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Outline 
•   Discovery of 3 binary BH by aLIGO 
   starts a new era of GW Astronomy 
•   Massive PBH could be the main 
   component of Dark Matter 

•   Specific signatures of PBH 
•   Future: Testing the idea with   
   cosmological observations 
•   Conclusions   
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Gravitational Wave Astronomy 
•   Discovery of binary BH by aLIGO 
•   VIRGO, KAGRA, INDIGO = GW Astron 
•   GW150914 = 36 + 29 Msun BH binary 
•   GW151226 = 14 +  8 Msun  BH binary 
•   LVT151012 = 23 + 13 Msun “candidate” 
•   Expected 50-100 events/yr/Gpc3   
•   aLIGO+ can map the mass and spin of  
   Massive BH (10 Msun  < MBH  < 150 Msun) 
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Steven Weinberg 

“our problem is not that we  
take our theories too seriously,  

but that we  
don't take them seriously enough’’ 
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Mass Spectrum @ formation 
during radiation era 

Clesse, JGB (2015) 



Mass Spectrum @ MR equality 
Clesse, JGB (2015) 



Constraints 
on 

Primordial  
Black Holes 



Present Constraints on PBH 
Clesse, JGB (2015) 



Massive Primordial Black Holes 
•  These are NOT the (small) PBH with 
   10-24 M< MPBH <10-6 M of Carr et al. 
•  These are MASSIVE black holes with 
   10-2 M< MPBH <105 M   which cluster and  
   merge and could resolve some of the most  
   acute problems of ΛCDM paradigm. 
•  ΛCDM N-body simulations never reach the  
  100 M particle resolution, so for them PBH  
  is as good as PDM.  
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Mass-σ relation BH at G.C.  
MacConnel & Ma (2013) 

Kruijssen et al. (2013) 
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Distinguish MPBH from Stellar BH 
•   Accretion disks 
•   Distribution of spins 
•   Mass distribution ≠ IMF 
•   SBH kicks at formation vs static PBH 
•   Galaxy formation rate  gal. seeds 
•   Microlensing events of long duration 
•   GAIA anomalous astrometry 
•   CMB distortions with PIXIE/PRISM 
•   Reionization faster in the past 
•   N-body simulations below 102 Msun 
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P. Tisserand (2007) 
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Average distance between PBH 
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Anomalous accelerations 
The acceleration on any given star is due  
to the surrounding masses. A uniform DM 
field does not induce an extra force on ★.  
The ★ only feels the presence of other ★s
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Anomalous velocities & positions 
The relative velocity change of a ★ due  
to PBH, for a 220 km/s relative motion is 
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Gravitational slingshot effect 
Close encounters of a star with MPBH  
@ 100 km/s relative motion is enough to  
expel the star from the globular cluster. 
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It may explain large M/L ratios of dSph 
by ejection of stars in the cluster, v>vesc. 
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Fluctuations 
CIB & X-ray 
Background 



Kashlinsky  (2016) 
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Grav. Waves 
detections 
@ aLIGO 





Clesse, JGB  arXiv:1603.05234 



Grav. Waves 
detections 
@ eLISA 





Sesana  (2013) 
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Background 
Grav. Waves 



aLIGO arXiv:1602.03847 
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Primordial Black Holes as Dark Matter 
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Sensitivity of future GW antenas 



Discussion 



Signatures of MPBH as DM 
•   Seeds of galaxies at high-z 
•   Reionization starts early (Kashlinsky) 
•   Larger galaxies form earlier than ΛCDM 
•   Massive BH at centers QSO @ z>6   
•   Growth of structure on small scales 
•   Ultra Luminous X-ray Transients 
•   MPBH  in  Andromeda (Chandra) 
•   GW from inspiraling BH (LIGO) 
•   Substructure and too-big-to-fail probl. 
•   Total integrated mass = ΩM 



Future tests 
•   GAIA positions and velocities of stars 
•   CMB distortions with CORE+ 
•   GW from PBH mergers with LIGO 
•   Growth of structure on small scales 
•   Reionization history with SKA 
•   Direct detection from astrophysics 
   (GAIA, X-rays and gamma-rays) 
•   SN or GRB femtolensing on MPBH 
•   Microlensing (long duration events) 
•   Stochastic Grav. Wave Background 



Conclusions 
•  Massive Primordial Black Holes are the perfect 
candidates for CDM, in excellent agreement with 
CMB and LSS observations. 
•  MPBH could also resolve some of the most 
acute problems of ΛCDM paradigm, like early 
structure formation and substructure problems. 
•  MPBH open a new window into the Early 
Universe. 
•  There are many ways to test this idea in the 
near future from CMB, LSS, X-rays and GW.  
•  LISA could detect the stochastic background 
from MPBH merging since recombination. 


