Large- \boldsymbol{n}_{f} Contributions to the Four-Loop Splitting Functions in QCD

Nucl. Phys. B915 (2017) 335-362 [arXiv:1610.07477],
[arXiv:1711.05267]

Joshua Davies

Collaborators: A. Vogt (University of Liverpool), B. Ruijl (ETH), T. Ueda, J. Vermaseren (Nikhef)

Theoretical Particle Physics Seminar, Zurich, 28/11/2017

Introduction

Deep Inelastic Scattering: a lepton scatters from a proton.

Boson: $\boldsymbol{\gamma}, \boldsymbol{H}, \boldsymbol{Z}^{0}$ (Neutral Current) or $\boldsymbol{W}^{ \pm}$(Charged Current)
Cross-section: $\sigma \sim \sum_{a} F_{a}\left(x, Q^{2}=-q^{2}>0\right)=\sum_{a}\left[C_{a, q} \otimes f_{q}+C_{a, g} \otimes f_{g}\right]$
x - "Collinear momentum fraction"
F_{a} - "Structure Function"
$C_{a, j}$ - "Coefficient Function"

- - "Mellin Convolution"
$f_{j}-$ "Parton Distribution Function"
$a=2,3, L, \phi$

Inclusive DIS

Sum over final states. To compute $C_{a, q}, C_{a, g}$, we use the optical theorem.
Compute forward scattering amplitudes:

Use Dim. Reg. $\left(\begin{array}{l}(\\ 4\end{array}-2 \varepsilon\right)$. Divergences appear as poles in ε.
Renormalization of $\boldsymbol{a}_{\mathrm{s}}$ removes UV poles. "Collinear" poles remain,

$$
\tilde{C}_{a, j}=\tilde{C}_{a, j}\left(x, a_{\mathrm{s}}\left(\mu_{\mathrm{r}}^{2}\right), Q^{2} / \mu_{\mathrm{r}}^{2}, \varepsilon\right) .
$$

COLLINEAR FACTORIZATION

We need to deal with these collinear poles: renormalize the PDF.

$$
F_{a}=\tilde{C}_{a, j} \otimes \tilde{f}_{j}=C_{a, j} \otimes Z_{j i}\left(x, a_{\mathrm{s}}, \mu_{\mathrm{r}}^{2} / \mu_{\mathrm{f}}^{2}, \varepsilon\right) \otimes \tilde{f}_{i}=C_{a, j} \otimes f_{j}
$$

Factorize $\tilde{\boldsymbol{C}}_{a, j}: \boldsymbol{C}_{a, j}$ is finite. $\boldsymbol{Z}_{j i}$ contains only poles in $\boldsymbol{\varepsilon}$.
Factorization at scale $\boldsymbol{\mu}_{\mathrm{f}}^{2}$, implies \boldsymbol{f}_{j} has scale dependence:

$$
\frac{d}{d \ln \mu_{\mathrm{f}}^{2}} f_{j}=\frac{d}{d \ln \mu_{\mathrm{f}}^{2}} Z_{j i} \otimes \tilde{f}_{i}=\underbrace{\frac{d}{d \ln \mu_{\mathrm{f}}^{2}} Z_{j k} \otimes Z_{k i}^{-1}}_{P_{j i}} \otimes f_{i}
$$

- this is the DGLAP evolution equation
- $P_{j i}$ are the Splitting Functions

Know $\boldsymbol{Z}_{j i}$ from calculation of $\tilde{\boldsymbol{C}}_{\boldsymbol{a}, j}$, so we can extract $\boldsymbol{P}_{j i}$.
PDFs are universal to all hadron interactions; Splitting Functions are also.

Splitting Functions

DGLAP evolution: system of $2 n_{f}+1$ coupled equations.
By defining the distributions
$q_{s}=\sum_{i=1}^{n_{f}}\left(f_{i}+\bar{f}_{i}\right), \quad q_{n s, i j}^{ \pm}=\left(f_{i} \pm \bar{f}_{i}\right)-\left(f_{j} \pm \bar{f}_{j}\right), \quad q_{V}=\sum_{i=1}^{n_{f}}\left(f_{i}-\bar{f}_{i}\right)$,
we have the evolution equations, (setting $\mu_{\mathrm{f}}^{2}=Q^{2}$):

$$
\begin{gathered}
\frac{d}{d \ln Q^{2}}\binom{q_{\mathrm{s}}}{g}=\left(\begin{array}{cc}
P_{q q} & P_{q g} \\
P_{g q} & P_{g g}
\end{array}\right) \otimes\binom{q_{\mathrm{s}}}{g}, \\
\frac{d}{d \ln Q^{2}} q_{n s, i j}^{ \pm}=P_{n s}^{ \pm} \otimes q_{n s, i j}^{ \pm}, \quad \frac{d}{d \ln Q^{2}} q_{V}=P_{V} \otimes q_{V} .
\end{gathered}
$$

$$
P_{i j}, P_{n s}^{ \pm}, P_{V}
$$

In Mellin space...

Take the Mellin transform; convolutions (\otimes) become products.

$$
F_{a}\left(N, Q^{2}\right)=\int_{0}^{1} \mathrm{~d} x x^{N-1} \hat{F}_{a}\left(x, Q^{2}\right)
$$

We compute Mellin moments of $\tilde{\boldsymbol{C}}_{a, j}, N=\mathbf{2}, \mathbf{4}, \mathbf{6}, \ldots$, not an analytic expression in N (which gives x-space expression via Inverse MT).

- Projection operator:

$$
\mathcal{P}_{N}=\left.\frac{q^{\left\{\mu_{1} \cdots\right.} q^{\left.\mu_{N}\right\}}}{N!} \frac{\partial^{N}}{\partial p^{\mu_{1}} \cdots \partial p^{\mu_{N}}}\right|_{p=0}
$$

- Mellin moments of $\boldsymbol{C}_{a, j}$ and $\boldsymbol{P}_{i j}$.

Q: Given some fixed number of Mellin moments of $\boldsymbol{P}_{i j}$, can we derive an analytic expression for general N ?

- this is the goal here.

Software

qgraf: generate diagrams
TFORM 4.2: physics, project Mellin moments.
[Ruijl,Ueda,Vermaseren '17]
Produces 2-point integrals. Need to reduce to masters...
To 3 loops, we can use MINCER.
[Larin,Tkachov,Vermaseren '91]

At 4 loops, FORCER.

What DO $\boldsymbol{P}_{i j}$ "LOOK LIKE"?

To a_{s}^{3} (3 loops), written in terms of harmonic sums,

$$
\begin{aligned}
& S_{m}(N)=\sum_{i=1}^{N} \frac{1}{i^{m}}, \quad S_{-m}(N)=\sum_{i=1}^{N} \frac{(-1)^{i}}{i^{m}} \\
& S_{[-] m_{1}, m_{2}, \ldots, m_{l}}(N)=\sum_{i=1}^{N} \frac{\left[(-1)^{i}\right]}{i^{m_{1}}} S_{m_{2}, \ldots, m_{l}}(i),
\end{aligned}
$$

and denominators, $D_{i}^{p}=\left(\frac{1}{N+i}\right)^{p}$.
Define

- harmonic weight: $\sum_{i=1}^{l}\left|m_{i}\right|$,
- overall weight: harmonic weight $+\boldsymbol{p}$.

$$
P_{i j}=\sum_{n=0}^{\infty} a_{\mathrm{s}}^{n+1} P_{i j}^{(n)}
$$

to $a_{\mathrm{s}^{\prime}}^{3}, P_{i j}^{(n)}$ written as terms of overall weight up to $(\mathbf{2 n}+\mathbf{1})$.

2-LOOP EXAMPLE

$$
\begin{aligned}
\left.P_{q g}^{(1)}\right|_{C_{A} n_{f}}(N)=- & {\left[8\left(2 D_{2}-2 D_{1}+D_{0}\right) S_{-2}+8\left(2 D_{2}-2 D_{1}+D_{0}\right) S_{1,1}\right.} \\
& \left.+16\left(D_{2}^{2}-D_{1}^{2}\right) S_{1}+8\left(4 D_{2}^{3}+2 D_{1}^{3}+D_{0}^{3}\right)\right]_{\text {OW } 3} \\
- & {\left[\frac{4}{3}\left(44 D_{2}^{2}+12 D_{1}^{2}+3 D_{0}^{2}\right)\right]_{\text {OW } 2} } \\
+ & {\left[\frac{4}{9}\left(20 D_{-1}-146 D_{2}+153 D_{1}-18 D_{0}\right)\right]_{\text {OW } 1} }
\end{aligned}
$$

- At overall weight i, up to factor $(1 / 3)^{(3-i)}$, coefficients are integers.

Possible basis:

$$
\begin{aligned}
&\left\{S_{-2}, S_{1,1},\right.\left.S_{2}\right\} \\
&\left\{S_{1}\right\} \cdot\left\{D_{0}, D_{1}, D_{2}\right\} \\
&\{1\} \cdot\left\{D_{0}^{1,2,2}, D_{1}^{1,2,2}, D_{2}^{1,2}\right\} \\
& 1,2,3 \\
&\left.1, D_{-1}\right\}
\end{aligned}
$$

Need to determine $\mathbf{2 5}$ coefficients.

2-LOOP EXAMPLE

Compute Mellin moments:

$$
\left.\begin{aligned}
& P_{q g}^{(1)} \\
& P_{q g}^{(1)}
\end{aligned}\right|_{C_{A} n_{f}}(2)=35 / 27=-16387 / 9000
$$

With moments $N=2,4, \ldots, 50$ we can solve for the 25 basis coefficients.
Can we do better?

- Assume (1/3) ${ }^{(3-i)}$, produce a basis with integer coefficients,
- We have a system of Diophantine equations - solve!

Lattice Basis Reduction

Lenstra-Lenstra-Lovász Lattice Basis Reduction: [Lenstra,Lenstra,Lovász '82]

- find a short lattice basis in polynomial time
- can be used to find integer solutions to equations
axb:
- part of calc
- LLL-based solver for systems of Diophantine equations

See also, Mathematica, Maple, fpLLL, ... , many more.
To solve (two-loop example):

$$
\left(\begin{array}{c}
b_{1}(2), \ldots, b_{25}(2) \\
\vdots \\
b_{1}(m), \ldots, b_{25}(m)
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{25}
\end{array}\right)=\left(\begin{array}{c}
\left.P_{q g}^{(1)}\right|_{C_{A} n_{f}}(2) \\
\vdots \\
\left.P_{q g}^{(1)}\right|_{C_{A} n_{f}}(m)
\end{array}\right)
$$

$b_{i}(N)$: basis elements. $\boldsymbol{c}_{i} \in \mathbb{Z}$: coefficients.

Simple LLL Example

Suppose $r=1.61803$ is a (rounded) solution to a quadratic equation.
Form the matrix

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 100000 r^{2} \\
0 & 1 & 0 & 100000 r \\
0 & 0 & 1 & 100000
\end{array}\right) .
$$

A new basis consists of vectors of the form ($\left.a, b, c, 100000\left(a r^{2}+b r+c\right)\right)$.
We seek short vectors. In particular, $\mathbf{1 0 0} \mathbf{0 0 0}\left(\boldsymbol{a r} \boldsymbol{r}^{2}+\boldsymbol{b r}+\boldsymbol{c}\right)$ must be small.
Apply LatticeReduce [] (Mathematica):

$$
\begin{aligned}
&\left(\begin{array}{cccc}
-1 & 1 & 1 & 1 \\
114 & -258 & 119 & 254 \\
-103 & 14 & 247 & -364
\end{array}\right) . \\
&-r^{2}+r+1=0 \Longrightarrow r=1.61803 \ldots \checkmark \\
& 114 r^{2}-258 r+119=0 \Longrightarrow r=1.61801 \ldots \\
&-103 r^{2}+14 r+247=0 \Longrightarrow r=1.61802 \ldots
\end{aligned}
$$

2-LOOP EXAMPLE: RECONSTRUCTION

Determines $\left.P_{q g}^{(1)}\right|_{C_{A} n_{f}}$ (25 integer coefficients) with just 9 Mellin moments.

- axb solution, $\left(c_{1}, \ldots, c_{25}\right)=$

What if the basis were incorrect? For e.g., leave out D_{-1} :

- solve with $N=2, \ldots, 18$,

$$
\begin{aligned}
& (-43,423,123,1492,-102,1332,4,24,-612,-15,437,102,-2399,80 \\
& 1700,-146,180,-26,-1065,670,579,-919,490,605)
\end{aligned}
$$

- solve with $N=2, \ldots, 20$,

$$
\begin{aligned}
& (-178,4391,-25712,412,-10348,-6476,4,24,-612,-572,25401,-2178 \\
& -5642,-3526,-20152,-3302,-3161,6474,-4011,5092,3775,-3283 \\
& -4617,11029)
\end{aligned}
$$

Claim: these solutions are "obviously bad".

Four-Loop Splitting Functions

Large $-n_{f}$ contributions:

- subset of diagrams, much easier for FORCER to compute (insertions)
- smaller reconstruction bases (terms of lower overall weight)

Singlet Splitting Functions, colour factors at n_{f}^{3},

$$
\begin{array}{rr}
P_{q q}^{(3)}\left\{C_{F} n_{f}^{3}\right\} & P_{q g}^{(3)}\left\{C_{A} n_{f}^{3}, C_{F} n_{f}^{3}\right\} \\
P_{g q}^{(3)}\left\{C_{F} n_{f}^{3}\right\} & P_{g g}^{(3)}\left\{C_{A} n_{f}^{3}, C_{F} n_{f}^{3}\right\}
\end{array}
$$

Guess bases using lower order information. Number of coefficients:

$$
\begin{array}{ll}
P_{q q}^{(3)}\{69\} & P_{q g}^{(3)}\{125,101\} \\
P_{g q}^{(3)}\{38\} & P_{g g}^{(3)}\{34,54\}
\end{array}
$$

Moments used for reconstruction, (check), $N=2,4, \ldots$

$$
\begin{array}{ll}
P_{q q}^{(3)}\{30(44)\} & P_{q g}^{(3)}\{\times(\times), 40(54)\} \\
P_{g q}^{(3)}\{18(28)\} & P_{g g}^{(3)}\{20(28), 26(32)\}
\end{array}
$$

GUEssing a Basis

Crucial that the basis is "just right". Too small/big: no (good) solution.

$$
\left.P_{q g}^{(1)}\right|_{C_{A} n_{f}^{1}}[O W 3],\left.\quad P_{q g}^{(2)}\right|_{C_{A} n_{f}^{2}}[O W 4],\left.\quad P_{q g}^{(3)}\right|_{C_{A} n_{f}^{3}}[O W 5] ?
$$

Look at moments: $\mathbf{1 / 1 3}{ }^{5}$ can only come from D_{1}^{5} :

$$
\left.P_{q g}^{(3)}\right|_{C_{A} n_{f}^{3}}(N=12)=\frac{894866035734231246739}{2^{3} 3^{10} 5^{4} 7^{5} 11^{3} 13^{5}} .
$$

H. Sums	Denominators		
SW4			ρ
SW3		ρ	$D_{0}^{2}, D_{1}^{1,2}, D_{2}^{1,2}, D_{-1}$
SW2	ρ	$D_{1}^{1,2}, D_{2}^{1,2}$	$D_{0}^{2,3}, D_{1}^{3}, D_{2}^{3}, D_{-1}$
SW1	$D_{0}^{1,2}, D_{1}^{1,2}, D_{2}^{1,2}$	D_{1}^{3}, D_{2}^{3}	$D_{0}^{3,4}, D_{1}^{4}, D_{2}^{4}, D_{-1}$
SW0	$D_{0}^{1,2,3}, D_{1}^{1,2,3}, D_{2}^{1,2,3}, D_{-1}$	$D_{0}^{4}, D_{1}^{4}, D_{2}^{4}$	$D_{0}^{5}, D_{1}^{5}, D_{2}^{5}$

$S W N:$ "weight N harmonic sums, no index -1 ". $\quad \rho=D_{0}-2 D_{1}+2 D_{2}$. \# sums in sets $S W\{0,1,2,3,4,5\}:\{1,1,3,7,17,41\}$.

GUEssing a Basis

We need to provide sufficient powers of $\mathbf{1 / 3}$ at each overall weight.

$O W$	5	4	3	2	1
$\left.P_{q g}^{(1)}\right\|_{C_{A} n_{f}^{1}}$			1	$1 / 3$	$1 / 9$
$\left.P_{q g}^{(2)}\right\|_{C_{A} n_{f}^{2}}$		$1 / 3$	$1 / 9$	$1 / 27$	$1 / 81$
$\left.P_{q g}^{(3)}\right\|_{C_{A} n_{f}^{3}}$	$1 / 9 ?$		\cdots		$1 / 729 ?$

Look at moments:

$$
\begin{aligned}
& \left.P_{q g}^{(3)}\right|_{C_{A} n_{f}^{3}}(N=8)=\frac{886247558029}{3^{13} 5^{5} 7^{3}} \\
& \left.P_{q g}^{(3)}\right|_{C_{A} n_{f}^{3}}(N=26)=\frac{40994144768200972412968695803347793}{2^{7} 3^{18} 5^{6} 7^{5} 11^{3} 13^{5} 17^{2} 19^{2} 23^{2}}
\end{aligned}
$$

$D_{1}^{5}(8)=1 / 9^{5}=1 / 3^{10}, \quad D_{1}^{5}(26)=1 / 27^{5}=1 / 3^{15}$.
We must provide at least $\mathbf{1} / \mathbf{3}^{\mathbf{3}}=\mathbf{1} / \mathbf{2 7}$ at OW5:

$O W$	5	4	3	2	1
$\left.P_{q g}^{(3)}\right\|_{C_{A} n_{f}^{3}}$	$1 / 27$	$1 / 81$	$1 / 243$	$1 / 729$	$1 / 2187$

Hardest Singlet Case

$\left.P_{q g}^{(3)}\right|_{C_{A} n_{f}^{3}}$: Basis with 125 unknown integer coefficients.
Computed $N=2, \ldots, 46$, insufficient to determine a "good" solution.
Moment calculations become very computationally demanding. Hardest single diagram computed at $N=46$,

- ~ 2 weeks wall-time
[16 cores, 192GB RAM, 24TB scratch space]
- ~13TB peak disk usage by TFORM
\longrightarrow no more moments! $(N \rightarrow N+2$: resource req. \sim double)

We need to make the reconstruction basis smaller.
Use additional constraints/assumptions:

- large- N limit constants: ζ_{i} only (no $\left.\ln 2, \operatorname{Li}_{4}(\mathbf{1} / \mathbf{2}), \operatorname{Li}_{5}(\mathbf{1} / \mathbf{2})\right)(\rightarrow \mathbf{1 2 4})$
- $\# S_{1,2}=-\# S_{2,1}$ $(\rightarrow$ 117)

117 unknowns. Solution with $N=2, \ldots, 44, N=46$ checks.

NON-SInglet Splitting Functions

\boldsymbol{n}_{f}^{3} terms of $\boldsymbol{P}_{n s}^{(3), \pm}$ are already known to all orders in $\boldsymbol{a}_{\mathrm{s}}$.
Here we determine the \boldsymbol{n}_{f}^{2} terms of $\boldsymbol{P}_{n s}^{(3),+}($ even $\boldsymbol{N})$ and $\boldsymbol{P}_{n s}^{(3),-}($ odd $\boldsymbol{N})$.
Colour factors to determine:

- $C_{F}^{2} n_{f}^{2}$
- $C_{A} C_{F} n_{f}^{2}$ - diagrams are very hard to compute at higher N values!

Method: decompose in two ways,

$$
\begin{aligned}
P_{n s}^{(3)}, \pm\left\{n_{f}^{2}\left\{C_{F}^{2}, C_{A} C_{F}\right\}\right\} & =n_{f}^{2}\left(2 C_{F}^{2} A+C_{F}\left(C_{A}-2 C_{F}\right) B^{ \pm}\right) \\
& =n_{f}^{2}\left(2 C_{F}^{2}\left(A-B^{ \pm}\right)+C_{F} C_{A} B^{ \pm}\right) .
\end{aligned}
$$

A should be common to both $P_{n s^{\prime}}^{ \pm}$; use both odd and even N. Large \boldsymbol{n}_{c}.
Compute (easier) $C_{F}^{2} n_{f}^{2}$ diagrams to higher N to determine ($A-B^{ \pm}$).
From these, determine \boldsymbol{B}^{+}and \boldsymbol{B}^{-}and hence $\boldsymbol{P}_{n s}^{(3),+}$ and $\boldsymbol{P}_{n s}^{(3),-}$.

Non-Singlet Splitting Functions

$2 C_{F}^{2} n_{f}^{2}\left(A-B^{ \pm}\right)$: Initial guess, 139 basis elements (incl. SW5). Too big!

- Enforce large- N limit $\sim \ln N \quad\left(\right.$ no $\ln ^{2} N$ etc)
- Large- N constants: ζ_{i} only
- $\# S_{1,2}=\# S_{2,1}$

Solution for $\left(A-B^{+}\right)$with $N=2, \ldots, 40 . N=42$ checks.
Solution for $\left(A-B^{-}\right)$with $N=3, \ldots, 37 . N=39$ checks.
$2 C_{F}^{2} n_{f}^{2} A$: basis as above, no alternating sums. 65 elements. Still too big!

- No "many-index" sums. Discard $S_{1,1,2}, S_{1,2,1}, S_{2,1,1}$ and $S_{1,1,1,2}, S_{1,1,2,1}, S_{1,2,1,1}, S_{2,1,1,1}, S_{1,2,2}, S_{2,1,2}, S_{2,2,1}$. (We see this at 3 loops, and in 4 loop singlet)

Solution with $N=2,3, \ldots, 17$, and $N=18,19, \ldots, 22$ check.

VERIFICATION

Check against existing literature:

- Linear comb. of n_{f}^{3} terms of $\boldsymbol{P}_{q q}^{(3)}, \boldsymbol{P}_{g q}^{(3)}$, and $\boldsymbol{P}_{g q}^{(3)}, \boldsymbol{P}_{g g}^{(3)} \checkmark \quad$ [Gracey $\left.{ }^{\prime} 96,{ }^{\prime} 98\right]$
- Large- N prediction of $\boldsymbol{P}_{n s}$

$$
\begin{aligned}
& \text { If } P_{n s}^{(i-1)}=-A_{q}^{i} \ln N+B_{q}^{i}-C_{q}^{i} \ln N / N+\mathcal{O}\left(1 / N^{2}\right) \text {, we have that } \\
& C_{q}^{1}=0, \quad C_{q}^{2}=\left(A_{q}^{1}\right)^{2}, \quad C_{q}^{3}=2 A_{q}^{1} A_{q}^{2}: \quad C_{q}^{4}=\left(A_{q}^{2}\right)^{2}+2 A_{q}^{1} A_{q}^{3} .
\end{aligned}
$$

Here: $C_{q}^{4}=\frac{1216}{81} C_{F}^{2} n_{f}^{2}+\mathcal{O}\left(n_{f}\right) . \checkmark$

- Small- $\boldsymbol{x}(\boldsymbol{x} \boldsymbol{\rightarrow} \mathbf{0})$ Double Log. Resummations [(Davies,)Kom,Vogt '12('XX)] $P_{i j}^{(n)} \sim \frac{1}{x}\left(\ln ^{n-1} x+\cdots+\right.$ con.$)+x^{0}\left(\ln ^{2 n} x+\cdots+\right.$ con.$)+\cdots$ $x^{0, \text { even }}\left(\ln ^{2 n} x+\ln ^{2 n-1} x+\ln ^{2 n-2} x\right)$ known to "all orders" in a_{s}. In agreement with fixed order $\boldsymbol{P}_{i j}^{(3)}$ (and $\left.\boldsymbol{P}_{n s}^{(3)}, \pm\right)$ computed here. \checkmark

VERIFICATION

- Large- $\boldsymbol{x}\left(\boldsymbol{x} \boldsymbol{1} \mathbf{1)}\right.$ Double Log. Resummations [Soar,Moch,Vermaseren,Vogt ${ }^{10}$]

$$
\frac{d}{d \ln Q^{2}} F=\frac{d}{d \ln Q^{2}}(C q)=\left(\beta \frac{d C}{d a_{\mathrm{s}}}+C P\right) q=\underbrace{\left[\left(\beta \frac{d C}{d a_{\mathrm{s}}}+C P\right) C^{-1}\right]}_{K} F .
$$

K: Physical Kernel. Conjecture: single-log. enhanced to all $\boldsymbol{a}_{\mathrm{s}}$ orders.
\Longrightarrow cancellation between double logs of C, P.
\longrightarrow prediction of $P \sim a_{\mathrm{s}}^{4}\left(\ln ^{6}(1-x)+\ln ^{5}(1-x)+\ln ^{4}(1-x)\right) \checkmark$

- Cusp Anomalous Dimension at a_{s}^{4} : given by \boldsymbol{A} in large- \boldsymbol{N} limit \checkmark [Henn,Lee,Smirnov,Smirnov,Steinhauser '16] [Grozin '16] [Lee,Smirnov,Smirnov,Steinhauser '17]

Current Status of All-N Expressions

Discussed here:

- n_{f}^{3} terms of $\boldsymbol{P}_{q q}^{(3)}, \boldsymbol{P}_{q g}^{(3)}, \boldsymbol{P}_{g q}^{(3)}, \boldsymbol{P}_{g g}^{(3)}$
- n_{f}^{2} terms of $P_{n s}^{(3), \pm}$

Also completed:

- n_{f}^{2} terms of $P_{V}^{(3)}$
- all n_{f} powers, n_{f}^{0} : large- \boldsymbol{n}_{c} limit of A
[Moch,Ruijl,Ueda,Vermaseren,Vogt '17]
- all n_{f} powers, $n_{f}^{0}: \zeta_{5}, \zeta_{4}$ terms of $\boldsymbol{P}_{n s}^{(3), \pm}$
- all n_{f} powers $: \zeta_{3}$ terms of $\boldsymbol{P}_{n s}^{(3), \pm}$

What now? Numerical Approximations

We have analytic expressions for some (large- $\boldsymbol{n}_{f} /$ large- $\boldsymbol{n}_{\boldsymbol{c}}$) colour factors.
What about the remaining parts?
[Moch,Ruijl,Ueda,Vermaseren,Vogt '17]

- numerical approximations using the Mellin moments
- phenomenologically useful, if approximate, results.

Choose ansatz for fit. E.g. for $\boldsymbol{P}_{n s}^{(4),+} n_{f}^{0}$ and n_{f}^{1} terms,

- Large- x :
- A_{q}^{4}, B_{q}^{4} (coeffs. of $\ln N$ and const in N-space)
- 2 of 3 suppressed logs: $(1-x) \ln ^{k}(1-x)(k=1,2,3)$
- Small-x:
- 2 of 3 unknown logs: $\ln ^{k} x(k=1,2,3)$
- Interpolation:
- 1 of 10 2-parameter polynomials in x
\rightarrow Family of 90 trial functions. Parameters set using 8 known moments.

\boldsymbol{n}_{f}^{0} FIT

A, B approximations bracket the trial functions.
Coefficient $x^{0.4}(1-x)$: for display.

PDF Evolution

$$
\dot{q}_{N S}^{ \pm, V}=\frac{d}{d \ln \mu^{2}} q_{N S}^{ \pm, V}
$$

Model PDF: $x q_{n s}^{ \pm, \mathrm{v}}=x^{0.5}(1-x)^{3}, \alpha_{s}=0.2$. [Moch,Ruijl,Ueda,Vermaseren,Vogt ${ }^{\text {'17] }}$

Scale Dependence

[Moch,Ruijl,Ueda,Vermaseren,Vogt '17]

THE "NO- π^{2} CONJECTURE"

An old observation:

- Euclidean physical quantities have no $\zeta_{4}\left(=\pi^{4} / 90\right)$ terms
- E.g. 5-loop corrections to the Adler function

Broken by 5-loop corrections to scalar-quark, scalar-gluon correlators.
C-scheme introduced. For $C=0$:
[Boito,Jamin,Miravitllas '16]

$$
\begin{aligned}
a_{\mathrm{s}}=\bar{a}_{\mathrm{s}} & +\left(\frac{\beta_{2}}{\beta_{0}}-\frac{\beta_{1}^{2}}{\beta_{0}^{2}}\right) \bar{a}_{\mathrm{s}}^{3}+\left(\frac{\beta_{3}}{2 \beta_{0}}-\frac{\beta_{1}^{3}}{2 \beta_{0}^{3}}\right) \bar{a}_{\mathrm{s}}^{4} \\
& +\left(\frac{\beta_{4}}{3 \beta_{0}}-\frac{\beta_{1} \beta_{3}}{6 \beta_{0}^{2}}+\frac{5 \beta_{2}^{2}}{3 \beta_{0}^{2}}-\frac{3 \beta_{1}^{2} \beta_{2}}{\beta_{0}^{3}}+\frac{7 \beta_{1}^{4}}{6 \beta_{0}^{4}}\right) \bar{a}_{\mathrm{s}}^{5}+\mathcal{O}\left(\bar{a}_{\mathrm{s}}^{6}\right) .
\end{aligned}
$$

Conjecture:

- in this scheme, Euclidean physical quantities do not have even-n $\boldsymbol{\zeta}_{n}$ terms.

Verification:

- physical quantities built from scalar-quark, scalar-gluon correlators have no ζ_{4}, ζ_{6} in their 5-loop corrections in this scheme.

"NO- $\pi^{2 "}$ IN DIS?

Euclidean physical quantities, Physical Kernels:
[Davies,Vogt '17]

$$
\frac{d}{d \ln Q^{2}} F=\left[\left(\beta \frac{d C}{d a_{\mathrm{s}}}+C P\right) C^{-1}\right] F=K F=\left[\sum_{i=0}^{\infty} a_{\mathrm{s}}^{i+1} K^{(i)}\right] F
$$

The relevant terms at $\boldsymbol{a}_{\mathrm{s}}^{4}$:

$$
\left[\widetilde{f}=\left.f\right|_{\zeta_{4}}\right]
$$

$$
\widetilde{K}_{2, n s}^{(3)}=\widetilde{P}_{n s}^{(3),+}-3 \beta_{0} \tilde{c}_{2, n s}^{(3)}, \quad \widetilde{K}_{3}^{(3)}=\widetilde{P}_{n s}^{(3),--}-3 \beta_{0} \tilde{c}_{3}^{(3)},
$$

$\left(\boldsymbol{F}_{2}, \boldsymbol{F}_{\phi}\right)$ system: $\quad\left(\begin{array}{cc}\widetilde{\boldsymbol{K}}_{22}^{(3)} & \widetilde{\boldsymbol{K}}_{2 \phi}^{(3)} \\ \widetilde{\mathbf{K}}_{\phi 2}^{(3)} & \widetilde{\boldsymbol{K}}_{\phi \phi}^{(3)}\end{array}\right) \quad\left[\mathrm{dep} . \mathrm{on}\left(\begin{array}{cc}\widetilde{\boldsymbol{P}}_{q q}^{(3)} & \widetilde{\boldsymbol{P}}_{q g}^{(3)} \\ \widetilde{\boldsymbol{P}}_{g q}^{(3)} & \widetilde{\boldsymbol{P}}_{g g}^{(3)}\end{array}\right)\right]$
$\widetilde{P}_{n s}^{(3)}, \pm$ are known analytically (reconstructed from moments: see above)
$-\widetilde{K}_{2, n s}^{(3)}(N)=\widetilde{K}_{3}^{(3)}(N)=0 . \checkmark$
$\widetilde{P}_{i j}^{(3)}$ are known only at $N=2,4$

- $\widetilde{K}_{a b}^{(3)}(N=\{2,4\})=0 . \checkmark \Longrightarrow$ pred. of $\widetilde{P}_{i j}^{(3)}(N)$.

"NO- $\boldsymbol{\pi}^{2 "}$ IN DIS?

The relevant terms at $a_{\mathrm{s}}^{5}: \quad[a=2, n s, 3 \mid \sigma=+,-]$

$$
\left[\widehat{f}=\left.f\right|_{\zeta_{6}}\right]
$$

$$
\begin{aligned}
& \widehat{K}_{a}^{(4)}=\widehat{P}_{n s}^{(4), \sigma}-4 \beta_{0} \hat{c}_{a}^{(4)} \\
& \widetilde{K}_{a}^{(4)}=\widetilde{P}_{n s}^{(4), \sigma}-3 \beta_{1} \tilde{c}_{a}^{(3)}-4 \beta_{0}\left(\tilde{c}_{a}^{(4)}-c_{a}^{(1)} \tilde{c}_{a}^{(3)}\right)
\end{aligned}
$$

$c_{a}^{(4)}$ known at $N \leq 6, \quad P_{n s}^{(4), \sigma}$ known at $N=2,3$

- $\widehat{K}_{2, n s}^{(4)}(N=2)=0, \widehat{K}_{3}^{(4)}(N=3)=0 . \checkmark \Longrightarrow$ pred. of $\widehat{P}_{n s}^{(4), \sigma}(N \leq 6)$
- $\widetilde{K}_{2, n s}^{(4)}(N=2)=0, \quad \widetilde{K}_{3}^{(4)}(N=3)=0$, only after scheme trf.! \Longrightarrow pred. of $\widetilde{\boldsymbol{P}}_{n s}^{(4), \sigma}(N \leq 6)$

SUMMARY

FORCER allows us to determine moments of 4-loop Splitting Functions.
Using these one can:

- Reconstruct analytic expressions for the "easier" colour factors
- large- \boldsymbol{n}_{f} and large- $\boldsymbol{n}_{\boldsymbol{c}}$ parts
- non-singlet: all colour factors of "higher- ζ_{n} " terms
- Create numerical approximations for the remaining colour factors
- perturbative expansion of Splitting Functions well converging
- reduced scale dependence

DIS provides additional verification of the "no- π^{2} conjecture":

- if you believe it, yields predictions of currently unknown quantities
- analytic expressions at a_{s}^{4}
- Mellin moments at a_{s}^{5}

Backup: Valence Splitting Function

We have not discussed \boldsymbol{P}_{V}. Consider $\boldsymbol{P}_{S}=\boldsymbol{P}_{V}-\boldsymbol{P}_{\boldsymbol{n s}}^{-}$.
It contains terms with cubic Casimir $d^{a b c} d_{a b c} / n_{c} n_{f}^{2}$.
We have just 12 moments: $N=3, \ldots, 25$. (1, 27 as a check)
Conjecture (DMS):

$$
P_{S}^{(3)}=-\frac{2}{3} n_{f} \frac{d}{d N} P_{S}^{(2)}+\text { RR terms }
$$

Reciprocity Respecting terms: $f(x)=x f(1 / x)$ in x-space.
RR basis, no many-index sums, no $N=\mathbf{1} \zeta_{i}: 59$ unknown coefficients.
Solution!

