EHIzürich

Luigi Ferraioli for the LPF Team

Departement Erdwissenschaften
Institute of Geophysics
ETH Zürich

LPF Front-End Electronics (FEE)

FEE primary and redundant units $+$

Switching unit

Glizürich

LPF Front-End Electronics (FEE)

LPF Front-End Electronics - Actuation

LPF Front-End Electronics - Actuation

Sensing and Actuation

Actuation Scheme

$$
\begin{aligned}
& \left|V_{1 x}\right|>\left|V_{2 x}\right| \\
& \text { or } V_{2 x}=0 \\
& \text { for } F_{x}>0
\end{aligned}
$$

© - Attitude

$\left|V_{1 \varphi}\right|>\left|V_{20}\right|$ or $V_{2 \Phi}=0$
for $\mathrm{N}_{\varphi}>0$

$$
\begin{aligned}
& V_{1}=V_{1 x} \sin \left(\omega_{x} t\right)+V_{1 \varphi} \sin \left(\omega_{\varphi} t\right)+V_{1 D C} \\
& V_{2}=-V_{1 x} \sin \left(\omega_{x} t\right)+V_{2 \varphi} \cos \left(\omega_{\varphi} t\right)+V_{2 D C} \\
& V_{3}=V_{2 x} \cos \left(\omega_{x} t\right)-V_{1 \varphi} \sin \left(\omega_{\varphi} t\right)+V_{3 D C} \\
& V_{4}=-V_{2 x} \cos \left(\omega_{x} t\right)-V_{2 \varphi} \cos \left(\omega_{\varphi} t\right)+V_{4 D C}
\end{aligned}
$$

$$
V_{1 x}=\frac{1}{2} \sqrt{\frac{d_{x}}{C_{0 x}}} \sqrt{2 F_{x}+2 F_{\max , x}}
$$

- Constant Stiffness

$$
V_{2 x}=\frac{1}{2} \sqrt{\frac{d_{x}}{C_{0 x}}} \sqrt{-2 F_{x}+2 F_{\max , x}}
$$

- Neutral TM
- $\omega_{x}=2 \pi 60 \mathrm{~Hz}$
- $\omega_{y}=2 \pi 90 \mathrm{~Hz}$
- $\omega_{\varphi}=2 \pi 270 \mathrm{~Hz} \cdot \omega_{\theta}=2 \pi 240 \mathrm{~Hz} \cdot \omega_{\eta}=2 \pi 180 \mathrm{~Hz}$

Actuation Noise gain noise

- Expected from ground measurements $3-6 \mathrm{ppm} / \sqrt{ } \mathrm{H}^{\mathrm{H}}$
- Measured during in-flight campaign 3-8 ppm
- fil tm asurement campaign

On-ground testing for electrode 10

LPF Front-End Electronics - Sensing

Sensing Bridge

100 kHz

Resonant inductive capacitive bridge

Resonance is tuned by C_{pi}

At resonance we have the lowest displacement to voltage noise and thus the best SNR.
Gain depends only on Cf and is quite flat around resonance thanks to TIA (trans impedance amplifier)

Sensing Bridge - Noise

Frequency

Low Frequency Noise
Voltage reference instability on injection voltage generates a coherent multiplicative noise on all channels

High Frequency Noise
Thermal noise in dispersive elements of the circuit dominated by the quality factor of the transformer bridge

EHzürich

Sensing Bridge - Noise Expectation

Requirement for the sensing
 noise in High Resolution mode

Requirement is flat in performance range, i.e. the first $10 \mu \mathrm{~m}$ in displacement. Then it is multiplicative with the displacement.

Injection instability is supposed to account up to a 30% of the total noise budget

Voltage reference noise has a typical 1/f noise shape that is the main source of the multiplicative noise

캐zürich

Sensing Noise - Measuct ments

When:
LPF Commissioning
2016/02/07 -> 2016/02/09 Actuation OFF 2016/02/09 -> 2016/02/11 Actuation ON

Measurement conditions:

- TM1 and TM2 grabbed by plungers.
- Plungers bias on, nominal value $\sim 0.6 \mathrm{~V}$.

Actuation ON. Actuation authority at nominal values $\mathrm{F}_{\mathrm{x} 2}=2.2 \mathrm{nN}->\mathrm{V}_{\mathrm{x} 2}=3.15 \mathrm{~V}$.
halysis conditions:

- 6 overlapping segments (overlap percentage 50%)
- 40000 samples per segment in order to have 0.1 mHz as minimum frequency after discarding the first 3 bins (window systematic).
- Blackman-Harris window.
- Linear fit detrend on each segment.

No remarkable difference between actuation ON and OFF measurements

ㅋHzürich

Sensing Noise - Measure ments

캐zürich

Sensing Noise - Measurements

ㅋHzürich

Sensing Noise Modelling

10^{-3} is introduced as a normalization term to 1 mHz . In this way A, B and C coefficients are expressed in $\mathrm{aF} / \sqrt{ } \mathrm{Hz}$

EIHzürich

Sensing Noise Modelling

$$
\operatorname{PSD}\left[\mathrm{aF}^{2} \mathrm{~Hz}^{-1}\right]=\mathrm{A}^{2}+\mathrm{B}^{2} *\left(10^{-3} / \mathrm{f}\right)+\mathrm{C}^{2} *\left(10^{-3} / \mathrm{f}\right)^{2}
$$

Sensin in ise Modelling - Analysis - 1/F noise

Assumption for a time domain model:
X_{c} and X_{u} are uncoherent $1 / f$ noise time series with power $1 \mathrm{aF}^{2} / \mathrm{Hz}$ @ 1 mHz

Plot B vs. Measured displacement
Fit the model for B

Coherence analysis shows that the position dependent contribution is compatible with a common (coherent) source. E.g. TM injection bias stability

* $\left(10^{-3 / f}\right)^{2} \quad X_{1 / f}=B 1|P O S| X_{c}+B 2 X_{u}$

Sensin in Modelling - Analysis - 1/F² noise

Assumption for a time domain model:
$X_{1 / f}=\mathrm{B} 1|\mathrm{POS}| \mathrm{X}_{\mathrm{c}}+\mathrm{B} 2 \mathrm{X}_{\mathrm{u}}$
X_{c} and X_{u} are uncoherent $1 / f^{2}$ noise time series with power $1 \mathrm{aF}^{2} / \mathrm{Hz} @ 1 \mathrm{mHz}$

Plot C vs. Measured displacement
Fit the model for C

Coherence analysis shows that the position dependent contribution is compatible with a common (coherent) source. E.g. TM injection bias stability

