

LISA Pathfinder: First Steps to Observing Gravitational Waves from Space

Paul McNamara on behalf of the LPF Team LISA Symposium XI Zurich, 5-9 Sept 2016

esa

esa

isa pathfinde

Introduction

LISA Pathfinder is the first step in the observation of gravitational waves from space

LISA Pathfinder provides us with:

- A better understanding of the physics of the forces acting on a free-falling test mass
- Industrial experience in the development, manufacture, and testing of technologies required for GW detection
- Data analysis algorithms and tools dedicated to the analysis of the system as a whole
- Essential experience in the commissioning of a LISA-like mission
- LPF essentially shrinks one arm of LISA from ~million km down to ~40cm
 - Giving up the sensitivity to gravitational waves
 - Maintaining the instrument noise which could dominate the GW signal

LISA:

- 3 spacecraft, separated by ~million km

- Role of each spacecraft is to protect the fiducial test masses from external forces

ELITE

PROPOSAL MAY 1998

LISA Team on SMART-2 Proposal (2000)

The LISA Team

B. Allen	University of Wisconsin
J.W. Armstrong	Jet Propulsion Laboratory
P. L. Bender	University of Colorado
O. Blaes	University of California Santa Barbara
E.A. Boldt	Goddard Space Flight Center
A. Brillet	University Paris Sud
S. Buchmann	Stanford University
R.L. Byer	Stanford University
F. Cady	Montana State University
I. Ciufolini	University of Rome
A.M. Cruise	University of Birmingham
T. E. Chupp	University of Michigan
C. Cutler	Albert-Einstein-Institut
K. Danzmann	University of Hannover
D. B. DeBra	Stanford University
H. Dittus	ZARM - Bremen
F. Estabrook	Jet Propulsion Laboratory
T. Edwards	Rutherford Appleton Laboratory
F. Fidecaro	INFN- Sezione de Pisa
L.S. Finn	Pennsylvania State University
W.M. Folkner	Jet Propulsion Laboratory
J.H. Hall	University of Colorado
R.W. Hellings	Jet Propulsion Laboratory
D. Hills	University of Colorado
W. Hiscock	Montana State University
C. Hogan	University of Washington
J. Hough	Glasgow University
Y. Jafry	ESTEC
G.M. Keiser	Stanford University
P. McNamara	Glasgow University

	R.D. Newmann	University of California Irvine
	M. Peterseim	Max-Planck-Institut für Quantenoptik
	E.S. Phinney	California Institute of Technology
	T.A. Prince	California Institute of Technology
	J.C. Ray	John Hopkins APl
	D.O. Richstone	University of Michigan
C	D. Robertson	Glasgow University
	M. Rodrigues	ONERA
	R. Reinhard	ESA
	A. Rüdiger	Max-Planck-Institut für Quantenoptik
	M.C.W. Sandford	Rutherford Appleton Laboratory
	G. Schäfer	University of Jena
	R. Schilling	Max-Planck-Institut für Quantenoptik
	B. Schutz	Albert-Einstein-Institute
	M. Shao	University of Illinois
	S. Shapiro	Jet Propulsion Laboratory
	D. Shoemaker	Massachusetts Institute of Technology
	C. Speake	University of Birmingham
	R.T. Stebbins	University of Colorado
(T. Summer	Imperial College
	B. Teegarden	Goddard Space Flight Center
	K. Thorne	California Institute of Technology
	M. Tinto	Jet Propulsion Laboratory
	P. Touboul	ONERA
	E.L. Turner	Princeton University
	JY. Vinet	University Paris Sud
(S. Vitale	University of Trento
(H. Ward	Glasgow University
	R. Weiss	Massachusetts Institute of Technology
	W. Winkler	Max-Planck-Institut für Quantenoptik

At the launch site...

esa 1 CSG, Kourou December 2015

Unlike ground based detectors, space missions have a wealth of unique constraints which must be overcome, e.g.

- Launch...intense vibration and acoustic noise
- Eclipses...large thermal swings during low earth orbits
- Radiation...especially when passing through the belts
- Mass...we need to get it there
- Power...we only use green energy!
- Communications...LPF is in orbit around L1 (1.5million km from Earth)
- In addition, 'commissioning' must be done *before* launch

lisa pathfinder

After launch, we don't have many knobs to turn!

LPF on shaker table to simulate launch conditions z-axis swept sine

17

18

Some numbers...

Solution Vibration

 During launch we subject our very delicate s/c to ~141dB broad band acoustic noise (peak at ~100Hz)

🐎 Thermal

- Payload temperature range: 0C to +40C
- Solar array temp range: -130C to +130C
- Radiation
 - Radiation-hard components are not state-of-the-art!
 - On-board computer clock speed = 22.5MHz

Sommunications

- Ground contact = 8 hours/day with 56kbps link
 - ~200MB of data per day maximum from s/c

> Mass

- Not only total mass, but where it is located...

lisa pathfinder

Engineering LISA Pathfinder

Ground Testing

> We only have one shot on orbit...

...therefore, we spend years testing on the ground

On-Station Thermal Test

And then it gets serious.... ...the launch campaign

LPF was transported to the launch site on 8th October 2015
The launch campaign was short, but intense...

Preparing for launch...

JISA PATHFINDER PREPARES FOR LIFTOFF

LISA Pathfinder was launched on 3/12/2015 at 04:04UTC

En-route to L1

Orbit raised via 6 apogee raising manoeuvres

- Transfer to Lagrange Point (L1) took ~50 days
- Separation of propulsion module on 2 February
- Final Orbit:
 - 500,000km x 800,000km around L1
 - Orbital Period of 6 months

Date	Milestone
3 December '15	Launch of LISA Pathfinder
11 January	Switch-on of the LISA Technology Package
2 February	Release of test mass launch locks and opening of venting valve
15 & 16 February	Test mass release \rightarrow free floating test masses
18 February	Alignment of the laser interferometer
22 February	First entry to Science Mode
1 March	Start of Science Operations
25 June	End of LTP Science Ops & start of DRS Ops
27 June	DRS Commissioning, Phase 2
15 December	End DRS Operations, start extended mission
31 May 2017	End of mission

Highlights of commissioning [1]

Interferometer alignment

- Test masses are controlled to align the interferometer (using differential wavefront sensing)
- Alignment is outstanding!

Transition from Acc3 to Science Mode: Commanded Force on TM2x

26

Highlights of commissioning [2]

- The first measurement of the differential acceleration, before we even started science operations, already met the performance requirements!
 - LPF worked "straight-out-of-the-box"

Operational Duty Cycle

lisa pathfinder

lisa pathfinder

LTP Science Operations

Some figures:

- 92 days of science operations
- Equal to **2214 hours** of data taking, of which:
 - 1491 hours of noise measurement (taking data with no injections)
 - 723 hours of 'active" investigations
 - From a total of 136 investigations
- ~20GB of data
- ~24 days of MOC activities (e.g. station keeping)
- 193 simulation equivalent days for scientific validation
 - 138 of which were unique investigations
- Minimum of two data analysis teams at ESOC each day during science operations
 - In addition we had:
 - Other scientists (PS, PI, DA managers)
 - MOC team (several engineers and Spacon)
 - STOC team (Operations manager, engineers (x2), scientist)

The LTP team at ESOC

LTP Commissioning Team

The LTP team at ESOC

LPF: An international success

LISA Pathfinder is an international endeavour

- More than 40 companies and institutes
- From 14 European countries and the USA

- LISA Pathfinder is the first step in the observation of gravitational waves from space
- Successfully launched on 3 December 2015
- All system performance requirements met before science operations began
- We are now approaching, or are have already met, the LISA performance requirements
- Next step.....LISA!

Thank you

ESA ESTEC ESA ESAC **ESA ESOC Airbus Defence and Space UK Airbus Defence and Space D University of Trento Albert Einstein Institute** University of Glasgow **University of Birmingham** Imperial College London **ETH Zurich** Institut d-Estudis Espacials de Catalunya Universidad Politecnica d Barcelona **APC Paris**

IFR Stuttgart Thales Alenia Italy OHB - CGS ALTA ARCS **OHB - Kayser Threde** NTE **RUAG** Spacebel SRON Technologica TESAT ZARM JPL **NASA** Goddard **BUSEK**