+onet*real(yRnd(2),dp)
x3=buff+onet*real(yRnd(3),dp)
x4=buff+onet*real(yRnd(4),dp)
x5=buff+onet*sin(pi*real(yRnd(5),kind=dp)/two)**2
xx(1) = x5
xx(2:4+ndim_dc)=buff+onet*real(yRnd(6:8+ndim_dc),dp)
if (x1*x2*x3*x4 .lt. cbuff) return
1e-10...1e-12
```

```
IDEC$ if(_withpdf.ge.1)
```

IDEC\$ if(_withpdf.ge.1)
xa = buff+onet*real(yRnd(9+ndim dc),dp)
xa = buff+onet*real(yRnd(9+ndim dc),dp)
xb = buff+onet*real(yRnd(10+ndim_dc),dp)
xb = buff+onet*real(yRnd(10+ndim_dc),dp)
IDEC\$ else
IDEC\$ else
xa = one
xa = one
xb = one
xb = one
DEC\$ endif
DEC\$ endif
|

```
|
```



```
[maschulz@lxplus0094 cluster]$ cls
[maschulz@lxplus0094 cluster]$ ll
total 44M
    rwxr-xr-x. 1 maschulz t3 44M Jul 14 01:32 hjet
-rw-r--r--. 1 maschulz t3 795 Jul 14 01:32 hjet.cfg
rwxr--r--. 1 maschulz t3 37K Jul 14 01:32 sub_pdf_nnlo.sh
[maschulz@lxplus0094 cluster]$ more sub pdf nnlo.sh
bsub -n 8,8 -C 1 -W 48:00 -q 2nd rr_41_51_1_epo_0_c10_mh_gg_11111100_NN_pdf.sh
sleep 1
bsub -n 8,8 -C 1 -W 48:00 -q 2nd rr_41_51_2_epo_0_c10 mh_gg_11111100_NN_pdf.sh
sleep 1
bsub -n 8,8 -C 1 -W 48:00 -q 2nd rr 41 51 3 epo 0 c10 mh gg 11111100 NN pdf.sh
sleep 1
bsub -n 8,8 -C 1 -W 48:00 -q 2nd rr_41_51_4_epo_0_c10 mh_gg_11111100_NN_pdf.sh
sleep 1
bsub -n 8,8 -C 1 -W 48:00 -q 2nd rr_41_51_5_epo_0_c10_mh_gg_11111100_NN_pdf.sh
sleep 1
bsub -n 8,8 -C 1 -W 48:00 -q 2nd rr_42_52_1_epo_0_c10_mh_gg_11111100_NN_pdf.sh
sleep 1
bsub -n 8,8 -C 1 -W 48:00 -q 2nd rr_42_52_2_epo_0_c10_mh_gg_11111100_NN_pdf.sh
sleep 1
bsub -n 8,8 -C 1 -W 48:00 -q 2nd rr_42_52_3_epo_0_c10_mh_gg_11111100_NN_pdf.sh
sleep 1
bsub -n 8,8 -C 1 -W 48:00 -q 2nd rr_42_52_4_epo_0_c10 mh_gg_11111100_NN_pdf.sh
sleep 1
bsub -n 8,8 -C 1 -W 48:00 -q 2nd rr_42_52_5_epo_0_c10 mh_gg_11111100_NN_pdf.sh
sleep 1
bsub -n 8,8 -C 1 -W 48:00 -q 2nd rr_43_53_1_epo_0_c10_mh_gg_11111100_NN_pdf.sh
sleep 1
bsub -n 8,8 -C 1 -W 48:00 -q 2nd rr_43_53_2_epo_0_c10_mh_gg_11111100_NN_pdf.sh
sleep 1
bsub -n 8,8 -C 1 -W 48:00 -q 2nd rr_43_53_3_epo_0_c10_mh_gg_11111100_NN_pdf.sh
sleep 1
bsub -n 8,8 -C 1 -W 48:00 -q 2nd rr_43_53_4_epo_0_c10_mh_gg_11111100_NN_pdf.sh
sleep 1
bsub -n 8,8 -C 1 -W 48:00 -q 2nd rr_43_53_5_epo_0_c10_mh_gg_11111100_NN_pdf.sh
sleep 1
bsub -n 8,8 -C 1 -W 48:00 -q 2nd rr_41_52_epo_0_c10 mh_gg_11111100_NN_pdf.sh
```


Run times: (stable Higgs boson)

RR: ~36h / sector

RV: ~36h / sector
rest: negligible
$-r w-r--r--.1$ maschulz t3 58K May 4 00:47
RR_qg_43_53a5_0_800000_b10_hm_11111111_111111_s203_NN.dat2r
$-r w-r--r--.1$ maschulz t3 58K May 3 21:00
RR qg 43 53a5 0800000 b10 hm 11111111111111 s203 NN.dat $2 w$
RR_qg_43_53a5_0_800000_b10_hm_111111111 1111
rw-r--r--. 1 maschulz t3 58K May 4 02:21
RR_qg_43_53a5_0_800000_b10_hm_11111111_111111_s203_NN.dat3r
-rw-r--r--. 1 maschulz ${ }^{-}$t3 $\overline{5} 8 \mathrm{~K}$ May $3 \quad 2 \overline{1}: 18$
RR_qg_43_53a5_0_800000_b10_hm_11111111_111111_s203_NN.dat3w
$-\mathrm{rw}-\mathrm{r}-\mathrm{r}-\mathrm{-} .1$ maschulz t3 58K May 4 03:57
RR_qg_43_53a5_0_800000_b10_hm_111111111_111111_s203_NN.dat4r
rw-r-r- r-. 1 maschulz t3 58 K May 3 21:40
RR_qg_43_53a5_0_800000_b10_hm_11111111_111111_s203_NN.dat 4 w
-rw-r--r--. 1 maschulz ${ }^{-}$t3 58 K May 4 $0 \overline{5}: 32$
RR_qg_43_53a5_0_800000_b10_hm_11111111_111111_s203_NN.dat5r
-rw-r--r--. 1 maschulz t3 58K May 4 07:08
RR_qg_43_53a5_0_800000_b10_hm_11111111_111111_s203_NN.dat6r
-rw-r--r--. 1 maschulz t3 58K May 4 09:04
RR_qg_43_53a5_0_800000_b10_hm_11111111_111111_s203_NN.dat7r
$-\mathrm{rw}-\mathrm{r}--\mathrm{r}-\mathrm{-} .1$ maschulz t3 58 K May $410: 45$
RR qg 43 53a5 0800000 b10 hm 11111111111111 s203 NN. dat8r
RR_qg_43_53a5_0-800000_b10_hm_11111111-1111
- rw-r--r--. 1 maschulz t3 58K May $412: 25$
RR_qg_43_53a5_0_800000_b10_hm_111111111_111111_s203 NN.dat9r
-rw-r--r--. 1 maschulz t3 $\overline{5} 8 \mathrm{~K}$ May 4 $\overline{6}: 23$
RR qg $4353 a 50800000$ b10 hm 11111111111111 s204 NN.dat

-rw-r--r--. R Rg_43_53as_0_800000_b10_hm_11111111_111111_s204_NN.dat10r
-rw-r-r--. 1 maschulz t3 58 K May 3 21:53
RR_qg_43_53a5_0_800000_b10_hm_111111111_111111_s204_NN.dat1r
$-\mathrm{rw}-\mathrm{r}-\mathrm{r}-\mathrm{-} .1$ maschulz t3 58 K May 3 20:44
RR_qg_43_53a5_0_800000_b10_hm_11111111_111111_s204_NN.dat1w
-rw-r--r--. 1 maschulz t3 58K May 3 22:41
RR_qg_43_53a5_0_800000_b10_hm_11111111_111111_s204_NN.dat2r
-rw-r--r--. 1 maschulz t3 58 K May $3 \quad 20: 52$
-rw-r--r--. R _qg_43_535_0_800000_b10_hm_11111111_111111_s203_NN.dat2r
RR_qg_43_53a5_0_800000_b10_hm-11111111_1111
$-r w-r--r--.1 ~ m a s c h u l z ~ t 3 ~ 58 K ~ M a y ~$
$21: 00$
$-\mathrm{rw}-\mathrm{r}-\mathrm{r}-\mathrm{Cl}^{2} 1$ maschulz t3 58 K May $321: 00$
RR qg 4353 a 50800000 b 10 hm 11111111111111 s203 NN. dat 2 w
RR_qg_43_53a5_0_800000_b10_hm_111111111 1111
rw-r-r--. 1 maschulz t3 58K May 4 02:21
RR_qg_43_53a5_0_800000_b10_hm_11111111_111111_s203_NN.dat3r
-rw-r--r--. 1 maschulz ${ }^{-}$t3 $\overline{5} 8 \mathrm{~K}$ May $3 \quad 2 \overline{1}: 18$
RR_qg_43_53a5_0_800000_b10_hm_11111111_111111_s203_NN.dat3w
-rw-r-r-r-. 1 maschulz t3 58 K May 4 03:57
RR_qg_43_53a5_0_800000_b10_hm_11111111_111111_s203_NN.dat4r
-rw-r-r- r-. 1 maschulz t3 58 K May 3 21:40
RR_qg_43_53a5_0_800000_b10_hm_11111111_111111_s203_NN.dat 4 w
-rw-r--r--. 1 maschulz ${ }^{-}$t3 58 K May $40 \overline{5}: 32$
RR_qg_43_53a5_0_800000_b10_hm_111111111_111111_s203_NN.dat5r
-rw-r--r--. 1 maschulz t3 58K May 4 07:08
RR_qg_43_53a5_0_800000_b10_hm_111111111_111111_s203_NN.dat6r
-rw-r--r--. 1 maschulz t3 58K May 4 09:04
RR_qg_43_53a5_0_800000_b10_hm_11111111_111111_s203_NN.dat7r
$-r w-r--r--.1$ maschulz t3 58 K May $410: 45$

RR_qg_43_53a5_0_800000_b10_hm_111111111_1111
-rw-r--r--. 1 maschulz t3 58K May $412: 25$
RR_qg_43_53a5_0_800000_b10_hm_11111111_111111_s203_NN.dat9r
$-r w-r--r--.1$ maschulz t3 58 K May $406: 23$
$R R$ qg $4353 a 50800000$ b10 hm 11111111111111 s204 NN.dat
-rw-r--r--. 1 maschulz t3 58 K May 4 06:23
RR_qg_43_53a5_0_800000_b10_hm_11111111_111111_s204_NN.dat10r
-rw-r-r-r-. 1 maschulz t3 58 K May 3 21:53
RR_qg_43_53a5_0_800000_b10_hm_111111111_111111_s204_NN.dat1r
$-\mathrm{rw}-\mathrm{r}-\mathrm{r}-\mathrm{-} .1$ maschulz t3 58 K May 3 20:44
RR_qg_43_53a5_0_800000_b10_hm_11111111_111111_s204_NN.dat1w
-rw-r--r--. 1 maschulz t3 58K May 3 22:41
RR_qg_43_53a5_0_800000_b10_hm_11111111_111111_s204_NN.dat2r
-rw-r--r--. 1 maschulz t3 58 K May 3 20:52

H+jet at NNLO QCD

Cross checks

- Two independent calculations and implementations: point-wise comparisons and integrated sectors for 80 different points in sqrt(shat)
- Cancellation of $1 / \mathrm{eps}^{\wedge} 4,3,2,1$ poles for total cross section and histograms
- Soft/collinear limit checks, point-wise cancellation and scaling behavior
- Analytic integration of some soft and collinear limits in RV
- Point-wise checks of 4-dim. LO matrix elements with Madgraph
- NLO 1- and 2-jet cross section/histograms checked against MCFM
- eps-dim. amplitudes checked against "brute-force" analytic calculation
- Checks of phase-space volume, D-dim. rotation invariance, FKS partitioning
- Independence on variation of technical cut-offs
- Implementation of 2-loop amplitude numerically checked against PETER [Becher et al.]
- Explicit scale variation checked against RGE predictions
- ...
- Confirmation by [Boughezal,Focke,Giele,Liu,Petriello] using n-jetiness + MCFM

Cross checks

cancellation of I / ε poles

Numerical Cancellation between renormalization and coll. couterterms, RR, RV, W

Cross checks

cancellation of I / ε poles

Cross checks

limits and scaling

Subtraction terms should match the full amplitude in singular limits

Soft limits:
$\lim _{x_{1} \rightarrow 0} 1-F\left(x_{1}\right) / F(0) \sim x_{1}$

Collinear limits:

$$
\lim _{x_{2} \rightarrow 0} 1-F\left(x_{2}\right) / F(0) \sim \sqrt{x_{2}}
$$

Cross checks

H+2j@NLO for ≥ 2-jet observables

$\sigma_{J J}^{\text {NLO }}$	best prediction		$g g$ and $q g$-only	
	us	MCFM	us	MCFM
$\mu=m_{H} / 2$	$2021.4 \pm 3.7 \cdot 10^{-01}$	$2027.1 \pm 6.2 \cdot 10^{+00}$	$1940.4 \pm 3.7 \cdot 10^{-01}$	1938.0
$\mu=m_{H}$	$1710.1 \pm 2.1 \cdot 10^{-01}$	$1712.0 \pm 3.3 \cdot 10^{+00}$	$1659.5 \pm 2.1 \cdot 10^{-01}$	1656.3
$\mu=2 m_{H}$	$1349.6 \pm 1.6 \cdot 10^{-01}$	$1356.1 \pm 2.1 \cdot 10^{+00}$	$1315.9 \pm 1.6 \cdot 10^{-01}$	1317.2

Phenomenology

Higgs plus Jet at NNLO: LHC8 results

Sample setup (any setup can be easily considered)

- EFT; anti-kt, R=0.5, $\mathrm{p}_{\mathrm{T}, \mathrm{cut}}=30 \mathrm{GeV}$
- NNPDF23 parton sets, $\mu=m_{H}=125 \mathrm{GeV}$

Sizable corrections, significantly reduced scale uncertainty

Higgs plus Jet at NNLO: LHC8 results

Sample setup (any setup can be easily considered)

- EFT; anti-kT, R=0.5, $\mathrm{p}_{\mathrm{T}, \mathrm{cut}}=30 \mathrm{GeV}$
- NNPDF23 parton sets, $\mu=m_{H}=125 \mathrm{GeV}$

Sizable corrections, significantly reduced scale uncertainty

H+jet at NNLO QCD

Phys. Rev. Lett. 115 (2015)8, 082003;

- reasonable convergence also for kinematic distributions
- reduced shape changes at NNLO

- investigating the $p_{\mathrm{T}}(\mathrm{jet})$-cut dependence suggests that pert. theory is reliable at 30 GeV

H+jet at NNLO QCD

NEW

Fiducial volume cross sections
arXiv: 1508.02684 [hep-ph]

$$
p p \rightarrow \boldsymbol{H}+\mathbf{j} \rightarrow \gamma \gamma+\mathbf{j}
$$

closely following ATLAS 8 TeV analysis; JHEP 1409, 112 (2014)
anti- k_{\perp} algorithm
$\Delta R=0.4$ and $p_{\perp, j}>30 \mathrm{GeV}$
$-4.4<y_{j}<4.4$
$p_{\perp, \gamma_{1}}>\max \left(25 \mathrm{GeV}, 0.35 m_{\gamma \gamma}\right)$
$p_{\perp, \gamma_{2}}>\max \left(25 \mathrm{GeV}, 0.25 m_{\gamma \gamma}\right)$
$\left|y_{\gamma}\right|<2.37, \Delta R_{\gamma j}>0.4$

$\sigma_{\mathrm{LO}}^{\mathrm{fid}}=5.43_{-1.49}^{+2.32} \mathrm{fb}, \quad \sigma_{\mathrm{NLO}}^{\mathrm{fid}}=7.98_{-1.46}^{+1.76} \mathrm{fb}, \quad \sigma_{\mathrm{NNLO}}^{\mathrm{fid}}=9.45_{-0.82}^{+0.58} \mathrm{fb}$,

- selection criteria do not spoil perturbation series

H+jet at NNLO QCD

NEW

Fiducial volume cross sections
arXiv: 1508.02684 [hep-ph]

$$
p p \rightarrow \boldsymbol{H}+\mathbf{j} \rightarrow \gamma \gamma+\mathbf{j}
$$

closely following ATLAS 8 TeV analysis; JHEP 1409, 112 (2014)
anti- k_{\perp} algorithm
$\Delta R=0.4$ and $p_{\perp, j}>30 \mathrm{GeV}$
$-4.4<y_{j}<4.4$
$p_{\perp, \gamma_{1}}>\max \left(25 \mathrm{GeV}, 0.35 m_{\gamma \gamma}\right)$
$p_{\perp, \gamma_{2}}>\max \left(25 \mathrm{GeV}, 0.25 m_{\gamma \gamma}\right)$
$\left|y_{\gamma}\right|<2.37, \Delta R_{\gamma j}>0.4$

acceptance $A=\frac{\sigma_{\text {cuts }}}{\sigma_{\text {tot }}}$
$A_{\mathrm{LO}}=0.594(4), \quad A_{\mathrm{NLO}}=0.614(3), \quad A_{\mathrm{NNLO}}=0.614(4)$.

- acceptance is predicted reliably at NLO

H+jet at NNLO QCD

H+jet at NNLO QCD

- Photon decay angles in the Collins-Soper reference frame is important for studying the spin-parity properties of the Higgs
- We find flat corrections

H+jet at NNLO QCD

- Comparison with data

$$
\begin{aligned}
\sigma_{\mathrm{NNLO}}^{\mathrm{fid}} & =9.45_{-0.82}^{+0.58} \mathrm{fb} \\
\sigma_{H+j}^{\mathrm{fid}}(8 \mathrm{TeV}) & =21.5 \pm 5.3(\text { stat. }) \pm_{2.2}^{2.4}(\text { syst. }) \pm 0.6(\text { lumi }) \mathrm{fb}
\end{aligned}
$$

- Central value by ATLAS is higher by a factor 2.1-2.5
- This difference translates to approximately 2.4 standard deviations
- This mismatch is larger than in incl. Higgs production (factor 1.4)

H+jet at NNLO QCD

NEW

Fiducial volume cross sections arXiv: 1508.02684 [hep-ph]

$$
p p \rightarrow H+j \rightarrow W W+j \rightarrow 4 l+j
$$

closely following CMS 8 TeV analysis; JHEP1401,096 (2014)

$$
\begin{aligned}
& \text { anti- } k_{\perp} \text { algorithm } \\
& \Delta R=0.4 \text { and } p_{\perp, j}>30 \mathrm{GeV} \\
& -4.7<y_{j}<4.7 \\
& p_{\perp, l}>20 \mathrm{GeV} \quad E_{\perp, \mathrm{miss}}>20 \mathrm{GeV} . \\
& m_{l l}>12 \mathrm{GeV} ; \quad p_{\perp, l l}>30 \mathrm{GeV} \\
& m_{\perp}=\sqrt{2 p_{\perp, l l} E_{\perp, \text { miss }}\left(1-\cos \Delta \phi_{l l, \text { miss }}\right)}>30 \mathrm{GeV} \\
& \sigma_{\mathrm{LO}}^{\text {fid }}=13.0_{-3.4}^{+5.1} \mathrm{fb}, \quad \sigma_{\mathrm{NLO}}^{\text {fid }}=18.6_{-3.1}^{+3.7} \mathrm{fb}, \quad \sigma_{\mathrm{NNLO}}=215
\end{aligned}
$$

H+jet at NNLO QCD

H+jet at NNLO QCD

- ratio of cross sections:
many experimental \& theoretical uncertainties cancel

$$
R_{W W / \gamma \gamma}=\frac{\sigma_{H+j}^{W W \rightarrow e^{+} \mu^{-} \nu \bar{\nu}, 13 \mathrm{TeV}}}{\sigma_{H+j}^{\gamma \gamma, 8} \mathrm{TeV}}=2.39_{+0.04}^{-0.06}, \quad 2.33_{+0.05}^{-0.04}, \quad 2.32_{+0.02}^{-0.04}
$$

- we are able to predict R with the precision of better than 2%

H+jet at NNLO QCD

SUMMARY:

- We have completed a full NNLO QCD computation for $p p \rightarrow$ Higgs+jet
- We predict differential distributions in the fiducial detector volume, accounting for the main decay channels of the Higgs boson
- NNLO corrections are moderate ($\sim 20 \%$) for the total cross section and differential distributions (even in the case of selection cuts)
- We find no indication that perturbative QCD breaks down and requires resummation for the jet cut as low as 30 GeV
- Scale variation + pdf variation suggests an uncertainty of $<10 \%$ (less than half of the NLO prediction) and even better for ratios of cross sections

