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• Review of the flavour anomalies in charged and neutral 
currents

• Combined explanations (EFT and simplified models)

• The UV challenge: a weakly coupled and renormalizable 
model featuring a gauge leptoquark

• Conclusions



Pre-LHC prejudice VS data
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FIG. 2: Constraints on the effective parameters encoding NP effects in Bd–Bd mixing and K0–K0 mixing

as obtained by the UTfit collaboration [12].

where the cij are dimensionless couplings. The condition |A∆F=2
NP | < |A∆F=2

SM | implies

Λ >
4.4 TeV

|V ∗
tiVtj |/|cij |1/2

∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1.3× 104 TeV × |csd|1/2

5.1× 102 TeV × |cbd|1/2

1.1× 102 TeV × |cbs|1/2
(3.5)

The strong bounds on Λ for generic cij of order 1 is a manifestation of what in many specific

frameworks (supersymmetry, technicolor, etc.) goes under the name of flavor problem: if we insist

that the new physics emerges in the TeV region, we have to conclude that it possesses a highly

non-generic flavor structure.

(ii) In the case of Bd–Bd and K0–K0 mixing, where both CP conserving and CP-violating

observables are measured with excellent accuracy, there is still room for a sizable NP contribution

(relative to the SM one), provided that it is to a good extent aligned in phase with the SM amplitude

[O (0.01) for the K system and O (0.3) for the Bd system]. This is because the theoretical errors

in the observables used to constraint the phases, SBd→ψK and ϵK , are smaller with respect to

the theoretical uncertainties in ∆mBd
and ∆mK , which constrain the magnitude of the mixing

amplitudes.

(iii) In the case of Bs–Bs mixing, the precise determination of ∆mBs does not allow large

deviations in modulo with respect to the SM. The constraint is particularly severe if we consider the

ratio ∆mBd
/∆mBs , where hadronic uncertainties cancel to a large extent. However, the constraint

on the CP-violating phase is quite poor. Present data from CDF [13] and D0 [14] indicate a large
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⇤ >•Lower bounds from FCNC

•Upper bound from naturalness of the Higgs mass

m2
H = m2

tree + �m2
H

�m2
H =

3p
2⇡2

GFm
2
t⇤

2 ⇡ (0.3⇤)2

⇤ < 1 TeV

•Two (problematic) possibilities:

(i) Non canonical, 

(ii) Canonical,

⇤� 1 TeV and cij = O(1)

⇤ < 1 TeV and cij ⌧ 1

Hierarchy Problem

BSM Flavour Problem

• “Standard” solution to (ii): exciting NP at ATLAS-CMS, boring flavour physics at 
LHCb protected by MFV

• However data are suggesting the opposite…. no on-shell effects but very 
interesting series of flavour anomalies….



Flavour Anomalies (B-decays)
Two different set of measurements 

1)  Flavour Changing Charged Current b! c ` ⌫` (B ! D(⇤)⌧⌫, . . . )

2)  Flavour Changing Neutral Current b! s``

(B ! K⇤µµ, B ! �µµ, RK , . . . )
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Figure 1: Examples of b ! s loop diagrams contributing to the decay B0

s

! �µ+µ� in the SM.

The T-odd CP asymmetries A
8

and A

9

are predicted to be close to zero in the SM and
are of particular interest, as they can be large in the presence of contributions beyond the
SM [12].

2 Detector and simulation

The LHCb detector [13,14] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < ⌘ < 5, designed for the study of particles containing b or c quarks. The
detector includes a high-precision tracking system consisting of a silicon-strip vertex
detector surrounding the pp interaction region, a large-area silicon-strip detector located
upstream of a dipole magnet with a bending power of about 4Tm, and three stations
of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The
tracking system provides a measurement of momentum, p, of charged particles with a
relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200GeV/c. The
minimum distance of a track to a primary vertex, the impact parameter (IP), is measured
with a resolution of (15 + 29/p

T

)µm, where p

T

is the component of the momentum
transverse to the beam, in GeV/c. Di↵erent types of charged hadrons are distinguished
using information from two ring-imaging Cherenkov detectors. Photons, electrons and
hadrons are identified by a calorimeter system consisting of scintillating-pad and preshower
detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified
by a system composed of alternating layers of iron and multiwire proportional chambers.
The online event selection is performed by a trigger [15], which consists of a hardware
stage, based on information from the calorimeter and muon systems, followed by a software
stage, which applies a full event reconstruction.

Simulated signal samples are used to determine the e↵ect of the detector geometry,
trigger, reconstruction and selection on the signal e�ciency. In addition, simulated
background samples are used to determine the pollution from specific background processes.
In the simulation, pp collisions are generated using Pythia [16] with a specific LHCb
configuration [17]. Decays of hadronic particles are described by EvtGen [18], in which
final-state radiation is generated using Photos [19]. The interaction of the generated
particles with the detector, and its response, are implemented using theGeant4 toolkit [20]
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b! c⌧⌫

Flavor models for

¯B ! D(⇤)⌧ ⌫̄

Marat Freytsis,1 Zoltan Ligeti,2 and Joshua T. Ruderman3

1Department of Physics, Harvard University, Cambridge MA, 02138
2Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720
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The ratio of the measured B̄ ! D(⇤)`⌫̄ decay rates for ` = ⌧ vs. e, µ deviate from the Standard
Model (SM) by about 4�. We show that the data are in tension with the SM, independent of
form factor calculations, and we update the SM prediction for B(B ! Xc⌧ ⌫̄)/B(B ! Xc`⌫̄). We
classify the operators that can accommodate the measured central values, as well as their UV
completions. We identify models with leptoquark mediators that are minimally flavor violating in
the quark sector, and are minimally flavor violating or ⌧ -aligned in the lepton sector. We explore
experimental signatures of these scenarios, which are observable in the future at ATLAS/CMS,
LHCb, or Belle II.

I. INTRODUCTION

Measurements of the B̄ ! D⌧ ⌫̄ and B̄ ! D

⇤
⌧ ⌫̄ decay

rates are now available from BaBar [1, 2] and Belle [3]
with their full datasets. The B̄ ! D

⇤
⌧ ⌫̄ decay mode

was also observed recently by LHCb [4]. These measure-
ments are consistent with each other and with earlier
results [5, 6], and together show a significant deviation
from Standard Model (SM) predictions for the combina-
tion of the ratios

R(X) =
B(B̄ ! X⌧ ⌫̄)

B(B̄ ! Xl⌫̄)
, (1)

where l = e, µ. The measurements are consistent with
e/µ universality [7, 8]. The R(D(⇤)) data, their aver-
ages [9], and the SM expectations [10–12] are summarized
in Table I. (If the likelihood of the measurements is Gaus-
sian, then the deviation from the SM is more than 4�.)
Kinematic distributions, namely the dilepton invariant
mass q

2, are also available from BaBar and Belle [2, 3],
and must be accommodated by any model that modifies
the rates. In the future, Belle II is expected to reduce
the measured uncertainties of R(D(⇤)) by factors of ⇠ 5
or more [13], thereby driving experimental and theory
precision to comparable levels.

In the type-II two-Higgs-doublet model (2HDM), the
B̄ ! D

(⇤)
⌧ ⌫̄ rate (as well as B� ! ⌧ ⌫̄) receives contribu-

tions linear and quadratic inmb m⌧ tan2 �/m2
H± [14–16],

R(D) R(D⇤) Corr.

BaBar 0.440 ± 0.058 ± 0.042 0.332 ± 0.024 ± 0.018 �0.45

Belle 0.375+0.064
�0.063 ± 0.026 0.293+0.039

�0.037 ± 0.015 �0.32

LHCb 0.336 ± 0.027 ± 0.030

Exp. average 0.388 ± 0.047 0.321 ± 0.021 �0.29

SM expectation 0.300 ± 0.010 0.252 ± 0.005

Belle II, 50 ab�1 ±0.010 ±0.005

TABLE I. Measurements of R(D(⇤)) [1, 3, 4], their aver-
ages [9], the SM predictions [10–12], and future sensitiv-
ity [13]. The first (second) experimental errors are systematic
(statistical).

which can be substantial if tan� is large. However, the
R(D(⇤)) data are inconsistent with this scenario [1].

Discovering new physics (NP) in transitions between
the third and second generation fermion fields has long
been considered plausible, since the flavor constraints are
weaker on four-fermion operators mediating such transi-
tions. (Prior studies of B ! Xs⌫⌫̄ [17] and B(s) !
⌧

+
⌧

�(X) [18, 19] decays were motivated by this con-
sideration.) However, B̄ ! D

(⇤)
⌧ ⌫̄ is mediated by the

tree-level b ! c transition. It is suppressed in the SM
neither by CKM angles (compared to other B decays)
nor by loop factors, with only a modest phase space sup-
pression due to the ⌧ mass. This goes against the usual
lore that the first manifestations of new physics at low
energies are most likely to occur in processes suppressed
in the SM.

The goal of this paper is to explore flavor structures
for NP capable of accommodating the central values of
the R(D(⇤)) data summarized in Table I. To do so, a
sizable NP contribution to semileptonic b ! c decays
must be present, and the NP mass scale must be near
the weak scale. This requires nontrivial consistency with
other constraints, such as direct searches at the LHC and
precision electroweak data from LEP. When NP cou-
plings to other generations are present, constraints from
flavor physics, such as meson mixing and rare decays,
also play a role. For example, any flavor model predicts
some relation between the b̄c ⌫̄⌧ and b̄u ⌫̄⌧ operators, so
models explaining R(D(⇤)) must accommodate the ob-
served B

� ! ⌧ ⌫̄ branching ratio, which agrees with the
SM [20, 21]. We show below that despite strong con-
straints some scenarios remain viable and predict signals
in upcoming experiments.

We begin by presenting new inclusive calculations that
demonstrate that the measured central values of R(D(⇤))
are in tension with the SM, independent of form factor
computations. Then, in Sec. II, we perform a general
operator analysis to identify which four-fermion opera-
tors simultaneously fit R(D) and R(D⇤). In Sec. III we
discuss possible mediators that can generate the viable
operators. We identify working models with leptoquark
mediators that are minimally flavor violating in the quark
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• SM predictions are quite robust
• Seen in 3 different experiments in a consistent way, combined significance 4.1σ
• Measurements are consistent with e/mu universality
• In the SM the flavour transition is unsurpassed by loop factor (tree-level charged current)
• Assuming central values, NP has to be large, fits prefer SM structure (left current)
• Data could be fitted by new interactions with mediator at the EW scale
• Various constraints on model building, EWPT, other flavour observables, direct searches

Heff =
GFp

2
V ⇤

bc (bL�↵cL)(⌧L�↵⌫⌧ )

GFp
2

V ⇤
bc =

1
(1.7 TeV)2

Physics highlights

Lepton Flavor Universality: R(D⇤)

ND⇤⌧⌫ = 1300 ± 85
K (D⇤) = (1.93 ± 0.13 ± 0.17)

B(B0 ! D⇤�⌧+⌫⌧ ) = (1.39 ± 0.09 ± 0.12 ± 0.06)%

• LHCb hadronic
R(D⇤) = 0.285 ± 0.019 ± 0.025 ± 0.013

• LHCb muonic
R(D⇤) = 0.336 ± 0.027 ± 0.030

• Preliminary LHCb average
R(D⇤) = 0.306 ± 0.027

• New world average
R(D⇤) = 0.304 ± 0.015 (3.4 � above SM)

R(D)
0.2 0.3 0.4 0.5 0.6

R
(D

*)
0.2

0.25

0.3

0.35

0.4

0.45

0.5 BaBar, PRL109,101802(2012)
Belle, PRD92,072014(2015)
LHCb, PRL115,111803(2015)
Belle, PRD94,072007(2016)
Belle, PRL118,211801(2017)
LHCb, FPCP2017
Average

SM Predictions

 = 1.0 contours2χ∆

R(D)=0.300(8) HPQCD (2015)
R(D)=0.299(11) FNAL/MILC (2015)
R(D*)=0.252(3) S. Fajfer et al. (2012)

HFLAV

FPCP 2017

) = 71.6%2χP(

σ4

σ2

HFLAV
FPCP 2017

R(D) and R(D⇤) combination at 4.1 � from SM

M. Fontana (INFN Cagliari and CERN) LHCC - CERN 13-09-2017 21 / 27

LHCb-PAPER-2017-017

• Best fit: purely left operator SM(1+30%) 



Physics highlights

Lepton Flavor Universality: R(J/ ) NEW
• Generalization of R(D⇤) to the Bc sector

R(J/ ) =
B(B+

c ! J/ ⌧+⌫⌧ )
B(B+

c ! J/ µ+⌫µ)

• Bc decay form factors unconstrained
experimentally: theoretical prediction not yet
precise 0.25-0.28

• Reconstruct signal with ⌧ ! µ⌫µ⌫⌧ (17%)

• Dataset: Run 1 (3 fb�1)

R(J/ ) = 0.71 ± 0.17 ± 0.18

(about 2 � from SM)

Excellent future prospects:

• Run I + Run II data with extra MC allow finer
binning in missing mass

• Form factors systematics reduced by LQCD
work + dedicated form factor study

• Only LHCb can perform this measurement

M. Fontana (INFN Cagliari and CERN) LHCC - CERN 13-09-2017 22 / 27

LHCb-PAPER-2017-035



 1) Tension in the LHCb data coming from                         angular observables B ! K⇤µ+µ�

 2) Various measurements of branching ratios are low compared to the SM prediction

 3) Hint of violation of lepton universality in RK

b! s``

(in particular                              )B0
S ! �µ+µ�

 4) Leptonic decay Bs ! µ+µ�[ ]

RK⇤

Coherently explained invoking New Physics in a 
single effective operator

✓
1

30 TeV

◆2

bL�
µsL µ�µµ



 B ! K⇤µ+µ� – Angular distributions

Angular distributions

B̄0 ! K̄⇤0`+`� (K̄⇤0 ! K�⇡+) full angular
distribution described by four kinematic variables:
q2 (dilepton invariant mass squared), ✓`, ✓K⇤ , �

Differential decay distribution:

d4�[B ! K⇤(! K⇡)``]
dq2 d cos ✓` d cos ✓K⇤ d�

=
9

32⇡

X

i

Ji (q2) gi (✓l , ✓K ,�)

Ji (q2): 12 observables

bi-linear functions of 8 complex K⇤ spin amplitudes AL,R
?,k,0,At ,AS

Spin amplitudes: functions of Wilson coefficients and form factors

Ji can be derived upon integration over the appropriate combination of angles

Nazila Mahmoudi CERN, Oct. 14, 2013 5 / 21
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B ! K⇤µ+µ�

Introduction

3.7� local discrepancy in one of the q2 bins

(P 0
5

, 4.3 < q2 < 8.68 GeV2)
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Possible explanations:

Statistical fluctuations

Underestimation of hadronic uncertainties

New Physics!

S. Descotes-Genon, J. Matias, J. Virto, arXiv:1307.5683
W. Altmannshofer, D. M. Straub, arXiv:1308.1501
R. Gauld, F. Goertz, U. Haisch, arXiv:1308.1959, arXiv:1310.1082

See tomorrow’s talks!

Nazila Mahmoudi CERN, Oct. 14, 2013 4 / 21

3.7σ discrepancy in one of q2 bins

Explanations:

1. Statistical fluctuation?
2. Hadronic uncertainties
3. New Physics

LHCb,1308.1707, PRL

SM=JHEP,1303.5794

2. From Ciuchini, et al., JHEP,1512.07157 
“No deviation is present once all the theoretical 

uncertainties are take into account”



 B ! K⇤µ+µ�“The B ! K ⇤µ+µ� Anomaly”

bla

P 0
5 =

S5p
FL(1 � FL)

2.9� in [4,6] GeV2 bin (+2.9� in [6,8] GeV2 bin)

Wolfgang Altmannshofer (PI) State of NP in Rare B Decays April 9, 2015 2 / 21
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Figure 2. Observables FL and AFB measured by the BaBar [15], Belle [16], CDF [17], CMS [7] and LHCb [18]
experiments for the B! K⇤µ+µ� decay as a function of the dimuon invariant mass squared, q2. The shaded
region indicates a theoretical prediction for the observables based on Refs. [9, 10]. No data point is shown for
CMS in the range q2 < 1 GeV2/c4, due to the thresholds used in the CMS trigger system.
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Figure 3. Observable P05 measured by LHCb [18] and Belle [19] as a function of the dimuon invariant mass
squared, q2, in the B! K⇤µ+µ� decay. Preliminary results from ATLAS [20] and CMS [21] are also included.
The shaded regions indicate theoretical predictions from Ref. [22].

full angular analysis of the decay in Ref. [18]. The majority of these additional observables are con-
sistent with SM predictions. However, a tension exists between measurements of the observable P05
and their corresponding SM prediction in the region 4 < q2 < 8 GeV2/c4. This tension is illustrated
in Fig. 3. In the region 4 < q2 < 8 GeV2/c4, the data from ATLAS, Belle and LHCb are significantly
above the SM predictions. The CMS result is more consistent.

The experimental measurements of the angular observables are currently statistically limited. The
largest sources of systematic uncertainty arise from modelling of the experimental angular acceptance
and the background angular distribution.

Moriond EW 
2017



 Branching ratios
Various measurements of branching ratios are low compared to the SM prediction

1. Statistical fluctuation (now in different channels)
2. Hadronic uncertainties
3. New Physics

[Altmannshofer, Straub 
1503.06199]

Decay obs. q2 bin SM pred. measurement pull

B̄0 ! K̄⇤0µ+µ� FL [2, 4.3] 0.81± 0.02 0.26± 0.19 ATLAS +2.9

B̄0 ! K̄⇤0µ+µ� FL [4, 6] 0.74± 0.04 0.61± 0.06 LHCb +1.9

B̄0 ! K̄⇤0µ+µ� S
5

[4, 6] �0.33± 0.03 �0.15± 0.08 LHCb �2.2

B̄0 ! K̄⇤0µ+µ� P 0
5

[1.1, 6] �0.44± 0.08 �0.05± 0.11 LHCb �2.9

B̄0 ! K̄⇤0µ+µ� P 0
5

[4, 6] �0.77± 0.06 �0.30± 0.16 LHCb �2.8

B� ! K⇤�µ+µ� 107 dBR

dq2 [4, 6] 0.54± 0.08 0.26± 0.10 LHCb +2.1

B̄0 ! K̄0µ+µ� 108 dBR

dq2 [0.1, 2] 2.71± 0.50 1.26± 0.56 LHCb +1.9

B̄0 ! K̄0µ+µ� 108 dBR

dq2 [16, 23] 0.93± 0.12 0.37± 0.22 CDF +2.2

Bs ! �µ+µ� 107 dBR

dq2 [1, 6] 0.48± 0.06 0.23± 0.05 LHCb +3.1

Table 1: Observables where a single measurement deviates from the SM by 1.9� or more (cf. 15 for the B !
K⇤µ+µ� predictions at low q2).

one can construct a �2 function which quantifies, for a given value of the Wilson coe�cients,
the compatibility of the hypothesis with the experimental data. It reads

�2(~CNP) =
h
~O
exp

� ~O
th

(~CNP)
iT

[C
exp

+ C
th

]�1

h
~O
exp

� ~O
th

(~CNP)
i
. (5)

where O
exp,th

and C
exp,th

are the experimental and theoretical central values and covariance
matrices, respectively. All dependence on NP is encoded in the NP contributions to the Wilson
coe�cients, CNP

i = Ci � CSM

i . The NP dependence of C
th

is neglected, but all correlations
between theoretical uncertainties are retained. Including the theoretical error correlations and
also the experimental ones, which have been provided for the new angular analysis by the LHCb
collaboration, the fit is independent of the basis of observables chosen (e.g. P 0

i vs. Si observables).
In other words, the “optimization” 18 of observables is automatically built in.

In total, the �2 used for the fit contains 88 measurements of 76 di↵erent observables by 6
experiments (see the original publication4 for references). The observables include B ! K⇤µ+µ�

angular observables and branching ratios as well as branching ratios of B ! Kµ+µ�, B !
Xsµ+µ�, Bs ! �µ+µ�, B ! K⇤�, B ! Xs�, and Bs ! µ+µ�.

2.2 Compatibility of the SM with the data

Setting the Wilson coe�cients to their SM values, we find �2

SM

⌘ �2(~0) = 116.9 for 88 mea-
surements, corresponding to a p value of 2.1%. Including also b ! se+e� observablesc the �2

deteriorates to 125.8 for 91 measurements, corresponding to p = 0.91%. The observables with
the biggest individual tensions are listed in table 1. It should be noted that the observables
in this table are not independent. For instance, of the set (S

5

, FL, P 0
5

), only the first two are
included in the fit as the last one can be expressed as a function of them18,d.

cWe have not yet included the recent measurement 19 of B ! K⇤e+e� angular observables at very low q2.
Although these observables are not sensitive to the violation of LFU, being dominated by the photon pole, they
can provide important constraints on the Wilson coe�cients C

(0)
7 .

dIncluding the last two instead leads to equivalent results since we include correlations as mentioned above;
this has been checked explicitly.

[recently updated, LHCB 1506.08777] 0.26± 0.04 +3.5



Lepton Flavour Universality

On the Standard Model predictions for RK and RK⇤

Marzia Bordone1, Gino Isidori1, Andrea Pattori1,2

1Physik-Institut, Universität Zürich, CH-8057 Zürich, Switzerland
2Dipartimento di Fisica e Astronomia ”G. Galilei”, Università di Padova, Via Marzolo 8, I-35131 Padua, Italy

Abstract We evaluate the impact of radiative corrections in
the ratios G [B!Mµ+µ�]/G [B!Me+e�] when the meson
M is a K or a K⇤. Employing the cuts on m2

`` and the recon-
structed B-meson mass presently applied by the LHCb Col-
laboration, such corrections do not exceed a few %. More-
over, their effect is well described (and corrected for) by ex-
isting Montecarlo codes. Our analysis reinforces the interest
of these observables as clean probe of physics beyond the
Standard Model.

1 Introduction

The Lepton Flavor Universality (LFU) ratios

RM[q2
min, q2

max] =

Z q2
max

q2
min

dq2 dG (B ! Mµ+µ�)

dq2

Z q2
max

q2
min

dq2 dG (B ! Me+e�)
dq2

, (1)

where q2 = m2
``, are very clean probes of physics beyond the

Standard Model (SM): they have small theoretical uncertain-
ties and are sensitive to possible new interactions that couple
in a non-universal way to electrons and muons [1]. A strong
interest in RK has recently been raised by the LHCb result [2]

RK
⇥
1 GeV2, 6 GeV2⇤= 0.745+0.090

�0.074 ±0.036 , (2)

that differs from the naı̈ve expectation

R(SM)

K(⇤) = 1 (3)

by about 2.6s . The interest is further raised by the combina-
tion of this anomaly with other b! s`+`� observables [3,4],
and by the independent hints of violations of LFU observed
B ! D(⇤)tn` decays [5–7].

While perturbative and non-perturbative QCD contribu-
tions cancel in RK(⇤) (beside trivial kinematical factors), this
is not necessarily the case for QED corrections. In partic-
ular, QED collinear singularities induce corrections of order
(a/p) log2(mB/m`) to b ! s`+`� transtions [8,9] that could
easily imply 10% effects in RK(⇤) . The purpose of this paper
is to estimate these corrections and to precisely quantify up
to which level a deviation of RK or RK⇤ from 1 can be con-
sidered a clean signal of physics beyond the SM.

2 QED corrections in RM

A complete evaluation of QED corrections to B ! M`+`�

decay amplitudes is a non-trivial task, due to the interplay of
perturbative and non-perturbative dynamics (see e.g. [10]).
However, the problem is drastically simplified if we are only
interested in the LFU ratios RM , especially in the low dilep-
ton invariant mass region, and if interested in possible devi-
ations from Eq. (3) exceeding 1%. In this case the problem
is reduced to evaluating log(m`) enhanced terms, whose ori-
gin can be unambiguously traced to soft and collinear pho-
ton emission. The latter represents a universal correction fac-
tor [11, 12] that can be implemented, by means of appropri-
ate convolution functions,1 irrespective of the specific short-
distance structure of the amplitude.

2.1 Universal radiation function

Following the above observation, the treatment of soft and
collinear photon emission in B ! M`+`� closely resemble
that applied to h ! 2e2µ decays in Ref. [14]. The key ob-
servable we are interested in is the differential lepton-pair

1For a discussion about the implementation of universal QED correc-
tions in a general EFT context see also Ref. [13].
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Table 2 Relative contribution of radiative corrections due emission
from the meson leg, in the B+ ! K+`+`� case, for q2 2 [1,6] GeV2.

tions with PHOTOS [15], and properly corrected for in the
result reported. We have explicitly checked that our estimate
of DRK is in agreement with that obtained with PHOTOS up
to differences within ±1%.4

In order to check the smallness of the non-log(m`) en-
hanced terms, in Table 2 we report the effect of the radiation
from the meson leg, that is IR divergent but has no collinear
singularities. We evaluated these terms developing the corre-
sponding radiator function (see Ref. [13]), whose implemen-
tation depend only on mrec

B . As can be seen from Table 2, the
results are well below the 1% level.

The impact of radiative corrections in the B ! K⇤`+`�

decays is shown in Fig. 2 and summarized by the integrated
values reported in Table 1. The situation is very similar to the
B+ ! K+`+`� : employing the same mrec

B cuts for electron
and muon modes as in Ref. [2], we find that the net impact
of radiative corrections is DRK⇤ =+2.8%. Also in this case
this effect is well described by PHOTOS and therefore can
be properly corrected for in future experimental analyses.

4 Conclusions

The experimental result in Eq. (2) has stimulated a lot of the-
oretical activity [21–49] In view of this result and, especially,
in view of possible future experimental improvements in the
determination of RK or RK⇤ , we have re-examined the SM
predictions of these LFU ratios.

As we have shown, log(m`)-enhanced QED corrections
may induce sizable deviations from Eq. (3), even up to 10%,
depending on the specific cuts applied to define physical
observables. In particular, a key role is played by the cuts
on q2 = m2

`` and on the reconstructed B-meson mass. The
former is important to avoid rapidly varying regions in the
dilepton spectrum (where the theoretical tools to compute
QED corrections become unreliable), while the latter defines
the physical IR cut-off of the rates. Employing the cuts pre-
sently applied by the LHCb Collaboration, the corrections
in RK do not exceed 3%. Moreover, their effect is well de-

4We thank Rafael Silva Coutinho for a detailed comparison about the
radiative corrections implemented in the LHCb analysis of RK .

scribed (and corrected for in the experimental analysis) by
existing Montecarlo codes.

According to our analysis, a deviation of RK or RK⇤ from
1 exceeding the 1% level, performed along the lines of Ref. [2]
in the region 1 GeV2 < q2 < 6 GeV2, would be a clear signal
of physics beyond the Standard Model.
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Added note: SM predictions for RK⇤ in the low q2 region.

After this paper was published, the LHCb Collaboration has
announced a measurement of RK⇤ in two bins in the low q2

region, reporting also in this case a significant deviation from
unity [50]:5

RK⇤ [0.045, 1.1] = 0.660+0.110
�0.070 ±0.024 ,

RK⇤ [1.1, 6.0] = 0.685+0.113
�0.069 ±0.047 . (20)

Given the interest of these results, we provide here precise
SM predictions for RK⇤ in these two bins, taking into account
QED radiative corrections.

The prediction in the 1.1 GeV2  q2  6 GeV2 bin does
not differ from what discussed above. For the sake of clarity,
we predict

RK⇤ [1.1, 6.0]SM = 1.00±0.01QED , (21)

together with

RK+[1.0, 6.0]SM = 1.00±0.01QED , (22)

for the extrapolated photon-inclusive observables reported
by LHCb. The subscript on the errors signals that the ori-
gin of this theoretical uncertainty are QED effects. In this
region the residual uncertainty due to form-factor errors (in
absence of radiative corrections) is negligible for both K and
K⇤ modes.

The prediction in the 0.045 GeV2  q2  1.1 GeV2 bin is
more delicate. The kinematical threshold of the muon mode,
and the rapid (and flavour non-universal) variation of dG /dq2

close to this threshold, imply larger theoretical uncertainties.
First of all, even in absence of QED corrections, form-factor
5 The two values between square brackets in RK⇤ denote the q2 range
in GeV2.
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Fig. 3 Contributions to dG [B ! K⇤`+`�(g)]/dq2 (in arbitrary units)
in the low q2 region for ` = e (red) and ` = µ (blue), before any cut
in mrec

B . The full line is the photon-inclusive rate; the dashed line is
the non-radiative FCNC rate; dotted and dash-dotted lines denote the
contribution to the photon inclusive rate from B ! K⇤+h(! `+`�g)
with (dash-dotted) and without (dots) interference with the soft radia-
tion from the FCNC frate.

uncertainties do not cancel completely in this region. We es-
timate the latter to induce a ±0.02 error (in agreement with
Ref. [51]).

As far as QED corrections are concerned, a specific as-
pect of the near-threshold region is the sensitivity to light-
hadron effects. Non-negligible extra contributions to the pho-
ton-inclusive rate are obtained by direct-emission amplitudes
of the type B ! K⇤P0 ! K⇤`+`�g , where P0 denotes an al-
most on-shell h or p0 state. The h-mediated contribution
turns out to be particularly sizeable given B(B ! K⇤h) ⇡
1.6⇥10�5 and B(h ! e+e�g)⇡ 0.7%.6 An illustration of
the impact of the latter is shown in Fig. 3.

Some comments on the light-hadron contribution are in
order:

i. This contribution is an irreducible part of the photon-
inclusive rate (which is the only well-defined physical
observable) and, as such, it must be included in the theo-
retical prediction of RK⇤ (in the relevant kinematical re-
gion).

6 In absence of a lower cut on q2 and mrec
B , the rate for B ! K⇤h !

K⇤e+e�g is about 30% of G (B ! K⇤e+e�; q2 < 0.1).

ii. The leading effect is necessarily a decrease of RK⇤ com-
pared to the non-radiative case (the radiative tails of elec-
tron and muon modes are both enhanced, but the effect
is smaller in the muon case given the proximity to the
phase-space border). The decrease of RK⇤ is further en-
hanced by the looser mrec

B cut on electron vs. muon modes.
iii. There is a non-negligible interference between the meson-

mediated amplitude and the soft-photon emission of the
genuine FCNC amplitude. This interference induces a
(theoretical) uncertainty in estimating this effect given
the unknown relative phases of the amplitudes. An addi-
tional source of uncertainty is provided by any other con-
tribution of the type B ! K⇤g + g⇤(! e+e�), for which
we do not have a reliable normalization.

iv. Above the threshold region also the meson-mediated am-
plitude becomes lepton universal (Fig. 3), and the uncer-
tainty of this contribution becomes negligible for q2 >
0.1 GeV2.

Taking into account the kinematical cuts mrec
B = 4.500 GeV

(for ` = e) and mrec
B = 5.150 GeV (for ` = µ), we estimate

the meson-mediated contribution to yield7

DQEDRK⇤ [0.045, 1.1]⇡�0.017 . (23)

Given the discussion above, we assign a conservative ±0.02
error to the whole QED corrections in this region. Our final
SM estimate is then

RK⇤ [0.045,1.1]SM = 0.906±0.020QED ±0.020FF

= 0.906±0.028th . (24)

It must be stressed that the (relatively) large theoretical un-
certainty in (24) is due to the definition of the bin, that starts
at the di-muon threshold. Setting the lower threshold to 0.1 GeV2

(a value that we advocate in view of future experimental
analyses) we find

RK⇤ [0.1,1.1]SM = 0.983±0.010QED ±0.010FF

= 0.983±0.014th . (25)

7The result in Eq. (23) holds under the assumption that any contri-
bution to the photon-inclusive electron rate with q2 < 0.045 GeV2 is
subtracted (or corrected for) on the experimental side, otherwise the
correction could be significantly larger.
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Abstract We evaluate the impact of radiative corrections in
the ratios G [B!Mµ+µ�]/G [B!Me+e�] when the meson
M is a K or a K⇤. Employing the cuts on m2

`` and the recon-
structed B-meson mass presently applied by the LHCb Col-
laboration, such corrections do not exceed a few %. More-
over, their effect is well described (and corrected for) by ex-
isting Montecarlo codes. Our analysis reinforces the interest
of these observables as clean probe of physics beyond the
Standard Model.

1 Introduction

The Lepton Flavor Universality (LFU) ratios

RM[q2
min, q2

max] =

Z q2
max

q2
min

dq2 dG (B ! Mµ+µ�)

dq2

Z q2
max

q2
min

dq2 dG (B ! Me+e�)
dq2

, (1)

where q2 = m2
``, are very clean probes of physics beyond the

Standard Model (SM): they have small theoretical uncertain-
ties and are sensitive to possible new interactions that couple
in a non-universal way to electrons and muons [1]. A strong
interest in RK has recently been raised by the LHCb result [2]

RK
⇥
1 GeV2, 6 GeV2⇤= 0.745+0.090

�0.074 ±0.036 , (2)

that differs from the naı̈ve expectation

R(SM)

K(⇤) = 1 (3)

by about 2.6s . The interest is further raised by the combina-
tion of this anomaly with other b! s`+`� observables [3,4],
and by the independent hints of violations of LFU observed
B ! D(⇤)tn` decays [5–7].

While perturbative and non-perturbative QCD contribu-
tions cancel in RK(⇤) (beside trivial kinematical factors), this
is not necessarily the case for QED corrections. In partic-
ular, QED collinear singularities induce corrections of order
(a/p) log2(mB/m`) to b ! s`+`� transtions [8,9] that could
easily imply 10% effects in RK(⇤) . The purpose of this paper
is to estimate these corrections and to precisely quantify up
to which level a deviation of RK or RK⇤ from 1 can be con-
sidered a clean signal of physics beyond the SM.

2 QED corrections in RM

A complete evaluation of QED corrections to B ! M`+`�

decay amplitudes is a non-trivial task, due to the interplay of
perturbative and non-perturbative dynamics (see e.g. [10]).
However, the problem is drastically simplified if we are only
interested in the LFU ratios RM , especially in the low dilep-
ton invariant mass region, and if interested in possible devi-
ations from Eq. (3) exceeding 1%. In this case the problem
is reduced to evaluating log(m`) enhanced terms, whose ori-
gin can be unambiguously traced to soft and collinear pho-
ton emission. The latter represents a universal correction fac-
tor [11, 12] that can be implemented, by means of appropri-
ate convolution functions,1 irrespective of the specific short-
distance structure of the amplitude.

2.1 Universal radiation function

Following the above observation, the treatment of soft and
collinear photon emission in B ! M`+`� closely resemble
that applied to h ! 2e2µ decays in Ref. [14]. The key ob-
servable we are interested in is the differential lepton-pair

1For a discussion about the implementation of universal QED correc-
tions in a general EFT context see also Ref. [13].
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New Physics (Model Independent)
• Model independent analysis via a low-energy effective hamiltonian, assuming short-distance 
New Physics in the following operators

with magnitude fixed by the degrees of compositeness of each of the SM fermion multiplets,

giving 15 mixing parameters. In the quark sector, all but one of these parameters is fixed by

measurements of quark masses and the CKM matrix; there is more ambiguity in the lepton

sector, but we find that everything can be fixed by assuming that the mixings of the left and

right-handed lepton multiplets are comparable. This assumption is a plausible one, from the

point of view of the UV flavour dynamics, and has the additional benefit that new physics

(NP) corrections to the most severely constrained flavour-violating observable, µ ! e�, are

minimized. As a result, we are left with just 3 free parameters in the model: the mass, M , of

the leptoquark, the coupling strength, g⇢, of the strong sector resonances, and the degree

of compositeness, ✏q3, of the third generation quark doublet. Furthermore, all processes

to which the leptoquark contributes result in constraints on the single combination x ⌘
p
g⇢✏

q
3/M . Thus the model is extremely predictive. We find that the preferred range of

x corresponds to plausible values of the 3 underlying parameters of the strongly coupled

theory (in which the weak scale is slightly tuned), namely g⇢ ⇠ 4⇡, M ⇠ TeV, and ✏q3 ⇠ 1.

Thus, g⇢ and ✏q3 lie close to their maximal values, meaning that one cannot evade future

direct searches at the LHC by scaling up M and g⇢.

As for the existing bounds, we find that there is no obvious conflict, but that there is

potential to see e↵ects in µ ! e�, K+ ! ⇡+⌫⌫, and B+ ! ⇡+µ+µ�, in the near future.

Moreover, the required mass range for the leptoquark is not far above that already excluded

by LHC8, and so there is plenty of scope for discovery in direct production at LHC13.

The outline is as follows. In the next Section, we describe the data anomalies and

review fits thereto using higher-dimensional SM operators. We also show that they can be

described by a leptoquark carrying the representation (3,3, 13) of the SU(3)⇥SU(2)⇥U(1)

gauge group. In §3 we review the partial compositeness and strong dynamics paradigms.

We show how the leptoquark can accompany the Higgs as a PGB of strong dynamics and

exhibit symmetries that prevent proton decay, &c. In §4, we discuss important constraints

on the model and describe the prospects for direct searches for the leptoquark at LHC13

and indirect searches using flavour physics.

2 Status of b ! s`` fits and leptoquark quantum numbers

The anomalies that we wish to explain were observed at LHCb in semileptonic B meson

decays involving a b ! s quark transition. These may be described via the low-energy,

e↵ective hamiltonian

He↵ = �4GFp
2

(V ⇤
tsVtb)

X

i

C`
i (µ)O`

i (µ) , (2.1)

where O`
i are a basis of SU(3)C ⇥ U(1)Q-invariant dimension-six operators giving rise to

the flavour-changing transition. The superscript ` denotes the lepton flavour in the final
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state (` 2 {e, µ, ⌧}), and the operators O`
i are given in a standard basis by

O(0)
7 =

e

16⇡2
mb

�
s̄�↵�PR(L)b

�
F↵� ,

O`(0)
9 =

↵em

4⇡

�
s̄�↵PL(R)b

�
(¯̀�↵`) , (2.2)

O`(0)
10 =

↵em

4⇡

�
s̄�↵PL(R)b

�
(¯̀�↵�5`).

We neglect possible (pseudo-)scalar and tensor operators, since these have been shown [14,

15] to be constrained to be too small (in the absence of fine-tuning in the electron sector)

to explain LHCb anomalies. In the SM, the operator coe�cients are lepton universal and

the operators that have non-negligible coe�cients are O7, O`
9, and O`

10, with

CSM
7 = �0.319,

CSM
9 = 4.23, (2.3)

CSM
10 = �4.41.

at the scale mb [16].

The first tension with the SM was observed last year in angular observables in the

semileptonic decay B ! K⇤µ+µ� [4, 5]. The rôle of theoretical hadronic uncertainties in

the discrepancy is not yet clear, and there is ongoing debate as to whether the e↵ects of

unknown power corrections or long-distance charm loop contributions can explain these

anomalies without the need for new, short-distance physics [17–20]. Nevertheless, several

model-independent analyses [17, 21–24] have been performed on the B ! K⇤µ+µ� decay

data, as well as on other, relevant, semileptonic and leptonic processes, allowing for the

possibility of new physics contributions to the e↵ective operators in eq. (2.2). There seems

to be a consensus that, if only a single Wilson coe�cient is allowed to be non-vanishing,

then NP contributions to the e↵ective operator Oµ
9 are preferred, with the NP coe�cient

CNP
9 of this operator being negative. A number of models of NP were proposed to explain

this e↵ect [25–30].

Earlier this year LHCb measured another discrepancy in B decays. To wit, it was

found that a certain ratio, RK , of branching ratios of B ! Kµ+µ� to B ! Ke+e� lay

2.6� below the SM prediction [6]. Specifically, the observable is defined as

RK =

R 6
1 dq2 d�(B

+!K+µ+µ�)
dq2R 6

1 dq2 d�(B
+!K+e+e�)

dq2

, (2.4)

where q2 is the invariant mass of the di-lepton pair and the integral is performed over

the interval q2 2 [1, 6] GeV2. Like the B ! K⇤µ+µ� decay, these processes proceed via

a b ! s`` transition. The observable RK has the advantage of being theoretically well-

understood, predicted to be almost exactly 1 in the SM [31] (specifically, 1.0003 ± 0.0001

when mass e↵ects are taken into account [32]). A discrepancy in RK cannot be explained by

lepton-flavour-universal NP, nor by any of the sources of theoretical uncertainty that might

underlie the B ! K⇤µ+µ� anomalies. Analyses and fits including the RK data and other

recent measurements were performed in [14, 20, 33, 34]. Due to the lepton non-universality
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FIG. 1: From left to right: Allowed regions in the (CNP
9µ , CNP

10µ), (CNP
9µ , C90µ) and (CNP

9µ , CNP
9e ) planes for the corresponding two-

dimensional hypotheses, using all available data (upper row, fit “All”) and only LFUV observables (lower row, fit “LFUV”).
We also show the 3 � regions for the data subsets corresponding to specific experiments. Constraints from b ! s� observables,
B(B ! Xsµµ) and B(Bs ! µµ) are included in each case (see text).

4. IMPLICATIONS FOR MODELS

Our updated model-independent fit to available b !
s`` and b ! s� data strongly favours LFUV scenarios
with NP a↵ecting mainly b ! sµµ transitions, with a
preference for the three hypotheses CNP

9µ , CNP
9µ = �CNP

10µ

and CNP
9µ = �C90µ. This has important implications

for some popular ultraviolet-complete models which we
briefly discuss.

I LFUV: Given that leptoquarks (LQs) should posses
very small couplings to electrons in order to avoid
dangerous e↵ects in µ ! e�, they naturally violate LFU.
While Z 0 models can easily accommodate LFUV data,
LFU variants like the ones in Refs. [42, 43] are now
disfavoured. The same is true if one aims at explaining
P 0
5 via NP in four-quark operators leading to a NP

(q2-dependent) contribution from charm loops [44].
Models with right-handed currents such as Refs. [45, 50]
are also strongly disfavoured, even though they can
account for RK , since they would result in RK⇤ > 1.

I CNP
9µ : Z 0 models with fundamental (gauge) couplings

to leptons preferably yield CNP
9µ -like solutions in order

to avoid gauge anomalies. In this context, Lµ � L⌧

models [46–49] are popular since they do not generate
e↵ects in electron channels. The new fit including
RK⇤ is also very favourable to models predicting
CNP
9µ = �3CNP

9e [51]. Interestingly, such a symmetry
pattern is in good agreement with the structure of the
PMNS matrix [52]. Concerning LQs, a CNP

9µ -like solution
can only be generated by adding two scalar (an SU(2)L
triplet and an SU(2)L doublet with Y = 7/6) or two
vector representations (an SU(2)L singlet with Y = 2/3
and an SU(2)L doublet with Y = 5/6).

I CNP
9µ = �CNP

10µ: This pattern can be achieved in Z 0

models with loop-induced couplings [53] or in Z 0 models
with heavy vector-like fermions [54] which posses also
LFUV. Concerning LQs, here a single representation
(the scalar SU(2)L triplet or the vector SU(2)L singlet
with Y = 2/3) can generate a C9µ = �C10µ like solu-
tion [55–60] and this pattern can also be obtained in
models with loop contributions from three heavy new
scalars and fermions [61–63].

I CNP
9µ = �C90µ: This pattern could be generated in

Z 0 models with vector-like fermions. For the Lµ � L⌧

• Short distance effects from New Physics are expected to 
have a chiral structure

`�↵`
`�↵�5`

`L�↵`L

`R�↵`R

Best Fit with
Left-Left currents

Cµ,NP
9 = �Cµ,NP

10

• Preference for lepton vector current Cµ,NP
9 ⇡ �1

[Capdevilla et al,
1704.05340]



                       AfterRK⇤
[1704.05340, 1704.05435,
1704.05438, 1705444,
17054446, 1705447]

• RK and RK* observables alone are now sufficient to draw various 
conclusions (without doing fits!)
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Figure 1: Deviations from the SM value RK = RK⇤ = 1 due to the various chiral operators
possibly generated by new physics in the muon (left panel) and electron (right panel) sector.
Bothe the ratio refers to q2 in [1.1, 6]GeV2. We assumed real coe�cients, and the out-going
(in-going) arrows show the e↵ect of coe�cients equal to +1 (�1). For the sake of clarity we
only show the arrows for the coe�cients involving left-handed muons and electrons (except for
the two magenta arrows in the left-side plot, that refer to CBSM

9,µ = (CBSM

bLµL
+ CBSM

bLµR
)/2 = ±1).

BSM corrections. To this end, we define RK⇤ in a given range of q2, in analogy with eq. (8):

RK⇤ [q2
min

, q2
max

] ⌘
R q2

max

q2
min

dq2 d�(B ! K⇤µ+µ�)/dq2

R q2
max

q2
min

dq2 d�(B ! K⇤µ+µ�)/dq2
, (16)

where the di↵erential decay width d�(B ! K⇤µ+µ�)/dq2 actually describes the four-body
process B ! K⇤(! K⇡)µ+µ�, and takes the compact form

d� (B ! K⇤µ+µ�)

dq2
=

3

4
(2Is

1

+ Ic
2

)� 1

4
(2Is

2

+ Ic
2

) . (17)

The angular coe�cients Ia=s,c
i=1,2 in eq. (17) can be written in terms of the so-called transversity

amplitudes describing the decay B ! K⇤V ⇤ with the B meson decaying to an on-shell K⇤

and a virtual photon or Z boson which later decays into a lepton-antilepton pair. We refer
to [26] for a comprehensive description of the computation. In the left panel of figure 2 we
show the di↵erential distribution d�(B ! K⇤µ+µ�)/dq2 as a function of the dilepton invariant
mass q2. The solid black line represents the SM prediction, and we show in dashed (dotted)
red the impact of BSM corrections due to the presence of non-zero CBSM

bLµL
(CBSM

bRµL
) taken at the

benchmark value of 1.
We now focus on the low invariant-mass range q2 = [0.045, 1.1] GeV2, shaded in blue with

diagonal mesh in the left panel of fig 2. In this bin, the di↵erential rate is dominated by
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• Deviation from the Standard Model, using only the most cleaner observable gives ⇠ 4�

• New Physics in electrons is possible, but cannot explain angular observables and low 
branching ratios….

• New Physics in muons wants destructive interference with the SM

where p ⇡ 0.86 is the polarization fraction [22, 27, 28]. In the chiral-linear limit the expression
for RK⇤ simplifies to

RK⇤ ' RK � 4p
Re CBSM

bR(µ�e)L

CSM

bLµL

, (15)

where 4p/CSM

bLµL
⇡ 0.40. The formula above clearly shows that, in this approximation, a devia-

tion of RK⇤ from RK signals that bR is involved at the e↵ective operator level with the dominant
e↵ect still due to left-handed leptons. As already discussed before, eq. (15) is not suitable for a
detailed phenomenological study, and we implement in our numerical code the full expression
for RK⇤ [29]. In the left panel of figure 1, we present the di↵erent predictions in the (RK , RK⇤)
plane due to turning on the various operators assumed to be generated via new physics in the
muon sector. A reduction of the same order in both RK and RK⇤ is possible in the presence
of the left-handed operator CBSM

bLµL
(red solid line). In order to illustrate the size of the required

correction, the arrows correspond to CBSM

bLµL
= ±1 (see caption for details). Conversely, as previ-

ously mentioned, a deviation of RK⇤ from RK signals the presence of CBSM

bRµL
(green dot-dashed

line). Finally, notice that the reduced value of RK measured in eq. (3) cannot be explained by
CBSM

bRµR
and CBSM

bLµR
. The information summarized in this plot is of particular significance since

it shows at a glance, and before an actual fit to the data, the new physics patterns implied by
the combined measurement of RK and RK⇤ .

Before proceeding, another important comment is in order. In the left panel of figure 1,
we also show in magenta the direction described by non-zero values of the coe�cient CBSM

9,µ =
(CBSM

bLµL
+CBSM

bLµR
)/2. The latter refers to the e↵ective operator Oµ

9

= (s̄�µPLb)(µ̄�µµ), and implies
a vector coupling for the muon. The plot suggests that negative values CBSM

9,µ ⇡ �1 may also
provide a good fit of the observed data. However, it is also interesting to notice that in the
non-clean observables, the hadronic e↵ects might mimic a short distance BSM contribution in
CBSM

9,µ . From the plot in our figure 1, it is clear that with more data a combined analysis of RK

and RK⇤ might start to discriminate between CBSM

9,µ and CBSM

bLµL
using only clean observables.

However, with the present data, there is only a mild preference for CBSM

bLµL
, according to the

1-parameter fits of section 3.1 using only clean observables.
It is also instructive to summarise in the right panel of figure 1 the case in which new physics

directly a↵ects the electron sector. The result is a mirror-like image of the muon case since
the coe�cients CbXeY enter, both at the linear and quadratic level, with an opposite sign when
compared to their analogue CbXµY . In the chiral-linear limit the only operator that can bring
the values of RK and RK⇤ close to the experimental data is CbLeL > 0. As before, a deviation
from RK in RK⇤ can be produced by a non-zero value of CBSM

bReL
. Notice that, beyond the chiral-

linear limit, also CBSM

bL,ReR
points towards the observed experimental data but they require larger

numerical values.

A closer look to RK⇤ reveals additional observable consequences related to the presence of

6
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for RK is

RK =
|CbL+RµL�R |2 + |CbL+RµL+R |2
|CbL+ReL�R |2 + |CbL+ReL+R |2 . (12)

This is a clean observable, meaning that it is not a↵ected by large theoretical uncertainties,
and its SM prediction is RK = 1. QED corrections give a small departure from unity which,
however, does not exceed few percents [26]. However, it has to be noted that new physics which
a↵ects di↵erently µ and e can induce theoretical errors, bringing back the issue of hadronic
uncertainties.

In the chiral-linear approximation, RK becomes

RK ' 1 + 2
Re CBSM

bL+R(µ�e)L

CSM

bLµL

, (13)

indicating that the dominant e↵ect stems from couplings to left-handed leptons. Any chirality
of quarks works, as long as it is not orthogonal to L + R, namely unless quarks are axial.

It is important to notice that the approximation in eq. (13), although capturing the relevant
physics, is not adequate for a careful phenomenological analysis. The same remark remains valid
for the simplified expression proposed in [22], expanded up to quadratic terms in new physics
coe�cients. The reason is that the expansion is controlled by the parameter CBSM

bX lY
/CSM

bX lY
, a

number that is not always smaller than 1. This is particularly true in the presence of new
physics in the electron sector in which — as we shall discuss in detail — large values of the
Wilson coe�cients are needed to explain the observed anomalies. For this reason, all the results
presented in this paper make use of the full expressions for both RK [24] and, as we shall discuss
next, RK⇤ .

2.2 Anatomy of RK⇤

Given that the K⇤ has spin 1 and mass MK⇤ = 892 MeV, the theoretical prediction for the RK⇤

ratio given in eq. (1) is

RK⇤ =
(1 � p)(|CbL+RµL�R |2 + |CbL+RµL+R |2) + p

�|CbL�RµL�R |2 + |CbL�RµL+R |2�

(1 � p)(|CbL+ReL�R |2 + |CbL+ReL+R |2) + p
�|CbL�ReL�R |2 + |CbL�ReL+R |2� (14)

where G
F

is the Fermi constant, �(a, b, c) ⌘ a2 + b2 + c2 � 2(ab+ bc+ ac), MB ⇡ 5.279 GeV, MK ⇡ 0.494 GeV,
|VtbV ⇤

ts| ⇡ 40.58 ⇥ 10�3. Introducing the QCD form factors f
+,T (q2) we have

FA(q
2) = (C

10

+ C 0
10

) f
+

(q2) , (10)

FV (q
2) = (C

9

+ C 0
9

)f
+

(q2) +
2mb

MB + MK
(C

7

+ C 0
7

) fT (q
2)

| {z }
SMelectromagnetic dipole contribution

+ hK(q2)| {z }
non�factorizable term

. (11)

Notice that for simplicity we wrote the Wilson coe�cient C
9

omitting higher-order ↵s-corrections [25]. Neglect-
ing SM electromagnetic dipole contributions (encoded in the coe�cients C(0)

7

), and non-factorizable corrections,

eq. (12) follows from Eqs (8,9) by rotating the coe�cients C(0)
9,10 on to the chiral basis.
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The low q^2 bin 

[D’Amico, et al.
1704.05438]

• At low q^2, Standard Model contribution is dominate by dipole operator (due the 
photon pole)

• NP effects are reduced in this bin

• Having a large effect here requires light long range New Physics

• Can be a sanity check of the measurement 

[1704.06188,1704.06240]
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Figure 1. Deviations from the SM value RK = RK∗ = 1 due to the various chiral operators
possibly generated by new physics in the muon (left panel) and electron (right panel) sector. Both
ratios refer to the [1.1, 6]GeV2 q2-bin. We assumed real coefficients, and the out-going (in-going)
arrows show the effect of coefficients equal to +1 (−1). For the sake of clarity we only show the
arrows for the coefficients involving left-handed muons and electrons (except for the two magenta
arrows in the left-side plot, that refer to CBSM

9,µ = (CBSM
bLµL

+ CBSM
bLµR

)/2 = ±1). The constraint from
Bs → µµ is not included in this plot.
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Figure 2. Left: RK∗ as function of q2, the invariant mass of the ℓ+ℓ− pair, for the SM and for
two specific values of the new-physics coefficients. The inset shows iso-contours of deviation from
R∗

K = 1 in the [0.045, 1.1]GeV2 bin as a function of new-physics coefficients, compared to their
experimentally favoured values. Right: correlation between RK∗ measured in the [1.1, 6]GeV2 bin
(horizontal axis) and [0.045, 1.1]GeV2 bin (vertical axis) of q2: a sizeable new physics effect can be
present in the low-energy bin. The numerical values of q2 are given in GeV2.
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Simplified models
• Addressing the flavour anomalies in FCNC alone is quite easy:
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Models with Flavor Changing Z 0 Bosons
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Z ′

Z 0 models:

(WA, Straub ’13/’14; Gauld, Goertz, Haisch ’13; Buras

et al. ’13/’14; WA, Gori, Pospelov, Yavin ’14; Glashow,

Guadagnoli, Lane ’14; Crivellin, D’Ambrosio, Heeck ’14/’15;

Niehoff, Stangl, Straub ’15; Aristizabal Sierra, Staub,

Vicente ’15; Boucenna, Valle, Vicente ’15; ...)

alternative option: lepto-quarks

(Hiller, Schmaltz ’14; Gripaios, Nardecchia, Renner ’14;

Buras et al. ’14; Becirevic, Fajfer, Kosnik ’15; ...)
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Wolfgang Altmannshofer (PI) State of NP in Rare B Decays April 9, 2015 12 / 21
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Figure 1: Diagram contributing to b ! sµµ

3.1.1 Semileptonic four-fermion operators

The process b ! s``, important for the LHCb B meson anomalies, is induced at loop

level by the diagram in Fig. 13. The SU(2)L structure of the NP-induced semileptonic

four-fermion interaction can be derived from the discussion in Appendix A, using the

lagrangian (Eqn. A.6) written explicitly in terms of SU(2)L components. The resulting

e↵ective NP lagrangian is

Leff � K(xq, x`)

M2
 

↵q⇤
i ↵q

j↵
`⇤
m↵`

n

64⇡2

⇣
Q

i
L�

µQj
L

⌘ �
L
m
L �µL

n
L

�
+

5

9

⇣
Q

i
L�

µ~⌧Qj
L

⌘
·
�
L
m
L �µ~⌧L

n
L

��
,

(3.1)

with xq ⌘
M2

q

M2
 
and x` ⌘ M2

`
M2
 
. The loop function K(xq, x`) can be obtained by the following

definitions;

K(x) ⌘ 1� x+ x2 log x

(x� 1)2
,

K(x, y) ⌘ K(x)�K(y)

x� y
.

The e↵ective hamiltonian relevant to b ! s`` transitions is

He↵ = �4GFp
2

(V ⇤
tsVtb)

X

i

C`
i (µ)O`

i (µ) , (3.2)

where O`
i are a basis of SU(3)C⇥U(1)Q-invariant dimension-six operators giving rise to the

flavour-changing transition. The superscript ` denotes the lepton flavour in the final state

(` 2 {e, µ, ⌧}), and the important operators for our process, O`
i , are given in a standard

basis by

O`(0)
9 =

↵em

4⇡

�
s̄�↵PL(R)b

�
(¯̀�↵`) , (3.3)

O`(0)
10 =

↵em

4⇡

�
s̄�↵PL(R)b

�
(¯̀�↵�5`).

3There are also Z and photon penguin diagrams which contribute, with a NP loop connecting the quarks

and joining to the leptons via a Z/� propagator. These penguin diagrams are discussed in Appendix B and

are found to be very suppressed relative to both the SM contribution and the diagram in Fig. 1, and hence

are neglected here.
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• Unitarity (an axiom of QFT)

beyond quantum field theory arguments. Finally, some aspects of partial wave unitarity for the
di-photon excess which partially overlap with our work have already been discussed in [16–18],
however with a di↵erent focus with respect to our analysis.

The rest of the paper is structured as follows: Sect. 2 contains a brief recap of partial wave
unitarity arguments, which we first apply in Sect. 3 to the EFT case where the di-photon
resonance itself is the only new degree of freedom beyond the SM. In Sect. 4 we then con-
sider weakly-coupled benchmark models with either new fermionic or scalar degrees of freedom
coupling to the di-photon resonance and inducing the EFT operators in the low-energy limit.
Our main results are summarized in Sect. 5. Finally, some relevant technical details of our
computations can be found in Appendix A.

2 Brief review on partial wave unitarity

SS† = 1 (1)

hf |T |ii = (2⇡)4�(4)(Pi � Pf )Tfi(
p
s, cos ✓) , (2)

S = 1 + iT (3)

�(x, y, z) = x2 + y2 + z2 � 2xy � 2yz � 2zx (4)

Let us denote by Tfi(
p
s, cos ✓) the matrix element of a 2 ! 2 scattering amplitude in

momentum space, defined via

hf |T |ii = (2⇡)4�(4)(Pi � Pf )Tfi(
p
s, cos ✓) , (5)

where T is the interacting part of the S-matrix, S = 1+ iT . The dependence of the scattering
amplitude on cos ✓ is eliminated by projecting it onto partial waves of total angular momentum
J (see e.g. [19–21])

aJfi =
�
1/4
f (s,m2

f1,m
2

f2)�
1/4
i (s,m2

i1,m
2

i2)

32⇡s

Z
1

�1

d(cos ✓) dJµiµf
(✓) Tfi(

p
s, cos ✓) , (6)

where dJµiµf
is the J-th Wigner d-function appearing in the Jacob-Wick expansion [22], while

µi = �i1��i2 and µf = �f1��f2 are defined in terms of the helicities of the initial (�i1,�i2) and
final (�f1,�f2) states. The function �(x, y, z) = x2 + y2 + z2 � 2xy� 2yz� 2zx is a kinematical
factor related to the momentum (to the fourth power) of a given particle in the center of mass
frame. The right hand side of Eq. (5) must be further multiplied by a 1p

2

factor for any identical
pair of particles either in the initial or final state.

When restricted to a same-helicity state (zero total spin), the Wigner d-functions reduce to
the Legendre polynomials, i.e. dJ

00

= PJ . In practice, we will only focus on J = 0 (d0
00

= P
0

=
1), since higher partial waves typically give smaller amplitudes. Hence, the quantity we are
interested in is

a0fi =
�
1/4
f (s,m2

f1,m
2

f2)�
1/4
i (s,m2

i1,m
2

i2)

32⇡s

Z
1

�1

d(cos ✓) Tfi(
p
s, cos ✓) . (7)
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• For f = i (optical theorem)  

1), since higher partial waves typically give smaller amplitudes. Hence, the quantity we are
interested in is
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Z
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In the high-energy limit,
p
s ! 1, one has �

1/4
f �

1/4
i /s ! 1. The unitarity condition on the

S-matrix, SS† = 1, gives
1

2i

�
aJfi � aJ⇤if

� �
X

h

aJ⇤hfa
J
hi , (9)

where the sum over h is restricted to 2-particle states, which slightly underestimates the left
hand side. For i = f Eq. (9) reduces to

Im aJii � |aJii|2 . (10)

Hence, aJii must lie inside the circle in the Argand plane defined by (cf. also Fig. 1)

�
Re aJii

�
2

+

✓
Im aJii �

1

2

◆
2

 1

4
, (11)

which implies

|Im aJii|  1 and |Re aJii| 
1

2
. (12)

Under the assumption that the tree-level amplitude is real, Eq. (12) suggests the following
perturbativity criterium

|Re (aJii)Born|  1

2
. (13)

In fact, a Born value of Re aJii =
1

2

and Im aJii = 0 needs at least a correction of 40% in order to
restore unitarity (cf. Fig. 1).

In reality, one expects to have issues with perturbativity even before saturating the bound
in Eq. (13), which is hence understood to be a conservative one. Stronger constraints can be
obtained by considering the full transition matrix connecting all the possible 2-particle states,
which amount to applying Eq. (13) to the highest eigenvalue of |Re (aJif )Born|.

3 E↵ective field theory of a di-photon resonance

Assuming a scalar resonance S, the observed LHC di-photon excess can be accommodated in
terms of the e↵ective Lagrangian expanded around the broken electroweak (EW) vacuum2

L
e↵

� � g2
3

2⇤g
SG2

µ⌫ �
e2

2⇤�
SF 2

µ⌫ �
X

q

yqSSqq , (14)

2The pseudo-scalar case leads to analogous conclusions as far as unitarity bounds are concerned, hence in
the following we will not consider it separately.
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whose operators give rise to the decay widths

��� ⌘ �(S ! ��) = ⇡↵2

EM

M3

S

⇤2

�

, (15)

�gg ⌘ �(S ! gg) = 8⇡↵2

s

M3

S

⇤2

g

, (16)

�qq ⌘ �(S ! qq) =
3

8⇡
y2qSMS

✓
1� 4m2

q

M2

S

◆
3/2

. (17)

In the narrow width approximation the prompt S production at the LHC can also be fully
parametrized in terms of the relevant decay widths

�(pp ! S) =
1

MSs

"
X

P

CPP�PP

#
, (18)

where
p
s is the LHC pp collision energy and CPP parametrize the relevant parton luminosities

(their values for
p
s = 8 TeV and 13 TeV LHC can be found e.g. in [9]). Accommodating both

8 TeV and 13 TeV LHC data singles out heavy quark annihilation (P = s, c, b) or gluon fusion
(P = g) as the preferred S production modes [23]. In the following we consider in turn either
gg and �� induced processes or alternatively bb and �� rates. The remaining possibilities lie
in between these two limiting cases considering the values of relevant parton luminosities [9].
In the former case the 13 TeV cross-section �(pp ! S ! ��) = �(pp ! S)B�� ' 6 fb3 is
reproduced by

���

MS

�gg

MS
' 8.1⇥ 10�7

�S

MS
, (19)

3This best fit value corresponds to an assumed resonance width of �S/MS ' 0.06. In the narrow resonance
limit the current data imply a somewhat small signal of �(pp ! S ! ��) ' 3 fb.
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• In practical perturbative calculations S-matrix unitarity is always approximate

- perturbative expansion breaks down for 

Perturbative unitarity



What is the scale of New Physics?
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• In the EFT 2-to-2 scatterings of fermions grows with energy 

where MSU(2)C
denotes the matrix element in Eq. (49) stripped from the SU(2)L structure and

we also used the Fierz identity (�A)ab(�
A)cd = 2�ad�cb � �ab�cd.

Hence, by considering the singlet channel in color space and the adjoint channel in SU(2)L
space, we gain respectively a factor of

p
3 and 2 in the partial-wave eigenvalue. Including the

latter factors we finally obtain

a

0

=

p
3

8⇡

s

⇤2

QL

. (57)

From Eq. (21) it then follows the unitarity bound
p
s < ⇤U , where

⇤U =

s
4⇡p
3
|⇤QL| . (58)

B Comments

• Bound at the level of ⇤O,
p
2 stronger than ⇤A
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 tree-level unitarity criterium |a0| < 1/2

• No-lose theorem, completely model independent 

1

Λ2
=

g2

M2
?

• Energy, coupling, 
mass ambiguity

√
sRD

< 9.2 TeV ,
√
sRK

< 84 TeV

• Previous bound quite conservative, typically scattering of the third family are enhanced…

[Di Luzio, Nardecchia
1706.01868]
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Hint 1:  “vertical” structure.  These operators could be generate by the same SU(2)xU(1) structure:

the discussion su�ciently general under the main hypothesis of NP coupled predominantly to
third-generation left-handed quarks and leptons.

More explicitly, our working hypotheses to determine the initial conditions of the EFT, at a
scale ⇤ above the electroweak scale, are the following:

1. only four-fermion operators built in terms of left-handed quarks and leptons have non-
vanishing Wilson coe�cients;

2. the flavour structure is determined by the U(2)q ⇥ U(2)` flavour symmetry, minimally
broken by two spurions Vq ⇠ (2,1) and V` ⇠ (1,2);

3. operators containing flavour-blind contractions of the light fields have vanishing Wilson
coe�cients.

We first discuss the consequences of these hypotheses on the structure of the relevant e↵ective
operators and then proceed analysing the experimental constraints on their couplings.

2.1 The e↵ective Lagrangian

According to the first hypothesis listed above, we consider the following e↵ective Lagrangian at
a scale ⇤ above the electroweak scale

L
e↵

= L
SM

� 1

v2
�q
ij�

`
↵�

h

CT (Q̄i
L�µ�

aQj
L)(L̄

↵
L�

µ�aL�
L) + CS (Q̄i

L�µQ
j
L)(L̄

↵
L�

µL�
L)
i

, (1)

where v ⇡ 246GeV. For simplicity, the definition of the EFT cuto↵ scale and the normalisation
of the two operators is reabsorbed in the flavour-blind adimensional coe�cients CS and CT .

The flavour structure in Eq. (1) is contained in the Hermitian matrices �q
ij , �

`
↵� and follows

from the assumed U(2)q ⇥ U(2)` flavour symmetry and its breaking. The flavour symmetry
is defined as follows: the first two generations of left-handed quarks and leptons transform as
doublets under the corresponding U(2) groups, while the third generation and all the right-
handed fermions are singlets. Motivated by the observed pattern of the quark Yukawa couplings
(both mass eigenvalues and mixing matrix), it is further assumed that the leading breaking
terms of this flavour symmetry are two spurion doublets, Vq and V`, that give rise to the mixing
between the third generation and the other two [31,32]. The normalisation of Vq is conventionally
chosen to be Vq ⌘ (V ⇤

td, V
⇤
ts), where Vji denote the elements of the Cabibbo-Kobayashi-Maskawa

(CKM) matrix. In the lepton sector we assume V` ⌘ (0, V ⇤
⌧µ) with |V⌧µ| ⌧ 1. We adopt as

reference flavour basis the down-type quark and charged-lepton mass eigenstate basis, where
the SU(2)L structure of the left-handed fields is

Qi
L =

✓

V ⇤
jiu

j
L

diL

◆

, L↵
L =

✓

⌫↵L
`↵L

◆

. (2)

A detailed discussion about the most general flavour structure of the semi-leptonic operators
compatible with the U(2)q⇥U(2)` flavour symmetry and the assumed symmetry-breaking terms
is presented in Appendix A. The main points can be summarised as follows:

5

Hint 2:  “horizontal” structure.  NP structure seems linked somehow to the SM Yukawa structure

|λℓ
ττ | ≫ |λℓ

µµ|
ΛRD ≪ ΛRK

Hint of an approximate flavour symmetry

U(2)q × U(2)ℓ

[See also
1412.5472,
1505.05164]

[1105.2296,
1512.01560
1702.07238]
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Figure 1: Diagramatic representation of s�channel (left-
hand side) and t�channel (right-hand side) resonance ex-
hange (drawn in blue double see-saw lines) contributions to
bb̄ ! ⌧+⌧� process.

III. MODELS

The di↵erent chiral structures being probed by R(D(⇤))
single out a handful of simplified single mediator mod-
els [22]. In the following we consider the representative
cases, where we extend the SM by a single field trans-
forming non-trivially under the SM gauge group.

Color singlet Color triplet

Scalar 2HDM Scalar LQ

Vector W 0 Vector LQ

Table I: A set of simplified models generating b ! c⌧⌫ tran-
sition at tree level, classified according to the mediator spin
and color.

First categorization of single mediators is by color.
While colorless intermediate states can only contribute
to b ! c⌧⌫ transitions in the s ⌘ (pb�pc)2-channel, col-
ored ones can be exchanged in the t ⌘ (pb � p⌧ )2- or
u ⌘ (pb � p⌫)2-channels. The colorless fields thus need
to appear in non-trivial SU(2)L multiplets (doublets or
triplets) where the charged state mediating semileptonic
charged currents is accompanied by one or more neu-
tral states mediating neutral currents. Such models thus
predict ŝ ⌘ (p⌧+ + p⌧�)2-channel resonances in ⌧+⌧�

production (see the left-hand side diagram in Fig. 1). In
addition to the relevant heavy quark and tau-lepton cou-
plings, searches based on the on-shell production of these
resonances depend crucially on the assumed width of the
resonance, as we demonstrate below in Sec. IV. Alter-
natively, colored mediators (leptoquarks) can be SU(2)L
singlets, doublets or triplets, carrying baryon and lep-
ton numbers. Consequently they will again mediate
⌧+⌧� production, this time through t̂ ⌘ (pb � p⌧�)2- or
û ⌘ (pb�p⌧+)2-channel exchange (see the right-hand side
diagram in Fig. 1). In this case a resonant enhancement
of the high-pT signal is absent, however, the searches do
not (crucially) depend on the assumed width (or equiva-
lently possible other decay channels) of the mediators. In
the following we examine the representative models for
both cases summarized in Table I.

A. Vector triplet

A color-neutral real SU(2)L triplet of massive vectors
W 0a ⇠ W 0±, Z 0 can be coupled to the SM fermions via

LW 0 = �1

4
W 0aµ⌫W 0a

µ⌫ +
M2

W 0

2
W 0aµW 0a

µ + W 0a
µ Jaµ

W 0 ,

Jaµ
W 0 ⌘ �q

ijQ̄i�
µ�aQj + �`

ijL̄i�
µ�aLj . (4)

Since the largest e↵ects should involve B-mesons and tau

leptons we assume �
q(`)
ij ' gb(⌧)�i3�j3, consistent with an

U(2) flavor symmetry [15]. Departures from this limit
in the quark sector are constrained by low energy flavor
data, including meson mixing, rare B decays, LFU and
LFV in ⌧ decays and neutrino physics, a detail analysis of
which has been performed in Ref. [15].2 The main impli-
cation is that the LHC phenomenology of heavy vectors
is predominantly determined by their couplings to the
third generation fermions (gb and g⌧ ). The main con-
straint on gb comes from its contribution to CP violation
in D0 mixing yielding gb/MW 0 < 2.2 TeV�1 [25]. On the
other hand lepton flavor mixing e↵ects induced by finite
neutrino masses can be neglected and thus a single lepton
flavor combination written above su�ces without loss of
generality.

In addition, electroweak precision data require W 0 and
Z 0 components of W 0a to be degenerate up to O(%) [26],
with two important implications: (1) it allows to cor-
relate NP in charged currents at low energies and neu-
tral resonance searches at high-pT ; (2) the robust LEP
bounds on pair production of charged bosons decaying to
⌧⌫ final states [27] can be used to constrain the Z 0 mass
from below MZ0 ' MW 0 & 100 GeV. Finally, W 0a cou-

pling to the Higgs current (W 0
aH

†�a
$
Dµ H) needs to be

suppressed [15], and thus irrelevant for the phenomeno-
logical discussions at LHC.

Integrating out heavy W 0a at tree level, generates the
four-fermion operator,

Le↵

W 0 = � 1

2M2

W 0
Jaµ
W 0J

aµ
W 0 , (5)

and after expanding SU(2)L indices,

Le↵
W 0 � �

�q
ij�

`
kl

M2
W 0

(Q̄i�µ�
aQj)(L̄k�

µ�aLl)

� �
gbg⌧

M2
W 0

�
2Vcbc̄L�

µbL⌧̄L�µ⌫L + b̄L�
µbL⌧̄L�µ⌧L

�
. (6)

The resolution of the R(D(⇤)) anomaly requires cQQLL ⌘
�gbg⌧/M

2

W 0 ' �(2.1 ± 0.5) TeV�2, leading at the same

2 Also, Ref. [24] considers leading RGE e↵ects to correlate large
NP contributions in cQQLL with observable LFU violations and
FCNCs in the charged lepton sector. The resulting bounds can
be (partially) relaxed in this model via direct tree level W 0 con-
tributions to the purely leptonic observables.

[Faroughy,Greljo,Kamenik,
1609.07138]

2) Radiative contraints 

[Feruglio, Paradisi, Pattori,
1606.00524,1705.00929]

Purely leptonic effective Lagrangian

•
Quantum effects generate a purely leptonic effective Lagrangian:
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Figure: Diagram generating
a four-lepton process.

• Top-quark yukawa interactions affect both neutral and charged currents.
• Gauge interactions are proportional to e

2 and to the e.m. current.
Paride Paradisi (University of Padova) On the Importance of EW Corrections for B Anomalies Instant work. on B meson anomalies 10 / 15

Q3 Q3

⌧ ⌫⌧

µ ⌫µ

(QL�
µQL)(LL�µLL) ! (LL�

µLL)(LL�µLL)

δgZτL , δg
Z
ντ
, δgWτ ,B(τ → 3µ)

3) FCNC with neutrinos.

B(B → K(∗)νν) ≈ B(B → K(∗)ντντ ) ≫ B(B → K(∗)νν)SM

B(B → K(∗)νν)

B(B → K(∗)νν)SM
! 4



EFT result

Observable Experimental bound Linearised expression

R⌧`
D(⇤) 1.237± 0.053 1 + 2CT (1� �q

sbV
⇤
tb/V

⇤
ts)(1� �`

µµ/2)

�Cµ
9

= ��Cµ
10

�0.61± 0.12 [36] � ⇡
↵emVtbV

⇤
ts
�`
µµ�

q
sb(CT + CS)

Rµe
b!c � 1 0.00± 0.02 2CT (1� �q

sbV
⇤
tb/V

⇤
ts)�

`
µµ

BK(⇤)⌫⌫̄
0.0± 2.6 1 + 2

3

⇡
↵emVtbV

⇤
tsC

SM
⌫

(CT � CS)�
q
sb(1 + �`

µµ)

�gZ⌧L
�0.0002± 0.0006 0.033CT � 0.043CS

�gZ⌫⌧ �0.0040± 0.0021 �0.033CT � 0.043CS

|gW⌧ /gW` | 1.00097± 0.00098 1� 0.084CT

B(⌧ ! 3µ) (0.0± 0.6)⇥ 10�8 2.5⇥ 10�4(CS � CT )2(�`
⌧µ)

2

Table 1: Observables entering in the fit, together with the associated experimental bounds
(assuming the uncertainties follow the Gaussian distribution) and their linearised expressions in
terms of the EFT parameters. The full expressions used in the fit can be found in Appendix B.

1. The factorised flavour structure in Eq. (1) is not the most general one; however, it is general
enough given that the available data are sensitive only to the flavour-breaking couplings
�q
sb and �`

µµ (and, to a minor extent, also to �`
⌧µ). By construction, �q

bb = �`
⌧⌧ = 1.

2. The choice of basis in Eq. (2) to define the U(2)q ⇥U(2)` singlets (i.e. to define the “third
generation” dominantly coupled to NP) is arbitrary. This ambiguity reflects itself in the
values of �q

sb, �
`
µµ, and �`

⌧µ, that, in absence of a specific basis alignment, are expected to
be

�q
sb = O(|Vcb|) , �`

⌧µ = O(|V⌧µ|) , �`
µµ = O(|V⌧µ|2) . (3)

3. A particularly restrictive scenario, that can be implemented both in the case of LQ or
colour-less mediators, is the so-called pure-mixing scenario, i.e. the hypothesis that there
exists a flavour basis where the NP interaction is completely aligned along the flavour
singlets. For both mediators, in this specific limit one arrives to the prediction �`

µµ > 0.

In order to reduce the number of free parameters, in Eq. (1) we assume the same flavour
structure for the two operators. This condition is realised in specific simplified models, but it
does not hold in general. The consequences of relaxing this assumption are discussed in Section 3
in the context of specific examples. Finally, motivated by the absence of deviations from the SM
in CP-violating observables, we assume all the complex phases, except the CKM phase contained
in the Vq spurion, to vanish (as shown in Appendix A, this implies �q

bs = �q
sb and �`

⌧µ = �`
µ⌧ ).

2.2 Fit of the semi-leptonic operators

To quantify how well the proposed framework can accommodate the observed anomalies, we
perform a fit to low-energy data with four free parameters: CT , CS , �

q
sb, and �`

µµ, while for

simplicity we set �`
⌧µ = 0.1 The set of experimental measurements entering the fit, together

1We explicitly verified that a nonzero �⌧µ has no impact on the fit results.
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the discussion su�ciently general under the main hypothesis of NP coupled predominantly to
third-generation left-handed quarks and leptons.

More explicitly, our working hypotheses to determine the initial conditions of the EFT, at a
scale ⇤ above the electroweak scale, are the following:

1. only four-fermion operators built in terms of left-handed quarks and leptons have non-
vanishing Wilson coe�cients;

2. the flavour structure is determined by the U(2)q ⇥ U(2)` flavour symmetry, minimally
broken by two spurions Vq ⇠ (2,1) and V` ⇠ (1,2);

3. operators containing flavour-blind contractions of the light fields have vanishing Wilson
coe�cients.

We first discuss the consequences of these hypotheses on the structure of the relevant e↵ective
operators and then proceed analysing the experimental constraints on their couplings.

2.1 The e↵ective Lagrangian

According to the first hypothesis listed above, we consider the following e↵ective Lagrangian at
a scale ⇤ above the electroweak scale

L
e↵

= L
SM

� 1

v2
�q
ij�

`
↵�

h

CT (Q̄i
L�µ�

aQj
L)(L̄

↵
L�

µ�aL�
L) + CS (Q̄i

L�µQ
j
L)(L̄

↵
L�

µL�
L)
i

, (1)

where v ⇡ 246GeV. For simplicity, the definition of the EFT cuto↵ scale and the normalisation
of the two operators is reabsorbed in the flavour-blind adimensional coe�cients CS and CT .

The flavour structure in Eq. (1) is contained in the Hermitian matrices �q
ij , �

`
↵� and follows

from the assumed U(2)q ⇥ U(2)` flavour symmetry and its breaking. The flavour symmetry
is defined as follows: the first two generations of left-handed quarks and leptons transform as
doublets under the corresponding U(2) groups, while the third generation and all the right-
handed fermions are singlets. Motivated by the observed pattern of the quark Yukawa couplings
(both mass eigenvalues and mixing matrix), it is further assumed that the leading breaking
terms of this flavour symmetry are two spurion doublets, Vq and V`, that give rise to the mixing
between the third generation and the other two [31,32]. The normalisation of Vq is conventionally
chosen to be Vq ⌘ (V ⇤

td, V
⇤
ts), where Vji denote the elements of the Cabibbo-Kobayashi-Maskawa

(CKM) matrix. In the lepton sector we assume V` ⌘ (0, V ⇤
⌧µ) with |V⌧µ| ⌧ 1. We adopt as

reference flavour basis the down-type quark and charged-lepton mass eigenstate basis, where
the SU(2)L structure of the left-handed fields is

Qi
L =

✓

V ⇤
jiu

j
L

diL

◆

, L↵
L =

✓

⌫↵L
`↵L

◆

. (2)

A detailed discussion about the most general flavour structure of the semi-leptonic operators
compatible with the U(2)q⇥U(2)` flavour symmetry and the assumed symmetry-breaking terms
is presented in Appendix A. The main points can be summarised as follows:
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λq
bb = λℓ

ττ = 1

4 parameters fit:  

CS , CT ,λ
q
bs,λ

ℓ
µµEFT-type considerations [The global fit]

Excellent fit to both anomalies, passing all existing constraints with no fine tuning 
[key features compared to prev. analyses: singlet & triplet ops. + flavor symmetry  
+ O(Vcb) misalignment to b-quark mass basis + deviation from pure-mixing]

G. Isidori –  On the breaking of LFU in B decays                                                CERN, July 2017 

1) Combined explanation in the EFT is 
viable
 
2) Singlet/triplet analysis clear guideline 
for models (see next)

3) U(2) flavour structure is rather good

λq
bs = O(Vcb)

λq
bs ≈ 5Vcb

th. expectation  

preferred from fit 



Simplified models
Which is the right mediator?
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Table 3 Overview of simplified models which can possibly contribute
to RD(∗) or RK (∗) via a singlet/triplet left-handed operator. Only for spe-
cific values of the ratio of the Wilson coefficients c1/c3 (obtained by

integrating out a given mediator) the dangerous di → d jνν̄ operators
are not generated (U1 case)

Simplified model Spin SM irrep c1/c3 RD(∗) RK (∗) No di → d jνν̄

Z ′ 1 (1, 1, 0) ∞ × ! ×
V ′ 1 (1, 3, 0) 0 ! ! ×
S1 0 (3̄, 1, 1/3) −1 ! × ×
S3 0 (3̄, 3, 1/3) 3 ! ! ×
U1 1 (3, 1, 2/3) 1 ! ! !
U3 1 (3, 3, 2/3) −3 ! ! ×

mediators and, in turn, translate them into an upper bound
on the mass of the new states (once the ratio coupling/mass
is fixed in terms of the fit to the relevant observable). As
two representative classes of simplified models, we consider
colourless spin-1 mediators and scalar/vector leptoquarks.

However, some comments are in order about the phe-
nomenological viability of the simplified models. The cri-
terium that we are going to follow in order to select the
suitable representations for the new mediators is that after
integrating them out they are able to generate triplet and sin-
glet left-handed operator, namely those associated with the
coefficients "QL(3) and "QL(1) in Eq. (20). In all the cases
that we are going to consider the phenomenologically dis-
favoured right-handed and scalar/tensor operator of Eq. (20)
can be set to zero by a proper choice of the mediator’s cou-
pling. Given these conditions, the full set of simplified models
is displayed in Table 3.

From the SU (2)L decomposition (neglecting flavour
indices and reinserting the Wilson coefficients explicitly)

c1

"2 (Q̄LγµQL )(L̄ LγµLL )+
c3

"2 (Q̄Lγµσ AQL )(L̄ Lγµσ ALL )

= c1 + c3

"2

[(
d̄LγµdL )(ēLγµeL

)
+

(
ūLγµuL )(ν̄LγµνL

)]

+ c1 − c3

"2

[(
d̄LγµdL )(ν̄LγµνL

)
+

(
ūLγµuL )(ēLγµeL

)]

+ 2
c3

"2

[(
ūLγµdL )(ēLγµνL

)
+

(
d̄LγµuL )(ν̄LγµeL

)]
,

(21)

it is evident that for c1/c3 = −1 there are no b → sµµ̄ tran-
sitions. Similarly, for c1/c3 = 1 processes of the type di →
d jνν̄ are absent. The latter are particularly dangerous, since
decays like B → K (∗)νν̄ or K → πνν̄ are very constraining
[34,35]. From this point of view U1 is phenomenologically
favoured, since it automatically ensures the absence of di →
d jνν̄ operators at the scale of the threshold.5 For an incom-
plete list of references addressing both RD(∗) and RK (∗) with
this leptoquark see [37–39]. Other phenomenological issues

5 This can also be achieved in non-minimal scenarios with two lepto-
quarks via a proper cancellation [36].

that have to be taken into account when considering a sim-
plified model are electroweak precision tests and the radia-
tive generation of LFU breaking effects in Z and τ decays
[40,41]. In order to avoid those bounds one has to assume
either a certain level of tuning within the couplings of the sim-
plified model or rely on some non-generic features of the UV
completion of the simplified model. For an example of a lep-
toquark model where all these bounds have been consistently
addressed see e.g. [42]. Finally, one has to consider direct
searches that we briefly address in Sect. 6.3. Our results on
the unitarity bounds for colourless vectors and leptoquarks,
which are summarized in Tables 4 and 5, provide an extra con-
straint which has to be satisfied within perturbative models.

6.1 Colourless vectors

Let us first consider the case of a real electroweak vector,
V ′
µ ∼ (1, 3, 0), which couples to the SM fermions via

LV ′ ⊃ λ
Q
i j Q̄iγ

µσ AQ j V ′A
µ + λL

i j L̄ iγ
µσ AL j V ′A

µ + h.c.

(22)

At energies
√
s ≫ MV ′ the partial-wave scattering matrix in

the (Q j Q̄i , Ll L̄k) basis is given by6

a0 = 1
8π

(
3|λQ

i j |2
√

3λ
Q
i j (λ

L
kl)

∗
√

3(λQ
i j )

∗λL
kl |λL

kl |2

)

, (23)

where we also took into account the SU (3)C × SU (2)L mul-
tiplicity factors. The formalism for extracting the correlation
in the gauge group space follows very closely the sample cal-
culation of the scattering with the effective triplet operator,
which is detailed in Appendix A. The largest eigenvalue of
Eq. (23) is

6 An extra channel with V ′V ′ in the initial/final state opens up at ener-
gies

√
s > 2MV ′ . By neglecting such contribution, the unitarity bound

obtained by considering the reduced partial-wave matrix conservatively
applies (cf. the discussion at the end of Sect. 4).

123

the discussion su�ciently general under the main hypothesis of NP coupled predominantly to
third-generation left-handed quarks and leptons.

More explicitly, our working hypotheses to determine the initial conditions of the EFT, at a
scale ⇤ above the electroweak scale, are the following:

1. only four-fermion operators built in terms of left-handed quarks and leptons have non-
vanishing Wilson coe�cients;

2. the flavour structure is determined by the U(2)q ⇥ U(2)` flavour symmetry, minimally
broken by two spurions Vq ⇠ (2,1) and V` ⇠ (1,2);

3. operators containing flavour-blind contractions of the light fields have vanishing Wilson
coe�cients.

We first discuss the consequences of these hypotheses on the structure of the relevant e↵ective
operators and then proceed analysing the experimental constraints on their couplings.

2.1 The e↵ective Lagrangian

According to the first hypothesis listed above, we consider the following e↵ective Lagrangian at
a scale ⇤ above the electroweak scale

L
e↵

= L
SM

� 1

v2
�q
ij�

`
↵�

h

CT (Q̄i
L�µ�

aQj
L)(L̄

↵
L�

µ�aL�
L) + CS (Q̄i

L�µQ
j
L)(L̄

↵
L�

µL�
L)
i

, (1)

where v ⇡ 246GeV. For simplicity, the definition of the EFT cuto↵ scale and the normalisation
of the two operators is reabsorbed in the flavour-blind adimensional coe�cients CS and CT .

The flavour structure in Eq. (1) is contained in the Hermitian matrices �q
ij , �

`
↵� and follows

from the assumed U(2)q ⇥ U(2)` flavour symmetry and its breaking. The flavour symmetry
is defined as follows: the first two generations of left-handed quarks and leptons transform as
doublets under the corresponding U(2) groups, while the third generation and all the right-
handed fermions are singlets. Motivated by the observed pattern of the quark Yukawa couplings
(both mass eigenvalues and mixing matrix), it is further assumed that the leading breaking
terms of this flavour symmetry are two spurion doublets, Vq and V`, that give rise to the mixing
between the third generation and the other two [31,32]. The normalisation of Vq is conventionally
chosen to be Vq ⌘ (V ⇤

td, V
⇤
ts), where Vji denote the elements of the Cabibbo-Kobayashi-Maskawa

(CKM) matrix. In the lepton sector we assume V` ⌘ (0, V ⇤
⌧µ) with |V⌧µ| ⌧ 1. We adopt as

reference flavour basis the down-type quark and charged-lepton mass eigenstate basis, where
the SU(2)L structure of the left-handed fields is

Qi
L =

✓

V ⇤
jiu

j
L

diL

◆

, L↵
L =

✓

⌫↵L
`↵L

◆

. (2)

A detailed discussion about the most general flavour structure of the semi-leptonic operators
compatible with the U(2)q⇥U(2)` flavour symmetry and the assumed symmetry-breaking terms
is presented in Appendix A. The main points can be summarised as follows:

5

Simplified dynamical models

Three main options:
(barring terms with RH currents that,

so far, seems to be disfavored by data)

       SU(2)L

    singlet    triplet

Vector LQ: U1 U3

Scalar LQ: S1 S3

Colorless vector: B' W'

G. Isidori –  On the breaking of LFU in B decays                                                CERN, July 2017 

While the EFT is useful to derive relation among low-energy observables, 
simplified dynamical models with explicit mediators are particularly useful to 

reduce the number of free parameters (not always...)
check the consistency with high-energy data (that is quite relevant...)
identify possible UV completions   

- A clear winner!
 
- Combinations of different mediators are 
possible (S1+S3) or (Z’+W’), however some 
tunings/adjustments are required 

- Next task: find a UV model….

Uµ = (3, 1, 2/3)

Models with Flavor Changing Z 0 Bosons

µ+

µ−

bL

sL

Z ′

Z 0 models:

(WA, Straub ’13/’14; Gauld, Goertz, Haisch ’13; Buras

et al. ’13/’14; WA, Gori, Pospelov, Yavin ’14; Glashow,

Guadagnoli, Lane ’14; Crivellin, D’Ambrosio, Heeck ’14/’15;

Niehoff, Stangl, Straub ’15; Aristizabal Sierra, Staub,

Vicente ’15; Boucenna, Valle, Vicente ’15; ...)

alternative option: lepto-quarks

(Hiller, Schmaltz ’14; Gripaios, Nardecchia, Renner ’14;

Buras et al. ’14; Becirevic, Fajfer, Kosnik ’15; ...)

bla

CNP
9 =

�bs
L �µµ

V
VtbV ⇤

ts

v2

M2
Z 0

4⇡2

e2 '
�bs

L �µµ
V

VtbV ⇤
ts

(5 TeV)2

M2
Z 0
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The Composite Leptoquark
[Barbieri, Isidori, Pattori, Senia 1512.01560
Barbieri, Murphy, Senia 1611.0493]• Ambitious idea: leptoquark and Higgs composite

Ô

g⇢, m⇢

Uµ, H
Strong 
sector

Elementary 
sectorf ⇠ SM

✏Ôf

• Postulate a dynamics such that, Higgs is a Goldstone boson and U vector resonance

G

H
=

SU(4)× SO(5)× U(1)X
SU(4)× SO(4)× U(1)X

SU(4) ⊃ SU(3)C

+) Address the naturalness problem: Higgs composite and light because of its 
pNGB nature

+) SM flavour structure as well as BSM effects are dictated by the mechanism of 
partial compositeness 
 
-) U has to be light, this brings down the whole spectrum (issues with direct 
searches as well as EWPT)

-) Intrinsically non-renomarlizable, important effects can only be guessed by NDA, 
basically all questions are postponed to a complete UV realisation

%
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The UV Completion Challenge
Is it possible to find a weakly coupled and renomarlizable model to 

explain the whole set of the flavour anomalies?
[with A. Greljo and L. Di Luzio 1708.08450]

1)  How to get the right mediator? 

A tale divided in various chapters

Uµ = (3, 1, 2/3)

2)  How to get the right interactions? (Coupling to quark and lepton doublets)

3)  How to pass low energy constraints? (How to find other indirect effects?)

4)  How to escape the direct searches? (How to discover new states @ high pT?)

5)  Discussion



1) How to get the right mediator?

Spin one particle

Composite dynamics

Gauge boson

⇠ ⇢µ

⇠ Wµ

⇡L

Composite⇡L

Elementary

• In all cases symmetry breaking G/H leads to extra states

hHi 6= 0

[previous case]

[this talk]

[non-trivial 
coset? pNGB?]

• Quantum numbers of the leptoquark known, easiest option: Pati-Salam

GPS = SU(4)PS ⇥ SU(2)L ⇥ SU(2)R GPS ! GSM

SU(4)PS � SU(3)C ⇥ U(1)X
G/H � Uµ(3, 1, 2/3)

• Matter field 

(4, 2, 1)

 i
L =

✓
Qi

L
Li
L

◆
 i

R =

✓
Qi

R
Li
R

◆
=

✓
ui
R diR

⌫iR `iR

◆

(4, 1, 2)

Y = X + T3R

bL `+L

sL

`�L

⇧



Pati-Salam: the problem
• The problem: simultaneous presence of both left- and right-handed current breaking lepton 

chirality + large coupling to first family

March 20, 2012 1:18 WSPC/INSTRUCTION FILE
KuznMikhSerg˙IJMPA˙corr

10 A.V. Kuznetsov, N.V. Mikheev, A.V. Serghienko

Table 1. Constraints on the leptoquark masses and on the elements of the mixing matrices from
experimental data on rare π and K decays and on µe conversion on nuclei.

Experimental limit Ref. Bound

Γ
(

π+ → e+νe
)

Γ
(

π+ → µ+νµ
) = (1.2310 ± 0.0037) × 10−4 32–34 MX

|Re(DedU∗
eu)|

1/2 > 210 TeV

Γ
(

K+ → e+νe
)

Γ
(

K+ → µ+νµ
) = (2.493 ± 0.031) × 10−5 35 MX

|Re(DesU∗
eu)|

1/2 > 150 TeV

Br(K+ → π+µ+e−) < 1.3× 10−11 36 MX

|DedDµs|1/2
> 240 TeV

Br(K+ → π+µ−e+) < 5.2× 10−10 37 MX

|DesDµd|1/2
> 100 TeV

Br(K0
L → µ+µ−) = (6.84 ± 0.11) × 10−9 38, 39 MX

|Re(DµdD∗
µs)|

1/2 > 1100 TeV

Br(K0
L → e±µ∓) < 4.7× 10−12 40 MX

|DedD
∗
µs +DesD∗

µd|
1/2 > 2100 TeV

Br(K0
L → e+e−) =

(

9+6
−4

)

× 10−12 41 MX

|Re(DedD∗
es)|

1/2 > 2400 TeV

σ
(

µ−Au → e−Au
)

σ
(

µ−Au → capture
) < 0.7× 10−12 42 MX

|DedDµd|1/2
> 1000 TeV

where q is the 4-momentum of the lepton pair, and f0
+,− are the known form factors

of the K0
ℓ3 decay. The amplitude of the decay K+ → π+µ−e+ is obtained from (23)

by means of the substitution e ↔ µ. The resulting constraints on the leptoquark
mass involve the same elements as those present in (20), but they appear separately:

MX > (240 TeV) |DedDµs|1/2 ,

MX > (100 TeV) |DesDµd|1/2 .
(24)

4.4. µe Conversion on a Nucleus

This is one more low-energy process, which can proceed through leptoquarks. Co-
herent µe conversion, which leaves the nucleus in the ground state and which leads
to the production of monoenergetic electrons with highest possible energy ≃ mµ, is
most convenient for observation. The effective Lagrangian of the coherent µe con-
version involves only scalar and vector quark currents. In the model under study, it
has the form

∆Lµe = −2παS (MX)

M2
X

DedD∗
µd

[

1

2
(ēγαµ)

(

d̄γαd
)

− (ēµ)
(

d̄d
)

Q (µ)

]

. (25)
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s̄

d

µ+

e−

X

d̄

s

µ+

e−

X

Fig. 3. Feynman diagrams for the K0
L(ds̄+ sd̄) → e−µ+ decay forbidden in the standard model,

via the leptoquark exchange.

4.2. Rare K0
L
-Meson Decays

The amplitude of the process K0
L → e−µ+ forbidden in the standard model, is

calculated in the similar way as the amplitude (13), see Fig. 3. The result is

MX
Keµ =

√
2παS (MX) fKm2

KQ

M2
X (ms +md)

(

DedD∗
µs +DesD∗

µd

)

(ēγ5µ) , (19)

where fK ≃ 160 MeV is the constant of the Klν decay. We find that the use of the
available experimental data40 in our scheme leads to the constraint

MX > (2100 TeV)
∣

∣DedD∗
µs +DesD∗

µd

∣

∣

1/2
. (20)

Experimental values38 of Br
(

K0
L → µ+µ−) closely approach the unitary

limit Brabs = 6.8 × 10−9. Therefore, the effective leptoquark contribution to
Br

(

K0
L → µ+µ−) is unlikely to exceed 1 × 10−10. The amplitude of the process

is obtained from (19) by making the substitution e → µ. We finally obtain

MX > (1100 TeV)
∣

∣Re
(

DµdD∗
µs

)∣

∣

1/2
. (21)

The amplitude of one more rare K0
L decay, into an electron and a positron

through an intermediate leptoquark, can also be obtained from (19) by means of
the substitution µ → e. Experimental values41 of Br

(

K0
L → e+e−

)

closely approach
the unitary limit Brabs = 9×10−12. Therefore, the effective leptoquark contribution
to Br

(

K0
L → e+e−

)

is unlikely to exceed 5 × 10−12. In this case, the constraint on
the leptoquark mass is

MX > (2400 TeV) |Re (DedD∗
es)|

1/2 . (22)

4.3. Rare K+ Decays

Among rare K+ decays, that can occur at the tree level in the model under study,
K+ → π+µ+e− 36 and K+ → π+µ−e+ 37 yield the most stringent constraints.
The amplitude of the decay K+ → π+µ+e− can be represented in the form

MX
Kπµe = −2παS (MX)

M2
X

f0
+

(

q2
) (

m2
K −m2

π

)

+ f0
−
(

q2
)

q2

ms −md
QDedD∗

µs (ēµ) , (23)

MU & 100 TeV

MU . 2 TeV
(from the anomalies)

Ded

Dsµ

• Some wishful thinking in: 

Assad, Fornal, Grinstein [1708.06350], D matrices are unitary
Calibbi, Crivellin, Li [1709.00692], non-trivial matter embedding, D are not unitary

• Our strategy: find a model where the leptoquark couples only to left-handed doublets 
with reduced coupling to the first generation

- unsuppressed (strong) coupling of the Z’ with first family of quarks (Drell-Yann)

- good luck!



2) How to get the right interactions?
• We need two ingredients: an enlarged gauge structure and extra matter fields

G = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)0

GSM = SU(3)C ⇥ SU(2)L ⇥ U(1)Y

h⌦3i, h⌦1i

SU(3)C = [SU(3)4 ⇥ SU(3)0]diag

2

(e.g. if dR ⇢ 6 of SU(4)PS). This, however, would
still not be enough for RD(⇤) , due to the presence of
a light Z 0 from SU(4)PS ! SU(3)c breaking with
unsuppressed O(gs) couplings to SM fermions [47].

A crucial ingredient to circumvent the previous
issues was recently proposed in Ref. [48] in the con-
text of a “partial unification” model in which the
color and hypercharge factors of the SM are em-
bedded into a SU(3 + N) ⇥ SU(3)0 ⇥ U(1)0 group.
The latter resembles the embedding of color as the
diagonal subgroup of two SU(3) factors, as origi-
nally proposed in [49–51]. For N = 1 one can
basically obtain a massive leptoquark Uµ which
does not couple to SM fermions, if the latter are
SU(3+N) singlets. A coupling of Uµ to left-handed
SM fermions can still be generated via the mixing
with a vector-like fermion transforming non-trivially
under SU(4)0⇥SU(2)L, as recently suggested in Ap-
pendix C of Ref. [52]. The latter model example,
formulated in the context of leptoquark LHC phe-
nomenology, is the starting point of our construc-
tion. We go a step beyond and implement the nec-
essary flavour structure to fit the B-anomalies, while
keeping the model phenomenologically viable.

Gauge leptoquark model. Let us consider the
gauge group G ⌘ SU(4)⇥SU(3)0⇥SU(2)L⇥U(1)0,
and denote respectively by H↵

µ , G
0a
µ ,W i

µ, B
0
µ the

gauge fields, g
4

, g
3

, g
2

, g
1

the gauge couplings and
T↵, T a, T i, Y 0 the generators, with indices running
over ↵ = 1, . . . , 15, a = 1, . . . , 8 and i = 1, 2, 3. The
normalization of the generators in the fundamental
representation is fixed by TrT↵T � = 1

2

�↵� , etc. The
color and hypercharge factors of the SM gauge group
G

SM

⌘ SU(3)c ⇥ SU(2)L ⇥U(1)Y are embedded in
the following way: SU(3)c = (SU(3)

4

⇥ SU(3)0)
diag

and U(1)Y = (U(1)
4

⇥ U(1)0)
diag

, where SU(3)
4

⇥
U(1)

4

⇢ SU(4). In particular, Y =
q

2

3

T 15 + Y 0,

with T 15 = 1

2

p
6

diag(1, 1, 1,�3).

The spontaneous breaking G ! G
SM

happens via
the scalar representations ⌦

3

=
�
4, 3, 1, 1/6

�
and

⌦
1

=
�
4, 1, 1,�1/2

�
, which can be represented re-

spectively as a 4 ⇥ 3 matrix and a 4-vector trans-
forming as ⌦

3

! U⇤
4

⌦
3

UT
3

0 and ⌦
1

! U⇤
4

⌦
1

under
SU(4) ⇥ SU(3)0. By means of a suitable scalar po-
tential it is possible to achieve the following vacuum
expectation value (vev) configurations [53]

h⌦
3

i =

0

BBB@

v3p
2

0 0

0 v3p
2

0

0 0 v3p
2

0 0 0

1

CCCA
, h⌦

1

i =

0

BB@

0
0
0
v1p
2

1

CCA , (1)

ensuring the proper G ! G
SM

breaking. Un-
der G

SM

the scalar representations decompose as
⌦

3

= (8, 1, 0) � (1, 1, 0) � (3, 1, 2/3) and ⌦
1

=
(3, 1,�2/3) � (1, 1, 0). After removing the linear
combinations corresponding to the would-be Gold-
stone bosons, the scalar spectrum features a real

color octet, two real and one pseudo-real SM sin-
glets, a complex scalar transforming as (3, 1, 2/3).
The final breaking of G

SM

is obtained via the Higgs
doublet field residing intoH = (1, 1, 2, 1/2) of G and
acquiring a vev hHi = 1p

2

v, with v = 246 GeV.

The gauge boson spectrum comprises three mas-
sive vector states belonging to the G/G

SM

coset and
transforming as U = (3, 1, 2/3), g0 = (8, 1, 0) and
Z 0 = (1, 1, 0) under G

SM

. From the scalar kinetic
terms one obtains [52, 53]

MU = 1

2

g
4

q
v2
1

+ v2
3

, (2)

Mg0 = 1p
2

q
g2
4

+ g2
3

v
3

, (3)

MZ0 = 1

2

q
3

2

q
g2
4

+ 2

3

g2
1

q
v2
1

+ 1

3

v2
3

. (4)

Expressed in terms of the original gauge fields of the
group G, the massive gauge bosons read

U1,2,3
µ =

1p
2

�
H9,11,13

µ � iH10,12,14
µ

�
, (5)

g0aµ =
g
4

Ha
µ � g

3

G0a
µp

g2
4

+ g2
3

, Z 0
µ =

g
4

H15

µ �
q

2

3

g
1

B0
µ

q
g2
4

+ 2

3

g2
1

,

while the orthogonal combinations correspond to the
massless SU(3)c⇥U(1)Y degrees of freedom of G

SM

prior to electroweak symmetry breaking

gaµ =
g
3

Ha
µ + g

4

G0a
µp

g2
4

+ g2
3

, Bµ =

q
2

3

g
1

H15

µ + g
4

B0
µ

q
g2
4

+ 2

3

g2
1

.

The matching with the SM gauge couplings reads

gs =
g
4

g
3p

g2
4

+ g2
3

, gY =
g
4

g
1q

g2
4

+ 2

3

g2
1

, (6)

where gs = 1.02 and gY = 0.363 are the values
evolved within the SM up to the matching scale
µ = 2 TeV. Since g

3,4 > gs and g
4,1 > gY , one has

g
4,3 � g

1

. A typical benchmark is g
4

= 3, g
3

= 1.08
and g

1

= 0.365.
The would-be SM fermion fields (when neglecting

the mixing discussed below), are charged under the
SU(3)0⇥SU(2)L⇥U(1)0 subgroup, but are singlets
of SU(4). Let us denote them as: q0L = (1, 3, 2, 1/6),
u0
R = (1, 3, 1, 2/3), d0R = (1, 3, 1,�1/3), `0L =

(1, 1, 2,�1/2), and e0R = (1, 1, 1,�1). These rep-
resentations come in three copies of flavour. Being
singlets of SU(4), they do not couple with the vector
leptoquark field directly. To induce the required in-
teraction, we add vector-like heavy fermions trans-
forming non-trivially only under SU(4) ⇥ SU(2)L
subgroup. In particular,  L,R = (Q0

L,R, L
0
L,R)

T =
(4, 1, 2, 0), where Q0 and L0 are decompositions un-
der SU(3)

4

⇥ U(1)
4

⇢ SU(4). In order to address
the B-physics anomalies, at least two copies of these
representations are required. When fermion mixing

1)  A leptoquark 

2)  A coloron

3)  A gauge singlet

New states from the breaking:

2

(e.g. if dR ⇢ 6 of SU(4)PS). This, however, would
still not be enough for RD(⇤) , due to the presence of
a light Z 0 from SU(4)PS ! SU(3)c breaking with
unsuppressed O(gs) couplings to SM fermions [47].

A crucial ingredient to circumvent the previous
issues was recently proposed in Ref. [48] in the con-
text of a “partial unification” model in which the
color and hypercharge factors of the SM are em-
bedded into a SU(3 + N) ⇥ SU(3)0 ⇥ U(1)0 group.
The latter resembles the embedding of color as the
diagonal subgroup of two SU(3) factors, as origi-
nally proposed in [49–51]. For N = 1 one can
basically obtain a massive leptoquark Uµ which
does not couple to SM fermions, if the latter are
SU(3+N) singlets. A coupling of Uµ to left-handed
SM fermions can still be generated via the mixing
with a vector-like fermion transforming non-trivially
under SU(4)0⇥SU(2)L, as recently suggested in Ap-
pendix C of Ref. [52]. The latter model example,
formulated in the context of leptoquark LHC phe-
nomenology, is the starting point of our construc-
tion. We go a step beyond and implement the nec-
essary flavour structure to fit the B-anomalies, while
keeping the model phenomenologically viable.

Gauge leptoquark model. Let us consider the
gauge group G ⌘ SU(4)⇥SU(3)0⇥SU(2)L⇥U(1)0,
and denote respectively by H↵
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µ, B
0
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gauge fields, g
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, g
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, g
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, g
1

the gauge couplings and
T↵, T a, T i, Y 0 the generators, with indices running
over ↵ = 1, . . . , 15, a = 1, . . . , 8 and i = 1, 2, 3. The
normalization of the generators in the fundamental
representation is fixed by TrT↵T � = 1

2

�↵� , etc. The
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⌘ SU(3)c ⇥ SU(2)L ⇥U(1)Y are embedded in
the following way: SU(3)c = (SU(3)
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The spontaneous breaking G ! G
SM

happens via
the scalar representations ⌦
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=
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4, 3, 1, 1/6
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and

⌦
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=
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, which can be represented re-
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forming as ⌦
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0 and ⌦
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under
SU(4) ⇥ SU(3)0. By means of a suitable scalar po-
tential it is possible to achieve the following vacuum
expectation value (vev) configurations [53]
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breaking. Un-
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=
(3, 1,�2/3) � (1, 1, 0). After removing the linear
combinations corresponding to the would-be Gold-
stone bosons, the scalar spectrum features a real

color octet, two real and one pseudo-real SM sin-
glets, a complex scalar transforming as (3, 1, 2/3).
The final breaking of G

SM

is obtained via the Higgs
doublet field residing intoH = (1, 1, 2, 1/2) of G and
acquiring a vev hHi = 1p

2

v, with v = 246 GeV.

The gauge boson spectrum comprises three mas-
sive vector states belonging to the G/G

SM

coset and
transforming as U = (3, 1, 2/3), g0 = (8, 1, 0) and
Z 0 = (1, 1, 0) under G

SM

. From the scalar kinetic
terms one obtains [52, 53]
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Expressed in terms of the original gauge fields of the
group G, the massive gauge bosons read
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while the orthogonal combinations correspond to the
massless SU(3)c⇥U(1)Y degrees of freedom of G
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where gs = 1.02 and gY = 0.363 are the values
evolved within the SM up to the matching scale
µ = 2 TeV. Since g

3,4 > gs and g
4,1 > gY , one has

g
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. A typical benchmark is g
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= 3, g
3

= 1.08
and g
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= 0.365.
The would-be SM fermion fields (when neglecting

the mixing discussed below), are charged under the
SU(3)0⇥SU(2)L⇥U(1)0 subgroup, but are singlets
of SU(4). Let us denote them as: q0L = (1, 3, 2, 1/6),
u0
R = (1, 3, 1, 2/3), d0R = (1, 3, 1,�1/3), `0L =

(1, 1, 2,�1/2), and e0R = (1, 1, 1,�1). These rep-
resentations come in three copies of flavour. Being
singlets of SU(4), they do not couple with the vector
leptoquark field directly. To induce the required in-
teraction, we add vector-like heavy fermions trans-
forming non-trivially only under SU(4) ⇥ SU(2)L
subgroup. In particular,  L,R = (Q0

L,R, L
0
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T =
(4, 1, 2, 0), where Q0 and L0 are decompositions un-
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=
(3, 1,�2/3) � (1, 1, 0). After removing the linear
combinations corresponding to the would-be Gold-
stone bosons, the scalar spectrum features a real

color octet, two real and one pseudo-real SM sin-
glets, a complex scalar transforming as (3, 1, 2/3).
The final breaking of G

SM

is obtained via the Higgs
doublet field residing intoH = (1, 1, 2, 1/2) of G and
acquiring a vev hHi = 1p
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v, with v = 246 GeV.

The gauge boson spectrum comprises three mas-
sive vector states belonging to the G/G

SM

coset and
transforming as U = (3, 1, 2/3), g0 = (8, 1, 0) and
Z 0 = (1, 1, 0) under G
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. From the scalar kinetic
terms one obtains [52, 53]
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while the orthogonal combinations correspond to the
massless SU(3)c⇥U(1)Y degrees of freedom of G
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prior to electroweak symmetry breaking
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where gs = 1.02 and gY = 0.363 are the values
evolved within the SM up to the matching scale
µ = 2 TeV. Since g
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4,1 > gY , one has
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1

. A typical benchmark is g
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= 3, g
3

= 1.08
and g
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The would-be SM fermion fields (when neglecting

the mixing discussed below), are charged under the
SU(3)0⇥SU(2)L⇥U(1)0 subgroup, but are singlets
of SU(4). Let us denote them as: q0L = (1, 3, 2, 1/6),
u0
R = (1, 3, 1, 2/3), d0R = (1, 3, 1,�1/3), `0L =

(1, 1, 2,�1/2), and e0R = (1, 1, 1,�1). These rep-
resentations come in three copies of flavour. Being
singlets of SU(4), they do not couple with the vector
leptoquark field directly. To induce the required in-
teraction, we add vector-like heavy fermions trans-
forming non-trivially only under SU(4) ⇥ SU(2)L
subgroup. In particular,  L,R = (Q0
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L,R)

T =
(4, 1, 2, 0), where Q0 and L0 are decompositions un-
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⇢ SU(4). In order to address
the B-physics anomalies, at least two copies of these
representations are required. When fermion mixing
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• Field content

3

is introduced (cf. Eq. (9)) leptoquark couplings to
SM fermions are generated. These are by construc-
tion mainly left-handed. The field content of the
model is summarized in Table I.

Field SU(4) SU(3)0 SU(2)L U(1)0 U(1)B0 U(1)L0

q0iL 1 3 2 1/6 1/3 0
u0i
R 1 3 1 2/3 1/3 0

d0iR 1 3 1 �1/3 1/3 0
`0iL 1 1 2 �1/2 0 1
e0iR 1 1 1 �1 0 1
 i

L 4 1 2 0 1/4 1/4
 i

R 4 1 2 0 1/4 1/4
H 1 1 2 1/2 0 0
⌦3 4 3 1 1/6 1/12 �1/4
⌦1 4 1 1 �1/2 �1/4 3/4

TABLE I. Field content of the model. The index i =
1, 2, 3 runs over flavours, while U(1)B0 and U(1)L0 are
accidental global symmetries (see text for further clari-
fications).

The full Lagrangian [54] is invariant under the
accidental global symmetries U(1)B0 and U(1)L0 ,
whose action on the matter fields is displayed in
the last two columns of Table I. The vevs of ⌦

3

and ⌦
1

break spontaneously both the gauge and the
global symmetries, leaving unbroken two new global

U(1)’s: B = B0+ 1p
6

T 15 and L = L0�
q

3

2

T 15, which

for SM particles correspond respectively to ordinary
baryon and lepton number. These symmetries pro-
tect proton stability, make neutrinos massless [55],
and prevent the appearance of massless states re-
lated to the spontaneous breaking of U(1)B0 and
U(1)L0 .

The fermions’ kinetic term leads to the following
left-handed interactions
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and right-handed interactions
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Flavour structure. The Yukawa Lagrangian is

LY � �q0L Yd Hd0R � q0L Yu H̃u0
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H⇤. Also, Yd, Yu, and Ye are 3 ⇥ 3
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is the number of  fields.
In absence of the Yukawa Lagrangian the global

flavour symmetry of the model is U(3)q0 ⇥U(3)u0 ⇥
U(3)d0 ⇥U(3)`0 ⇥U(3)e0 ⇥U(n

 

)
 L ⇥U(n

 

)
 R . Us-

ing the flavour group, one can without loss of gener-
ality start with a basis in which: M = Mdiag ⌘
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d , and Ye = Y diag
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These are 3+n
 

dimensional square matrices which
can be diagonalised by unitary rotations U(3+n

 

).
For example, Me = UeLMdiag

e U†
eR , where the mass

eigenstate,  eL ⌘ (eL, µL, ⌧L, E
1

L, ..., E
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L )T , are

given by  eL = U†
eL 

0
eL , and similarly for the right-

handed components.
The vector boson interactions with fermions in the

mass basis are obtained after applying these unitary
rotations to Eqs. (7)–(8). Our goal is to get the right
structure of the vector leptoquark couplings for B-
physics anomalies as in Ref. [14], while suppressing
at the same time tree-level FCNC in the quark sector
mediated by the g0 and Z 0 exchange. In this respect,
we identify two interesting scenarios:
• (n

 

= 3): In order to avoid tree-level g0 and Z 0

mediated FCNC in both up- and down-quarks, one
can impose the complete flavour alignment condi-
tion �ijq / M ij . However, this setup predicts large
couplings to valence quarks and is challenged by di-
rect searches at the LHC.
• (n

 

= 2): Here we minimally introduce two ex-
tra vector-like fermion representations  . The pat-
tern of flavour matrices �q and �` is such that no
mixing with the first, small mixing with the sec-
ond, and large mixing with the third generation is
obtained. In addition, there is a flavour alignment
of the matrix M with the quark mixing matrix �q.
More precisely, in the basis of Eq. (10)

�q =

0

@
0 0
�sq 0
0 �bq

1

A , (11)

with
���sq

�� ⌧ ���bq
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setup are: i) the absence of tree-level FCNC in the
down-quark sector due to the g0 and Z 0 exchange,
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Yukawa sector and the anomalies
• The Yukawa sector
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is introduced (cf. Eq. (9)) leptoquark couplings to
SM fermions are generated. These are by construc-
tion mainly left-handed. The field content of the
model is summarized in Table I.

Field SU(4) SU(3)0 SU(2)L U(1)0 U(1)B0 U(1)L0

q0iL 1 3 2 1/6 1/3 0
u0i
R 1 3 1 2/3 1/3 0
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`0iL 1 1 2 �1/2 0 1
e0iR 1 1 1 �1 0 1
 i

L 4 1 2 0 1/4 1/4
 i

R 4 1 2 0 1/4 1/4
H 1 1 2 1/2 0 0
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⌦1 4 1 1 �1/2 �1/4 3/4

TABLE I. Field content of the model. The index i =
1, 2, 3 runs over flavours, while U(1)B0 and U(1)L0 are
accidental global symmetries (see text for further clari-
fications).
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0
L Ye He0R (9)
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T
3

 R � `
0
L �` ⌦

T
1

 R � L M  R + h.c. ,

where H̃ = i�
2

H⇤. Also, Yd, Yu, and Ye are 3 ⇥ 3
flavour matrices, �q and �` are 3 ⇥ n

 

, while M is
n
 

⇥n
 

matrix where n
 

is the number of  fields.
In absence of the Yukawa Lagrangian the global

flavour symmetry of the model is U(3)q0 ⇥U(3)u0 ⇥
U(3)d0 ⇥U(3)`0 ⇥U(3)e0 ⇥U(n

 

)
 L ⇥U(n

 

)
 R . Us-

ing the flavour group, one can without loss of gener-
ality start with a basis in which: M = Mdiag ⌘
diag (M

1

, ...,Mn ), Yd = Y diag

d , and Ye = Y diag

e

are diagonal matrices with non-negative real entries,
while Yu = V †Y diag

u , where V is a unitary matrix.
After spontaneous symmetry breaking, the

fermion mass matrices in this (interaction) basis are

Md =
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Y diag
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2
�q

0 Mdiag

!
, Me =

 
vp
2
Y diag
e

v1p
2
�`

0 Mdiag

!
,

Mu =

 
vp
2
V †Y diag

u
v3p
2
�q

0 Mdiag

!
, M⌫ =

 
0 v1p

2
�`

0 Mdiag

!
.

(10)

These are 3+n
 

dimensional square matrices which
can be diagonalised by unitary rotations U(3+n

 

).
For example, Me = UeLMdiag

e U†
eR , where the mass

eigenstate,  eL ⌘ (eL, µL, ⌧L, E
1

L, ..., E
n 
L )T , are

given by  eL = U†
eL 

0
eL , and similarly for the right-

handed components.
The vector boson interactions with fermions in the

mass basis are obtained after applying these unitary
rotations to Eqs. (7)–(8). Our goal is to get the right
structure of the vector leptoquark couplings for B-
physics anomalies as in Ref. [14], while suppressing
at the same time tree-level FCNC in the quark sector
mediated by the g0 and Z 0 exchange. In this respect,
we identify two interesting scenarios:

• (n
 

= 3): In order to avoid tree-level g0 and Z 0

mediated FCNC in both up- and down-quarks, one
can impose the complete flavour alignment condi-
tion �ijq / M ij . However, this setup predicts large
couplings to valence quarks and is challenged by di-
rect searches at the LHC.

• (n
 

= 2): Here we minimally introduce two ex-
tra vector-like fermion representations  . The pat-
tern of flavour matrices �q and �` is such that no
mixing with the first, small mixing with the sec-
ond, and large mixing with the third generation is
obtained. In addition, there is a flavour alignment
of the matrix M with the quark mixing matrix �q.
More precisely, in the basis of Eq. (10)
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@
0 0
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0 �bq
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A , (11)

with
���sq

�� ⌧ ���bq
��. The main implications of this

setup are: i) the absence of tree-level FCNC in the
down-quark sector due to the g0 and Z 0 exchange,

3

is introduced (cf. Eq. (9)) leptoquark couplings to
SM fermions are generated. These are by construc-
tion mainly left-handed. The field content of the
model is summarized in Table I.

Field SU(4) SU(3)0 SU(2)L U(1)0 U(1)B0 U(1)L0

q0iL 1 3 2 1/6 1/3 0
u0i
R 1 3 1 2/3 1/3 0

d0iR 1 3 1 �1/3 1/3 0
`0iL 1 1 2 �1/2 0 1
e0iR 1 1 1 �1 0 1
 i

L 4 1 2 0 1/4 1/4
 i

R 4 1 2 0 1/4 1/4
H 1 1 2 1/2 0 0
⌦3 4 3 1 1/6 1/12 �1/4
⌦1 4 1 1 �1/2 �1/4 3/4

TABLE I. Field content of the model. The index i =
1, 2, 3 runs over flavours, while U(1)B0 and U(1)L0 are
accidental global symmetries (see text for further clari-
fications).

The full Lagrangian [54] is invariant under the
accidental global symmetries U(1)B0 and U(1)L0 ,
whose action on the matter fields is displayed in
the last two columns of Table I. The vevs of ⌦
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and ⌦
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break spontaneously both the gauge and the
global symmetries, leaving unbroken two new global

U(1)’s: B = B0+ 1p
6

T 15 and L = L0�
q
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2

T 15, which

for SM particles correspond respectively to ordinary
baryon and lepton number. These symmetries pro-
tect proton stability, make neutrinos massless [55],
and prevent the appearance of massless states re-
lated to the spontaneous breaking of U(1)B0 and
U(1)L0 .

The fermions’ kinetic term leads to the following
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, while M is
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is the number of  fields.
In absence of the Yukawa Lagrangian the global
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ing the flavour group, one can without loss of gener-
ality start with a basis in which: M = Mdiag ⌘
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1

, ...,Mn ), Yd = Y diag

d , and Ye = Y diag

e

are diagonal matrices with non-negative real entries,
while Yu = V †Y diag

u , where V is a unitary matrix.
After spontaneous symmetry breaking, the

fermion mass matrices in this (interaction) basis are
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These are 3+n
 

dimensional square matrices which
can be diagonalised by unitary rotations U(3+n

 

).
For example, Me = UeLMdiag

e U†
eR , where the mass

eigenstate,  eL ⌘ (eL, µL, ⌧L, E
1

L, ..., E
n 
L )T , are

given by  eL = U†
eL 

0
eL , and similarly for the right-

handed components.
The vector boson interactions with fermions in the

mass basis are obtained after applying these unitary
rotations to Eqs. (7)–(8). Our goal is to get the right
structure of the vector leptoquark couplings for B-
physics anomalies as in Ref. [14], while suppressing
at the same time tree-level FCNC in the quark sector
mediated by the g0 and Z 0 exchange. In this respect,
we identify two interesting scenarios:

• (n
 

= 3): In order to avoid tree-level g0 and Z 0

mediated FCNC in both up- and down-quarks, one
can impose the complete flavour alignment condi-
tion �ijq / M ij . However, this setup predicts large
couplings to valence quarks and is challenged by di-
rect searches at the LHC.

• (n
 

= 2): Here we minimally introduce two ex-
tra vector-like fermion representations  . The pat-
tern of flavour matrices �q and �` is such that no
mixing with the first, small mixing with the sec-
ond, and large mixing with the third generation is
obtained. In addition, there is a flavour alignment
of the matrix M with the quark mixing matrix �q.
More precisely, in the basis of Eq. (10)

�q =
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0 �bq
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with
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�� ⌧ ���bq
��. The main implications of this

setup are: i) the absence of tree-level FCNC in the
down-quark sector due to the g0 and Z 0 exchange,
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3) Low energy constraints
• The Yukawa sector

3

is introduced (cf. Eq. (9)) leptoquark couplings to
SM fermions are generated. These are by construc-
tion mainly left-handed. The field content of the
model is summarized in Table I.

Field SU(4) SU(3)0 SU(2)L U(1)0 U(1)B0 U(1)L0

q0iL 1 3 2 1/6 1/3 0
u0i
R 1 3 1 2/3 1/3 0

d0iR 1 3 1 �1/3 1/3 0
`0iL 1 1 2 �1/2 0 1
e0iR 1 1 1 �1 0 1
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L 4 1 2 0 1/4 1/4
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R 4 1 2 0 1/4 1/4
H 1 1 2 1/2 0 0
⌦3 4 3 1 1/6 1/12 �1/4
⌦1 4 1 1 �1/2 �1/4 3/4

TABLE I. Field content of the model. The index i =
1, 2, 3 runs over flavours, while U(1)B0 and U(1)L0 are
accidental global symmetries (see text for further clari-
fications).

The full Lagrangian [54] is invariant under the
accidental global symmetries U(1)B0 and U(1)L0 ,
whose action on the matter fields is displayed in
the last two columns of Table I. The vevs of ⌦
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and ⌦
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break spontaneously both the gauge and the
global symmetries, leaving unbroken two new global

U(1)’s: B = B0+ 1p
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T 15 and L = L0�
q
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T 15, which

for SM particles correspond respectively to ordinary
baryon and lepton number. These symmetries pro-
tect proton stability, make neutrinos massless [55],
and prevent the appearance of massless states re-
lated to the spontaneous breaking of U(1)B0 and
U(1)L0 .

The fermions’ kinetic term leads to the following
left-handed interactions
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Flavour structure. The Yukawa Lagrangian is

LY � �q0L Yd Hd0R � q0L Yu H̃u0
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0
L Ye He0R (9)
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H⇤. Also, Yd, Yu, and Ye are 3 ⇥ 3
flavour matrices, �q and �` are 3 ⇥ n

 

, while M is
n
 

⇥n
 

matrix where n
 

is the number of  fields.
In absence of the Yukawa Lagrangian the global

flavour symmetry of the model is U(3)q0 ⇥U(3)u0 ⇥
U(3)d0 ⇥U(3)`0 ⇥U(3)e0 ⇥U(n
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ing the flavour group, one can without loss of gener-
ality start with a basis in which: M = Mdiag ⌘
diag (M
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, ...,Mn ), Yd = Y diag

d , and Ye = Y diag

e

are diagonal matrices with non-negative real entries,
while Yu = V †Y diag

u , where V is a unitary matrix.
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These are 3+n
 

dimensional square matrices which
can be diagonalised by unitary rotations U(3+n

 

).
For example, Me = UeLMdiag

e U†
eR , where the mass

eigenstate,  eL ⌘ (eL, µL, ⌧L, E
1

L, ..., E
n 
L )T , are

given by  eL = U†
eL 

0
eL , and similarly for the right-

handed components.
The vector boson interactions with fermions in the

mass basis are obtained after applying these unitary
rotations to Eqs. (7)–(8). Our goal is to get the right
structure of the vector leptoquark couplings for B-
physics anomalies as in Ref. [14], while suppressing
at the same time tree-level FCNC in the quark sector
mediated by the g0 and Z 0 exchange. In this respect,
we identify two interesting scenarios:

• (n
 

= 3): In order to avoid tree-level g0 and Z 0

mediated FCNC in both up- and down-quarks, one
can impose the complete flavour alignment condi-
tion �ijq / M ij . However, this setup predicts large
couplings to valence quarks and is challenged by di-
rect searches at the LHC.

• (n
 

= 2): Here we minimally introduce two ex-
tra vector-like fermion representations  . The pat-
tern of flavour matrices �q and �` is such that no
mixing with the first, small mixing with the sec-
ond, and large mixing with the third generation is
obtained. In addition, there is a flavour alignment
of the matrix M with the quark mixing matrix �q.
More precisely, in the basis of Eq. (10)

�q =

0

@
0 0
�sq 0
0 �bq

1

A , (11)

with
���sq

�� ⌧ ���bq
��. The main implications of this

setup are: i) the absence of tree-level FCNC in the
down-quark sector due to the g0 and Z 0 exchange,

• The extra gauge bosons contributes to FCNC and CPV in the quark sector
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for the other gauge bosons (because EW singlets).  [1706.07808]

• Purely leptonic processes induced by the Z’ at the tree level are under 
control
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A working benchmark point
• A working benchmark point

• Conceptually important, we can compute!
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Figure 1. Allowed parameter spaces for the Vector-triplet ~U (left, R~U = 4g2~UM
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) from R⌧/l

D(⇤) (at 1� (2�) darker (lighter) green
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4 Loop e↵ects

Several processes exist which do not take place in the leptoquark models under consideration
at tree level, but appear only at the one loop level. A relevant example, as already noticed,
is the b ! s⌫⌫̄ amplitude in the SU(2)-singlet vector leptoquark model 1 of Section 1. Since
several of these processes can give significant constraints, a one loop calculation is necessary,
especially, but not only, when there are quadratically divergent contributions.
For the Lagrangian that describes the free propagation of the leptoquark Uµ and its inter-

actions with the SM gauge bosons we take

LU = �1

2
U †
µ⌫U

µ⌫ +M2

UU
†
µUµ + Lan (4.1)

where

Uµ⌫ = D⌫Uµ �D⌫Uµ Dµ ⌘ @µ � igs
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2
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2

3
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2

3
kY U

†
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µ⌫ (4.3)

with obvious meaning of the symbols. LU is gauge invariant under the SM group for any
value of ks and kY . The overall interaction Lagrangian of the leptoquark with the Bµ field
is therefore
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h
(@↵U

†
� � @�U

†
↵)B

↵U� � (@↵U� � @�U↵)B
↵U�+ � kY U

†
µU⌫@µB⌫ + kY UµU

†
⌫@µB⌫

i

(4.4)
As a non trivial check of our calculations it will be useful to notice that, for kY = 1 and
2/3g0 = g, eq. (4.4) becomes the triple vertex among the W bosons in the SM with the
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Several processes exist which do not take place in the leptoquark models under consideration
at tree level, but appear only at the one loop level. A relevant example, as already noticed,
is the b ! s⌫⌫̄ amplitude in the SU(2)-singlet vector leptoquark model 1 of Section 1. Since
several of these processes can give significant constraints, a one loop calculation is necessary,
especially, but not only, when there are quadratically divergent contributions.
For the Lagrangian that describes the free propagation of the leptoquark Uµ and its inter-

actions with the SM gauge bosons we take

LU = �1
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4) Direct Searches (gauge boson)
• Leptoquark, pair production by QCD interactions, decay into 

third family fixed by the anomaly:
E

1.9 TeV

1.7 TeV

1.5 TeV

1.3 TeV

740 GeV

mg0

mU

mZ0 mL⌧

mB/T

mC/S ,mLµ

(
U ! b⌧+, BR =50 %

U ! t⌫, BR =50 %

(CMS search for spin-0 1703.03995)
(recast for spin-1 in 1706.01868)
(see also 1706.05033)

mU > 1.3 TeV leptoquark mass sets the overall scale

• Z’,  dangerous Drell-Yann processes suppressed because coupling 
to the first family is reduced due to small U(1)’ coupling. 

• g’,  coupling to the first family given by the SU(3)’ factor
resonant dijets search particularly sensitive (ATLAS 1703.09127)

⇠ gs/g4

• However bump searches loose in sensitivity when the width-to-mass ratio is too large, 
in our case the decay width is naturally large because of the decay into heavy quarks

�

m
. 15% from exp. analysis

�g0

mg0
= 28% our benchmark

Minimal number of free parameters (3) → very good fit of both RK* 

and RD + all radiative constraints, without any tuning

   

I. Vector LQ [U1] 

G. Isidori –  On the breaking of LFU in B decays                                                CERN, July 2017 

Buttazzo, Greljo, GI, Marzocca, '17

Simplified dynamical models 

b

b

τ

τ

b

τ

b

τ



4) Direct Searches (fermions+scalars)
E

1.9 TeV

1.7 TeV

1.5 TeV

1.3 TeV

740 GeV

mg0

mU

mZ0 mL⌧

mB/T

mC/S ,mLµ

• Top-bottom partners, a physics case well know motivated by 
scenario such as the composite Higgs. Dedicated searches 
combining different channels.

(ATLAS 1707.03347)
(CMS in 1708.01062)

mT/B & 900 GeV

• g’ assisted production does not dominate over QCD

• Charm-strange partners, background are larger due to jets in 
final state

• Leptonic partners,  production cross section suppressed

(discussed in 1407.4466)

• Heavy Scalars, these set includes a color octet, a color triplet and 3 SM fields. 
Phenomenology depends on the detail of the scalar potential, however they do 
not pose particular phenomenological issue.



5) Discussion
• A good fit can be obtained, however a large gauge coupling is required             g4 ' 3

Is our model calculable? Let us compare some criteria

1) Rate of change of the coupling            |�g4/g4| < 1 ! g4 . 4

2) Unitarity of the 2 to 2 scattering             |a0| < 1/2 ! g4 . 5

3) Landau poles in the UV? No, g4 is asymptotically free!             

0) Naive loop expansion            g24/(16⇡
2) < 1 ! g4 . 4⇡

• Light g’ an Z’ are clean prediction of the framework, changing the sources of gauge 
breaking does not allow for decoupling from the leptoquark mass.      

• Other aspects (to be studied in detail)    

- Full computation of observables
- More detailed direct search analysis
- Scan of the parameter space
- Unification of the gauge group
- Naturalness and the scalar sector
- Discussion of the flavour symmetry     

(in preparation with A. Greljo and L. Di Luzio)



Conclusions

• Flavour anomalies are surviving in a coherent way in both charged current (2012) and 
neutral current (2013)

• There is a physics program ongoing from LHCb: we are waiting  for run 2 results, as well 
as new measurements 

• Current anomalies in B decays have a simple and consistent interpretation at the effective 
field theory level (model independent)

• Explaining the anomalies in FCNC is relatively easy, serious challenges are posed in 
charged current. Most of the proposal are in the context of effective non-renormalizable 
model.

• I presented a weakly coupled and renomalizable model addressing the combined 
explanation of the anomalies.

�P 0
5, R(�), R(⇤), R(Ds), R(⇤c), R(⇤⇤

c),+ . . .



Lepton Flavour in the Standard Model
• Leptons appear in the Standard Model in the gauge and in the Yukawa sectors:

⇠ g �ij • Global symmetry

• Gauge interactions are Lepton Flavour Universal (LFU)

U(3)LL ⇥ U(3)ER

• Yukawa sector breaks the universality in two ways LSM � Y E
ij L

i
LE

j
R H + h.c

1) In the mass terms
2)  Higgs interactions (negligible for flavour physics)

me 6= mµ 6= m⌧

• The Standard Model is Lepton Flavour Non Universal (LFNU) but it is NOT Lepton 
Flavour Violating (LFV)

• Anomalies in flavour physics suggest a pattern similar to SM (LFNU without LFV)

• (Neutrino physics is LFV, a possible link with the anomalies?)

µ ! e�, ⌧ ! 3µ, B ! K⌧µ, . . . forbidden because of U(1)e ⇥ U(1)µ ⇥ U(1)⌧

LSM � i
⇣
L
i
L�

µDµL
i
L + E

i
R�

µDµE
i
R

⌘



Theoretical uncertainties 7

O
7

`

B K

`
`

O
9,10

O
1,2

B KB K

`
`

`̀
`

b s

�(q)

(A) (B) (C)

J/ , 0..

FIG. 2: Numerically leading contributions to the decay rate of B ! K`` in the high q2-region. (a) and (b) O
7

and O
9,10 short distance

contributions. These contributions are proportional to the local (short distance) form factors. (c) long distance charm-loop contribution which
in (naive) factorisation is proportional to the same form factor times the charm vacuum polarisation hc(q

2

). The charm bubble itself is the full
non-perturbative vacuum polarisation since it is extracted directly from the data.

Oc
1,2 which have sizeable Wilson coefficients.) In this section we employ the (naive)6 factorisation approximation (FA) for

which,

hK|C
1

Oc
1

+ C
2

Oc
2

|Bi|
FA

/ (C
1

+ C
2

/3)fB!K
+

(q2)hc(q
2

) , (13)

the matrix element factorises into the charm vacuum polarisation hc times the short distance form factor as defined in Eq. (A.7).
This contribution has got the same form factor dependence as C

9

and can therefore be absorbed into an effective Wilson coeffi-
cient Ce↵

9

(A.9) and (A.10). The combination C
1

+C
2

/3 is known as the “colour suppressed" combination of Wilson coefficients
because of a substantial cancellation of the two Wilson coefficients (c.f. appendix A 3). This point will be addressed when we
discuss the estimate of the O(↵s)-corrections.

B. SM-B ! K`` in factorisation

Our SM prediction with lattice form factors [12] (c.f. appendix A 2 for more details), for the B ! K``-rate are shown in
Fig. 3 against the LHCb data [1, 13]. It is apparent to the eye that the resonance effects, in (naive) factorisation, turn out to have
the wrong sign! Not only that but they also seem more pronounced in the data which will be reflected in the fits to be described
below.

IV. COMBINED FITS TO BESII AND LHCB DATA IN AND BEYOND FACTORISATION

Before addressing the relevant issue of corrections to the SM-FA in section V, we present a series combined fits to the BESII
and LHCb-data. We first describe the fit models before commenting on the results towards the end of the section. The number of
fit parameters and the number of d.o.f., denoted by ⌫, are given in brackets below. We take 78 BESII data points and 39 LHCb
bins, excluding the last bin which has a negative entry, amounting to a total of 117 data points.

a) Normalisation of the rate, (17 = 1⌘B + 16

res

fit-parameter ⌘B, ⌫ = 117 � 17 � 1 = 99)
In the FA the normalisation of the rate is given by the form factors f

+,T (q2). Since the latter are closely related in the
high q2-region by Isgur-Wise relation this amounts effectively to an overall normalisation. To be precise we parameterise
the pre-factor, inserted into (A.1) with ml = 0 for the sake of illustration, as follows

d�

dq2

B!K`+`�

/ ⌘B(|HV |2 + |HA|2) , (14)

where V and A refer to the lepton polarisation.

6 The term naive refers to the fact that in this approximation the scale dependence of the Wilson coefficients Ci is not compensated by the corresponding scale
dependence of the matrix elements, a point to be discussed in the forthcoming section.

 1. Form factors, however at low q^2 can use Light-Cone Sum Rules (LCSR) and at high q^2 
lattice result

 2. Contributions from hadronic weak hamiltonian (non local effects)

      

Vector amplitude: nonlocal term

three helicity states for V=K*
dilepton can have J=0 or J=1
several leptonic currents
photon couples only to vector leptonic current. At q2 = 0 photon pole

nonlocal “quark loops”                  

matrix elements of semileptonic/radiative 
Hamiltonian factorize “naively”                   
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µ
+

µ
−

?

K
∗

B
0 K

∗
B

0

lepton current                     form factor                     

B
0 K

∗

µ
−

µ
+

γZ NP

B->K*l+ l-   decay amplitude

correct to lowest order in electromagnetism      
exact in QCD (if K* width neglected, or dealing with K pi final state)       

}

7 (14) helicity amplitudes in SM (BSM)

q2 = dilepton invariant mass squared                

“Charm loop” (operators with charm)Non-factorizable charm-loop contribution

The LHS diagram and �s corrections are treated in QCDf (BFS’01)

Soft-gluon contributions: ⇥H� ⇥ 8%Ceff
7 (Khodjamirian et al.’10)

For the numerics, our NF charm-loop uncertainty is

⇥H� = (0.1 � Ceff
7 )ei�� , ⇥H+ = (0.1 � Ceff

7 � �/mb)ei�+

Recent discussion in Becirevic et al.’12

J. Martin Camalich (Brighton) B ⇤ K⇥`+`� at the low-q2 endpoint September 10, 2012 8 / 15

leading-power: factorises into 
perturbative kernels, form 
factors, LCDA’s (including 
hard/hard-collinear gluon 
corrections to all orders)

at subleading powers: 
breakdown of factorisation

some contributions have 
been estimated as end-point 
divergent convolutions with a 
cut-off

can perform light-cone OPE 
of charm loop & estimate 
resulting (nonlocal) operator 
matrix elements

effective shifts of helicity 
amplitudes as large as ~10% 

Khodjamirian et al 2010

αs0 : C7➔C7eff

           C9➔C9eff(q2)
       + 1 annihilation diagram
αs1 : (convergent) convolutions of hard- 
       scattering kernels with meson light
       cone-distribution amplitudes

state-of-the-art in phenomenology

unambigous (save for parametric uncertainties)

Beneke, Feldmann, Seidel 2001

Feldmann, Matias

Wednesday, 24 September 14
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qq̄

HV (�) / Ṽ�(q
2)C9 �V��(q

2)C 0
9 +

2mbmB

q2

⇣
T̃�(q

2)C7 � T̃��(q
2)C 0

7

⌘
�16⇡2m2

B

q2
h�(q

2)

HA(�) / Ṽ�(q
2)C10 � V��(q

2)C 0
10

1

+ strong interactions!

more properly:

often expressed in terms of transversity amplitudes,

A⇧L(R) =
1⌃
2
(H+1,L(R)+H�1,L(R)), A⌅L(R) =

1⌃
2
(H+1,L(R)�H�1,L(R)). (16)

However, we will work with helicity amplitudes throughout this paper, for reasons
to become clear below. Explicitly, we have

HV (⇥) = N
⌥
C9V ṼL⇥ + C ⇤

9V ṼR⇥ �
m2

B

q2

⇧2 m̂b

mB
(C7�T̃L⇥ + C ⇤

7�T̃R⇥)� 16⇤2h⇥

⌃�
,

(17)

HA(⇥) = N(C10AṼL⇥ + C ⇤
10AṼR⇥), (18)

HTR(⇥) = N
4 m̂b mB

mW

 
q2

CT T̃L⇥, (19)

HTL(⇥) = N
4 m̂b mB

mW

 
q2

C ⇤
T T̃R⇥, (20)

HS = �N
m̂b

mW
(CSS̃L + C ⇤

SS̃R), (21)

HP = �N
⌥ m̂b

mW
(CP S̃L + C ⇤

P S̃R)

+
2mlm̂b

q2

⇤
C10A

�
S̃L � ms

mb
S̃R

⇥
+ C ⇤

10A

�
S̃R � ms

mb
S̃L

⇥⌅�
, (22)

where

N = �4GFmB⌃
2

e2

16⇤2
⇥t

is a normalisation factor,

h⇥ ⇥ i

m2
B

�µ⇥(⇥)ahadµ (23)

contains the contribution from the hadronic hamiltonian, i.e. all non-factorizable
e�ects, and we have defined helicity form factors

�imBṼL(R)⇥(q
2) = ⇤M(⇥)|s̄�/⇥(⇥)PL(R)b|B̄⌅, (24)

m2
BT̃L(R)⇥(q

2) = �⇥µ(⇥)q⌅⇤M(⇥)|s̄⌅µ⌅PR(L)b|B̄⌅, (25)

imBS̃L(R)(q
2) = ⇤M(⇥ = 0)|s̄PR(L)b|B̄⌅. (26)

These expressions are still general enough to describe an arbitrary charmless final
state M . Concretely, for a two-spinless-meson final state, not necessarily origi-
nating from a resonance, the form factors will carry dependence on the dimeson
invariant mass k2 and its angular momentum L, in addition to the dilepton in-
variant mass q2.

8

The hadronic Hamiltonian He� requires in addition two insertions of the elec-
tromagnetic current (one hadronic and one leptonic) to mediate the semileptonic
decay,

A(had) = �i
e2

q2

⇥
d4xe�iq·x⌥ + �|jem,lept

µ (x)|0�
⇥

d4y eiq·y⌥M |jem,had,µ(y)Hhad
e� (0)|B̄�

⌅ e2

q2
Lµ
V a

had
µ ,

(11)
where jem,had,µ =

�
q eq q̄�

µq. Hence, while this contribution does not naively
factorize, it can be absorbed into aV µ in (8). Before discussing the amplitudes
in more detail, we comment on the approximations implicit in and some conse-
quences of (8), (11)

• The semileptonic weak Hamiltonian is the most general one up to dimen-
sion six and can accomodate arbitrary new physics with a heavy mass scale.
This includes all the standard scenarios, such as supersymmetry, extra di-
mensions and little Higgs. In the Standard Model, C7, C9 and C10 are
sizable, C ⇤

7 is suppressed by ms/mb, and the remaining Wilson coe⇤cients
are negligible.

• The hadronic weak Hamiltonian is the Standard Model one, neglecting the
small electroweak penguin terms. Beyond the Standard Model, there is
a large number of extra operators; however unless new physics e�ects are
dramatic their impact (through ahadµ ) will be very small and we will ignore
them below. Such scenarios are also constrained by hadronic B decay data.

• We work to leading order in the electromagnetic coupling, but all formulae
so far are exact in the strong coupling, with non-factorizable e�ects confined
to ahadµ . (COLLINEAR/SOFT PHOTON)

• The leptonic currents can be decomposed into spin-0 and spin-1 terms (Lµ
V ,

Lµ
A) or are pure spin-1 objects (Lµ

TL, L
µ
TR). It follows that the dilepton can

only be created in a spin-0 or spin-1 state. Angular momentum conservation
then implies that ⇥ is also the helicity of M , which is thus constrained to
the values ±1 or 0 even if M has spin greater than one.2

2This statement is exact, rather than a consequence of naive factorization, following from the
well-known fact that a particle’s orbital angular momentum does not contribute to its helicity.
If M is a multiparticle state, eg K�, we mean by “spin” the total angular momentum of M in
its cm frame and by “helicity” the projection of the M angular momentum onto the total M
momentum in the B̄ rest frame.
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Form factors
Helicity amplitudes naturally involve helicity form factors

- can be expressed as linear combinations of traditional “transversity” 
FFs, bringing in dependence on q^2 and meson masses - 
intransparent.
(However S is essentially A0 in the traditional nomenclature.)

- directly relevant to B->V l l including the LHCb anomaly
in particular, V-/T- determines of the zero crossing
of both AFB and of S5/P5’, as far as form factors are concerned

- helicity+ vanishes at q2=0, in particular

implying several clean null tests of the SM

difficult to calculate - lattice cannot cover small q2 (plus other issues)
best shot: light-cone sum rules with continuum subtractions

~ Bharucha/Feldmann/Wick 2010

definitions here:
SJ, Martin Camalich 2012
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The helicity amplitudes HV , HA, HP , HS are related to the “standard” helicity ampli-

tudes [18, 39] as follows,

H�L/R = i
⌥
f
1

2
(HV (⇥)⇥HA(⇥)), At = i

⌥
q2

2m⇣

⌥
f HP , AS = �i

⌥
f HS , (2.13)

where f is a normalization factor, which for M = K⇥ and the conventions of [39] is equal

to F defined in section 2.3 below. The helicity amplitudes H±1,L(R) are often expressed in

terms of transversity amplitudes,

A⌃L(R) =
1⌥
2
(H+1,L(R) +H�1,L(R)), A⇧L(R) =

1⌥
2
(H+1,L(R) �H�1,L(R)). (2.14)

However, we will work with helicity amplitudes throughout this paper, for reasons to

become clear below. Explicitly, we have

HV (⇥) = �iN

⇧
C9ṼL� + C ⌅

9ṼR� +
m2

B

q2

⇤
2 m̂b

mB
(C7T̃L� + C ⌅

7T̃R�)� 16⇤2h�

⌅⌃
, (2.15)

HA(⇥) = �iN(C10ṼL� + C ⌅
10ṼR�), (2.16)

HTR(⇥) = �iN
4 m̂bmB

mW

⌥
q2

CT T̃L�, (2.17)

HTL(⇥) = �iN
4 m̂bmB

mW

⌥
q2

C ⌅
T T̃R�, (2.18)

HS = iN
m̂b

mW
(CSS̃L + C ⌅

SS̃R), (2.19)

HP = iN

⇧
m̂b

mW
(CP S̃L + C ⌅

P S̃R)

+
2m⇣m̂b

q2

⇤
C10

�
S̃L � ms

mb
S̃R

⇥
+ C ⌅

10

�
S̃R � ms

mb
S̃L

⇥⌅⌃
, (2.20)

where

N = �4GFmB⌥
2

e2

16⇤2
⇥t

is a normalisation factor,

h� ⇤ i

m2
B

�µ⇥(⇥)ahadµ (2.21)

contains the contribution from the hadronic hamiltonian, i.e. all non-factorizable e�ects,

and we have defined helicity form factors

� imBṼL(R)�(q
2) = ⌅M(⇥)|s̄�/⇥(⇥)PL(R)b|B̄⇧, (2.22)

m2
BT̃L(R)�(q

2) = �⇥µ(⇥)q⇤⌅M(⇥)|s̄⌅µ⇤PR(L)b|B̄⇧, (2.23)

imBS̃L(R)(q
2) = ⌅M(⇥ = 0)|s̄PR(L)b|B̄⇧. (2.24)

These expressions are still general enough to describe an arbitrary charmless final state

M . Concretely, for a two-spinless-meson final state, not necessarily originating from a

resonance, the form factors will carry dependence on the dimeson invariant mass k2 and

its angular momentum L, in addition to the dilepton invariant mass q2.

– 7 –

Burdman, Hiller 2000
SJ, Martin Camalich 2012

see previous talks

(Burdman; Beneke/Feldmann/Seidel)
SJ, Martin Camalich 2012,2014, this talk and WIP
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3 Helicity amplitudes: anatomy, hierarchies, and hadronic uncertainties

The helicity amplitudes governing the observables involve form factors and the nonlocal ob-

jects h
�

, all of which carry hadronic uncertainties, limiting the sensitivity of rareB decays to

new physics. However, hadronic uncertainties can be constrained by means of the equations

of motion, the V �A structure of the weak hamiltonian, and an expansion in ⇤/m
b

(QCD

factorization). Our main point is that this results in the suppression of entire helicity am-

plitudes, including non-factorizable e↵ects, such that the discussion is indeed best framed

in terms of helicity (rather than transversity) amplitudes and helicity form factors. We first

translate what is known about the form factors to the helicity basis, including the fact that

the heavy-quark limit implies the suppression of two of them [21]. We next survey how this

bears out in various theoretical approaches to form factor determinations, concluding with

a brief argument for the suppression of the positive-helicity form factors in the framework

of light-cone sum rules, at the level of the correlation function. We then show that the

V �A structure also implies suppression of the “charm-loop” contribution to the nonlocal

positive-helicity amplitude h
+1

, building on a method introduced in [47]. In addition, we

show that the same conclusion applies to hadronic resonance models for the “light-quark”

contributions to h
�

, once known experimental facts about the helicity structure of B̄ ! V V

are incorporated (which can be theoretically understood on the same basis).

3.1 Form factors

The B̄ ! M form factors are nonperturbative objects. In the following, we restrict our-

selves to the B̄ ! V case. First-principles lattice-QCD computations are becoming avail-

able [76, 77], although they will be restricted for the foreseeable future to the region of

slow-moving V (high q2). A state-of-the-art method of obtaining form factors at low q2

is given by QCD sum rules on the light cone (see [70, 78]). This involves, unfortunately,

certain irreducible systematic uncertainties which are di�cult to quantify. Sum rules are

also useful in guiding extrapolations of high-q2 lattice-QCD results [75].

3.1.1 Theoretical constraints on form factors at low q2

The form factors fulfil two exact relations that in the helicity basis take the form

T
+

(q2 = 0) = 0, (3.1)

S(q2 = 0) = V
0

(0). (3.2)

At large recoil, i.e. small q2, one has further relations which hold up to corrections of

O(⇤/m
b

) but to all orders in ↵
s

. As a result, the seven form factors are given, at leading

power in ⇤/m
b

and ⇤/E (where E ⌘ E
V

is itself of order m
b

for low q2), in terms of only

two independent soft form factors [71], ⇠? and ⇠k, with radiative corrections systematically

calculable in QCDF [72] as a perturbative expansion in ↵
s

. These corrections also involve

nonperturbative objects such as decay constants and light-cone distribution amplitudes

(LCDAs) of the initial and final mesons. The factorization properties and calculation of

radiative corrections become particularly transparent when formulated as a matching of

– 12 –
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Main effect is encoded in

approximation worsens as q2 increases and breaks down at q2 ⇠ 4m2
c

, as each additional
soft gluon exchange is suppressed by a factor 1/(q2�4m2

c

). In ref. [47] the authors proposed
also a phenomenological model interpolating their result at q2 ⇠ 1 GeV2 with a description
of the resonant region based on dispersion relations. While this model is reasonable, clearly
there are large uncertainties in the transition region from q2 ⇠ 4 GeV2 to m2

J/ 

. Therefore,
we consider the result of ref. [47] at q2 . 1 GeV2 as an estimate of the charm loop effect,
but allow for larger effects as q2 grows and reaches values of O(4m2

c

).
While Qc

1,2 are expected to dominate the h ¯K⇤�⇤|Hhad
e↵ | ¯Bi matrix element, the effect of

all operators in the hadronic Hamiltonian can be reabsorbed in the following parameteri-
zation, generalizing the one in ref. [48]:3

h
�

(q2) =

✏⇤
µ

(�)

m2
B

Z
d4xeiqxh ¯K⇤|T{jµem(x)Hhad

e↵ (0)}| ¯Bi

= h
(0)
�

+

q2

1GeV

2h
(1)
�

+

q4

1GeV

4h
(2)
�

, (2.6)

where � = +,�, 0 represents the helicity. Notice that h(0)
�

and h
(1)
�

could be reinterpreted as
a modification of C7 and C9 respectively, while the term h

(2)
�

that we introduce to allow for a
growth of long-distance effects when approaching the charm threshold cannot be reabsorbed
in a shift of the Wilson coefficients of the operators in eq. (2.1). We notice here the crucial
point regarding NP searches in these processes: one cannot use data to disentangle long-
distance contributions such as h

(0,1)
�

from possible NP ones, except, of course, for NP-
induced CP-violating effects and/or NP contributions to operators other than C7,9. Thus,
in the absence of a more accurate theoretical estimate of h

�

(q2) over the full kinematic
range it is hardly possible to establish the presence of NP in C7,9, unless its contribution is
much larger than hadronic uncertainties. In this work we show that hadronic contributions
are sufficient to reproduce the present data once all the uncertainties are properly taken into
account. We conclude that, given the present hadronic uncertainties, the NP sensitivity
of these decays is washed out. In order to recover it, a substantial reduction of these
uncertainties is needed. This however requires a theoretical breakthrough in the calculation
of the hadronic amplitude in eq. (2.6).

The h
�

(q2) are related to the g̃Mi functions defined in ref. [47] as follows:

g̃M1
= � 1

2C1

16m3
B

(m
B

+m
K

⇤
)⇡2

p
�(q2)V (q2)q2

�
h�(q

2
)� h+(q

2
)

�
,

g̃M2
= � 1

2C1

16m3
B

⇡2

(m
B

+m
K

⇤
)A1(q2)q2

�
h�(q

2
) + h+(q

2
)

�
, (2.7)

g̃M3
=

1

2C1

"
64⇡2m3

B

m
K

⇤
p
q2(m

B

+m
K

⇤
)

�(q2)A2(q2)q2
h0(q

2
)

3
Since h

�

is a smooth function of q2 in the range considered, the first hadronic threshold being at

q2 = m2
J/ 

⇠ 9.6 GeV

2
, we are using a simple Taylor expansion. While the expansion might have significant

corrections in the last bin considered, with current experimental uncertainties this is not problematic. We

have also checked that using a parameterization with an explicit singularity at m2
J/ 

one obtains compatible

results.
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Loop induced

Figure 4: Diagram contributing to the anomalous magnetic moment of the muon. The

photon is attached in all possible ways.

At the matching scale M , we get an additional contribution from the NP to the coef-

ficient of the dipole operator;

CNP
7 =

✓
GFp
2
V ⇤
tsVtb

◆�1 ↵q⇤
2 ↵q

3

12M2
 

✓
3F1(xq) +

2

xq
F1(x

�1
q )

◆
, (3.12)

where F1(x) is defined as

F1(x) =
1

12(x� 1)4
�
x3 � 6x2 + 3x+ 2 + 6x log x

�
. (3.13)

The 2� allowed range for this parameter has been fitted recently in [49], giving

CNP
7 (mb) 2 [�0.10, 0.02] (at 2�). (3.14)

3.1.4 Anomalous magnetic moment of the muon

Although it is somewhat peripheral to our discussion, let us remark that loops of  and �`,

as shown in Fig. 4, generate a 1-loop contribution to the magnetic moment of the muon,

which may be able to resolve the long-standing experimental discrepancy therein [57]. The

NP contribution is given by

�aNP
µ =

��↵2
`

��2

6⇡2

M2
µ

M2
 

✓
5F1(x`) +

2

x`
F1(x

�1
` )

◆
, (3.15)

which should be compared to the observed discrepancy [58]

�aµ = aexpµ � aSMµ = (287± 80)⇥ 10�11 (3.16)

As we will show in Section (3.3), it is possible to fit the anomalous magnetic moment in

this model. However, it requires a large value of ↵`
2, which is problematic, since it can lead

to large corrections to electroweak precision observables at the Z-pole.

3.1.5 b ! s⌫⌫ processes

Contributions to B ! K⌫⌫ and B ! K⇤⌫⌫ are expected in the model, due to a diagram

similar to Fig. 1 with the muons replaced with muon neutrinos (as well as Z penguin

– 11 –

Figure 2: Diagrams contributing to Bs mixing

Comparing equations 3.1 and 3.2 we find the NP contribution to the Wilson coe�cients

relevant to b ! sµµ is

CµNP
9 = �CµNP

10 =

✓
4GFp

2
V ⇤
tsVtb

↵

4⇡

◆�1 7

576⇡2

K(xq, x`)

M2
 

↵q⇤
2 ↵q

3

���↵`
2

���
2
. (3.4)

The most recent best fit ranges on this combination of Wilson coe�cients are taken from

[49] and are given by

CµNP
9 = �CµNP

10 2 [�0.71,�0.35] (at 1�), (3.5)

CµNP
9 = �CµNP

10 2 [�0.91,�0.18] (at 2�). (3.6)

3.1.2 Four-quark operators

Interactions between four quarks are induced at loop level by diagrams like those in Fig.

2. These interactions can lead to meson mixing; in particular, if the process b ! sµµ

is present, then inevitably Bs mixing must also be induced. This process can therefore

introduce important constraints on the masses and couplings of the new particles. The

four quark e↵ective operator induced by the NP is

Leff � K 0(xq)

M2
 

↵q⇤
i ↵q

j↵
q⇤
m↵q

n

128⇡2

⇣
Q

i
L�

µQj
L

⌘ �
Q

m
L �µQ

n
L

�
+

5

9

⇣
Q

i
L�

µ~⌧Qj
L

⌘
·
�
Q

m
L �µ~⌧Q

n
L

��
,

(3.7)

where K 0(x) is the first derivative of K(x). The SU(2)L structure of the e↵ective operator

is similar to that of Eqn. 3.1 and can again be derived from the discussion in Appendix A.

Projecting the quark doublet along the down components we find that for Bs mixing the

relevant operator is

Leff � 7

576⇡2

K 0(xq)

M2
 

�
↵q⇤
2 ↵q

3

�2
(sL�

µbL)(sL�µbL) + h.c.. (3.8)

The Wilson coe�cient is easily extracted at high energy µ = ⇤ where the BSM particles

are dynamical fields. We fix ⇤ = 1 TeV in what follows. At this energy we have

Cbs
1 (⇤) =

7

576⇡2

K 0(xq)

M2
 

�
↵q⇤
2 ↵q

3

�2
(3.9)
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Figure 1: Diagram contributing to b ! sµµ

3.1.1 Semileptonic four-fermion operators

The process b ! s``, important for the LHCb B meson anomalies, is induced at loop

level by the diagram in Fig. 13. The SU(2)L structure of the NP-induced semileptonic

four-fermion interaction can be derived from the discussion in Appendix A, using the

lagrangian (Eqn. A.6) written explicitly in terms of SU(2)L components. The resulting

e↵ective NP lagrangian is

Leff � K(xq, x`)

M2
 

↵q⇤
i ↵q

j↵
`⇤
m↵`

n

64⇡2

⇣
Q

i
L�

µQj
L

⌘ �
L
m
L �µL

n
L

�
+

5

9

⇣
Q

i
L�

µ~⌧Qj
L

⌘
·
�
L
m
L �µ~⌧L

n
L

��
,

(3.1)

with xq ⌘
M2

q

M2
 
and x` ⌘ M2

`
M2
 
. The loop function K(xq, x`) can be obtained by the following

definitions;

K(x) ⌘ 1� x+ x2 log x

(x� 1)2
,

K(x, y) ⌘ K(x)�K(y)

x� y
.

The e↵ective hamiltonian relevant to b ! s`` transitions is

He↵ = �4GFp
2

(V ⇤
tsVtb)

X

i

C`
i (µ)O`

i (µ) , (3.2)

where O`
i are a basis of SU(3)C⇥U(1)Q-invariant dimension-six operators giving rise to the

flavour-changing transition. The superscript ` denotes the lepton flavour in the final state

(` 2 {e, µ, ⌧}), and the important operators for our process, O`
i , are given in a standard

basis by

O`(0)
9 =

↵em

4⇡

�
s̄�↵PL(R)b

�
(¯̀�↵`) , (3.3)

O`(0)
10 =

↵em

4⇡

�
s̄�↵PL(R)b

�
(¯̀�↵�5`).

3There are also Z and photon penguin diagrams which contribute, with a NP loop connecting the quarks

and joining to the leptons via a Z/� propagator. These penguin diagrams are discussed in Appendix B and

are found to be very suppressed relative to both the SM contribution and the diagram in Fig. 1, and hence

are neglected here.
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Field SU(3)C ⇥ SU(2)L ⇥ U(1)Y U(1)B0 ⇥ U(1)L0 ⇥ U(1)�

QL (3, 2, 16) (13 , 0, 0)

UR (3, 1, 23) (13 , 0, 0)

DR (3, 1,�1
3) (13 , 0, 0)

LL (1, 2,�1
2) (0, 1, 0)

ER (1, 1,�1) (0, 1, 0)

�H (1, 2, 12) (0, 0, 0)

 (1, 4,�3
2) (0, 0, 1)

�q (3, 3, 43) (�1
3 , 0, 1)

�` (1, 3, 2) (0,�1, 1)

Table 2: Quantum numbers of the Standard Model fields and new fields under the SM

gauge symmetry (second column), and under the accidental global symmetries of the theory

(third column).

(1, 4,±1/2), the LP is not the neutral one. We conclude that, since we are demanding a

neutral LP, the LP can only be contained in the fermion field  with quantum numbers

(1, 4,±3
2). Imposing condition (e) on the field �q we are left with just two models:

• Model A.  ⇠ (1, 4,+3
2),�q ⇠ (3, 3, 43), �` ⇠ (1, 3, 2) with Yukawa interactions as in

(2.1):

↵q
i  Q

i
L�q + ↵`

i  L
i
L�` + h.c. (2.5)

• Model B.  ⇠ (1, 4,�3
2),�q ⇠ (3, 3,�5

3), �` ⇠ (1, 3, 2) with Yukawa interactions as

in (2.2):

↵q
i  Q

i
L�q + ↵`

i  
c
Li
L�` + h.c. (2.6)

The two models have very similar implications for the phenomenology that we are interested

in here. Henceforth, we discuss only Model A.

The quantum numbers of the SM and NP fields under the gauge and global symmetries

(to be discussed below) are summarised in Tab. 2 and the most general renormalizable

lagrangian is given by

L = LSM + L� + L + Lyuk, (2.7)

L� = (Dµ�`)
†Dµ�` + (Dµ�q)

†Dµ�q � V (�H ,�q,�`), (2.8)

L = i Dµ�µ �M   , (2.9)

Llin = ↵q
i  RQ

i
L�q + ↵`

i  RL
i
L�` + ↵q⇤

i Q
i
L R�

†
q + ↵`⇤

i L
i
L R�

†
`. (2.10)

See Appendix A for the explicit decompositions of the operators in terms of components

of the SU(2)L multiplets. Let us now analyse the accidental global symmetries of this

lagrangian. Before considering the breaking coming from Llin it is easy to show that the

Lagrangian is invariant under a global U(1)7. Indeed, the SM alone has accidental global

symmetry U(1)B ⇥U(1)e ⇥U(1)µ ⇥U(1)⌧ , while the gauge kinetic terms of the new BSM
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• Main constraint 

• muon g-2, large leptonic coupling
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Figure 8: Parameter space plot for ↵`
2 = 2.5, and with the masses of the three fields given

by M = M,M` = M + 200 GeV,Mq = M + 700 GeV. With this large value of ↵`
2 there

is an overlap between the regions that fit the B anomalies (in blue), and the anomalous

magnetic moment of the muon (in green).

where the quantum numbers are specified with respect to the direct product of groups

SU(2)QL ⇥ SU(2)UR ⇥ SU(2)DR .

3. GF = U(1)9

This case mimics partial compositeness. The irreducible spurions are connected to

the Yukawa couplings in the following way;

(YU )ij ⇠ ✏qi ✏
u
j , (YD)ij ⇠ ✏qi ✏

d
j . (4.5)

With these specific cases in mind we are now ready to discuss flavour violation induced

by operators of the form ↵q
i  Q

i
L�, ↵

u
i  U

i
R� and ↵d

i  D
i
R�. These operators break the

flavour symmetry and in order to restore it we could assume that the vectors ↵F are again

spurions with definite transformation rules under the flavour symmetry. We could now

assume minimality of flavour violation in the following sense: the ↵F
i can be expressed

using the irreducible spurions used to construct the SM Yukawa couplings. Following this

procedure we obtain the following results.

1. GF = U(3)3q

To recover flavour invariance the ↵F have to transform in the following way;

↵q ⇠ (3, 1, 1), ↵u ⇠ (1, 3, 1), ↵d ⇠ (1, 1, 3). (4.6)
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↵µ & 1

• Direct searches are important



MSSM (ask me)
•  LFU in the MSSM without R-Parity Violation: loop level 

�F = 1 �F = 2 Collider-flavour interplay in SUSY

Trying to explain R

K

< 1 in the MSSM

Only hope to generate an appreciable effect: Wino box
[Altmannshofer and Straub 1308.1501]

bL sLb̃L s̃L

W̃ W̃

˜̀µ µ

(e)

I Implies CNP
9 = �CNP

10

I Best-fit value CNP
9 ⇡ �0.7

Need:

I Extremely light W̃

I Extremely light µ̃L

I Heavy ẽL

I Large b̃L-s̃L mixing

I Not too heavy b̃L, s̃L (̃tL, c̃L)

David Straub (Universe Cluster) 14

• Lepton universality is broken by slepton masses

• Box diagrams are numerically small, very light particles in 
the loop

mẽ � mµ̃

• Direct searches (LHC+LEP) give strong constraints, 
probably no holes left (but a careful analysis is required)

The LHCb results with large effect in muons suggest an 
extensions of the MSSM 

Altmannshofer, Straub, 1411.3161
D’Amico et al, 1704.05438 

•  MSSM wit R-Parity Violation: basically SM + some specific leptoquark

• No free parameter on the Feynman vertices: EW couplings



A theoretical prejudice

C⌧ � Cµ � Ce

• Motivated patter? Horizontal

• FCCC: R(D) and R(D*)
• FCNC: tau exp difficult
• FCNC: neutrinos (Belle2)

• semi-leptonic FCNC 
anomalies

• no observable effects

• Motivated patter? Vertical

(Q̄L�
µQL) (L̄L�µLL) + (Q̄L�

µ⌧aQL) (L̄L�µ⌧
aLL)
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~~ In obtaining the expression (11) the mass difference
between the charged and neutral has been ignored.
~2M. Adernollo and R. Gatto, Nuovo Cimento 44A, 282
(1966); see also J. Pasupathy and H, . E. Marshak,
Phys. Rev. Letters 17, 888 (1966).
~3The predicted ratio I.eq. |,'12)] from the current alge-

bra is slightly larger than that (0.23%) obtained from
the p-dominance model of Ref. 2. This seems to be
true also in the other case of the ratio &(t) ~+m y}/
&(VV} calculated in Refs. 12 and 14.
L. M. Brown and P. Singer, Phys. Rev. Letters 8,

460 (1962}.

A MODEL OF LEPTONS*

Steven Weinberger
Laboratory for Nuclear Science and Physics Department,
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(Received 17 October 1967)

Leptons interact only with photons, and with
the intermediate bosons that presumably me-
diate weak interactions. What could be more
natura, l than to unite' these spin-one bosons
into a multiplet of gauge fields? Standing in
the way of this synthesis are the obvious dif-
ferences in the masses of the photon and inter-
rnediate meson, and in their couplings. We
might hope to understand these differences
by imagining that the symmetries relating the
weak and electromagnetic interactions a,re ex-
act symmetries of the Lagrangian but are bro-
ken by the vacuum. However, this raises the
specter of unwanted massless Goldstone bosons. '
This note will describe a model in which the
symmetry between the electromagnetic and
weak interactions is spontaneously broken,
but in which the Goldstone bosons are avoided
by introducing the photon and the intermediate-
boson fields as gauge fields. s The model may
be renormalizable.
We will restrict our attention to symmetry

groups that connect the observed electron-type
leptons only with each other, i.e. , not with
muon-type leptons or other unobserved leptons
or hadrons. The symmetries then act on a left-
handed doublet

and on a right-handed singlet

R = 4(i-},)le.
The largest group that leaves invariant the kine-
matic terms -I-yI" 8&L -R yI" 8&B of the Lagrang-
ian consists of the electronic isospin T acting
on L, plus the numbers NI„Ng of left- and
right-handed electron-type leptons. As far
as we know, two of these symmetries are en-
tirely unbroken: the charge Q =T3 NR 2NL—, —
and the electron number N=N~+NL. But the
gauge field corresponding to an unbroken sym-
metry will have zero mass, ' and there is no
massless particle coupled to N, ' so we must
form our gauge group out of the electronic iso-
spin T and the electronic hyperchange F=—Ng
+ 2NL.
Therefore, we shall construct our Lagrang-

ian out of L and B, plus gauge fields A& and
B& coupled to T and ~, plus a spin-zero dou-
blet

whose vacuum expectation value will break T
and ~ and give the electron its mass. The on-
ly renormalizable Lagrangian which is invar-
iant under T and & gauge transformations is

2=-g(6 A —6 A +gA xA ) -«(6 B -6 B ) -R}' (& ig'B )R Ly (6 igt—~ A —i2g'B )L-p. V V p, P, V P V V P P

1 1 2 —4 2 2igA ~ ty-+i ,g'B yl ——G (LcpR+Ry L)—M y y+h(y y) . (4)p, p, p, 1

We have chosen the phase of the 8 field to make Ge real, and can also adjust the phase of the L and
Q fields to make the vacuum expectation value A.

—= (y') real. The "physical" p fields are then p
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and

W&-=(V +V' -»)/~2 V. -=(V -V )/~~2. (5)
0 Ot 0 0$

The condition that p, have zero vacuum expec-
tation value to all orders of perturbation the-
ory tells us that A.

'—=M,'/2h, and therefore the
field p, has mass M, while p, and p have mass
zero. But me can easily see that the Goldstone
bosons represented by y, and y have no phys-
ical coupling. The Lagrangian is gauge invar-
iant, so we can perform a combined isospin
and hypercharge gauge transformation which
eliminates y and p, everywhere' without chang-
ing anything else. We will see that Ge is very
small, and in any case M, might be very large, '
so the y, couplings mill also be disregarded
in the following.
The effect of all this is just to replace p ev-

erywhere by its vacuum expectation value

(rp) =x( ). (6)

The first four terms in Z remain intact, while
the rest of the Lagrangian becomes
-~ y'g'[(A ')'+ (A 2)2]

p,

-~8K'(gA '+g'B )'—AG ee. (7)

We see immediately that the electron mass
is A.Ge. The charged spin-1 field is

gf ——2 &+(A & + fA 2)
p p,

and has mass

M = 2Ag.

= (g'+ g") "(gA '+g'& ),
p, P

(10)

=(g'+g") '"(-g'A '+g& ).
p.

Their masses are

M = —,X(g'+g")"', (12)

M~ ——0,

so A& is to be identified as the photon field.
The interaction betmeen leptons and spin-1
mesons is

The neutral spin-1 fields of definite mass are

Sg P,e y (1+y ) v W +H. c.+,»&2 ey eA

~(g'+g")"' 3g"-g' v u v+ 4,» ey e Fy y5-e+vy (1+y )v Z
— g' +g 5 p,

' (14)

G /Wr=g'/SM 2=1/2~2.

Note that then the e-p coupling constant is
=M /X=2 M G =2.07 10e e e W

(16)

We see that the rationalized electric charge
is

e=gg'/(g +g' )
and, assuming that W& couples as usual to had-
rons and muons, the usual coupling constant
of weak interactions is given by

by this model have to do with the couplings
of the neutral intermediate meson Z@ . If Z&
does not couple to hadrons then the best place
to look for effects of Z& is in electron-neutron
scattering. Applying a Fierz transformation
to the W-exchange terms, the total effective
e- v interaction is

( (3g'-g")
~~Py (1 +y) 5)v(+2, )F2y e+ Fy2y e ~.

The coupling of p, to muons is stronger by a
factor M&/Me, but still very weak. Note al-
so that (14) gives g and g' larger than e, so
(16) tells us that Mgr &40 BeV, while (12) gives
MZ &Mgr and MZ &80 BeV.
The only unequivocal new predictions made

If g »e then g »g', and this is just the usual
e-v scattering matrix element times an extra
factor ~. If g =e then g«g', and the vector
interaction is multiplied by a factor —2 rath-
er than 2. Of course our model has too many
arbitrary features for these predictions to be
VOLUME 19,NUMBER 21 PHYSICAL REVIEW LETTERS 20 NovEMBER 1967

taken very seriously, but it is worth keeping
in mind that the standard calculation' of the
electron-neutrino cross section may well be
wrong.
Is this model renormalizable? We usually

do not expect non-Abelian gauge theories to
be renormalizable if the vector-meson mass
is not zero, but our Z& and W& mesons get
their mass from the spontaneous breaking of
the symmetry, not from a mass term put in
at the beginning. Indeed, the model Lagrang-
ian we start from is probably renormalizable,
so the question is whether this renormalizabil-
ity is lost in the reordering of the perturbation
theory implied by our redefinition of the fields.
And if this model is renormalizable, then what
happens when we extend it to include the coup-
lings of A& and B& to the hadrons?
I am grateful to the Physics Department of

MIT for their hospitality, and to K. A. Johnson
for a valuable discussion.
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Within the framework of vector-meson dominance, the current-mixing model is shown
to be the only theory of ~-y mixing consistent with Weinbeig's first sum rule as applied
to the vector-current spectral functions. Relations among the leptonic decay rates of p,
(d, and y are derived, and other related processes are discussed.

We begin by considering VFeinberg's first sum rule' extended to the (1+8) vector currents of the
eightfold way:

fdm [m p ' '(m )+p ' '(m )]=85 +S'5 5 0,


