
Measuring EMRIs: A reality check

Scott A. Hughes, MIT

What modeling and data analysis work must 
be done in order to achieve the science 

that has been promised for extreme 
mass ratio inspiral measurements?
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Outline and goal

Scott A. Hughes, MIT LISA 2016, Zürich

Submitted title while revisiting EMRI measurement 
problem after about 5 years away … working on 
talk has made me confident we will solve this.

* Very very brief overview of EMRI astrophysics

* The science payoff of measuring EMRI waves

* How to model EMRI waves: Self forces and black hole 
perturbation theory

* Using those models to guide the development of EMRI 
data analysis methods

* What we need to do to ensure we can measure these 
waves once LISA flies.



EMRI science I

Scott A. Hughes, MIT LISA 2016, Zürich

Major driver over the past decade and a half: The 
promise of extreme mass ratio inspirals as a 

source for low-frequency GW antennae.

Graphic courtesy of Marc Freitag

Multi-body scattering in 
centers of galaxies puts 
compact object (long 
taken to be ~10 Msun 

black hole) onto an orbit 
that evolves into a strong-
field, GW-driven inspiral…



EMRI science I
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Events are rare per galaxy, 
but GWs they generate can 
be heard to z ~ 0.5—1 … or 
even farther if the black 

hole is larger than we once 
thought.  Can expect dozens 

to hundreds of events per 
year in the centihertz band.

Major driver over the past decade and a half: The 
promise of extreme mass ratio inspirals as a 

source for low-frequency GW antennae.



EMRI science II
EMRIs are almost a test particle probe of 

black hole spacetimes:

Scott A. Hughes, MIT LISA 2016, Zürich

System is dominated by the 
properties of the big black 
hole … the motion of the 
small body and the waves 

that it generates are mostly 
determined by the big black 

hole’s properties. 

Measuring these waves measures the big black 
hole: precision probe of its properties.



EMRI science II
EMRIs are almost a test particle probe of 

black hole spacetimes:

Scott A. Hughes, MIT LISA 2016, Zürich

Measuring these waves measures the big black 
hole: precision probe of its properties.

Mass, spin, mass ratio: 
δM/M, δa, δη ~ 10-4 — 10-2

Orbit geometry: 
δe0 ~ 10-3 — 10-2 

δ(spin direction) ~ a few deg2 
δ(orbit plane) ~ 10 deg2

Distance to binary: 
δD/D ~ 0.03 — 0.1

Barack & Cutler PRD 69, 082005 (2004)



EMRI science II
EMRIs are almost a test particle probe of 

black hole spacetimes:

Scott A. Hughes, MIT LISA 2016, Zürich

Measuring these waves measures the big black 
hole: precision probe of its properties.

Multipoles describing large 
body’s spacetime: 

δ(mass quadrupole) ~ 10-3 

[precision degrades by about half an order of 
magnitude per multipole order]

Ryan PRD 56, 1845 (1997) 
Barack & Cutler PRD 75, 042003 (2007)

Kerr expectation: Ml + iSl = iM(a)l

Geodesy for black holes?

GRACE gravity model



Modeling EMRI waves
Modeling these binaries is in one way far easier 
than modeling comparable mass binaries: Large 

mass ratio means we can use perturbation theory.

Scott A. Hughes, MIT LISA 2016, Zürich

g�� = gKerr
�� + �h(1)

�� + �2h(2)
�� + . . .

HOWEVER: Number of cycles in band scales 
inversely with mass ratio.  For EMRI systems, 
expect 104 — 106 orbits … need exquisitely 

precise models to hold phase with data.

� � m

M

For this talk: Call this a “relativistic” EMRI model.



Motion in this model
Motion of small body looks like a geodesic of the 
larger black hole plus a correction arising from 

the smaller body’s contribution to the spacetime:

Scott A. Hughes, MIT LISA 2016, Zürich

Two contributions to the self force:
* Dissipative: Takes energy and angular momentum 

from binary, drives long-time evolution of orbit. !
* Conservative: Conserves energy and angular 

momentum, but shifts motion from geodesic        
(e.g., changing orbital frequencies).
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d�
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“Self force” — O(m/M) 
correction to geodesic 

black hole orbits.



Motion in this model
Motion of small body looks like a geodesic of the 
larger black hole plus a correction arising from 

the smaller body’s contribution to the spacetime:
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Comment: Neglecting influence of small body’s spin.

Small body’s spin causes precession and couples to 
curvature, leading to a non-geodesic force.  Especially 

if the small body is not so small, this could be an 
important influence beyond the self-force only model.
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d�
= f�

“Self force” — O(m/M) 
correction to geodesic 

black hole orbits.



How waveform phase accumulates
These effects contribute to the phase accumulated 
in-band at different orders in system’s mass ratio:

Scott A. Hughes, MIT

�(t1, t2) =
� t2

t1

�(t) dt

= �diss�1

+ �cons�1

+ �diss�2

O(M/m): Evolving geodesic frequency 
[O(1/M)] integrated over inspiral [O(M2/m)]

O(1): Conservative correction to frequency 
[O(m/M2)] integrated over inspiral

O(1): Geodesic frequency integrated against 
next correction to inspiral [O(M)]

Phase accumulated 
from t1 to t2:

+ �cons�2
O(m/M): Next correction to frequency [O(m2/M3)] 

integrated against inspiral [O(M2/m)]
LISA 2016, Zürich
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Phase accumulated 
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Conventional wisdom: Measuring EMRIs 
requires models accurate to O(1) in phase.

O(1): Geodesic frequency integrated against 
next correction to inspiral [O(M)]

O(m/M): Next correction to frequency [O(m2/M3)] 
integrated against inspiral [O(M2/m)]



Conventional wisdom: What we need 
for sufficiently accurate EMRI models

Scott A. Hughes, MIT LISA 2016, Zürich

Phase accuracy that appears to be needed is

�needed = �diss�1 + �cons�1 + �diss�2

From 1st order averaged 
dissipative self force. 

Totally understood.
From 1st order averaged cons. & 1st 

order oscillatory diss. self force. 
Understood for Schwarzschild 

… great progress for Kerr, 
expect results very soon.

From 2nd order 
averaged diss. & 1st 

order oscillatory 
cons. self force: 

Current frontier 
of self force 

research.



Surprise! Conventional wisdom breaks 
down: Averaging is not so simple.

Scott A. Hughes, MIT LISA 2016, Zürich

While this picture was developing, Flanagan and 
Hinderer found that Kerr black hole orbits can 
“break” the averaging underlying this analysis.

Self force can be split 
into “average” and 

“oscillatory” pieces:

Red: Full self force

Green: Averaged self 
force

f� =
�

kn

(f�)kne�i(k��+n�r)t

= (f�)00 +
�

kn

(f�)kne�i(k��+n�r)t

k �=0 n �=0

(Both schematic.)



Surprise! Conventional wisdom breaks 
down: Averaging is not so simple.
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While this picture was developing, Flanagan and 
Hinderer found that Kerr black hole orbits can 
“break” the averaging underlying this analysis.

For “most” orbits, the 
oscillatory contribution is 
much less important than 
the average … can neglect 
at leading order, use only 
the average components.

Red: Full self force

Green: Averaged self 
force

(Both schematic.)



Surprise! Conventional wisdom breaks 
down: Averaging is not so simple.
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While this picture was developing, Flanagan and 
Hinderer found that Kerr black hole orbits can 
“break” the averaging underlying this analysis.
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= (f�)00 +
�
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BUT: There exist “resonant” 
orbits for which “oscillatory” 

piece doesn’t oscillate.

Red: Full self force

Green: Averaged self 
force

(Both schematic.)



Surprise! Conventional wisdom breaks 
down: Averaging is not so simple.
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While this picture was developing, Flanagan and 
Hinderer found that Kerr black hole orbits can 
“break” the averaging underlying this analysis.

f� =
�

kn

(f�)kne�i(k��+n�r)t

= (f�)00 +
�

kn

(f�)kne�i(k��+n�r)t

k �=0 n �=0

Example: When Ωθ = 2Ωr, 
the “oscillating” term is 
constant for all terms in 
the sum in which n = -2k.

BUT: There exist “resonant” 
orbits for which “oscillatory” 

piece doesn’t oscillate.



Surprise! Conventional wisdom breaks 
down: Averaging is not so simple.
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While this picture was developing, Flanagan and 
Hinderer found that Kerr black hole orbits can 
“break” the averaging underlying this analysis.
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�

kn
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= (f�)00 +
�

kn

(f�)kne�i(k��+n�r)t
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Rather than 
evolution like this …

BUT: There exist “resonant” 
orbits for which “oscillatory” 

piece doesn’t oscillate.



Surprise! Conventional wisdom breaks 
down: Averaging is not so simple.
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While this picture was developing, Flanagan and 
Hinderer found that Kerr black hole orbits can 
“break” the averaging underlying this analysis.

f� =
�

kn
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= (f�)00 +
�

kn

(f�)kne�i(k��+n�r)t
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It looks like this: 
System is “kicked” 

passing through  
resonance.

BUT: There exist “resonant” 
orbits for which “oscillatory” 

piece doesn’t oscillate.



Surprise! Conventional wisdom breaks 
down: Averaging is not so simple.

Scott A. Hughes, MIT LISA 2016, Zürich

This behavior is generic: Every EMRI encounters at 
least one resonance as it spirals through the strong-
field.  Many encounter two; a few encounter three.

Example: An inspiral 
that encounters three 
resonances in its last 
~8 years of inspiral … 
two of them in final 

250 days before plunge.

[1 Msun spiraling into 106 Msun with spin a/M = 0.7.  From 
Ruangsri and Hughes, PRD 89, 084036 (2014).]



Updated wisdom: What we need for 
sufficiently accurate EMRI models

Scott A. Hughes, MIT LISA 2016, Zürich

Phase accuracy that appears to be needed is

Contribution to the phase from resonance crossings 
scales as sqrt(M/m) … dominating over all terms 

except the leading dissipative one.

�needed = �diss�1 + �res + �cons�1 + �diss�2�res



Where do we stand on modeling?
We know what calculations we need to do:
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�needed = �diss�1 + �res + �cons�1 + �diss�2
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�needed = �diss�1 + �res + �cons�1 + �diss�2

Φdiss-1: O(M/m); dominates.  Techniques to compute this term totally 
under control.
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Φres: O[sqrt(M/m)]; first subleading term.  Discovered only recently, 
has not yet been studied as carefully.
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under control. !
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Φcons-1: O(1); just big enough to influence measurement.  Formal 
techniques to compute this are nearly in hand for Kerr, studies now 
underway.



Where do we stand on modeling?
We know what calculations we need to do:
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�needed = �diss�1 + �res + �cons�1 + �diss�2

Φdiss-1: O(M/m); dominates.  Techniques to compute this term totally 
under control. !
Φres: O[sqrt(M/m)]; first subleading term.  Discovered only recently, 
has not yet been studied as carefully. !
Φcons-1: O(1); just big enough to influence measurement.  Formal 
techniques to compute this are nearly in hand for Kerr, studies now 
underway. !
Φdiss-2: O(1); same order as “cons-1” term.  Studies of this are the 
frontier of self force research.



Computational cost
Rosy scenario: Suggests we just need to turn some 

cranks and we’ll have a good set of models.  As 
additional physics comes under control, we refine 
models.  When LISA flies, we’ll be in great shape.

Scott A. Hughes, MIT LISA 2016, Zürich

Issue: These models are very expensive to compute!

p

e

θmRecipe for simplest model: 
1. Lay out grid in orbit parameter space    

(103 — 104 points to cover strong field) 
2. Solve linearized Einstein equation at each 

point (102 — 104 multipoles per point … 
about 0.01—0.1 CPU seconds per multipole) 

3. Use data to evolve from orbit to orbit, 
build waveform.

HOURS to 
compute EMRI 
waveforms.



Kludges1: Approximate models for 
testing EMRI data analysis

Scott A. Hughes, MIT LISA 2016, Zürich

Long known that relativistic wave models would be 
too expensive for EMRI data analysis studies … 

“kludges” developed as tools for this.



Kludges1: Approximate models for 
testing EMRI data analysis

Scott A. Hughes, MIT LISA 2016, Zürich

1 From Oxford English Dictionary: 
 kludge: A hastily improvised and poorly thought-out solution to a      
 fault or ‘bug.’

Long known that relativistic wave models would be 
too expensive for EMRI data analysis studies … 

“kludges” developed as tools for this.



Kludges1: Approximate models for 
testing EMRI data analysis

Long known that relativistic wave models would be 
too expensive for EMRI data analysis studies … 

“kludges” developed as tools for this.

Scott A. Hughes, MIT LISA 2016, Zürich

Analytic kludge of Barack and Cutler (2004): Analytic model 
based on post-Newtonian approximation to EMRIs.  Has main 

qualitative features (3 orbital frequencies, strong precession).

Very fast, easy to implement.  Extremely useful for studying 
time-frequency structure of EMRI waves in simulated data.

Does not remain phase locked with relativistic models 
for long time!  Great tool for exploring algorithmics, 

but not accurate model of Nature’s EMRIs.



Kludges1: Approximate models for 
testing EMRI data analysis

Scott A. Hughes, MIT

Long known that relativistic wave models would be 
too expensive for EMRI data analysis studies … 

“kludges” developed as tools for this.

Much slower than the 
analytic kludge … but 
maintains high fidelity 

with relativistic models.

LISA 2016, Zürich

Numerical kludge of Babak et al (2008): Use fits to relativistic 
data for the small body’s inspiral; use a simple multipole 
formula to make GWs from a small body on that inspiral.

[From Babak et al, PRD 75, 024005 (2007).]



Kludges1: Approximate models for 
testing EMRI data analysis

Scott A. Hughes, MIT

Long known that relativistic wave models would be 
too expensive for EMRI data analysis studies … 

“kludges” developed as tools for this.

Model follows Barack 
and Cutler recipe for 

inspiral, but uses exact 
Kerr frequencies at each 
moment to build waves.

A middle ground: Chua and Gair (2015) greatly improves 
analytic kludge with little extra computational cost!

LISA 2016, Zürich

[From Chua and Gair, CQG 32, 232002 (2015).]



EMRIs have been included in 
a few MLDCs … provided to 
be a challenging source to 
measure, but there were 
several successful entries.

Scott A. Hughes, MIT LISA 2016, Zürich

EMRIs in MLDCs

Bear in mind: MLDC EMRIs 
based on analytic kludge.

Some of the most interesting EMRI behaviors are 
not captured by this kludge … will be important 
to make sure that we test our ability to capture 

these behaviors with our data analysis algorithms.

[From Arnaud et al, CQG 24, S551 (2007).]



Where to go from here
We have a well defined research program, with 
concentrated effort needed on multiple fronts:

Scott A. Hughes, MIT LISA 2016, Zürich

Make relativistic EMRI models
Waves using 1st order, dissipative self 
force, neglecting resonances, can be 
made today. Extension to include 
resonances will be in hand quite soon. !
1st order conservative self force is 
coming together … must be prepared 
to fold in the results of that program. !
2nd order self forces will be a while 
longer, but we can be ready to update 
models as results are delivered. !
Think about other physics we can 
include!  (E.g, spin of small body.)

Make less kludgy kludges
Approximations that capture features 
of relativistic models have proven 
invaluable … can use them to test the 
influence of resonance kicks, impact 
of small secular forces, spin of the 
small body, …

Start up fresh MLDCs
MLDCs that use EMRI models that 
include the most interesting 
relativistic effects will demonstrate 
LISA’s ability to deliver the EMRI 
astrophysics and gravity science.


